+ All Categories
Home > Documents > Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor...

Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor...

Date post: 09-Nov-2020
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
29
FE0023915: Pilot Scale Operation and Testing of Syngas Chemical Looping for Hydrogen Production FE0026185: Chemical Looping Coal Gasification Sub-Pilot Unit Demonstration and Economic Assessment for IGCC applications 2017 Combined Project Portfolio Review| 20 March 2017 Liang‐Shih Fan (PI), Andrew Tong (Co‐PI) Research Assistant Professor Department of Chemical and Biomolecular Engineering
Transcript
Page 1: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

FE0023915: Pilot Scale Operation and Testing of Syngas Chemical Looping for Hydrogen Production

FE0026185: Chemical Looping Coal Gasification Sub-Pilot Unit Demonstration and Economic Assessment for IGCC

applications

2017 Combined Project Portfolio Review| 20 March 2017

Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)Research Assistant Professor

Department of Chemical and Biomolecular Engineering

Page 2: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

CO2 Capture from Fossil Fuel Based PlantsChemical Looping Process with Oxygen Carriers

Net Reaction: CxHyOz + O2 → CO/H2 (or CO2 + H2O)

Chemical looping processes minimizes/eliminates the efficiency loss for gas separation

Ellingham Diagram

Page 3: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Fixed Bed Tests

1998

Bench Scale Tests

2001

Pilot Scale Demonstration

2010 to date

Sub-Pilot CDCL Process Tests

2007

CCR Process

SCL ProcessSTS

Process

ParticleSynthesis

1993

TGA Tests

Evolution of OSU Chemical Looping Technology

Fan, L.-S., Zeng, L., Luo, S. AIChE Journal. 2015.

Page 4: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Cyclic Redox of

Pure Fe2O3

Nor

mal

ized

Wei

ght

Cyclic Redox of

Composite Fe2O3

before

after

Oxygen Carrier Synthesis

Fan, L.-S. Chemical Looping Systems for Fossil Energy Conversions. Wiley, 2010.Li, F., Kim, H.R., Sridhar, D., Wang, F., Zeng, L., Fan, L.-S. Energy & Fuels. 2009.

Time (hr)

Time (hr)

Tem

pera

ture

(°C)

Oxy

gen

Cap

acity

Page 5: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

OSU Chemical Looping Platform Processes

Counter-current: Full Combustion Co-current: Full Gasification

Fan, L.-S., Zeng, L., Luo, S. AIChE Journal. 2015.

Simplicity: One Loop

Unique Reducer Configuration:

Moving Bed

Unique Flow Controller:

Non-Mechanical L-Valve

Two Basic Modes

CO2 out

MOVING BEDREDUCER

Fuel in

MOVING BEDREDUCER

Fuel in

Syngas out

FLUIDIZED BEDCOMBUSTOR

FLUIDIZED BEDCOMBUSTOR

Fe2O3

Fe/FeO Fe/FeO

Fe2O3

Air in

Depleted Air Depleted Air

Air in

Page 6: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Syngas Chemical LoopingMain Reactions 

Reducer: CxHyOz + Q  + Fe2O3 → CO2 + H2O + Fe

Oxidizer: Fe + H2O → Fe3O4 + H2 + Q

Combustor: Fe3O4 + O2 → Fe2O3 + Q

Total: CxHyOz + H2O + O2 → CO2 + H2

Page 7: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Coal to Syngas Chemical Looping Process

Coal In

Syngas Out

Main reactions: 

Reducer: Coal + H2O + Fe2O3 → CO + H2 + Fe/FeO

Combustor: Fe/FeO + O2 (Air) → Fe2O3 + Q

Net: Coal + H2O + O2 (Air) → CO + H2 + Q

Unique Reactor Design:• Co‐current moving bed reducer design 

• Tight control of gas‐solid flow• High fuel conversion to syngas

• Non‐mechanical single loop system• Extensive experience with non‐

mechanical moving bed reactor designTechno‐Economic Assessment Support:• Oxygen carrier selection: experimental and 

thermodynamic analysis• Reactor design and hydrodynamic studies

Page 8: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

FE0023915: Syngas Chemical Looping (SCL) Pilot Unit

Page 9: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Syngas Chemical Looping Process Development

Oxidizer Gas Profile

25 kWth Sub‐Pilot Unit

• Continuous ~99.99% syngas conversion throughout 3‐day demonstration• Continuous hydrogen production >99.99% purity• >300hrs sub‐pilot operations without operational issues

Oxygen Carrier Reactivity (TGA) Reducer Gas Profile

Reduction Kinetics Counter‐Current Moving Bed Reducer Model

Page 10: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

SCL Controls and Integration with DCS

Page 11: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Pressure Drop Ac

ross System 

Solids Circulation Rate  Pressure

Heigh

t

• >200 hours solid circulation studies completed

• Operating pressures: 1‐10 atm

• Solid circulation Rate: 95 – 1900 kg/hr

• Demonstrated non‐mechanical gas sealing between each reactor

Solid Circulation Correlation to Pressure Drop Pressure Profile Across SCL Reactor System

Initial Solid Circulation Tests

8

Page 12: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Preparation for April Gasifier Test• Heat traced Secondary Particle Separator (SPS) and discharge piping

• Eliminate moisture collection on filters and discharge piping

• Replaced sinter metal filters with Gore‐Tex Filters

• Operating temperature: 520F• Fabric filters – more effective 

back‐pulse• Enlarged discharge piping to 4”

• Reduce plugging capability• Requires 4” metal seated ball 

valves• Added bypass to SPS

• Allow for maintained operations while servicing SPS

• Allow flue gas to heat up prior to brining baghouse online

LS

2” dia

4” dia

2” dia

PIT

Compressed Air

Vent

SecondaryParticle Separator

ThermalOxidizer

LS

4” dia

4” dia

4” dia

PIT

Compressed Air

Vent

SecondaryParticle Separator

ThermalOxidizer

Original Design Modified Design

16

Page 13: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Pilot Plant Operations• Syngas operation initiated

• 350 lb/hr syngas processed• Achieved >98% syngas conversion • Pressure balance and gas sealing maintained• Elevated combustor temperatures confirm 

redox reactions • Achieved first large‐scale demonstration of 

high pressure, high temperature chemical looping process

Page 14: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Future Work• Achievement

• Resolved auxiliary equipment issues• Developed successful procedure for pilot unit heat up and pressurization while maintaining solid circulation

• Achieved operating temperature and pressure for syngas conversion

• Continued work• Complete preparations for gasifier operation• Perform extended unit operations (600 hours) with >750 lb/hrsyngas processed

• Complete techno‐economic analysis update

20

Page 15: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

FE0026185: Coal to Syngas (CTS) Sub-Pilot Unit

Page 16: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Oxygen Carrier SelectionThermodynamic Assessment:

Modified Ellingham Diagram Modified Ellingham Diagram for FeAl2O4

Experimental Screening:TGA  Studies for Oxygen Carrier Kinetics Using H2

Selected Oxygen Carrier Recyclability 

Page 17: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Experimental Studies: Coal Volatile and Moving Bed Reducer Volatile Cracking Studies with and without OC

Test Apparatus

Test Apparatus

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 20 40 60 80 100

Con

cent

ratio

n / P

urity

Time (min)

Syngas Purity

H2

CO

CO2

CH4

Temp.:1000oCOC:20g/minCoal: 0.9g/minCH4:1.2SLPMH2O: 0.8g/minN2:1SLPM

PRB Coal and CH4 Co‐InjectionBench Unit Co‐Current Moving Reducer Testing

Page 18: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Experimental Reducer Studies: Coal Volatiles

Page 19: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

• Prepare Chemical Looping Gasification (CLG) technology for a commercially relevant demonstration by 2020• Design and construct an integrated CLG system at sub‐pilot scale with coal as 

its feedstock– Continuously operate the system and demonstrate syngas production– Investigate the fates of some important impurities, such as sulfur and nitrogen

• Conduct techno‐economic analysis and optimize the CLG process for efficient electricity generation with reduced carbon emission

Project Overview

Page 20: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Sub-Pilot Commissioning and Startup

‐10

0

10

20

30

40

50

0 5 10 15 20 25 30

Pressure drop (in

wc)

Time (Hours)

Reducer Pressure Drop

0

10

20

30

40

50

60

0 10 20 30Flow

 Rates (S

LPM)

Time (Hours)

Reducer gas flow rate

CH4 N2

0

200

400

600

800

1000

1200

0 10 20 30

Tempe

rature (C

)

Time (Hours)

Reactor Temperature

Reducer Temperature

0

5

10

15

20

25

30

0 10 20 30

Pressure drop (in

wc)

Time (Hours)

Combustor Pressure Drop

Page 21: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

• Purpose- To compare capital and lifecycle costs to DOE reference power generation 

configurations- Develop process models and configurations for an IGCC power generation facilities 

incorporating OSU coal to syngas chemical looping technology.- Develop economic comparison of facility designs incorporating OSU CTS technology 

to IGCC reference cases.• Methodology

- Develop three process models of Coal to Syngas (CTS) technology in Aspen Plus- Incorporate OSU CTS technology into Aspen Plus IGCC process models.- Estimate capital and operating costs based on Aspen Plus modeling of processes- Perform financial analysis to determine power production costs and cost of CO2

captured.- Compare costs to DOE/NETL reference cases

• OSU Coal to Syngas (CTS) Cases:- Baseline 0% CO2 capture with 2 reactor CTS configuration- 90+% CO2 capture with 2 reactor CTS configuration- 90+% CO2 capture with 3 reactor CTS configuration 

Purpose and Methodology of TEA

Page 22: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

ReducerCoalPreparation

Acid GasRemoval( H2S)

Sour WaterSystem

SourWater

ClausPlant

AcidGas

Sour Gas

SulfurProduct

Stripped Water

Air Nitrogen Diluent

Compressor

As Received Coal

Ash Removal

Steam Gas CoolingBFW Heating& Knockout

MercuryRemoval

Spent‐Airto Stack

Gas Turbine 

Combustor

Air

2Χ AdvancedF CLASS

GAS TURBINE

Turbine Cooling Air Electricity Production 

HRSG

SteamTurbine

HRSG

Combustor 

FeO / Fe Fe

2 O3

Syngas

Syngas Reheat 

& Humidifaction

Conventional Case (Shell Gasifier with no CO2 Control) Coal to Syngas (CTS) Chemical Looping Gasification Process

Case Comparison

Page 23: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

• Fuel: Illinois Bituminous Coal• CO2 Removal: O% or >90% based on raw syngas carbon content• CO2 Product

• CO2 Purity: Enhanced Oil Recovery as listed in Exhibit 2‐1 of the NETL QGESS titled “CO2 Impurity Design Parameters”. *

• CO2 Delivery Pressure: 2,215 psia• Transport and Storage (T&S): $10/tonne

• Plant Size: Sufficient syngas to fire two advanced F‐class gas turbines, generating capacity 500‐550 MWe net

• Ambient Conditions: Greenfield, Midwestern USA• Capacity Factor: 80%• Financial Structure: High risk IOU, capital charge factor = 0.124• Reference IGCC Power Production: 

• IGCC cases from “Cost and Performance Baseline for Fossil Energy Plants Volume 1b: Bituminous Coal (IGCC) to Electricity Revision 2b.”

IGCC Design Basis

Page 24: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

1.200

1.250

1.300

1.350

1.400

1.450

1.500

1.550

1.600

1.650

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

H2+C

O

H2O/C

2 reactor

3 reactor

Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow. (18% decrease from 1 to 0.5)Syngas conversion of two reactor system does not change dramatically with decreasing steam flow. (2% decrease from 1 to 0.5)

CTS 2-Reactor vs 3-Reactor Performance Comparison

Page 25: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

IGCC Plant Integration: • Main air compressor

• Supplemented by gas turbine extraction

• Syngas compressor• Plant nitrogen production

• HP gas turbine diluent

• Plant purging and blanketing

2-Reactor CTS Block Diagram (No Capture)

Page 26: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Gross Power, kWeGas Turbine Power 464,000GT Extraction Expander 3,376Steam Turbine Power 252,254Total 719,631

Auxiliary Loads, kWeOxidizer Main Air Compressor 32,226GT Diluent Nitrogen Compressor 26,386Main Syngas Compressor 38,162Selexol Acid Gas Removal 4,394Balance of Plant 25,345Total 126,513

Net Power, kWeNet Power 593,117

Miscellaneous Performance MetricsHHV Net Plant Efficiency, % 39.4HHV Net Plant Heat Rate, Btu/kWh 8,654HHV Cold Gas Efficiency, % 83.7HHV Gas Turbine Efficiency, % 37.6LHV Net Plant Efficiency, % 40.9LHV Net Plant Heat Rate, Btu/kWh 8,347LHV Cold Gas Efficiency, % 80.3LHV Gas Turbine Efficiency, % 40.6Steam Cycle Efficiency, % 33.4Steam Cycle Heat Rate, Btu/kWh 10,225Condenser Duty, MMBtu/h 1,231As-Received Coal Feed, lb/h 439,985HHV Thermal Input, kWt 1,504,294LHV Thermal Input, kWt 1,450,910Raw Water Withdrawal, gpm/MWnet 7.3Raw Water Consumption, gpm/MWnet 5.6

• CO2 emissions

- Close to new source EPA limit of 1,400 lb/MWgross (1,429 lb/MWgross)

• Process heat recovery option

- Oxidizer spent air (unique to CTS system)

• High-quality heat is being used to heat air instead of making steam

• Potential Options to Lower CO2 emissions: lower oxidation air temperature

- More oxygen carrier

- Higher syngas CO2 yield

- More nitrogen for gas turbine, less HP steam

- Higher-quality spent air heat recovery

2‐Reactor Performance Summary – Slurry Feed

Page 27: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Focus area

2‐Reactor Performance Summary – Slurry Feed

Page 28: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Additional Work

• Sub-Pilot Demonstration• Complete Unit Startup Activities• Coal feed and parametric testing• Extended unit operations

• TEA Tasks• Optimization to other targets/goals• Improvement of efficiency (dry feed)• Meeting EPA CO2 emissions target of 1,400 lb CO2/MWh gross

• Expand to other feeds• Other coal types for regional applications

• Understanding of markets and competition• Complete 3 TEA case studies of the CTS process

Page 29: Liang‐Shih Fan (PI), Andrew Tong (Co‐PI)...Mar 20, 2017  · Syngas conversion of three reactor system reaches maximum at 1 and decreases dramatically with decreasing steam flow.

Government Agencies• DOE/NETL: Gregory O’Neal• Ohio Development Service Agency: Gregory Payne

Project Participants• Babcock & Wilcox: Christopher Poling, Thomas Flynn• Clear Skies: Robert Statnick• American Electric Power: Matthew Usher, Indrajit Bhattacharya• Test Site Host: National Carbon Capture Center

Acknowledgements

This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibilities for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the  United States Government or any agency thereof. The views and opinions of the authors expressed herein do not necessarily state or reflect those of United States Government or any thereof.


Recommended