+ All Categories
Home > Documents > Lessons 9 10

Lessons 9 10

Date post: 08-Apr-2018
Category:
Upload: hammad-f-baig
View: 215 times
Download: 0 times
Share this document with a friend

of 44

Transcript
  • 8/7/2019 Lessons 9 10

    1/44

  • 8/7/2019 Lessons 9 10

    2/44

    Wireless Communications Systems M. LUISE 2

    Basic Concepts (1/4)BasicBasic ConceptsConcepts (1/4)(1/4)

    The position of a certain point in

    space can be found from distances

    (ranges) measured from this point to

    some other known positions in space

    2D user positioning problem

    Transmitters O1 and O2 aresynchronized

    The receiver issynchronized with both (withthe network)

    The range dcan be derivedfrom a propagation-time

    measurement , d=c(c=speed of light)

    Both A and B are solutionsof the problem!

  • 8/7/2019 Lessons 9 10

    3/44

    Wireless Communications Systems M. LUISE 3

    Basic Concepts (2/4)BasicBasic ConceptsConcepts (2/4)(2/4)

    AA thirdthird trasmittertrasmitter(O(O33)) wouldwould bebe requiredrequired toto solve thesolve the ambiguityambiguity::

    Hypotheses:

    Transmitters O1, O2 and O3are synchronized

    The receiver issynchronized with the wholenetwork

    B represents the trueposition of the receiver

    PROBLEM: this approach cant be used as it is, because

    the receiver is not synchronized with the network!

  • 8/7/2019 Lessons 9 10

    4/44

    Wireless Communications Systems M. LUISE 4

    Basic Concepts (3/4)BasicBasic ConceptsConcepts (3/4)(3/4)

    TheThe receiverreceiver clockclock hashas anan offsetoffset tt

    Hypotheses:

    The receiver is synchronized

    with the whole network

    The receivermeasurements contain aconstant unknown time-shift

    t = / c

    The receiver position B can be obtained by

    solving a nonlinear system of 3 equations

    and 3 unknowns (xB, yB, ):

    ( ) ( )( ) ( )

    ( ) ( )

    1 1

    2 2

    3 3

    2 2

    1

    2 2

    2

    2 2

    3

    O B O B

    O B O B

    O B O B

    d x x y y

    d x x y y

    d x x y y

    + = +

    + = + + = +

    Transmitters O1, O2 and O3 aresynchronized

  • 8/7/2019 Lessons 9 10

    5/44

    Wireless Communications Systems M. LUISE 5

    Basic Concepts (4/4) (GPS in a nutshell)BasicBasic ConceptsConcepts (4/4) (GPS in a(4/4) (GPS in a nutshellnutshell))

    In three dimensions: we need ranging from 4 reference points

  • 8/7/2019 Lessons 9 10

    6/44

    Wireless Communications Systems M. LUISE 6Receiver Coordinates and Time

    ((WeWellll seesee laterlater))

    RecapRecapRecap

    ( ) ( ) ( )1

    0

    2N

    k c

    k

    r t C c g t kT w t

    =

    = +

    R c=

    ( ) ( ) ( )22 2

    , , , , 1,2,3,4 x k y k z k k cx p y p z p R c k + + = =

    ReceivedReceived signalsignal

    DelayDelay EstimationEstimation

    RangeRange EstimateEstimate

    ((PseudoPseudo--rangerange))

    PositioningPositioning EquationsEquations (pkk-th satellite position, c RX clock bias)

    c is the speed of ligth

  • 8/7/2019 Lessons 9 10

    7/44

    Wireless Communications Systems M. LUISE 7

    Systems of coordinatesSystemsSystems ofof coordinatescoordinates

    Earth-centered

    Spherical

    Geocentric

    Geodetic

    Topocentric (local)

    Cartesian

    Fixed (ECEF)

    Inertial

    (ECI)

  • 8/7/2019 Lessons 9 10

    8/44

    Wireless Communications Systems M. LUISE 8

    The shape of the EarthTheThe shapeshape of theof the EarthEarth

    GeodesyGeodesy isis the sciencethe science concernedconcernedwihwih thethestudystudy of theof theshapeshape andandsizesize of theof theEarthEarth in thein the

    geometricgeometric sensesense asas wellwellasas withwith thetheformform of theof the equipotentialequipotentialsurfacessurfaces of theof thegravitygravity potentialpotential

    F. R.F. R. HelmertHelmert (1880)(1880)The Earth as a Sphere

    The founder of scientific geodesy was Eratosthenes (276-195 BC) of Alexandria who,assuming the Earth was spherical, deduced from measurements a radius for the Earth.

    The Earth as an Ellipsoid

    Towards the end of the 17th century, Newton demonstrated that the concept of a trulyspherical Earth was inadequate as an explanation of the equilibrium of the ocean surface,owing to the Earth rotation: he showed, by means of a simple theoretical model, that thehydrostatic equilibrium would be maintained if the equatorial axis were longer than thepolar axis. This is equivalent to the statement that the body is flattened towards the pole.

    The Earth as a GeoidLaplace (1802), Gauss (1828), Bessels (1837) and others had already recognized that theassumption of an ellipsoidal model was not tenable when compared against high accuracyobservations. Listing (1873) had given the name geoidto the equipotential surface of theEarths gravity field which would coincide with the ocean surface, if the Earth were

    undisturbed and without topography.

  • 8/7/2019 Lessons 9 10

    9/44

  • 8/7/2019 Lessons 9 10

    10/44

    Wireless Communications Systems M. LUISE 10

    The World Geodetic System 1984 (WGS-84)The WorldThe World GeodeticGeodetic SystemSystem 1984 (WGS1984 (WGS--84)84)

    0.0818191908426Eccentricity

    Flattening

    6378137 maSemi-major axis

    ValueSymbolParameter

    =p a -be a

    WGS-84 Reference Ellipsoid

    =2 2

    e 2

    a -be

    a

    The most used and probably the most accurate reference frame is the

    World-Geodetic System1984 (WGS-84) Reference Ellipsoid

    1298.277223563

  • 8/7/2019 Lessons 9 10

    11/44

    Wireless Communications Systems M. LUISE 11

    Earth-Centered Inertial (ECI) coordinatesEarthEarth--CenteredCentered InertialInertial (ECI)(ECI) coordinatescoordinates

    Origin:

    Z-Axis:

    X-Axis:

    Y-Axis:

    Earths center of mass

    direction of mean rotational axis of Earth

    direction of the vernal equinox (i.e. the

    intersection bewteen the ecliptical plane

    and the plane of the equator)

    direction orthogonal to Z-Axis and X-

    Axis

    cos sin 0

    sin cos 0

    0 0 1

    ECI ECEF

    ECI ECEF

    ECI ECEF

    x x

    y y

    z z

    =

    ( )0 0E t t = +

    angle between the vernal equinox and the

    Greenwich meridian at reference time

    E=

    0 =

    0t

    7.292115 10-5

    rad/s (WGS-84)

  • 8/7/2019 Lessons 9 10

    12/44

    Wireless Communications Systems M. LUISE 12

    Geocentric coordinatesGeocentricGeocentric coordinatescoordinates

    Assuming the Earth as a sphere:

    2 2 2

    ECEF ECEF ECEF r x y z = + +

    distance:

    latitude:

    2 2arctan ECEFgeoc

    ECEF ECEF

    zx y

    = +

    longitude:

    arctan ECEFgeoc

    ECEF

    y

    x

    =

    altitude:

    geoc E h r r=

  • 8/7/2019 Lessons 9 10

    13/44

    Wireless Communications Systems M. LUISE 13

    Geodetic coordinatesGeodeticGeodetic coordinatescoordinates

    Assuming the Earth as an ellipsoid:

    ( )

    2

    3

    2 3

    2sin

    1arctan

    2 cos

    p p

    ECEF

    p

    geod

    p p

    e ez a

    e

    p e e a

    +

    =

    latitude:

    longitude:

    arctan ECEF geod geoc

    ECEF

    y

    x

    = =

    altitude:

    cosgeod

    geod

    ph =

    0.0818191908426Eccentricity

    1/298.277223563Flattening

    6378137 maSemi-major axis

    ValueSymbolParameter

    =pa -b

    ea

    WGS-84 Reference Ellipsoid

    =2 2

    e 2

    a -be

    awhere:

    ( )2 2

    2 2, arctan ,

    1 1 sin

    ECEF ECEF ECEF

    pe geod

    z a p x y

    p e e

    = + = =

  • 8/7/2019 Lessons 9 10

    14/44

    Wireless Communications Systems M. LUISE 14

    Topocentric reference system (1/2)TopocentricTopocentric referencereference system (1/2)system (1/2)

    Such a spherical reference system can be useful when locating a celestial body with respect to the

    observer position (e.g.: estimating the elevation of a SV, computing carrier-to-noise ratio):

    Origin:

    u-Axis:

    n-Axis:

    e-Axis:

    observers position

    direction of local vertical

    direction of the North pole

    direction orthogonal to u-Axis and n-

    Axis

    ENU (East

    North

    Up) coordinates

  • 8/7/2019 Lessons 9 10

    15/44

    Wireless Communications Systems M. LUISE 15

    Topocentric reference system (2/2)TopocentricTopocentric referencereference system (2/2)system (2/2)

    ENU (EastNorthUp) coordinates

    sin cos 0

    sin cos sin sin cos

    cos cos cos sin sin

    geod geod

    geod geod geod geod geod

    geod geod geod geod geod

    E x

    N y

    U z

    =

    elevation:

    azimuth:

    range:

    ( )2 2arctan U E N = +

    ( )arctan E N =

    2 2 2 E N U = + +

    {, , ,C O ECEF ECEF ECEF x y z = =

    where:

  • 8/7/2019 Lessons 9 10

    16/44

  • 8/7/2019 Lessons 9 10

    17/44

  • 8/7/2019 Lessons 9 10

    18/44

    Wireless Communications Systems M. LUISE 18

    Range and Pseudorange (2/2)RangeRange and Pseudorange (2/2)and Pseudorange (2/2)

    ( ) ( ) ( )at n nm atmu sus r rsuc T T t r tt tct t ct tt t = + + + + + = + + + +

  • 8/7/2019 Lessons 9 10

    19/44

    Wireless Communications Systems M. LUISE 19

    The impact of measurement noise (1/2)The impact ofThe impact of measurementmeasurement noisenoise (1/2)(1/2)

    The measurement of geometric range is affected by several noise sources:

    Ephemeris data:errors in the transmitted location of the satellite

    Satellite clock:errors in the transmitted clock

    Ionosphere: errors in the corrections of pseudorange caused by ionosphericeffects (after applying ionospheric model)

    Troposphere:errors in the corrections of pseudorange caused by troposphericeffects (after applying tropospheric model)

    Multipath:errors caused by reflected signals entering the receiver antenna

    Receiver: errors in the receivers measurement of range caused by thermalnoise, software accuracy, interchannel biases

    Selective Availability (SA): intentional degradation introduced by the system(removed since May 2000)

  • 8/7/2019 Lessons 9 10

    20/44

    Wireless Communications Systems M. LUISE 20

    The impact of measurement noise (2/2)The impact ofThe impact of measurementmeasurement noisenoise (2/2)(2/2)

    18.00.018.0Selective Availability

    9.09.00.5Receiver

    1.41.01.0Multipath

    0.70.50.5Troposphere

    4.00.54.0Ionosphere

    2.10.72.0Satellite clock

    2.10.02.1Ephemeris data

    TotalRandomBiasError source

    One-sigma error (m)

    This kind of errors cannot be corrected by any Positioning algoritm: in order to mitigate tn, it can be

    modeled as a Gaussian R.V. and reduced by using a statistical approach (e.g. the Extended Kalman Filter):

    ( ) ( ) N = n2 2 2 2 2 2 2 2 2 2

    t n2.1 + 2.1 + 4.0 + 0.7 + 1.4 + 9.0 m 110 m t 0, 110 m

  • 8/7/2019 Lessons 9 10

    21/44

    Wireless Communications Systems M. LUISE 21

    The Sagnac effect (1/2)TheThe SagnacSagnac effecteffect (1/2)(1/2)

    During the propagation time ofthe signal transmission, a clock

    on the surface of the Earth will

    experience a finite time-shift with

    respect to the resting referenceframe at the geocenter.

    The measured range is rather

    than .

    r

    r

  • 8/7/2019 Lessons 9 10

    22/44

  • 8/7/2019 Lessons 9 10

    23/44

    Wireless Communications Systems M. LUISE 23

    The ideal approachThe idealThe ideal approachapproach

    Pseudorange: ( )a stmu nrr c c tt t t t = + + + +

    rt = st = atm u nt tr c ct = + +

    Each block requires at least a

    coarse user position estimation

    An (iterative) estimation algorithm is needed!

  • 8/7/2019 Lessons 9 10

    24/44

  • 8/7/2019 Lessons 9 10

    25/44

    Wireless Communications Systems M. LUISE 25

    The Position Estimation iterative algorithm (1/4)The PositionThe Position EstimationEstimation iterativeiterative algorithmalgorithm (1/4)(1/4)

  • 8/7/2019 Lessons 9 10

    26/44

    Wireless Communications Systems M. LUISE 26

    The Position Estimation iterative algorithm (2/4)The PositionThe Position EstimationEstimation iterativeiterative algorithmalgorithm (2/4)(2/4)

    The computation of user position is based upon a non-linear

    system, as shown in the following

  • 8/7/2019 Lessons 9 10

    27/44

    Wireless Communications Systems M. LUISE 27

    The Position Estimation iterative algorithm (3/4)The PositionThe Position EstimationEstimation iterativeiterative algorithmalgorithm (3/4)(3/4)

    The tropopheric model is based upon statistical estimation of temperature,

    pressure and humidity (e.g.: models proposed by Niell (1996) and Collins &

    Langley (1997) for WAAS)

  • 8/7/2019 Lessons 9 10

    28/44

    Wireless Communications Systems M. LUISE 28

    The Position Estimation iterative algorithm (4/4)The PositionThe Position EstimationEstimation iterativeiterative algorithmalgorithm (4/4)(4/4)

  • 8/7/2019 Lessons 9 10

    29/44

    Wireless Communications Systems M. LUISE 29

    The Position Estimation iterative algorithm (summary)The PositionThe Position EstimationEstimation iterativeiterative algorithmalgorithm ((summarysummary))

    The tropopheric model is based uponstatistical estimation of temperature,

    pressure and humidity (e.g.: models

    proposed by Niell (1996) and Collins

    & Langley (1997) for WAAS)

    The computation of user position isbased upon a non-linear system, as

    shown in the following

    GPS Message

    An accurate description of the algorithms for satellite position computation, clock offset and relativistic effects

    correction and ionospheric delay estimation can be found in NAVSTAR GPS Interface Control Document (IDC)

    ICD-GPS-200, Rev. C-PR (http://www.navcen.uscg.gov/pubs/gps/icd200/default.htm )

  • 8/7/2019 Lessons 9 10

    30/44

    Wireless Communications Systems M. LUISE 30

    Computation of user position (1/3)ComputationComputation ofof useruser position (1/3)position (1/3)

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    ( ) ( ) ( )

    1 1 1

    2 2 2

    3 3 3

    4 4 4

    2 2 2

    1

    2 2 22

    2 2 2

    3

    2 2 2

    4

    s u s u s u u

    s u s u s u u

    s u s u s u u

    s u s u s u u

    x x y y z z c t

    x x y y z z c t

    x x y y z z c t

    x x y y z z c t

    = + + +

    = + + + = + + +

    = + + +

    NonNon--linearlinear system of 4system of 4 equationsequations in 4in 4 unknownsunknowns ((xxuu,, yyuu,, zzuu, t, tuu))

    ( )= f

    ( ) ( )1 2 3 4, , , , , , ,T T

    u u u ux y z c t

    ( )1 2 3 4( ) ( ), ( ), ( ), ( )T

    f f f f f

    ( ) ( ) ( ) ( )2 2 2

    i i ii s u s u s u uf x x y y z z c t + + +

  • 8/7/2019 Lessons 9 10

    31/44

  • 8/7/2019 Lessons 9 10

    32/44

    Wireless Communications Systems M. LUISE 32

    Computation of user position (3/3)ComputationComputation ofof useruser position (3/3)position (3/3)

    2nd step: iteration of the solution

    0

    =

    1, ,4:i =

    ( ) ( ) ( )2 2 2

    i i ii s u s u s u

    r x x y y z z = + +

    i i u i

    r c t = +

    ,1 ,2 ,3 ,4

    , , , 1

    i i i s u s u s u

    i i i i

    i i i

    x x y y z z a a a a

    r r r

    = = = =

    1 = A

    ?

  • 8/7/2019 Lessons 9 10

    33/44

    Wireless Communications Systems M. LUISE 33

    GPS constellationGPSGPS constellationconstellation

    24+424+4 satellitessatellites aboutabout 11

    tonton eacheach

    Average height 20,192Average height 20,192

    km (periodkm (period aboutabout 12 h)12 h)

    Average speed 3874Average speed 3874

    m/s (14,000 km/h)m/s (14,000 km/h)66 orbitsorbits

    55 deg55 deg wrtwrt thethe EquatorEquator

    AtAt leastleast 66 satellitessatellites arearevisiblevisible at theat the samesame timetime

    in openin open fieldfield onon anyany

    pointpoint ofof thethe EarthEarth

  • 8/7/2019 Lessons 9 10

    34/44

    Wireless Communications Systems M. LUISE 34

  • 8/7/2019 Lessons 9 10

    35/44

    Wireless Communications Systems M. LUISE 35

    Satellite selectionSatelliteSatellite selectionselection

    NN> 4> 4 satellitessatellites areare visiblevisible andand trackedtracked

    Dilution of Precision (DOP):amidst all the available satellites, the four ones

    which guarantee the best solution accuracy

    (according to a statistical analysis) are chosen.

    Least-Squares solution:

    all the N pseudorange measurements are used

  • 8/7/2019 Lessons 9 10

    36/44

    Wireless Communications Systems M. LUISE 36

    Dilution of Precision (1/3)Dilution of Precision (1/3)Dilution of Precision (1/3)

    Dilution of Precision (DOP)=Propagation to the final coordinates ofmeasurement errors on the range

    Assume that the range measurement (so called pseudorange) is affected by an

    error c= + = +

    ( ) ( )21 2 3 4, , , , 0,i N

    ( ) ( ){ } 2( )TE c =C I

    Receiver noise

    AtmosphereSatellite positionMultipath

  • 8/7/2019 Lessons 9 10

    37/44

    Wireless Communications Systems M. LUISE 37

    Dilution of Precision (2/3)DilutionDilution of Precision (2/3)of Precision (2/3)

    We can compute the variance (accuracy) of the user position/time:

    2 1 2( ) ( )Tc

    =C A A V

    11 12 13 14

    21 22 23 242

    31 32 33 34

    4

    2

    2

    2

    21 42 4 4

    23 4

    C C C

    C C C

    C C C

    C C C

    u

    u

    u

    u u u u u u

    u u u u u u

    u u u u u u

    u u u u u u u

    x y x z x t

    x y y z y t

    x z y z z t

    x t y t

    y

    t

    x

    z

    z t

    c v v v v

    c v v v v

    v v v vc

    v v v vc c c c

    = =

    C

    1 = A

  • 8/7/2019 Lessons 9 10

    38/44

    Wireless Communications Systems M. LUISE 38

    Dilution of Precision (3/3)DilutionDilution of Precision (3/3)of Precision (3/3)

    The user position standard deviation is minimized (accuracy maximized) bychoosing the 4-satellite set that minimizes one of the following quantities (tipically,GDOP):

    Vertical Dilution of Precision(VDOP) 33

    uz

    n

    VDOP v

    =

    Horizontal Dilution of Precision(HDOP)

    2 2

    11 22

    u ux y

    n

    DOP v v

    += +

    Position Dilution of Precision(PDOP)

    2 2 2

    11 22 33

    u u u x y z

    n

    PDOP v v v

    + += + +

    Time Dilution of Precision

    (TDOP)

    44ut

    n

    cTDOP v

    =

    Geometrical Dilution ofPrecision (GDOP)

    2 2 2 2 2

    11 22 33 44

    u u u u x y z t

    n

    cGDOP

    v v v v

    + + + =

    = + + +

  • 8/7/2019 Lessons 9 10

    39/44

    Wireless Communications Systems M. LUISE 39

    Least-Squares solutionLeastLeast--SquaresSquares solutionsolution

    This approach utilizes all theNpseudorange measurementsthat are available; the algorithm is very similar to the iterative

    solution with 4 satellites just seen.

    Using the usual definitions for and A, and considering N>4satellites, we find

    ( )1

    T T

    = A A A

    where now A is an Nx4 matrix, is the (4x4)

    pseudo-inverse of A, and where we use this into the sameiterative procedure as before

    ( )1T T

    A A A

  • 8/7/2019 Lessons 9 10

    40/44

    Wireless Communications Systems M. LUISE 40

    General Architecture of a Positioning RXGeneral Architecture of a Positioning RXGeneral Architecture of a Positioning RX

    LO

    RF Filter IF Filter AGC

    AD

    AD

    RC

    RC

    RF

    Front-End

    Carrier

    NCO

    A-to-DConverter

    Real-to-ComplexConverter

    Code

    NCO

    Discriminators

    Code Tracking(DLL)

    Phase & FreqTracking

    (PLL / FLL)

    Nav Data BitsRe-Generation

    Loop

    AGC Control

    Loop

    Pseudo-rangeGeneration

    Nav DataDecoding

    NavigationNavigationProcessingProcessing

    Receiver

    Monitoring

    Data I/OCommunication

    DSP Application

    RF Filter

    Antenna

    LNA

    Mixer

    RF Cable

    Local Oscillator

    CarrierCounter-rotation

    CodeDespreading

    Digital-domain processing

    Digital Front-End

    USB

    PC

    GPS Antenna

    The SW Radio !http://www.gnu.org/software/gnuradio/

  • 8/7/2019 Lessons 9 10

    41/44

    Wireless Communications Systems M. LUISE 41

    Experimental Results (1/3)ExperimentalExperimental ResultsResults (1/3)(1/3)

    150

    140

    130

    120

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Altitude(m)

    90858075706560555045403530252015105

    Time epoch n

    43.78150

    43.78140

    43.78130

    43.78120

    43.78110

    43.78100

    43.78090

    43.78080

    43.78070

    43.78060

    43.78050

    Latitude(

    )

    10.3987510.3985010.3982510.39800

    Longitude ()

  • 8/7/2019 Lessons 9 10

    42/44

    Wireless Communications Systems M. LUISE 42

    Experimental Results (2/3)ExperimentalExperimental ResultsResults (2/3)(2/3)

    150

    140

    130

    120

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Altitude(m)

    8075706560555045403530252015105

    Time epoch n

    43.78150

    43.78140

    43.78130

    43.78120

    43.78110

    43.78100

    43.78090

    43.78080

    43.78070

    43.78060

    43.78050

    Latitude()

    10.3987510.3985010.3982510.39800

    Longitude ()

  • 8/7/2019 Lessons 9 10

    43/44

    Wireless Communications Systems M. LUISE 43

    Experimental Results (3/3)ExperimentalExperimental ResultsResults (3/3)(3/3)

    43.78150

    43.78140

    43.78130

    43.78120

    43.78110

    43.78100

    43.78090

    43.78080

    43.78070

    43.78060

    43.78050

    Latitude()

    10.3987510.3985010.3982510.39800

    Longitude ()

    150

    140

    130

    120

    110

    100

    90

    80

    70

    60

    50

    40

    30

    20

    10

    0

    Altitude(m)

    858075706560555045403530252015105

    Time epoch n

  • 8/7/2019 Lessons 9 10

    44/44

    PulchraPulchra suntsunt quaequae videmusvidemus

    QuaeQuae scimusscimus pulchriorapulchriora

    Longe pulcherrima quaeLonge pulcherrima quae ignoramusignoramus......

    Niels Stensen (Niccol Stenone, 1638-86)


Recommended