+ All Categories
Home > Documents > @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF...

@let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF...

Date post: 30-Mar-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
56
References: JHEP 07 (2011) 121 Phys. Rev. Lett. 108 (2012) 181102 Phys. Rev. D87 (2013) 084034 Int. J. Mod. Phys. A28 (2013) 1340019 arXiv:1410.0964 – accepted in JHEP RADIATION FROM A D-DIMENSIONAL COLLISION OF SHOCK WAVES: EXACT RESULTS Flávio Coelho & Carlos Herdeiro & Marco O. P. Sampaio [email protected] Aveiro University & I3N
Transcript
Page 1: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

References: JHEP 07 (2011) 121Phys. Rev. Lett. 108 (2012) 181102Phys. Rev. D87 (2013) 084034Int. J. Mod. Phys. A28 (2013) 1340019arXiv:1410.0964 – accepted in JHEP

RADIATION FROM A D-DIMENSIONAL COLLISIONOF SHOCK WAVES: EXACT RESULTS

Flávio Coelho & Carlos Herdeiro & Marco O. P. Sampaio

[email protected]

Aveiro University & I3N

Page 2: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE PROBLEM

Gravitational collision of 2 point particles @ speed of light

II

u ≡ t − z = const

-I

v ≡ t + z = const

III

Each solves Einstein’s Eqs, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGDΩD−3

E

Flat space everywhere except in future of collision!

Page 3: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE PROBLEM

Gravitational collision of 2 point particles @ speed of light

II

u ≡ t − z = const

-I

v ≡ t + z = const

III

Each solves Einstein’s Eqs, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGDΩD−3

E

Flat space everywhere except in future of collision!

Page 4: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE PROBLEM

Gravitational collision of 2 point particles @ speed of light

II

u ≡ t − z = const

-I

v ≡ t + z = const

III

Each solves Einstein’s Eqs, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGDΩD−3

E

Flat space everywhere except in future of collision!

Page 5: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE PROBLEM

Gravitational collision of 2 point particles @ speed of light

II

ρ

Φ′(ρ) ∼ 1/ρD−3

III

Each solves Einstein’s Eqs, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGDΩD−3

E

Flat space everywhere except in future of collision!

Page 6: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE PROBLEM

Gravitational collision of 2 point particles @ speed of light

II

IV

~ --&%'$

J +

@I6

@R?

- -(r , τ ≡ t − r)

III

Each solves Einstein’s Eqs, point source Pµ = E nµ

Tµν = Eδ(u)δ(D−2)(x i)nµnν , nµnµ = 0 , κ = 8πGDΩD−3

E

Flat space everywhere except in future of collision!

Page 7: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 8: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 9: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 10: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 11: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 12: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 13: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

WHY?

Some Reasons to study this:

D-dim Num. GR, BH collisions difficult @ large boostU. Sperhake, V. Cardoso, F. Pretorius, E. Berti, J. Gonzalez, arXiv:0806.1738M. Shibata, H. Okawa, T. Yamamoto, arXiv:0810.4735 + etc . . .

D is better than four! PRL 108 (2012) 181102

In D ≥ 4, ε(1)rad = 1

2 −1D , ε(2)

rad =?

In D = 4, ε(1)rad ' 0.25, & ε

(2)rad ' 0.163

(within Num. GR err)D’Eath and Payne, PRD Volume 46, Number 2, 658, 675 and 694see also East and Pretorius, arXiv:1210.0443

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

AHbound1/2−1/D

ǫ1st order

AH bound & First order estimate

D

1211109876543

0.4

0.3

0.2

Black holes in ADD scenarios @ LHC, or not...

Before this study outstanding questions were:1 Is the formula exact? Is there a deeper meaning to it?2 Angular expansion⇔ perturbative expansion?3 Can we find equally simple results at higher orders?

Page 14: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

OUTLINE

1 Exact results – The role of symmetry

2 The Penrose diagram

Page 15: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

OUTLINE

1 Exact results – The role of symmetry

2 The Penrose diagram

Page 16: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:

Scattering of test rays gives exact initial conditions u = 0+

gµν(v , xi) = ηµν + κh(1)µν + κ2h(2)

µν

Assume perturbative ansatz in u > 0gµν(u > 0, v , xi) = ηµν +

∞∑n=1

κnh(n)µν

de Donder gauge⇒ tower of wave Eqs with source

h(n)Nµν = T (n−1)

µν

[h(k<n)αβ

]

Page 17: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:Scattering of test rays gives exact initial conditions u = 0+

gµν(v , xi) = ηµν + κh(1)µν + κ2h(2)

µν

Assume perturbative ansatz in u > 0gµν(u > 0, v , xi) = ηµν +

∞∑n=1

κnh(n)µν

de Donder gauge⇒ tower of wave Eqs with source

h(n)Nµν = T (n−1)

µν

[h(k<n)αβ

]

Page 18: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:Scattering of test rays gives exact initial conditions u = 0+

gµν(v , xi) = ηµν + κh(1)µν + κ2h(2)

µν

Assume perturbative ansatz in u > 0gµν(u > 0, v , xi) = ηµν +

∞∑n=1

κnh(n)µν

de Donder gauge⇒ tower of wave Eqs with source

h(n)Nµν = T (n−1)

µν

[h(k<n)αβ

]

Page 19: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:Scattering of test rays gives exact initial conditions u = 0+

gµν(v , xi) = ηµν + κh(1)µν + κ2h(2)

µν

Assume perturbative ansatz in u > 0gµν(u > 0, v , xi) = ηµν +

∞∑n=1

κnh(n)µν

de Donder gauge⇒ tower of wave Eqs with source

h(n)Nµν = T (n−1)

µν

[h(k<n)αβ

]

Page 20: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:Integral solution Volume + Surface terms

h(n)Nµν (y) =

∫u′>0

dDy ′G(y , y ′)[T (n−1)µν (y ′) + 2δ(u′)∂v ′h(n)N

µν (y ′)]

Axial symmetry allows expansion (A(u, v , ρ),B(u, v , ρ), . . .):

huu ≡ A = A(1) + A(2) + . . . hui ≡ B Γi = (B(1) + B(2) + . . .)Γi

hij ≡ E ∆ij +H δij = (E (1)+E (2)+. . .)∆ij +(0+H(2)+. . .)δij

Page 21: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SHOCK WAVE PERTURBATION THEORY IN A FLASH!

Basic facts:Integral solution Volume + Surface terms

h(n)Nµν (y) =

∫u′>0

dDy ′G(y , y ′)[T (n−1)µν (y ′) + 2δ(u′)∂v ′h(n)N

µν (y ′)]

Axial symmetry allows expansion (A(u, v , ρ),B(u, v , ρ), . . .):

huu ≡ A = A(1) + A(2) + . . . hui ≡ B Γi = (B(1) + B(2) + . . .)Γi

hij ≡ E ∆ij +H δij = (E (1)+E (2)+. . .)∆ij +(0+H(2)+. . .)δij

Page 22: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CL-SYMMETRY & SEPARATION OF VARIABLES

Background shock conf. symm:

Boost (L) + Conformal scaling (C)

-

L : κ→ eβκ

- -

C : xµ → e−β

D−3 xµeβκ→ κ

Up to conformal factor, metric perturbations invariant order by order

gµν(X )CL−→ gµν(X ′) = e

2D−3β

[ηµν +

∞∑k=1

e−2kβh(k)µν (X ′)

]In adapted coordinates p(u, v , ρ) q(u, v , ρ), ρ separates!

h(k)µν (u, v , ρ, φi) =

f (k)µν (p,q, φi)

ρ(D−3)(2k+Nu−Nv )

Page 23: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CL-SYMMETRY & SEPARATION OF VARIABLES

Background shock conf. symm: Boost (L)

+ Conformal scaling (C)

-

L : κ→ eβκ

-

-

C : xµ → e−β

D−3 xµeβκ→ κ

Up to conformal factor, metric perturbations invariant order by order

gµν(X )CL−→ gµν(X ′) = e

2D−3β

[ηµν +

∞∑k=1

e−2kβh(k)µν (X ′)

]In adapted coordinates p(u, v , ρ) q(u, v , ρ), ρ separates!

h(k)µν (u, v , ρ, φi) =

f (k)µν (p,q, φi)

ρ(D−3)(2k+Nu−Nv )

Page 24: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CL-SYMMETRY & SEPARATION OF VARIABLES

Background shock conf. symm: Boost (L) + Conformal scaling (C)

-

L : κ→ eβκ

- -

C : xµ → e−β

D−3 xµeβκ→ κ

Up to conformal factor, metric perturbations invariant order by order

gµν(X )CL−→ gµν(X ′) = e

2D−3β

[ηµν +

∞∑k=1

e−2kβh(k)µν (X ′)

]In adapted coordinates p(u, v , ρ) q(u, v , ρ), ρ separates!

h(k)µν (u, v , ρ, φi) =

f (k)µν (p,q, φi)

ρ(D−3)(2k+Nu−Nv )

Page 25: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CL-SYMMETRY & SEPARATION OF VARIABLES

Background shock conf. symm: Boost (L) + Conformal scaling (C)

-

L : κ→ eβκ

- -

C : xµ → e−β

D−3 xµeβκ→ κ

Up to conformal factor, metric perturbations invariant order by order

gµν(X )CL−→ gµν(X ′) = e

2D−3β

[ηµν +

∞∑k=1

e−2kβh(k)µν (X ′)

]

In adapted coordinates p(u, v , ρ) q(u, v , ρ), ρ separates!

h(k)µν (u, v , ρ, φi) =

f (k)µν (p,q, φi)

ρ(D−3)(2k+Nu−Nv )

Page 26: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CL-SYMMETRY & SEPARATION OF VARIABLES

Background shock conf. symm: Boost (L) + Conformal scaling (C)

-

L : κ→ eβκ

- -

C : xµ → e−β

D−3 xµeβκ→ κ

Up to conformal factor, metric perturbations invariant order by order

gµν(X )CL−→ gµν(X ′) = e

2D−3β

[ηµν +

∞∑k=1

e−2kβh(k)µν (X ′)

]In adapted coordinates p(u, v , ρ) q(u, v , ρ), ρ separates!

h(k)µν (u, v , ρ, φi) =

f (k)µν (p,q, φi)

ρ(D−3)(2k+Nu−Nv )

Page 27: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

ASYMPTOTIC ANGULAR FACTORISATION (AT ALL ORDERS!)

Waveform E(k)(r , τ, θ) ∝ ddτ (E (k) + H(k)) when r → +∞ is

E(τ, θ)

The associated inelasticity is:

ε ≡∫ 1

−1

d cos θ2

∫dτ

(∑k

E(k)(τ, θ)

)2

.

As a consequence of the CL-symmetry & asymptotics @ J +:

E(k)(τ, θ) =

(1

1− cos θ

)2(1 + cos θ1− cos θ

)k−1− 14

D−4D−3

E(k)(τ(τ, θ),

π

2

).

Order of perturbation theory⇔ order of angular expansion!

Note: This was claimed but not proved before

Page 28: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

ASYMPTOTIC ANGULAR FACTORISATION (AT ALL ORDERS!)

Waveform E(k)(r , τ, θ) ∝ ddτ (E (k) + H(k)) when r → +∞ is

E(τ, θ)

The associated inelasticity is:

ε ≡∫ 1

−1

d cos θ2

∫dτ

(∑k

E(k)(τ, θ)

)2

.

As a consequence of the CL-symmetry & asymptotics @ J +:

E(k)(τ, θ) =

(1

1− cos θ

)2(1 + cos θ1− cos θ

)k−1− 14

D−4D−3

E(k)(τ(τ, θ),

π

2

).

Order of perturbation theory⇔ order of angular expansion!

Note: This was claimed but not proved before

Page 29: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

ASYMPTOTIC ANGULAR FACTORISATION (AT ALL ORDERS!)

Waveform E(k)(r , τ, θ) ∝ ddτ (E (k) + H(k)) when r → +∞ is

E(τ, θ)

The associated inelasticity is:

ε ≡∫ 1

−1

d cos θ2

∫dτ

(∑k

E(k)(τ, θ)

)2

.

As a consequence of the CL-symmetry & asymptotics @ J +:

E(k)(τ, θ) =

(1

1− cos θ

)2(1 + cos θ1− cos θ

)k−1− 14

D−4D−3

E(k)(τ(τ, θ),

π

2

).

Order of perturbation theory⇔ order of angular expansion!

Note: This was claimed but not proved before

Page 30: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

ASYMPTOTIC ANGULAR FACTORISATION (AT ALL ORDERS!)

Waveform E(k)(r , τ, θ) ∝ ddτ (E (k) + H(k)) when r → +∞ is

E(τ, θ)

The associated inelasticity is:

ε ≡∫ 1

−1

d cos θ2

∫dτ

(∑k

E(k)(τ, θ)

)2

.

As a consequence of the CL-symmetry & asymptotics @ J +:

E(k)(τ, θ) =

(1

1− cos θ

)2(1 + cos θ1− cos θ

)k−1− 14

D−4D−3

E(k)(τ(τ, θ),

π

2

).

Order of perturbation theory⇔ order of angular expansion!

Note: This was claimed but not proved before

Page 31: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

ASYMPTOTIC ANGULAR FACTORISATION (AT ALL ORDERS!)

Waveform E(k)(r , τ, θ) ∝ ddτ (E (k) + H(k)) when r → +∞ is

E(τ, θ)

The associated inelasticity is:

ε ≡∫ 1

−1

d cos θ2

∫dτ

(∑k

E(k)(τ, θ)

)2

.

As a consequence of the CL-symmetry & asymptotics @ J +:

E(k)(τ, θ) =

(1

1− cos θ

)2(1 + cos θ1− cos θ

)k−1− 14

D−4D−3

E(k)(τ(τ, θ),

π

2

).

Order of perturbation theory⇔ order of angular expansion!

Note: This was claimed but not proved before

Page 32: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 33: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 34: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 35: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 36: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 37: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 38: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 39: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

SURFACE INTEGRALS (@ J +) ARE BESSEL FUNCTIONS!!!

Magic happens (@ J +) when:

1 Fourier transform ˆF (ω, θ) =∫

dτ F (τ, θ)e−iωτ

2 Go to new frequency ω → Ω(ω, θ) & new wave F(Ω, θ)

3 Clever use of CL + back Fourier transform Ω→ t(new) +horrific (but “straightforward”) calculations

Tadá!!!

F(t) = . . .

[1

Φ′(R)

ddR

]k−1 (Φ′(R)−1R

D−22 J D−4

2 +m(2R)f (R))

R = Φ−1(t) and t new time in D > 4Φ(R) is the Gravitational shock profilef (R) is the initial data for given metric perturbation

Page 40: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

PROOF OF THE “MAGICAL” FORMULA – ANALYTICS MEETS NUMERICS

Surf. integral contributions to the inelasticity’s angularseries ε(θ) =

∑∞N=1 ε

(N)(θ)

N Term contribution to ε(N)(π2 )

1 FE (1)FE (1) 8(1

2 −1D

)2 2FE (1)FE (2) −32

(12 −

1D

) D−4D+2

2FE (1)FH(2) −32(1

2 −1D

) D−3D−4

3 FE (2)FE (2) 64(1

2 −1D

) (D−4)2

(D+2)(D+4)

2FE (2)FH(2) 64(1

2 −1D

) (D−3)(D+2)

FH(2)FH(2) 64(1

2 −1D

) (D−3)2

(D−4)(D−8)

Checked with numerics with relative error of less than 10−4

Note divergent cases which agree with non-integrable tails

Page 41: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

PROOF OF THE “MAGICAL” FORMULA – ANALYTICS MEETS NUMERICS

Surf. integral contributions to the inelasticity’s angularseries ε(θ) =

∑∞N=1 ε

(N)(θ)

N Term contribution to ε(N)(π2 )

1 FE (1)FE (1) 8(1

2 −1D

)2 2FE (1)FE (2) −32

(12 −

1D

) D−4D+2

2FE (1)FH(2) −32(1

2 −1D

) D−3D−4

3 FE (2)FE (2) 64(1

2 −1D

) (D−4)2

(D+2)(D+4)

2FE (2)FH(2) 64(1

2 −1D

) (D−3)(D+2)

FH(2)FH(2) 64(1

2 −1D

) (D−3)2

(D−4)(D−8)

Checked with numerics with relative error of less than 10−4

Note divergent cases which agree with non-integrable tails

Page 42: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

PROOF OF THE “MAGICAL” FORMULA – ANALYTICS MEETS NUMERICS

Surf. integral contributions to the inelasticity’s angularseries ε(θ) =

∑∞N=1 ε

(N)(θ)

N Term contribution to ε(N)(π2 )

1 FE (1)FE (1) 8(1

2 −1D

)2 2FE (1)FE (2) −32

(12 −

1D

) D−4D+2

2FE (1)FH(2) −32(1

2 −1D

) D−3D−4

3 FE (2)FE (2) 64(1

2 −1D

) (D−4)2

(D+2)(D+4)

2FE (2)FH(2) 64(1

2 −1D

) (D−3)(D+2)

FH(2)FH(2) 64(1

2 −1D

) (D−3)2

(D−4)(D−8)

Checked with numerics with relative error of less than 10−4

Note divergent cases which agree with non-integrable tails

Page 43: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

OUTLINE

1 Exact results – The role of symmetry

2 The Penrose diagram

Page 44: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

(p,q) [OR (P,Q)] NOT INTUITIVE!

REGION IV – FUTURE OF THE COLLISION

Page 45: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE 2D WAVE OPERATOR AND ITS CHARACTERISTICS

2D wave operator at k -th order of rank m

ρ2(k)m → . . .

∂2

∂Q2 + . . .∂2

∂P2 + . . .∂2

∂Q∂P. . .

Characteristic coordinates η(P,Q) and ξ(P,Q)

ρ2(k)m → . . .

∂2

∂η∂ξ+ 0× ∂2

∂η2 + 0× ∂2

∂η2 + . . .

Define compactified versions

η ≡ η√1 + η2

, ξ ≡ ξ√1 + ξ2

Page 46: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE 2D WAVE OPERATOR AND ITS CHARACTERISTICS

2D wave operator at k -th order of rank m

ρ2(k)m → . . .

∂2

∂Q2 + . . .∂2

∂P2 + . . .∂2

∂Q∂P. . .

Characteristic coordinates η(P,Q) and ξ(P,Q)

ρ2(k)m → . . .

∂2

∂η∂ξ+ 0× ∂2

∂η2 + 0× ∂2

∂η2 + . . .

Define compactified versions

η ≡ η√1 + η2

, ξ ≡ ξ√1 + ξ2

Page 47: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE 2D WAVE OPERATOR AND ITS CHARACTERISTICS

2D wave operator at k -th order of rank m

ρ2(k)m → . . .

∂2

∂Q2 + . . .∂2

∂P2 + . . .∂2

∂Q∂P. . .

Characteristic coordinates η(P,Q) and ξ(P,Q)

ρ2(k)m → . . .

∂2

∂η∂ξ+ 0× ∂2

∂η2 + 0× ∂2

∂η2 + . . .

Define compactified versions

η ≡ η√1 + η2

, ξ ≡ ξ√1 + ξ2

Page 48: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 49: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 50: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 51: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 52: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 53: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 54: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

THE CONFORMAL DIAGRAM – AKA “THE MINE FIELD”

Many things clearer:Light rays @ 45o

Past light cone of Oi

Source singularity from raysthat cross the axis(Retarded) Green functionsingularity from axis crossingSpecial coordinateτ ⇔ limη→+∞ ξ

Challenges:Control numerical errors ofhigher order integralsAll boundaries in the diagramhave coordinate singularities!

Page 55: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

CONCLUSIONS

Where we got:

Proved correspondence between pertubative expansionand axis expansion

Showed all first order results are exact (Bessel functions @J +) by working in Fourier space

Found characteristic coordinates for all D and an extremelyuseful conformal diagram

In progress: Control errors @ higher orders in the newpromising compactified version of the problem

THANK YOU!

Page 56: @let@token RADIATION FROM A D-DIMENSIONAL COLLISION OF …gravitation.web.ua.pt/bhw7/sites/gravitation.web.ua.pt... · 2016. 4. 29. · References: JHEP 07 (2011) 121 Phys. Rev. Lett.

CONCLUSIONS

Where we got:

Proved correspondence between pertubative expansionand axis expansion

Showed all first order results are exact (Bessel functions @J +) by working in Fourier space

Found characteristic coordinates for all D and an extremelyuseful conformal diagram

In progress: Control errors @ higher orders in the newpromising compactified version of the problem

THANK YOU!


Recommended