+ All Categories
Home > Documents > Lecture06 - Higher Order Transient Anaysis

Lecture06 - Higher Order Transient Anaysis

Date post: 10-Apr-2018
Category:
Upload: karulin05
View: 218 times
Download: 0 times
Share this document with a friend

of 53

Transcript
  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    1/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p1

    Transient Analysis of Transient Analysis of HigherHigher -- Order Netw orksOrder Netw orks

    BY: ArtemioBY: Artemio P. MagaboP. MagaboProfessor of Electrical Engineering, UP EEEIProfessor of Electrical Engineering, UP EEEI

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p2

    Second-Order Transients

    The solution can be shown to be an exponential of the form

    stKx =

    Consider the homogeneous differential equation

    0cxdtdx

    bdt

    xda 2

    2

    =++

    with initial conditions x(0)=X 0 and =X 0 .)0(xtdx

    where K and s are constants. Substitution gives

    0cKbsKKas ststst2 =++

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    2/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p3

    After canceling the exponential term, we get thecharacteristic equation

    0cbsas 2 =++Using the quadratic formula, we get the two roots

    a24ac-bb-

    s,s2

    21=

    Assuming the roots are real and distinct, thesolution will consist of two exponentials. Thus

    ts

    2

    ts

    121

    KK)t(x +=K1 and K 2 can be evaluated using x(0) and (0). dtdx

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p4

    Series RLC Netw orkConsider the circuitshown. From KVL, weget for t 0

    R

    iE+

    -

    t=0v C+

    -

    L

    C

    EidtC1Ri

    dtdiL =++

    Differentiating, we get

    0iC1

    dtdi

    Rdtid

    L 22

    =++This is a homogeneous second-order differentialequation.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    3/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p5

    The characteristic equation is

    0C1RsLs 2 =++

    0LC1s

    LRs 2 =++

    or

    From the quadratic formula, we get the two roots

    LC1

    L2R

    L2R

    s,s2

    21

    =

    Note: There are three types of root depending onthe value of the term inside the square root sign.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p6

    1. Overdamped Case: The roots are real anddistinct when

    LC1

    L2R

    2

    >

    ts2

    ts1

    21 KK)t(x +=The solution is the sum of two exponential terms

    2. Critically Dam ped Case: The roots are real butrepeated when

    LC1

    L2R

    2

    =

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    4/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p7

    st21 )KtK()t(x +=

    The solution can be shown to be

    LC1

    L2R

    2

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    5/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p9

    Example: The capacitor is initially uncharged. Att=0, the switch is closed. Find

    )0(dtdi + R

    i12V+

    -

    t=0vC+

    -

    1H

    C

    i(0+) and .

    From KVL, we getfor t 0,

    EidtC1

    Ridtdi

    L =++ At t=0 + , i(0 + )=0. Also, we are given that v C(0 + )=0.Substitution gives

    A/s12LE)0(

    dtdi ==+

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p10

    F161

    10

    i12V+

    -

    t=0v C+

    -

    1HExample: The capacitoris initially uncharged. Att=0, the switch isclosed. Find i(t)for t 0.

    The characteristic equation is thus

    016s10s 2 =++

    From KVL, we get for t 0,

    12idt16i101 =++ dtdi

    Differentiating theequation, we have 0i16dt

    di10 =++2

    2

    dtid

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    6/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p11

    F161

    10

    i12V+

    -v C+

    -

    1HThe characteristicequation is

    016s10s 2 =++

    whose roots are s 1=-2 and s 2=-8. Thus, we get8t-

    22t-

    1 KK)t(i +=and

    8t-2

    2t-1 K8K2dt

    di =

    From the previous example, weve found that att=0 + ,

    A/sdtdi

    12LE

    )0( ==+i(0 + )=0, v C(0 + )=0 and

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p12

    The initial conditions are i(0 + )=0 and =12A/sec. Substitution gives

    )0(dtdi +

    21 KK0)0(i +==+

    21 8K--2K12)0(dtdi ==+

    Solving simultaneously, we get K 1=2 and K 2=-2.Thus,

    0t Amp 2-2)t(i 8t-2t- =Note: For an over-damped case, the solutionconsists of two distinct exponential terms.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    7/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p13

    F161

    8

    i12V+

    -

    t=0v C+

    -

    1HExample: The capacitor

    is initially uncharged. Att=0, the switch isclosed. Find i(t)for t 0.

    The characteristic equation can be shown to be

    016s8s 2 =++whose roots are s 1=-4 and s 2=-4. Thus, we get

    4t-3

    4t-2

    4t-1 KKK)t(i =+=

    A single exponential solution will not work since theoriginal differential equation is second-order.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p14

    Assume . Differentiating twice, we get4t-)t(y)t(i =4t-4t- )t('y)t(y-4

    dtdi +=

    4t-4t-4t-2

    2

    )t(''y)t('y8-)t(y16dt

    id +=

    The original differential equation is

    0i16dtdi

    8dt

    id2

    2

    =++

    -4t-4t-4t )t(''y(t)8y'-)t(y160 +=-4t-4t4t- 16y(t))t('y832y(t)- ++

    Substitution gives

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    8/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p15

    Integrating twice, we get

    1K)t('y =or21 KtK)t(y +=

    Simplifying, we get

    0)t(''y 4t- =0(t)'y' =

    or

    4t-

    )t(y)t(i =

    Finally, the solution is

    4t-2

    4t-1 KtK)t(i +=

    or

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p16

    Differentiating the solution, we get

    4t-2

    4t-1

    4t-1 4K-Kt-4Kdt

    di +=

    We get K 1=12 and K 2=0. Thus

    0t Amp t12)t(i 4t- =

    2K00)0(i +==+

    21 4K-K012)0(dtdi

    +==+

    The initial conditions are i(0 + )=0 and =12A/sec. Substitution gives

    )0(dtdi +

    4t-2

    4t-1 KtK)t(i +=

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    9/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p17

    F161

    6

    i12V+

    -

    t=0v C+

    -

    1HExample: The capacitor

    is initially uncharged. Att=0, the switch isclosed. Find i(t)for t 0.

    The characteristic equation can be shown to be

    016s6s 2 =++whose roots are s 1 , s 2=-3 j2.65. Thus, we get

    j2.65)t-(-32

    j2.65)t(-31 KK)t(i += +

    or)KK()t(i t j2.65-2

    t j2.651

    3t- +=

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p18

    Eulers Identities:

    xsin jxcos jx +=(1)sin x j-xcos = jx(2)

    To prove the first identity, let y=cos x + j sin x.Differentiating, we get

    xcos jx-sindxdy +=

    x)sin jx(cos j +=xcos jxsin j

    dxdy 2 +=

    and since , the equation can be re-writtenas

    1 j =

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    10/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p19

    We get y jdx

    dy =

    Integrating both sides, we get

    Kx jyln +=

    dx jdyy1 =

    or

    Evaluate K. When x=0, y=1.

    0KorK j01ln =+=Thus we get ln y = jx, or xsin jxcos jx +=Note: The other Eulers identity can be verifiedfollowing the same analysis.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p20

    Back to the expression for the current

    )KK()t(i t j2.65-2t j2.65

    13t- +=

    tsin jKtcosK[)t(i 11t3 +=

    ]tsin jKtcosK 22 +

    From Eulers identities, we get

    where = 2.65. Combining the two cosine termsand the two sine terms, we get

    ]tsinKtcosK[)t(i 43t3 +=

    where K 3 = K 1+K 2 and K 4 = j(K 1-K 2 ).

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    11/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p21

    3K0)0(i ==+

    .544KorK12)0(dtdi

    44 ===+

    We get

    0t Amp t2.65sin54.4)t(i t3 =

    The initial conditions are i(0 + )=0 and =12A/sec. Substitution gives

    )0(dtdi +

    Differentiate to get

    ]tcosKtsinK[dtdi 43

    t3 +=

    ]tsinKtcosK[3 43t3 +

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p22

    R=8

    R=10

    R=6

    P lot of the Currents

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    12/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p23

    P arallel RLC Netw ork

    Differentiating, we get

    0v

    L

    1

    dt

    dv

    R

    1

    dt

    vdC 22

    =++

    This is a homogeneous second-order differentialequation.

    Consider the circuitshown. From KCL, weget for t 0

    IvdtL1v

    R1

    dtdvC =++

    RI v+

    -CL

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p24

    0LC1s

    RC1s 2 =++

    or

    Note: We get three types of root depending on thevalue of the term inside the square root sign.

    The characteristic equation is

    0L1s

    R1Cs 2 =++

    From the quadratic formula, we get the two roots

    LC1

    RC21

    2RC1

    -s,s

    2

    21

    =

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    13/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p25

    Higher-Order Transients

    The solution can be shown to be an exponential of

    the form stKx =where K and s are constants.

    Consider the homogeneous differential equation

    0xadtdxa...

    dtxda

    dtxda 011n

    1n

    1nn

    n

    n =++++

    with initial conditions x(0)=X 0 , =X 0)0(xtdx

    '''''''01n

    1n

    X)0(dx

    xd =

    ''02

    2

    X)0(dt

    xd = ,

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p26

    Substitution gives

    0KasKa...KsaKsa st0st

    1st1n

    1nstn

    n =++++ After canceling the exponential term, we get thecharacteristic equation.

    0asa...sasa 011n

    1nn

    n =++++ This is a polynomial of n th order and there will be nroots. The type of response will depend on the

    values of these roots. Assuming all the n roots arereal and distinct, the solution can be shown to be

    tsn

    ts1n

    ts2

    ts1

    n1n21 KK...KKx ++++=

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    14/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p27

    The roots of the characteristic equation can beshown to be s 1=-2, s 2=-4 and s 3 =-8.

    Example: Consider the differential equation

    0v64dtdv56

    dtvd14

    dtvd

    2

    2

    3

    3 =+++

    with initial conditions v(0)=7 volts, (0)=-24 v/sdtdv

    and (0)=112 v/s 2 . Find v(t).22

    dtvd

    064s56s14s 23 =+++The characteristic equation is

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p28

    -8t3

    -4t2

    -2t1 KKK)t(v ++=

    Since the roots are real and distinct, the solution is

    Differentiating twice, we get

    8t-3

    4t-2

    2t-1 K8K4K2dt

    dv =

    8t-3

    4t-2

    2t-12

    2

    K64K16K4

    dt

    vd ++=

    Evaluate the expressions for v, and at t=0and use the initial conditions. dt

    dv2

    2

    dtvd

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    15/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p29

    321 K8K4K224)0(dtdv ==

    3212

    2

    K64K16K4112)0(dt

    vd ++==

    Solving simultaneously, we get K 1=4, K 2 =2 andK3=1. The final solution is

    V 124)t(v -8t-4t-2t ++=

    321 KKK7)0(v ++==We get

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p30

    Example: Consider the differential equation

    0i32dtdi

    32dt

    id10

    dtid

    2

    2

    3

    3

    =+++

    032s32s10s 23 =+++The characteristic equation is

    The roots of the characteristic equation can beshown to be s 1=-2, s 2=-4 and s 3 =-4. The solution

    is -4t3-4t

    2-2t

    1 KtKK)t(i ++=The constants K 1 , K 2 and K 3 can be evaluated if the values of i, di/dt and d 2 i/dt 2 are known at t=0.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    16/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p31

    Getting the Differen tial EquationUsing nodal analysis or loop analysis, write theKCL or KVL equations that describe the circuit.

    1.

    Differentiate the equations, if necessary, toeliminate any integral expressions.

    2.

    In every equation, replace the derivatives withoperators.

    3.

    Eliminate all variables, except one, using anyappropriate method.

    4.

    Simplify as necessary and replace the operatorswith the corresponding derivative terms.

    5.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p32

    =++t

    1222

    0dt)ii(16i10dtdi

    Mesh 2:

    Mesh 1: =+t

    211 )t(vdt)ii(16i8First, write the mesh equations for the circuit.

    Then, differentiate the mesh equations to eliminatethe integrals.

    Example: Find thedifferential equationsthat describe themesh currents i 1 andi2 in the networkshown.

    1H

    v(t)+

    -

    8

    i1 i2 10 F161

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    17/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p33

    Next, multiply equation (1) by 16 and equation (2)by (8D+16), then add the resulting equations. Thiswill eliminate the current variable i 1 .

    0i)16D10D(i16 22

    1 =+++ (2)

    )t(vdtdi16i16

    dtdi8 211 =+

    We get

    (a)

    0i16dtdi

    10dt

    idi16 222

    22

    1 =+++ (b)

    )t(Dvi16i)16D8( 21 =+ (1)

    Using operators, let D= . Substitution givesdtd

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p34

    We get

    )t(Dv16i)D288D96D8( 223 =++

    which simplifies to

    )t(v2i)36D12D( 22 =++

    The differential equation for the current i 2 is

    )t(v2i36dtdi12

    dtid

    22

    22

    2

    =++

    0i)16D10D(i16 22

    1 =+++ (2))t(Dvi16i)16D8( 21 =+ (1)16

    (8D+16)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    18/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p35

    )t(v)16D10D(Di)D288D96D8( 2123 ++=++

    which simplifies to

    )t(v)16D10D(i)36D12D( 281

    12 ++=++

    The differential equation for current i 1 is

    2

    2

    11

    21

    2

    dt

    )t(vd125.0i36

    dt

    di12

    dt

    id =++

    )t(v2dt

    )t(dv25.1 ++

    Similarly, if we multiply equation (2) by 16 andequation (1) by (D 2 +10D+16), then add theresulting equations, we will eliminate the currentvariable i 2 . We get

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p36

    22

    85

    22

    2

    161

    1 idtdi

    dtid

    i ++=

    Alternative Procedure: First, solve for i 1 from (b)and differentiate the resulting equation. We get

    Next, substitute the equations in (a). We get

    )t(v2i36dtdi

    12dtid

    22

    22

    2

    =++A similar procedure, applied on equation (a), willresult in the differential equation for current i 1 .

    dtdi

    dtid

    dtid

    dtdi 2

    22

    2

    85

    32

    3

    1611 ++=

    and

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    19/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p37

    Example: The switch is moved from b to a at t=0.

    Find the differential equations that describe thevoltages v 1 and v 2 for t 0.4

    E+

    -

    t=0

    a

    1H

    bv(t)

    +

    -F

    416

    REF

    +v 1

    +v 2

    From KCL, we getfor t 0

    0dtv6

    v-v1

    21 =+ Node 1:0

    dtdv

    41

    6vv

    4v(t)-v 2122 =++Node 2:

    (1)

    (2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p38

    Differentiate (1) and re-write the equations. We get

    0dt

    dv61v

    dtdv

    61 2

    11 =+

    )t(v41

    v125

    dtdv

    41

    v61

    - 22

    1 =++

    )t(v3v5dt

    dv3v2- 22

    1 =++

    0dt

    dvv6

    dtdv 2

    11 =+

    Simplify into

    0Dv6)v(D 21 =+

    )t(v3)v5(3D2v- 21 =++

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    20/53

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    21/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p41

    For t 0, we get from KVL

    )t(vdt)ii(20i4 211 =+ 0dt)ii(20

    dtdi

    122 =+

    or

    dt)t(dv

    i20i20dtdi

    4 211 =+

    0i20i20dt

    id122

    22 =+

    3

    t=0

    1Hv(t)

    +

    -

    F2011

    i1 i2

    Example: At t=0, the switch is opened. Find the

    differential equations that describe the currents i 1and i 2 for t 0.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p42

    )t(Dvi20i)20D4( 21 =+Using operators, we get

    (1)

    0i)20D(i20 22

    1 =++ (2)Multiply equation (1) by (D 2+20) and (2) by 20,then add the resulting equations. This willeliminate the variable i 2 . We get

    )t(v)5D(i)20D5D( 241

    12 +=++

    The differential equation for i 1 is

    )t(v5dt

    )t(vdi20

    dtdi

    5dt

    id2

    2

    41

    11

    21

    2

    +=++

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    22/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p43

    Multiply equation (1) by 20 and (2) by (4D+20),then add the resulting equations. This willeliminate the variable i 1 . We get

    )t(v5i)20D5D( 22 =++

    The differential equation for i 2 is

    )t(v5i20dtdi

    5dt

    id2

    222

    2

    =++

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p44

    Complete Response:1. Steady-state Response2. Transient Response

    W hy Get Initial Conditions?

    Transient Response: General form is exponentialts

    nts

    1nts

    2ts

    1n1n21 KK...KKx ++++=

    where K 1 , K 2 , Kn are arbitrary constants.

    Answer: The initial conditions are necessary in thedetermination of the numerical values of thearbitrary constants K 1 , K 2 , Kn .

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    23/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p45

    Evaluating Initial Conditions

    5. Use the KVL and KCL equations for t 0 and

    their derivatives, plus the inductor currentsand capacitor voltages at t=0 + to evaluatethe required initial conditions.

    1. Assume switching operation at t=0.

    2. Evaluate the inductor currents and capacitorvoltages at t=0 - .

    3. Find inductor currents and capacitor voltagesat t=0 + .

    4. Write the KVL and KCL equations describing thenetwork for t 0.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p460)0(v

    A1.0)0(i

    C

    ss,L

    =

    ==

    1k

    100

    Example: The circuit has reached steady-statecondition with the switch in position a. At t=0, theswitch is moved to position b. If the capacitor isinitially uncharged, find i(0 + ),

    ).0(dt

    id )0(

    dtdi

    2

    2++ and

    1k

    i100V+

    -

    t=0

    a

    1H0.1 F

    b

    The circuit is at steadystate for t

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    24/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p47

    0idtC1Ri

    dtdiL =++ (1)

    whose derivative is

    0iC1

    dtdi

    Rdt

    idL 2

    2

    =++(2)

    At t=0 + ,

    A1.0i)0(iss,L

    ==+

    0)0(v C =+

    From KVL, we get for t 0,1k

    i 1H0.1 F

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p48

    From (2), we get

    )]0(iC1)0(

    dtdiR[

    L1-)0(

    dtid2

    2 +++ +=

    2kA/s-900=

    0From (1), we get at t=0 +

    0)0(v)0(Ri)0(dtdi

    L C =++ +++

    which gives

    A/s100)0(iLR

    )0(dtdi == ++

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    25/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p49

    A430

    120)0(i -L ==

    V80)0(i20)0(v L-

    C ==

    t=0

    i1 i2

    10 120V

    +

    - 1H

    20

    1 F

    20

    and .)0(dtdi 2 +

    Example: The network is initially at steady-state

    condition with the switch open. At t=0, the switchis closed. Find i 1(0 + ), i 2(0 + ),

    )0(dtdi1 +

    At t=0 - , we get

    iL(0 -)

    10

    120V

    +

    -

    20 +-

    vC(0 - )

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p50

    For t 0, we get from KVL

    i1 i2120V+

    - 1H

    20

    1 F

    20

    At t=0 + , we get

    A4)0(i)0(i -L1 ==+

    V80)0(v)0(v-

    CC ==+

    120i20dtdi

    11 =+(1)

    120dti10i20t

    26

    2 =+ (2)

    From equation (2), we get

    A2)]0(v120[)0(i C201

    2 == ++

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    26/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p51

    From equation (1), we get

    A/s40)0(i20120)0(dtdi

    11 == ++

    To get an equation involving , differentiate (2).We get dt

    di 2

    0i10dtdi

    20 262 =+

    At t=0 + , we get

    kA/sec -100)0(dtdi 2 =+

    120i20dt

    di1

    1 =+(1) 120dti10i20t

    26

    2 =+ (2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p52

    dtdi1

    Example: The network is initially unenergized. Att=0, the switch is closed. Determine i 1(0 + ), i 2 (0 + ),

    (0 + ) and (0 + ).dtdi 2

    i1E+

    -

    t=0

    i2R1 L

    R2C

    For t 0, we get fromKVL,

    E)ii(RdtiC

    12111

    =+

    (1)

    0iRi)RR(dtdi

    L 112212 =++(2)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    27/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p53

    Since the circuit is initially unenergized, we knowthat v C(0 + )=0 and i L(0 + )=0. Thus

    0)0(i2 =+

    From (1), we get

    E)0(iR)0(iR)0(v 2111C =+ +++

    or

    11 R

    E)0(i =+

    E)ii(RdtiC

    12111 =+ (1)

    0iRi)RR(dtdiL 11221

    2 =++(2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p54

    0)0(i2 =+1

    1 RE

    )0(i =+

    From (2), we get

    0)0(iR)0(i)RR()0(dtdi

    L 112212 =++ +++

    E)ii(RdtiC1

    2111 =+ (1)0iRi)RR(

    dtdi

    L 112212 =++(2)

    LE)0(i

    LR)0(

    dtdi

    112 == ++

    which gives

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    28/53

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    29/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p57

    For t

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    30/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p59

    At t=0 + , we get from (1)

    mA9)]0(v)0(v27[R1

    )0(i 2C1C2

    1 == +++

    Since i 1 (0+

    ) - i 3 (0+

    )=i L(0+

    ), then0)0(i)0(i)0(i L13 == +++

    ++= dtiC1

    dtiC1

    iR27 32

    21

    12(1)

    (2) += dtiC1)ii(R0 2

    1121

    (3) += dtiC1

    )ii(dtd

    L0 32

    13

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p60

    For resistor R 1 , we get

    )0(v)]0(i)0(i[R)0(v 1C2111R++++ ==

    or

    mA3R

    )0(v)0(i)0(i

    1

    1C12 ==

    +++

    ++= dtiC1dtiC1iR27 322112(1)(2) += dtiC

    1)ii(R0 2

    1121

    (3) += dtiC1

    )ii(dtd

    L0 32

    13

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    31/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p61

    Differentiate equations (1) and (2). We get

    32

    21

    12 iC

    1i

    C1

    dtdi

    R0 ++=(4)

    (5) 21

    11

    21 iC

    1dtdiR

    dtdiR0 +=

    At t=0 + , we get from (4)

    s /A3=

    )]0(iC1)0(iC1[R1)0(dtdi 322

    12

    1 +++ +=

    ++= dtiC1

    dtiC1

    iR27 32

    21

    12(1)

    (2) += dtiC1)ii(R0 21121

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p62

    At t=0 + , we get from (5)

    s /A5.4=

    )0(iCR

    1)0(dtdi)0(

    dtdi

    211

    12 +++ =

    At t=0 + , we get from (3)

    s /A9=

    )0(v

    L

    1)0(

    dt

    di)0(

    dt

    di2C

    13 +++ =

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    32/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p63

    dtdi

    Example: The network has reached steady-state

    condition with the switch closed. At t=0, the switchis opened. Find i(0 + ), v(0 + ),

    (0 + ) and (0 + ).dtdv

    t=0

    i60V

    +

    - 1H 10 -3 Fv

    +

    -

    10 20

    Equivalent circuit at t=0 -

    iL(0 -)60V

    +

    -+

    -

    10 20

    v C(0 -)

    A32060

    )0(iL ==

    V60)0(v C =

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p64

    Equivalent circuit for t 0

    i1H 10 -3 Fv

    +

    -

    10 20 vi20dtdi =+(1)

    vidt10i10t3 =+ (2)

    V30)0(v =+or

    At t=0 + , we get

    A3)0(i)0(i L == +

    V60)0(v)0(v CC == +

    )0(v)0(v)0(i10 C+++ =

    From equation (2), we get

    +vC-

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    33/53

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    34/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p67

    dtdv

    6vv

    4v120 2

    41122 +=(2)

    Equivalent circuit for t 0 4

    1H120V

    +

    -F

    416

    REF

    +v 1

    +v 2

    = dtv6vv

    112(1)

    From KCL, we get

    0)0(i6)0(v)0(v L21 == +++From (1), we get

    At t=0 + ,V36)0(v)0(v C2 == ++

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p68

    From (2), we get

    V/s60)0(dt

    dv 2 =+

    Differentiate equation (1). We get

    121 v6

    dt

    dv

    dt

    dv =At t=0 + ,

    )0(v6)0(dt

    dv)0(dt

    dv1

    21 +++ = V/s60=

    dtdv

    6vv

    4v120 2

    41122 +=(2) = dtv6

    vv1

    12(1)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    35/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p69

    Solving the Differential Equation

    Find the steady-state response x ss . This issimilar in form to the forcing function g(t) plusall its unique derivatives.

    1.

    Consider the n th -order differential equation

    )t(gxadtdx

    a...dt

    xda

    dtxd

    a 011n1n

    1nn

    n

    n =++++

    Find the transient response x t . This is generally

    an exponential of the form

    2.

    tsn

    ts2

    ts1t

    n21 K...KKx +++=

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p70

    )0(xtdx )0(

    dxxd1n

    1n

    )0(dt

    xd2

    2Evaluate the initial conditions. We need the3.

    values of x(0), , , .

    Find the total response. Add the steady-stateresponse and transient response.

    4.

    tsn

    ts2

    ts1ss

    n21 K...KKxx(t) ++++=Differentiate the total response (n-1) times.5.

    Using the expressions for x(t) and its (n-1)derivatives in step 5, and the initial conditions instep 3, find the arbitrary constants K 1 , K 2 , Kn .

    6.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    36/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p71

    First, get the differential equations that describecurrents i 1(t) and i 2 for t 0. The mesh equationsare

    24i8i12dtdi

    211 =+ (1)

    0i8i12dtdi2 12

    2 =+ (2)

    Example: The network

    is initially unenergized.At t=0, the switch isclosed. Find currentsi1(t) and i 2 (t) for t 0.

    4

    i124V+

    -

    t=0 1H

    i28 2H

    4

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p72

    24i8i12dtdi

    211 =+

    0i8i12dtdi

    2 122 =+

    Using operators we get(D+12)i 1 8i 2 = 24 (a)

    -8i 1 + (2D+12)i 2 = 0 (b)

    To eliminate i 2 , multiply (a) by (2D+12) and (b)by 8 and add the resulting equations. We get

    (D 2 + 18D + 40)i 1 = (D+12)12

    144i40dtdi

    18dt

    id1

    121

    2

    =++or

    (1)

    (2)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    37/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p73

    (D 2 + 18D + 40)i 2 = 96

    Similarly, we eliminate i 1 by multiplying (a) by 8

    and (b) by (D+12) and adding the equations. Weget

    96i40dtdi

    18dt

    id2

    222

    2

    =++or

    Alternatively, we can solve for i 2 in equation (1)and differentiate the resulting equation. We get

    (3)3idtdi

    i 1231

    81

    2 +=

    dtdi

    dtid

    dtdi 1

    23

    21

    2

    812 += (4)

    and

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p74

    Substitute (3) and (4) in equation (2). We get

    144i40dtdi

    18dt

    id1

    121

    2

    =++

    This is the required differential equation for i 1 .

    2232

    41

    1 idtdii += (5)

    Solve for i 1 in equation (2) and differentiate theresulting equation. We get

    dtdi

    dtid

    dtdi 2

    23

    22

    2

    411 += (6)and

    Substitute (5) and (6) in equation (1). We get

    96i40dtdi

    18dt

    id2

    222

    2

    =++This is the required differential equation for i 2 .

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    38/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p75

    Next, we determine the steady-state response i 1,ssand i 2,ss which are both constant. We get from

    144i40dtdi

    18dt

    id1

    121

    2

    =++

    A6.340

    144i ss,1 ==

    and from

    96i40dtdi

    18dt

    id2

    222

    2

    =++

    A4.24096i ss,2 ==

    Since theforcing functionis a constant(24V) thesteady-stateresponse of anycurrent orvoltage shouldalso be aconstant. Thus,

    i1,ss = A

    di 1,ss / dt = 0d 2 i1,ss / d t 2 = 0

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p76

    We can also draw the equivalent circuit at steadystate. We get 4

    24V+

    -i2,ss8

    4

    i1,ss24i8i12 ss,2ss,1 =0i12i8 ss,2ss,1 =+

    which gives i 1,ss = 3.6 Ampsand i 2,ss = 2.4 Amps.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    39/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p77

    Next, find the transient response. The differential

    equations are

    Solving for the roots, we get s 1 =-2.6 and s 2 =-15.4.

    144i40dtdi

    18dt

    id1

    121

    2

    =++

    040s18s2

    =++

    Setting the right-hand side of the equation to zeroand changing operators, we get the characteristicequation to be

    96i40dtdi

    18dt

    id2

    222

    2

    =++

    Only one characteristicequation defines anycurrent or voltage inthe circuit.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p78

    -15.4t2

    -2.6t1t1 KKi +=

    Thus, we get the transient response.

    -15.4t4

    -2.6t3t2 KKi +=

    Next, we find the initial conditions. We need i 1 (0 + ),

    dtdi 2i2(0 + ), (0 + ) and (0 + ).dt

    di1

    0)0(i)0(i 21 == ++Since the circuit was initially unenergized, we get

    From (1), we get A/s24)0(dtdi 1 =+

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    40/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p79

    From (2), we get 0)0(dt

    di 2 =+

    Next, determine the total response. We get-15.4t

    2-2.6t

    11 KK6.3)t(i ++=-15.4t

    4-2.6t

    32 KK4.2)t(i ++=

    whose derivative are

    15.4t-2

    2.6t-1

    1 K4.15K6.2dtdi =

    15.4t-4

    2.6t-3

    2 K4.15K6.2dtdi =

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p80

    Evaluate the constants K 1 and K 2 . At t=0 + , we get

    211 KK6.30)0(i ++==+

    211 K4.15K6.224)0(

    dtdi ==+

    Solving simultaneously, we get K 1=-2.46 andK2=-1.14. The final expression for current i 1 is

    A 14.146.26.3)t(i -15.4t-2.6t1 =

    Evaluate the constants K 3 and K 4 . We get K 3 =-2.89and K 4=0.49. Thus

    A 49.089.24.2)t(i -15.4t-2.6t2 +=

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    41/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p81

    I 1

    I2

    P lot of the Currents

    4

    i124+

    -

    t=0 1

    i28 2

    4

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p82

    4

    60V+

    -

    t=0

    a

    1H

    b120V

    +

    -F

    416

    REF

    +v 1

    +v 2

    Example: The switch has been in position b for along time. At t=0, the switch is moved to a. Findv 1(t) and v 2(t) for t 0.

    In a previous example, we got the differentialequations that describe the voltages v 1 and v 2 . Inanother example, we derived the initial conditions.

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    42/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p83

    0v10dt

    dv7dt

    vd1

    1212 =++

    720v10dt

    dv7dt

    vd2

    222

    2

    =++

    The differential equations are

    0)0(v 1 =+

    V36)0(v 2 =+

    V/s60)0(dt

    dv)0(dt

    dv 21 == ++

    with initial conditions

    (1)

    (2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p84

    Steady-state respo nse:

    V7210720

    v ss,2 ==

    We can also draw the equivalent circuit at steadystate.

    v 2,ssv 1,ss

    120V+

    -

    +

    -

    6

    4

    +

    -

    0v ss,1 =

    V72)120(106v ss,2 ==

    v 1,ss = A

    dv 1,ssdt

    = 0

    d 2 v 1,ssdt 2

    = 0

    v 2,ss = B

    dv 2,ssdt

    = 0

    d 2 v 1,ssdt 2

    = 0

    0v10dtdv

    7dtvd

    1121

    2

    =++ 720v10dtdv

    7dtvd

    2222

    2

    =++

    0v ss,1 =From the differential equations (1) and (2), we get

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    43/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p85

    Transient response:

    whose roots are s 1=-2 and s 2=-5. We get

    -5t

    2

    -2t

    1t1 KKv +=-5t

    4-2t

    3t2 KKv +=

    010s7s 2 =++The characteristic equation is

    0v10dtdv

    7dtvd

    11

    21

    2

    =++

    720v10dt

    dv7

    dtvd

    22

    22

    2

    =++

    The differential equations are

    (1)

    (2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p86

    Complete response: We get -5t2

    -2t11 KK)t(v +=

    -5t4

    -2t32 KK72)t(v ++=

    The derivatives are

    5t-2

    2t-1

    1 K5K2dt

    dv =

    5t-4

    2t-3

    2 K5K2dt

    dv =

    At t=0 + , we get

    211 KK0)0(v +==+ 211 K5K260)0(dtdv ==+

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    44/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p87

    Also at t=0 + , we get

    432 KK7236)(0v ++==+

    432 5K2K60)(0

    dtdv ==+

    Solving simultaneously, we get K 3=140 andK4=-68. The final expressions are

    0t V 2020)t(v -5t-2t1 =

    0t V 4 40 72(t)v -5t-2t2 +=

    Solving simultaneously, we get K 1=20 and K 2=-20.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p88

    V1

    V2

    P lot of the Voltages

    4

    60V+

    -

    t=0

    1120

    +

    -F

    416

    REF

    +v 1

    +v 2

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    45/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p89

    Example: The network

    is initially unenergized.At t=0, the switch isclosed. Find currenti2(t) for t 0. Assumev(t)=20 cos 4t volts.

    8

    i1v(t)+

    -

    t=0 2H

    i24 1H

    For t 0, the mesh equations are

    )t(vi4i12dtdi

    2 211 =+ (1)

    0i4i4dtdi

    122 =+ (2)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p90

    22

    41

    1 idtdi

    i += (3)

    Solve for i 1 in equation (2) and differentiate theresulting equation. We get

    dtdi

    dtid

    dtdi 2

    22

    2

    411 += (4)

    and

    Substitute (3) and (4) in equation (1). We get

    )t(v2i16dtdi10

    dtid 2222

    2

    =++

    where v(t)=20 cos 4t volts.

    (5)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    46/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p91

    Forced Response: Since the source is sinusoidal,

    4tsinB4tcosAi ss,2 +=

    4tcosB44tsinA4dt

    di ss,2 +=

    4tsin16B-4tcosA16dtid

    2ss,2

    2

    =

    Substitute in the differential equation (5). We get

    4tsin40A-4tsin16B-4tcos16A4tcos404tsin16B4tcos16A4tcos40B =+++

    4tcos4016idtdi

    10dt

    id2

    222

    2

    =++ (5)

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p92

    A16B40A1640 ++=B16A40B160 +=

    Comparing coefficients, we get

    Solving simultaneously, we get A=0 and B=1. Thus

    t4sini ss,2 =Transient response: The characteristic equation is

    016s10s2

    =++The roots are s 1=-2 and s 2 =-8. Thus

    t82

    t21t,2 KKi

    +=

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    47/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p93

    Complete response:t8

    2t2

    12 KK4tsin)t(i

    ++=t8

    2t2

    12 K8K2-4tcos4

    dtdi =

    dtdi 2At t=0 + , i 1 (0 + )=i 2 (0 + )=0. From (2), get (0+)=0.

    21 KK0 +=

    21 K8K2-40 =Solving simultaneously, we get K 1=-K 2=-2/3. Thus

    0t A -4tsin)t(i t832t2322 +=

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p94

    P lot of the Current & Voltage

    i2

    V(t) = 20 cos (4t)

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    48/53

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    49/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p97

    Equivalent circuit for t 0 4

    1Hv(t)

    +

    -F

    416

    iLv C+

    -

    KVL:dtdi1i6v LLC +=

    KCL: LC

    41C i

    dtdv

    4v)t(v +=

    In matrix form, we get

    C

    L

    vi

    C

    L

    v

    i

    v(t)= +10

    1416

    with initial conditions i L(0 + )=6 A and v C(0 + )=36 V.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p98

    Example: The circuit hasreached steady-statecondition with the switchclosed. At t=0, the switchis opened. Find v C(0 + ),iL(0 + ) and the stateequations for t 0.

    3

    t=0

    1H12V

    +

    -

    F2011 v C iL

    +

    -

    Equivalent circuit at t=0 -1

    12V+

    -iL(0 -)

    +

    -vC(0 -)

    )0(v0)0(v C-C +==

    )0(iA12)0(i L-

    L+==

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    50/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p99

    Equivalent circuit for t 0 4

    1H12V+

    -F

    201v C iL

    +

    -KVL:

    dtdi1v LC =

    KCL: LC

    201C i

    dtdv

    4v12 +=

    In matrix form, we get

    C

    L

    vi

    C

    L

    v

    i

    12V= +50

    52010

    with initial conditions i L(0 + )=12 Amps and v C(0 + )=0.

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p100

    Solution of the State EquationThe Euler method for integrating a first-orderdifferential equation is of the form

    t)t,x(f )t(x)tt(x0t00

    ++where x=f(x,t). The method can be extended tothe case when x is a vector.

    .

    Substitution givest)]t(uB)t(xA[)t(x)tt(x 0000 +++)t(utB)t(x)tAI( 00 ++

    uBxA)t,x(f x +==

    Consider the stateequation

    Identity matrix Step-size

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    51/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p101

    Example: The network is initially unenergized. At

    t=0, the switch is closed. t=0 8

    iL1v(t)+

    -

    2H

    iL24 1H

    Use the Euler methodwith t=0.02 sec tofind i L1 and i L2 for t 0.Let v(t)=20 cos 4t V.

    For t 0, we get from KVL,

    )t(vi4i12dtdi

    2 211 =+

    0i4i4dtdi

    122 =+

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p102

    In matrix form, we get

    2L

    1L

    ii

    2L

    1L

    i

    iv(t)= +

    05.0

    4426

    with initial conditions i L1(0 + ) = i L2(0 + ) = 0.

    Recall the Euler method

    )t(utB)t(x)tAI()tt(x 000 +++

    = +44

    26

    0.02I+ tA

    1001

    =92.008.004.088.0

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    52/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p103

    We get

    = +iL1(t+ t)iL2(t+ t) 92.008.0

    04.088.0 iL1(t)

    iL2(t)

    0.2cos 4t

    0

    At t=0,

    = +iL1(0.02)iL2(0.02) 92.008.0

    04.088.0 iL1(0+

    )iL2(0 + )

    0.20 0

    0.2=

    where

    )t(utB)t(x)tAI()tt(x 000 +++

    =I+ tA 92.008.004.088.0

    and t=0.2

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p104

    At t=0.04 second:

    = +iL1(0.04)

    iL2(0.04) 92.008.004.088.0 0.3754

    0.016 0.0448

    0.5284=

    0.1974

    0

    = +iL1(t+ t)iL2(t+ t) 92.008.0

    04.088.0 iL1(t)iL2(t)

    0.2cos 4t0

    and

    Weve found

    =iL1(0 + )iL2(0 + ) 0

    0=

    iL1(0.02)iL2(0.02) 0

    0.2

    At t=0.02 second:

    = +iL1(0.04)

    iL2(0.04) 92.008.004.088.0 0.2

    0 0.016

    0.3754=

    0.1994

    0

  • 8/8/2019 Lecture06 - Higher Order Transient Anaysis

    53/53

    Elmer R. Magsino MS EECOE Revised 2009 Education for a Fast Changing World

    CIRCUITS 1 p105

    Comparison o f ResultsFrom a previous example, we got

    0t A -4tsin)t(i t832t2

    32

    2 +=

    Time Actual Euler Error

    0.02 0.00748 0.0 0.00748

    0.04 0.02801 0.016 0.01201

    0.06 0.05894 0.04475 0.014190.08 0.09800 0.08344 0.01456

    Comparing the actual value with the estimate,

    P lot of the Current


Recommended