+ All Categories
Home > Education > Lesson 12: Linear Approximation and Differentials

Lesson 12: Linear Approximation and Differentials

Date post: 27-Jun-2015
Category:
Upload: matthew-leingang
View: 991 times
Download: 1 times
Share this document with a friend
Description:
The tangent line to the graph of a function at a point can be thought of as a function itself. As such, it is the best linear function which agrees with the given function at the point. The function and its linear approximation will probably diverge away from the point at which they agree, but this "error" can be measured using the differential notation.
Popular Tags:
66
. . . . . . Section 2.8 Linear Approximation and Differentials V63.0121.034, Calculus I October 12, 2009 Announcements I Midterm Wednesday on Sections 1.1–2.4
Transcript
Page 1: Lesson 12: Linear Approximation and Differentials

. . . . . .

Section2.8LinearApproximationand

Differentials

V63.0121.034, CalculusI

October12, 2009

Announcements

I MidtermWednesdayonSections1.1–2.4

Page 2: Lesson 12: Linear Approximation and Differentials

. . . . . .

Outline

ThelinearapproximationofafunctionnearapointExamples

DifferentialsThenot-so-bigideaUsingdifferentialstoestimateerror

MidtermReview

AdvancedExamples

Page 3: Lesson 12: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 4: Lesson 12: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 5: Lesson 12: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 6: Lesson 12: Linear Approximation and Differentials

. . . . . .

TheBigIdea

QuestionLet f bedifferentiableat a. Whatlinearfunctionbestapproximates f near a?

AnswerThetangentline, ofcourse!

QuestionWhatistheequationforthelinetangentto y = f(x) at (a, f(a))?

Answer

L(x) = f(a) + f′(a)(x− a)

Page 7: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32

andf′

(π3

)=

12

.

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 8: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32

andf′

(π3

)=

12

.

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 9: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32

andf′

(π3

)=

12

.

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 10: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)=

12

.

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 11: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 12: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 13: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)

I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 14: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)I Thus

sin(61π

180

)≈

0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 15: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)I Thus

sin(61π

180

)≈ 0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 16: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)I Thus

sin(61π

180

)≈ 0.87475

Calculatorcheck: sin(61◦) ≈

0.87462.

Page 17: Lesson 12: Linear Approximation and Differentials

. . . . . .

Example

ExampleEstimate sin(61◦) byusingalinearapproximation(i) about a = 0 (ii) about a = 60◦ = π/3.

Solution(i)

I If f(x) = sin x, then f(0) = 0and f′(0) = 1.

I Sothelinearapproximationnear 0 isL(x) = 0 + 1 · x = x.

I Thus

sin(61π

180

)≈ 61π

180≈ 1.06465

Solution(ii)

I Wehave f(

π3

)=

√32 and

f′(

π3

)= 1

2 .

I So L(x) =

√32

+12

(x− π

3

)I Thus

sin(61π

180

)≈ 0.87475

Calculatorcheck: sin(61◦) ≈ 0.87462.

Page 18: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustration

. .x

.y

.y = sin x

.61◦

.y = L1(x) = x

..0

.

.bigdifference!

.y = L2(x) =√32 + 1

2

(x− π

3

)

..π/3

.

.verylittledifference!

Page 19: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustration

. .x

.y

.y = sin x

.61◦

.y = L1(x) = x

..0

.

.bigdifference!.y = L2(x) =

√32 + 1

2

(x− π

3

)

..π/3

.

.verylittledifference!

Page 20: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustration

. .x

.y

.y = sin x

.61◦

.y = L1(x) = x

..0

.

.bigdifference!

.y = L2(x) =√32 + 1

2

(x− π

3

)

..π/3

.

.verylittledifference!

Page 21: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustration

. .x

.y

.y = sin x

.61◦

.y = L1(x) = x

..0

.

.bigdifference!

.y = L2(x) =√32 + 1

2

(x− π

3

)

..π/3

.

.verylittledifference!

Page 22: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustration

. .x

.y

.y = sin x

.61◦

.y = L1(x) = x

..0

.

.bigdifference!

.y = L2(x) =√32 + 1

2

(x− π

3

)

..π/3

. .verylittledifference!

Page 23: Lesson 12: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

SolutionThekeystepistousealinearapproximationto f(x) =

√x near

a = 9 toestimate f(10) =√10.

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 24: Lesson 12: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

SolutionThekeystepistousealinearapproximationto f(x) =

√x near

a = 9 toestimate f(10) =√10.

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 25: Lesson 12: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

SolutionThekeystepistousealinearapproximationto f(x) =

√x near

a = 9 toestimate f(10) =√10.

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 26: Lesson 12: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

SolutionThekeystepistousealinearapproximationto f(x) =

√x near

a = 9 toestimate f(10) =√10.

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=

36136

.

Page 27: Lesson 12: Linear Approximation and Differentials

. . . . . .

AnotherExample

ExampleEstimate

√10 usingthefactthat 10 = 9 + 1.

SolutionThekeystepistousealinearapproximationto f(x) =

√x near

a = 9 toestimate f(10) =√10.

√10 ≈

√9 +

ddx

√x∣∣∣∣x=9

(1)

= 3 +1

2 · 3(1) =

196

≈ 3.167

Check:(196

)2

=36136

.

Page 28: Lesson 12: Linear Approximation and Differentials

. . . . . .

Dividingwithoutdividing?ExampleSupposeI haveanirrationalfearofdivisionandneedtoestimate577÷ 408. I write

577408

= 1 + 1691

408= 1 + 169× 1

4× 1

102.

ButstillI havetofind1

102.

SolutionLet f(x) =

1x. Weknow f(100) andwewanttoestimate f(102).

f(102) ≈ f(100) + f′(100)(2) =1

100− 1

1002(2) = 0.0098

=⇒ 577408

≈ 1.41405

Calculatorcheck:577408

≈ 1.41422.

Page 29: Lesson 12: Linear Approximation and Differentials

. . . . . .

Dividingwithoutdividing?ExampleSupposeI haveanirrationalfearofdivisionandneedtoestimate577÷ 408. I write

577408

= 1 + 1691

408= 1 + 169× 1

4× 1

102.

ButstillI havetofind1

102.

SolutionLet f(x) =

1x. Weknow f(100) andwewanttoestimate f(102).

f(102) ≈ f(100) + f′(100)(2) =1

100− 1

1002(2) = 0.0098

=⇒ 577408

≈ 1.41405

Calculatorcheck:577408

≈ 1.41422.

Page 30: Lesson 12: Linear Approximation and Differentials

. . . . . .

Outline

ThelinearapproximationofafunctionnearapointExamples

DifferentialsThenot-so-bigideaUsingdifferentialstoestimateerror

MidtermReview

AdvancedExamples

Page 31: Lesson 12: Linear Approximation and Differentials

. . . . . .

Questions

ExampleSupposewearetravelinginacarandatnoonourspeedis50mi/hr. Howfarwillwehavetraveledby2:00pm? by3:00pm?Bymidnight?

ExampleSupposeourfactorymakesMP3playersandthemarginalcostiscurrently$50/lot. Howmuchwillitcosttomake2morelots? 3morelots? 12morelots?

ExampleSupposealinegoesthroughthepoint (x0, y0) andhasslope m. Ifthepointismovedhorizontallyby dx, whilestayingontheline,whatisthecorrespondingverticalmovement?

Page 32: Lesson 12: Linear Approximation and Differentials

. . . . . .

Answers

ExampleSupposewearetravelinginacarandatnoonourspeedis50mi/hr. Howfarwillwehavetraveledby2:00pm? by3:00pm?Bymidnight?

Answer

I 100miI 150miI 600mi(?) (Isitreasonabletoassume12hoursatthesamespeed?)

Page 33: Lesson 12: Linear Approximation and Differentials

. . . . . .

Answers

ExampleSupposewearetravelinginacarandatnoonourspeedis50mi/hr. Howfarwillwehavetraveledby2:00pm? by3:00pm?Bymidnight?

Answer

I 100miI 150miI 600mi(?) (Isitreasonabletoassume12hoursatthesamespeed?)

Page 34: Lesson 12: Linear Approximation and Differentials

. . . . . .

Questions

ExampleSupposewearetravelinginacarandatnoonourspeedis50mi/hr. Howfarwillwehavetraveledby2:00pm? by3:00pm?Bymidnight?

ExampleSupposeourfactorymakesMP3playersandthemarginalcostiscurrently$50/lot. Howmuchwillitcosttomake2morelots? 3morelots? 12morelots?

ExampleSupposealinegoesthroughthepoint (x0, y0) andhasslope m. Ifthepointismovedhorizontallyby dx, whilestayingontheline,whatisthecorrespondingverticalmovement?

Page 35: Lesson 12: Linear Approximation and Differentials

. . . . . .

Answers

ExampleSupposeourfactorymakesMP3playersandthemarginalcostiscurrently$50/lot. Howmuchwillitcosttomake2morelots? 3morelots? 12morelots?

Answer

I $100I $150I $600(?)

Page 36: Lesson 12: Linear Approximation and Differentials

. . . . . .

Questions

ExampleSupposewearetravelinginacarandatnoonourspeedis50mi/hr. Howfarwillwehavetraveledby2:00pm? by3:00pm?Bymidnight?

ExampleSupposeourfactorymakesMP3playersandthemarginalcostiscurrently$50/lot. Howmuchwillitcosttomake2morelots? 3morelots? 12morelots?

ExampleSupposealinegoesthroughthepoint (x0, y0) andhasslope m. Ifthepointismovedhorizontallyby dx, whilestayingontheline,whatisthecorrespondingverticalmovement?

Page 37: Lesson 12: Linear Approximation and Differentials

. . . . . .

Answers

ExampleSupposealinegoesthroughthepoint (x0, y0) andhasslope m. Ifthepointismovedhorizontallyby dx, whilestayingontheline,whatisthecorrespondingverticalmovement?

AnswerTheslopeofthelineis

m =riserun

Wearegivena“run”of dx, sothecorresponding“rise”is mdx.

Page 38: Lesson 12: Linear Approximation and Differentials

. . . . . .

Answers

ExampleSupposealinegoesthroughthepoint (x0, y0) andhasslope m. Ifthepointismovedhorizontallyby dx, whilestayingontheline,whatisthecorrespondingverticalmovement?

AnswerTheslopeofthelineis

m =riserun

Wearegivena“run”of dx, sothecorresponding“rise”is mdx.

Page 39: Lesson 12: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

f(x + ∆x) − f(x)︸ ︷︷ ︸∆y

≈ f′(x)∆x︸ ︷︷ ︸dy

Rename ∆x = dx, sowecanwritethisas

∆y ≈ dy = f′(x)dx.

AndthislooksalotliketheLeibniz-Newtonidentity

dydx

= f′(x) . .x

.y

.

.

.x .x + ∆x

.dx = ∆x

.∆y.dy

Linearapproximationmeans ∆y ≈ dy = f′(x0)dx near x0.

Page 40: Lesson 12: Linear Approximation and Differentials

. . . . . .

Differentialsareanotherwaytoexpressderivatives

f(x + ∆x) − f(x)︸ ︷︷ ︸∆y

≈ f′(x)∆x︸ ︷︷ ︸dy

Rename ∆x = dx, sowecanwritethisas

∆y ≈ dy = f′(x)dx.

AndthislooksalotliketheLeibniz-Newtonidentity

dydx

= f′(x) . .x

.y

.

.

.x .x + ∆x

.dx = ∆x

.∆y.dy

Linearapproximationmeans ∆y ≈ dy = f′(x0)dx near x0.

Page 41: Lesson 12: Linear Approximation and Differentials

. . . . . .

Usingdifferentialstoestimateerror

If y = f(x), x0 and ∆x isknown, andanestimateof∆y isdesired:

I Approximate: ∆y ≈ dyI Differentiate:

dy = f′(x)dxI Evaluateat x = x0 and

dx = ∆x.

. .x

.y

.

.

.x .x + ∆x

.dx = ∆x

.∆y.dy

Page 42: Lesson 12: Linear Approximation and Differentials

. . . . . .

ExampleA sheetofplywoodmeasures 8 ft× 4 ft. Supposeourplywood-cuttingmachinewillcutarectanglewhosewidthisexactlyhalfitslength, butthelengthispronetoerrors. Ifthelengthisoffby 1 in, howbadcantheareaofthesheetbeoffby?

SolutionWrite A(ℓ) =

12ℓ2. Wewanttoknow ∆A when ℓ = 8 ft and

∆ℓ = 1 in.

(I) A(ℓ + ∆ℓ) = A(9712

)=

9409288

So

∆A =9409288

− 32 ≈ 0.6701.

(II)dAdℓ

= ℓ, so dA = ℓdℓ, whichshouldbeagoodestimatefor

∆ℓ. When ℓ = 8 and dℓ = 112 , wehave

dA = 812 = 2

3 ≈ 0.667. Sowegetestimatesclosetothehundredthofasquarefoot.

Page 43: Lesson 12: Linear Approximation and Differentials

. . . . . .

ExampleA sheetofplywoodmeasures 8 ft× 4 ft. Supposeourplywood-cuttingmachinewillcutarectanglewhosewidthisexactlyhalfitslength, butthelengthispronetoerrors. Ifthelengthisoffby 1 in, howbadcantheareaofthesheetbeoffby?

SolutionWrite A(ℓ) =

12ℓ2. Wewanttoknow ∆A when ℓ = 8 ft and

∆ℓ = 1 in.

(I) A(ℓ + ∆ℓ) = A(9712

)=

9409288

So

∆A =9409288

− 32 ≈ 0.6701.

(II)dAdℓ

= ℓ, so dA = ℓdℓ, whichshouldbeagoodestimatefor

∆ℓ. When ℓ = 8 and dℓ = 112 , wehave

dA = 812 = 2

3 ≈ 0.667. Sowegetestimatesclosetothehundredthofasquarefoot.

Page 44: Lesson 12: Linear Approximation and Differentials

. . . . . .

ExampleA sheetofplywoodmeasures 8 ft× 4 ft. Supposeourplywood-cuttingmachinewillcutarectanglewhosewidthisexactlyhalfitslength, butthelengthispronetoerrors. Ifthelengthisoffby 1 in, howbadcantheareaofthesheetbeoffby?

SolutionWrite A(ℓ) =

12ℓ2. Wewanttoknow ∆A when ℓ = 8 ft and

∆ℓ = 1 in.

(I) A(ℓ + ∆ℓ) = A(9712

)=

9409288

So

∆A =9409288

− 32 ≈ 0.6701.

(II)dAdℓ

= ℓ, so dA = ℓdℓ, whichshouldbeagoodestimatefor

∆ℓ. When ℓ = 8 and dℓ = 112 , wehave

dA = 812 = 2

3 ≈ 0.667. Sowegetestimatesclosetothehundredthofasquarefoot.

Page 45: Lesson 12: Linear Approximation and Differentials

. . . . . .

ExampleA sheetofplywoodmeasures 8 ft× 4 ft. Supposeourplywood-cuttingmachinewillcutarectanglewhosewidthisexactlyhalfitslength, butthelengthispronetoerrors. Ifthelengthisoffby 1 in, howbadcantheareaofthesheetbeoffby?

SolutionWrite A(ℓ) =

12ℓ2. Wewanttoknow ∆A when ℓ = 8 ft and

∆ℓ = 1 in.

(I) A(ℓ + ∆ℓ) = A(9712

)=

9409288

So

∆A =9409288

− 32 ≈ 0.6701.

(II)dAdℓ

= ℓ, so dA = ℓdℓ, whichshouldbeagoodestimatefor

∆ℓ. When ℓ = 8 and dℓ = 112 , wehave

dA = 812 = 2

3 ≈ 0.667. Sowegetestimatesclosetothehundredthofasquarefoot.

Page 46: Lesson 12: Linear Approximation and Differentials

. . . . . .

Why?

Whyuselinearapproximations dy whentheactualdifference ∆yisknown?

I Linearapproximationisquickandreliable. Finding ∆yexactlydependsonthefunction.

I Theseexamplesareoverlysimple. Seethe“AdvancedExamples”later.

I Inreallife, sometimesonly f(a) and f′(a) areknown, andnotthegeneral f(x).

Page 47: Lesson 12: Linear Approximation and Differentials

. . . . . .

Outline

ThelinearapproximationofafunctionnearapointExamples

DifferentialsThenot-so-bigideaUsingdifferentialstoestimateerror

MidtermReview

AdvancedExamples

Page 48: Lesson 12: Linear Approximation and Differentials

. . . . . .

MidtermFacts

I Coverssections1.1–2.4(Limits, Derivatives,DifferentiationuptoQuotientRule)

I CalculatorfreeI Hasabout7problemseachcouldhavemultipleparts

I Somefixed-response,somefree-response

I Tostudy:I outlineI doproblemsI metacognitionI askquestions!

Page 49: Lesson 12: Linear Approximation and Differentials

. . . . . .

Outline

ThelinearapproximationofafunctionnearapointExamples

DifferentialsThenot-so-bigideaUsingdifferentialstoestimateerror

MidtermReview

AdvancedExamples

Page 50: Lesson 12: Linear Approximation and Differentials

. . . . . .

GravitationPencilsdown!

Example

I Dropa1 kgballofftheroofoftheSilverCenter(50mhigh).Weusuallysaythatafallingobjectfeelsaforce F = −mgfromgravity.

I Infact, theforcefeltis

F(r) = −GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

I At r = re theforcereallyis F(re) =GMmr2e

= −mg.

I Whatisthemaximumerrorinreplacingtheactualforcefeltatthetopofthebuilding F(re + ∆r) bytheforcefeltatgroundlevel F(re)? Therelativeerror? Thepercentageerror?

Page 51: Lesson 12: Linear Approximation and Differentials

. . . . . .

GravitationPencilsdown!

Example

I Dropa1 kgballofftheroofoftheSilverCenter(50mhigh).Weusuallysaythatafallingobjectfeelsaforce F = −mgfromgravity.

I Infact, theforcefeltis

F(r) = −GMmr2

,

where M isthemassoftheearthand r isthedistancefromthecenteroftheearthtotheobject. G isaconstant.

I At r = re theforcereallyis F(re) =GMmr2e

= −mg.

I Whatisthemaximumerrorinreplacingtheactualforcefeltatthetopofthebuilding F(re + ∆r) bytheforcefeltatgroundlevel F(re)? Therelativeerror? Thepercentageerror?

Page 52: Lesson 12: Linear Approximation and Differentials

. . . . . .

SolutionWewonderif ∆F = F(re + ∆r) − F(re) issmall.

I Usingalinearapproximation,

∆F ≈ dF =dFdr

∣∣∣∣re

dr = 2GMmr3e

dr

=

(GMmr2e

)drre

= 2mg∆rre

I Therelativeerroris∆FF

≈ −2∆rre

I re = 6378.1 km. If ∆r = 50m,

∆FF

≈ −2∆rre

= −2 506378100

= −1.56×10−5 = −0.00156%

Page 53: Lesson 12: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

I√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2.

So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

I Thisisabetterapproximationsince (17/12)2 = 289/144

I Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 54: Lesson 12: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

I√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

I Thisisabetterapproximationsince (17/12)2 = 289/144

I Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 55: Lesson 12: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

I√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

I Thisisabetterapproximationsince (17/12)2 = 289/144

I Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 56: Lesson 12: Linear Approximation and Differentials

. . . . . .

Systematiclinearapproximation

I√2 isirrational, but

√9/4 isrationaland 9/4 iscloseto 2. So

√2 =

√9/4− 1/4 ≈

√9/4 +

12(3/2)

(−1/4) =1712

I Thisisabetterapproximationsince (17/12)2 = 289/144

I Doitagain!

√2 =

√289/144− 1/144 ≈

√289/144+

12(17/12)

(−1/144) = 577/408

Now(577408

)2

=332, 929166, 464

whichis1

166, 464awayfrom 2.

Page 57: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.

(94 ,32)

..(2, 1712)

Page 58: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

.

.2

.

(94 ,32)

..(2, 1712)

Page 59: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.

(94 ,32)

..(2, 1712)

Page 60: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.

(94 ,32)

..(2, 1712)

Page 61: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.

(94 ,32)

..(2, 1712)

Page 62: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.

(94 ,32)

..(2, 1712)

Page 63: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

.

(94 ,32)

..(2, 1712)

Page 64: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

..(94 ,

32).

.(2, 17/12)

..(289144 ,

1712

)..(2, 577408

)

Page 65: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

..(94 ,

32).

.(2, 17/12)..(289144 ,

1712

)

..(2, 577408

)

Page 66: Lesson 12: Linear Approximation and Differentials

. . . . . .

Illustrationofthepreviousexample

..2

..(94 ,

32).

.(2, 17/12)..(289144 ,

1712

)..(2, 577408

)


Recommended