+ All Categories
Home > Documents > liebnitz

liebnitz

Date post: 07-Apr-2018
Category:
Upload: nitin-grover
View: 213 times
Download: 0 times
Share this document with a friend

of 19

Transcript
  • 8/4/2019 liebnitz

    1/19

    LEIBNITZS THEOREM OF NTH DERIVATIVE

    OF THE PRODUCT OF TWO FUNCTION

  • 8/4/2019 liebnitz

    2/19

    If then !n ny x y n

    If thenax n axny e y a e

    If then log anx x

    n ey a y a

    11

    If then 1 !n nn

    ny y a n ax b

    ax b

    If sin then sin2

    n

    n

    ny ax b y a ax b

    1

    1

    1

    1 0 1 1 1

    n n n

    r r r

    n n n

    C C C

    C C C n n

  • 8/4/2019 liebnitz

    3/19

    Statement: Let u and v are two function of x differentiable ntimes then the nth derivative of their product is

    Let y=uv

    By actual differentiation, we have

    The theorem is seem to be true for n=2,3

    Let us assume that the theorem is true for n=m so that

    0 1 1 1 2 2 2( ) ...... ...n n n n nn n n n r n r r n nuv c u v c u v c u v c u v c uv

    1 1 1y u v uv 2 2 1 1 1 1 2 2 1 1 2

    2 2 2

    0 2 1 1 1 2 2

    2

    =

    y u v u v u v uv u v u v uv

    c u v c u v c uv

    3 3 2 1 1 2 3

    3 3 3 3

    0 3 1 2 1 2 1 2 3 3

    3 3y u v u v u v uv

    c u v c u v c u v c uv

  • 8/4/2019 liebnitz

    4/19

    Differentiating this w.r.to x we have

    The theorem is to seem to be true for n=m+1

    Hence, by the method of mathematical induction we

    conclude that the theorem is true for any positive integral

    value of n.

    1 1 1 2 1 2 ......... ...m m m

    m m m m r m r r my u v c u v c u v c u v uv

    1 1 1 1 1 1 2 2 1 2

    2 2 3 1...

    m m m

    m m m m m m

    m m m

    m r m r r r m r r

    y u v u v c u v c u v c u v

    c u v c u v c u v

    1 1 1 1 2 1 2

    1 1 1

    (1 ) ( ) ......

    ( ) ......

    m m mm m m

    m m

    r r m r r m

    u v c u v c c u v

    c c u v uv

    1 1 1

    1 1 1 2 1 2 1 1...... ....m m m

    m m m r m r n mu v c u v c u v c u v uv

  • 8/4/2019 liebnitz

    5/19

    It states that if u and v be any two function of x,

    Ex. If y=x3eax, find yn

    Let, u=eax and v=x3 so that y = uv=x3eax,

    Dnu=aneax Dv=3x2

    Dn-1

    u=an-1

    eax

    D2

    v=6xDn-2u=an-2eax D3v=6

    Now by Leibnitzs Theorem we have

    1 2 2

    1 2( ) ( ) ( ) ( ) .....n n n n n n n n

    nD uv D u v c D u Dv c D u D v c uD v

    3

    3 1 3 2 2 3 3 3 31 2 3

    ( )

    ( ) ( ). ( ). ( ).

    n ax

    n ax n n ax n n ax n n ax

    D x e

    D e x c D e Dx c D e D x c D e D x

    3 1 2 2 3( 1) ( 1)( 2).3 .6 .62 6

    n ax n ax n ax n axn n n n na e x na e x a e x a e

    3 1 2 2 33 3 ( 1) ( 1)( 2)ax n n n ne a x na x n n a x n n n a

  • 8/4/2019 liebnitz

    6/19

    Ex. If show that(1+x2)y2+(2x-1)y1=0

    and (1+x2)yn+2+(2nx+2x-1)yn+1+n(n+1)yn=0

    Soln. As is given

    Diff. w. r. t. x

    1tan x

    y e

    1tan x

    y e

    1

    1

    tan 11

    tan

    1 2

    tan

    1.

    1

    x

    x

    dy e xdx

    y e

    x

    12 tan

    1

    2

    1

    (1 )

    (1 )

    xx y e

    x y y

  • 8/4/2019 liebnitz

    7/19

    Diff. again w. r. to x

    Which proves the first result

    Now, Diff. (1) n times, by Leibnitzs theorem, we have

    2

    2 1 1

    2

    2 1

    (1 ) 2

    (1 ) (2 1) 0.................(1)

    x y xy y

    x y x y

    2

    2 1{(1 ) } {(2 1) } 0n nD x y D x y

    2 2 2 2

    2 1 1 2 1 1{ (1 ) . (1 ) (1 )} { (2 1) (2 1)} 0n n n

    n n n n ny x c y D x c y D x y x y c D x

    2

    2 1 1

    ( 1)(1 ) 2 .2 (2 1) .2 0

    2n n n n n

    n nx y ny x y y x ny

    2 2

    2 1

    2

    2 1

    (1 ) (2 2 1) ( ) 0

    (1 ) (2 2 1) ( 1) 0

    n n n

    n n n

    x y nx x y n n y

    x y nx x y n n y

  • 8/4/2019 liebnitz

    8/19

    1 1

    2 : If y + y =2m mExample x

    2 2 2

    2 1

    then show that

    ( 1) (2 1) ( ) 0n n nx y n xy n m y

    1 1

    2 1

    : We have y + y =2

    2 1 0

    m m

    m m

    solutions x

    y xy

    21

    22 4 4 = 12

    mx x

    y x x

    2

    2 1

    12

    ( 1)

    ( 1) (1 )1

    m

    m

    y x x

    xy m x x

    x

  • 8/4/2019 liebnitz

    9/19

    2 2 2 2

    1

    quaring both sides, we get

    (x -1)y

    S

    m y

    2 2 2

    1 2 1 1

    2 2

    2 1

    gain diff. both sides w.r.t.x we get

    2(x -1)y y 2 y 2 y

    (x -1)y y

    A

    x m y

    x m y

    2 2

    2 1

    2 2

    2 1 1 2 1 1

    2 2 2

    2 1

    pplying Leibnitz theorem,we get

    (x -1)y y

    (x -1)y 2 y 2y 2y y 0

    (x -1)y 2( 1)y ( ) 0

    n n n

    n n n n n n

    n n n

    A

    x m y

    c x c c m y

    xn n m y

  • 8/4/2019 liebnitz

    10/19

    1Example 3: If y=cos

    apply Leibnitz theorem

    x

    then

    1

    12

    :

    now y= cos

    1y

    1

    Sol

    x

    x

    2 2 2

    1 12

    quaring both sides, we get

    1y or y (1 ) 1

    1

    S

    xx

  • 8/4/2019 liebnitz

    11/19

    2 2

    1 2 12

    2 1

    gain diff. both sides w.r.t.x we get

    2(1-x )y y 2 y 0

    (1-x )y y 0

    A

    x

    x

    2

    2 1 1 2 1 1

    2 2

    2 1

    pplying Leibnitz theorem,we get

    (1-x )y 2 y 2y y y 0(1-x )y 2(2 1) y 0

    n n n

    n n n n n

    n n n

    A

    c x c x c

    n x n y

  • 8/4/2019 liebnitz

    12/19

    Value of the nth derivative of a function for x=0

    Step 1. Equate the given function to y

    Step 2. Find y1

    Step 3. Again find y2

    Step 4. Differentiate both sides n times by Leibnitzs theorem.

    Step 5. Put x=0 in equations of step(1),(2),(3) and (4)

    Step 6. On putting x=0 two cases arises (i) when n=odd (ii) whenn=even integer

    Ex. If prove that yn(0)=0 for a odd

    yn(0)=2.22.42.62..(n-2)2 ,n2 for n even

    1 2(sin )y x

  • 8/4/2019 liebnitz

    13/19

    Ex. If prove that yn(0)=0 for a odd

    yn(0)=2.22.42.62..(n-2)2 ,n2 for n even

    Soln.

    Diff. (1) w. r. t. x

    1 2(sin )y x

    1 2(sin ) ......................(1)y x

    1

    12

    2 1

    1

    2 2

    1

    2sin

    1

    1 2 sin

    (1 ) 4 ..............(2)

    xy

    x

    x y x

    x y y

  • 8/4/2019 liebnitz

    14/19

    Diff. (2) again w. r. to x

    Diff. (3) n times by Leibnitzs theorem

    2 2

    1 2 1 1

    2

    2 1

    2

    2 1

    (1 )2 2 4

    (1 ) 2(1 ) 2 0.............(3)

    x y y xy y

    x y xyx y xy

    2

    2 1

    1 1

    2

    2 1 1

    2

    2 2 2 2

    2 1 1 2

    2

    2 1

    { (1 ) . (1 )

    {(

    (

    1 ) } {( ) 1} 0

    { ( ) ( )} 0

    ( 1)(1 ) 2 .2 ( ) . 0

    2

    (1 ) ( )

    )}

    0

    1

    1 2

    n n

    n

    n n

    n n n n n

    n

    n n

    n n n

    n n

    D x y D xy

    y x y c D x

    n nx y ny x y y x

    y x c y D x c y

    ny

    x y x n y

    D x

    n y

  • 8/4/2019 liebnitz

    15/19

    Ex 3. If

    Sol.

    21 y (0)m

    ny x x find

    1

    2 2

    1

    112 2 2

    y 1 ( 1

    1( 1 1 (1 ) .2

    2

    m

    m

    dm x x x x

    dx

    m x x x x

    2 1

    2

    2 1 2 2

    2 2

    [ 1 ] [1 ]1

    [ 1] [ 1] [ 1]

    1 1

    m

    m m

    xm x x

    x

    x x x x x xm m

    x x

    2

    11x y my

    2 2 2 2

    1

    squaring both sides

    (1+x ) ..............(2)

    on

    y m y

    2 2 2

    1 2 1 1

    . (2) w. r. to x

    (1+x ) 2 .2 2

    Diff

    y y y x m yy

    2 2

    2 1

    2 2

    2 1

    (1+x )

    (1+x ) 0..............(3)

    y xy m y

    y xy m y

  • 8/4/2019 liebnitz

    16/19

    Again diff. (3) n times by Leibnitzs theorem, we have

    2 22 1 1 2 1 11 2 .2 .1 0n n nn n n n n nx y c y c y xy c y m y

    2 2

    2 1 1

    2 2 2

    2

    ( 1)1 2 .2 02

    1 2 1 0................(4)

    n n n n n n

    n n n

    n nx y nxy y xy ny m y

    x y n xy n m y

    2

    1 1

    2 2

    2

    (0) 1, y (0) , y (0) ,

    y (0) ( ) (0)...............(5)n n

    y m m

    m n y

    2 2 2 2

    3 1

    2 2 2 2 2 2

    5 3

    2 2 2 2 2 2

    When n is odd, Putting n=1,3,5,.......... in (5)

    y (0) ( 1 ) (0) ( 1 )

    y (0) ( 3 ) (0) ( 1 )( 3 )

    .

    .

    .

    y (0) { ( 2) }.........( 3 )( 1 )n

    m y m m

    m y m m m

    m n m m m

  • 8/4/2019 liebnitz

    17/19

    2 2 2 2 2

    4 2

    2 2 2 2 2 2 26 4

    2 2 2 2 2 2 2

    When n is even, putting n=2,4,6.......... in (5)

    y (0) { 2 }y (0) ( 2 )

    (0) ( 4 ) (0) ( 4 )( 2 )

    .

    .

    (0) ( ( 2) }...........( 4 )( 2 )n

    m m m m

    y m y m m m

    y m n m m m

  • 8/4/2019 liebnitz

    18/19

    Assignment-I

  • 8/4/2019 liebnitz

    19/19

    4.

    5.