+ All Categories
Home > Documents > Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof....

Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof....

Date post: 30-May-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
31
Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici Life Cycle Analysis and solar cooling Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM Marco Beccali, Maurizio Cellura, Sonia Longo
Transcript
Page 1: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo

Università degli Studi di Palermo – Dipartimento di Energia, Ingegneriadell’Informazione e Modelli Matematici

“Life Cycle Analysis and solar cooling”

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Page 2: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The development of renewable energy technologies (RETs) isimportant for reducing fossil fuels consumption while contributingto the climate change mitigation.

However, RETs cannot be considered totally clean. They haveenergy and environmental impacts that cannot be neglectedduring their life cycle.

Introduction

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Need of enlarging the boundaries of the analysis by including the total life

cycle of RETs.

Page 3: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The Life Cycle Assessment

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The Life Cycle Assessment (LCA) is a methodology for assessing the energy andenvironmental impacts of products and services during their life cycle.

LCA is one of the main pillarsdriving the European policytoward the low-carbon economy,the sustainable use of resources,the sustainable consumption andproduction, the application ofeco-design and eco-innovationstrategies, the waste preventionand waste recycling.

LCA allows to have a global overview of the product throughout its life cycle.

Page 4: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The Life Cycle Assessment

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

• It prevents to move problems from one life-cycle step to another or

• It prevents to move problems from an impact category to another;

•It captures the complexity hidden behind a product;

•It is a useful tool to compare products and services on a scientific basis.

•It can be used to investigate new technologies and can help decisionmakers to evaluate the energy and environmental advantages of atechnology within a specific climate.

Page 5: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA and the IEA Solar Heating & Cooling Programme

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

IEA SHC Task 38 “Solar Air-Conditioning and Refrigeration”Subtask D “Market transfer activities” - Activity D3 “Life cycle assessment”

IEA SHC Task 48 “Quality Assurance & Support Measures for Solar Cooling Systems”Subtask A “Quality Procedure on Component Level” - Activity A2 “Life cycle analysis at

component level”Subtask B “Quality procedure on system level” - Activity B3 “Life cycle analysis at system

level”

IEA SHC Task 53 "New Generation Solar Cooling & Heating Systems (PV or solar thermally driven systems)“

Subtask A “Components, systems and quality” - Activity A5 “LCA and techno-eco comparison between reference and new systems”

Page 6: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Goals of the LCA study:

assessment of the energy and environmental life-cycle impacts of solarheating and cooling (SHC) systems with small (12 kW ) absorption chillers inthree different locations: Palermo (Italy), Zurich (Switzerland) and Rio deJaneiro (Brazil);

comparison of the above impacts with those of conventional compressionchiller systems also assisted by photovoltaic.

The research aims to provide a more comprehensive investigation of the performances oftwo families of solar assisted cooling systems, which is important for studies concerningeffective systems to exploit solar energy for cooling purposes.

Page 7: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

0 5000 10000 15000

Palermo - Heating loads

Palermo - Cooling loads

Palermo - Solar radiation on…

Rio de Janeiro - Heating loads

Rio de Janeiro - Cooling loads

Rio de Janeiro - Solar radiation…

Zurich- Heating loads

Zurich - Cooling loads

Zurich - Solar radiation on…

Annual solar radiation on tilted surface [kWh/m2], cooling and heating loads [kWh] of the threechosen locations.

Page 8: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The SHC system:

Hot back-up Cold back-up

Page 9: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The conventional systems:

With PV grid connectedWithout PV With PV stand-alone

Heating:natural gas burner.

Cooling:conventional compressionchiller connected to theelectricity grid.

Heating:natural gas burner.

Cooling:conventional compressionchiller connected .The electricity demand istotally produced by astand-alone multi-Si PVsystem.

Heating:natural gas burner.

Cooling:conventional compressionchiller.The electricity demand istotally produced by a gridconnected multi-Si PVsystem.

PV systems are sized to generate the electricity required by the chiller and the auxiliaries.

Page 10: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The energy and environmental impacts, calculated by applying the LCA, werereferred to each system (SHC or conventional).

The life-cycle steps included in the analysis are:

Manufacturing:

it includes the supplyof raw materials andthe production andassembly of the maincomponents of thesystem.

Operation:

it includes the energysources (electricityfrom the grid andnatural gas)consumption duringthe useful life (25years) of the system.

End-of-life:

it includes thetreatment of waste atthe end-of-life of thesystem.

Page 11: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Operation step:

All the systems were simulated with detailed TRNSYS models for three locations:Palermo (Italy), Zurich (Switzerland) and Rio de Janeiro (Brazil).

Three reference buildings, tailored to have the same peak cooling demand (about12 kW), have been defined and modeled.

The life cycle of each system component was estimated to be 25 years, except for batteries (about 8 years), charge regulators (about 8 years) and inverters (about

12 years).

Page 12: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Operation step:

Palermo Zurich Rio de Janeiro

[kWh] Heating Cooling Heating Cooling Heating Cooling

Conventional system Electricity 0 1,995 0 1,046 0 4,542

Conventional system with PV (grid connected and stand-alone)

Electricity 0 0 0 0 0 0

Conventional system with and without PV

Natural gas 2,754 0 14,951 0 103 0

SHCHot backup

Electricity 52 937 81 655 74.4 2,062

Natural gas 414 246 10,165 177 0 2,956

SHCCold Backup

Electricity 52 1,065 81 686 74.4 3,005

Natural gas 414 0 10,165 0 0 0

Page 13: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

LCA results: Global Energy Requirement (GER)

System 2 is the bestsystem in the two hottestlocations (Palermo andRio de Janeiro).

859,871

363,743

1,002,319

457,493 476,841

1,968,658

1,725,588

2,111,831

1,474,686 1,482,149

759,266

115,033

734,959789,280

634,679

0

500000

1000000

1500000

2000000

2500000

System 1: Conventionalsystem

System 2: Conventionalsystem with PV grid

connected

System 3: Conventionalsystem with PV stand-

alone

System 4: SHC hot backup System 5: SHC coldbackup

Global energy requirement (MJ)

Palermo Zurich Rio de Janeiro

SHC systems performbetter than conventionalsystems in Palermo andZurich.

SHC systems performbetter than systems 1 and3 in Palermo.

System 3 has the worstperformance in Palermoand Zurich.

System 4 has the worstperformance in Rio deJaneiro.

Page 14: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Conventional systemConv. system with

PV grid connected

Conv. system with

PV stand-alone

SHC with hot

backup

SHC with

cold backup

Palermo

(MJ)

Production 14,357 55,048 667,046 117,000 129,505

Operation 845,485 308,616 308,616 340,029 346,860

End-of-life 29 78 26,656 464 476

Total859,871 363,743 1,002,319 457,493 476,841

Zurich

(MJ)

Production 14,357 50,088 420,347 119,101 131,605

Operation 1,954,272 1,675,426 1,675,426 1,355,121 1,350,068

End-of-life 29 75 16,058 464 476

Total1,968,658 1,725,588 2,111,831 1,474,686 1,482,149

Rio de Janeiro

(MJ)

Production 14,357 103,383 696,382 117,000 129,505

Operation 744,880 11,543 11,543 671,816 504,699

End-of-life 29 107 27,034 464 476

Total759,266 115,033 734,959 789,280 634,679

LCA results: Global Energy Requirement (GER)

Page 15: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

LCA results: Global Energy Requirement (GER)

PV Modules15.1%

Inverter1.7%

Cables and wirings

0.5%

Battery78.8%

Charge regulator

1.4%

Gas boiler0.3%

Chiller2.2%

System 3 Conv. with PV stand-alone – Palermo

PV Modules74.4%

Inverter7.5%

Cables and wirings

2.4%

Gas boiler1.8%

Chiller13.9%

System 2 Conv. with PV grid connected - Rio de Janeiro

Page 16: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

LCA results: Global Energy Requirement (GER)

Absorption chiller24%

Solar collectors51%

Heat storage 13%

Cooling Tower2%

Gas boiler2%

Piping+insulat7%

Pumps1%

System 4 SHC with Hot backup - Palermo

Absorption chiller21%

Solar collectors45%

Heat storage 12%

Cooling Tower2%

Gas boiler1%

Glycol2%

Piping+insulat6%

Pumps1%

Conventional chiller10%

System 5 SHC with cold backup - Zurich

Page 17: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

LCA results:

Energy Payback Time (EPT): time (years) during which the system must work to harvest as much energyas is required for its production and disposal.

1.90

31.63

5.10 5.80

3.21

37.84

4.39 4.873.04

24.17

35.27

12.03

0

5

10

15

20

25

30

35

40

System 2: Conventional systemwith PV grid connected

System 3: Conventional systemwith PV stand-alone

System 4: SHC hot backup System 5: SHC cold backup

Energy Payback Time (years)

Palermo Zurich Rio de Janeiro

Best EPT: systems 2, 4 and 5 forPalermo and Zurich, and system2 for Rio de Janeiro.

EPT higher than 25 years forsystem 4 in Rio de Janeiro,which has GER higher than theconventional system.

Very high EPT values for thestand-alone systems, due to thebattery incidence on the totalGER.

Page 18: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

LCA results: Global Warming Potential (GWP)

52,863

22,596

40,035

27,54530,435

104,209 102,167

112,786

77,697 79,235

35,261

7,672

23,963

41,469

31,735

0

20000

40000

60000

80000

100000

120000

System 1: Conventionalsystem

System 2: Conventionalsystem with PV grid

connected

System 3: Conventionalsystem with PV stand-

alone

System 4: SHC hotbackup

System 5: SHC coldbackup

Global Warming potential (kg CO2eq)

Palermo Zurich Rio de Janeiro

Incidence of each life-cycle step on the total GWP: consideration similar to GER can be made for GWP.

Page 19: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA of SHC systems

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Conclusions:

• In hot climates (Palermo and Rio de Janeiro), the systems with the PV grid connectedplant (that not requires storage) performed best, as they have low GER and GWP valuesand payback times.

• The PV systems with stand-alone configuration performed worse than the PV gridconnected systems and the solar thermal assisted systems in nearly all the analysedcases. The impact of storage manufacturing is large so only more efficient, durable and"green" technologies can overcome this impact.

• In a cold climate (Zurich), the SHC systems perform better. There is the opportunity touse these systems to meet the cooling load and also the high heating load.This consideration is not true for PV assisted systems, which do not contribute to savenatural gas.

Page 20: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

The LCA tool

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

A user-friendly LCA tool for assessing the energy and environmental impacts of solar heating andcooling systems following the life cycle approach was developed within the Task 48 “QualityAssurance & Support Measures for Solar Cooling Systems” of the International Energy Agency.

The LCA tool aims to support researchers, designers and decision-makers in evaluating the life cycleenergy and environmental advantages related to the use of SHC systems in substitution ofconventional ones, considering specific climatic conditions and building loads.

Page 21: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 1: Enteringdata of SHC and

conventional system

Step 2: Examining data of specific

energy and environmental

impacts

Step 3: Examining the

results

LCA modelling steps

The tool allows for calculating the following indices, both for SHC and for conventionalsystems:

• Global energy requirement (GER);

• Global warming potential (GWP);

• Energy payback time (EPT);

• GWP payback time (GWP-PT);

• Energy return ratio (ERR).

The LCA tool

Page 22: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 1: Entering data of SHC and conventional system

The LCA tool

Page 23: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 2: Examining data of specific energy and environmental impacts

The LCA tool

Page 24: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 3: Examining the results

For each system the LCA results include:The total life cycle impact;The total impact for each component/energy source;A dominance analysis on the life cycle steps (manufacturing,operation and end-of-life) that cause the main energy andenvironmental impacts;A dominance analysis on the components that are responsible ofthe main impacts in the manufacturing and end-of-life step.

The LCA tool

Page 25: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 3: Examining the results

The LCA tool

Page 26: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 3: Examining the results

The LCA tool

Page 27: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Step 3: Examining the results

The LCA tool

Page 28: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

Conclusions

The LCA tool

The tool's advantages:

Ease of use, it can be used both by LCA practitioners and non-professional users;

The results depend on the geographical context;

It allows for the comparison of energy and environmental performances of SHC and conventional systems;

It enables users to evaluate if there are real benefits due to the installation of a SHC system in substitution of a conventional one;

It allows for the calculation of the energy and environmental payback time indices.

The LCA tool represents an original and easy-to-use tool that enables researchers,designers, and decision-makers to take environmentally sound decisions in the field ofSHC technologies.

The tool is freely available on the website of Task 48 of IEA: http://task48.iea-shc.org/

Page 29: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The Italian LCA Network Association

The main objectives of the Italian LCA network are:

• Promoting the dissemination of the Life Cycle Assessment (LCA) methodology atnational level;

• Promoting the exchange of information and best practices on the LCA in Italy;

• Encouraging networking processes among different stakeholders for the realization ofnational and international projects.

Web-site: www.reteitalianalca.it

To join the Italian LCA Network, write to: [email protected]

Page 30: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

The Italian LCA Network Association

Working group “Energy and sustainable technologies”

Goals:

• Assessment of the energy and environmental performances of energy generation,transformation and use systems, aiming at the promotion of eco-efficiency on anylevel, following the approach from «resource» to «waste».

• Analysis of the state-of-the-art of LCA studies on energy and sustainable tecnologies.

• Exchange of experiences regarding LCA applied to energy and sustainabletechnologies.

Page 31: Life Cycle Analysis and solar cooling - IEA SHC · 2016. 11. 4. · Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo Università degli Studi di Palermo –Dipartimento

UNIVERSITA’ DEGLI STUDI DI PALERMO - DIPARTIMENTO DEIM

Marco Beccali, Maurizio Cellura, Sonia Longo

Task53 Workshop on the New Generation of Solar Cooling and Heating Systems driven by Photovoltaic or Solar Thermal Energy

THANK YOU FOR YOUR ATTENTION

Prof. Marco Beccali, Prof. Maurizio Cellura, Ing. Sonia Longo

Dipartimento di Energia, Ingegneria dell’Informazione e Modelli Matematici

Università degli studi di Palermo

Viale delle Scienze Ed.9, 90128 Palermo, Italy

e-mail: [email protected], [email protected], [email protected]


Recommended