+ All Categories
Home > Documents > “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core...

“Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core...

Date post: 13-Dec-2015
Category:
Upload: lucas-bond
View: 213 times
Download: 0 times
Share this document with a friend
Popular Tags:
21
“Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS) Jie Wei 1 , Alian Wang 1 , James L. Lambert 2 , David Wettergreen 3 , Nathalie Cabrol 4 and Kimberley Warren-Rhodes 4 1 Washington University in St. Louis; 2 Jet Propulsion Laboratory, CA, 91109, 3 Carnegie Mellon University, Pittsburgh PA 15213, 4 SETI Institute, Carl Sagan Center, NASA Ames Research Center, CA 94035 1
Transcript
Page 1: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

1

“Life in the Atacama” 2013 Rover Field Campaign in Chile

Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

Jie Wei1, Alian Wang1, James L. Lambert2, David Wettergreen3, Nathalie Cabrol4 and Kimberley Warren-Rhodes4

1Washington University in St. Louis; 2Jet Propulsion Laboratory, CA, 91109,

3Carnegie Mellon University, Pittsburgh PA 15213,4SETI Institute, Carl Sagan Center, NASA Ames Research Center, CA 94035

Page 2: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

2

Background

Methodology: sampling & measurements

Performance of MMRS (robustness )

Minerals identified

Quantitative analysis: phase distributions

Conclusion

Outline

Page 3: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

3

Background• Life in the Atacama (NASA ,

ASTEP program)Atacama desert: one of the driest deserts; a

terrestrial analog to Mars. Different forms of life were previously identified at Atacama subsurfaces.

LIFA 2013 campaign, rover-based exploration: robotic subsurface sampling, autonomous mineral phase identification.

Operation: Remotely directedField team: Rover, Drill, MMRS

Page 4: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

4

Background• Mars Microbeam Raman Spectrometer (MMRS) for

fine-scale mineralogy and biosignature1996 NASA PIDDP 1997 Athena payload for Mars Exploration Rover mission2004 MSL payload selection (category one)2012 LITA project, MMRS stand-alone2013 LITA project , MMRS on Zöe rover

Page 5: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

5

Methodology• Sample collections Automatically delivered by drill

• Measurements:

Manually collected from pit wall

Autonomous line-scan of samples on carousel

MMRS main box

MMRS probe headLine-scan of the same samples using HoloLab5000 (similar performance as MMRS)

Page 6: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

6

Raman spectroscopy Micro (focused) beam with line scanfine grain mineralogy

h

Non-invasiveNon-destructiveIn situ application

• Point counting method:

• Taking spectra from many spots using focused beam

• Each assignable spectrum is added to the phase count

Page 7: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

7

L Dcm

mmrspoints

11 M 80 50

30 20

10 20

A 80 100

30 20

10 100

10 M 80 18

30 20

10 20

0 20

A 80 50

30 50

10 50

9 M 80 5030 5010 50

A 80 5030 5010 50

8 M 80 10030 20

A 80 5030 100

6B M 80 10030 10010 1000 100

5 M 30 520 50

2B M 80 500 20

• 7 locations, 31 samples• 62 measurements (mmrs, lab)• Total 3230 points (spectra) .

2

5,6B

8-11

Measurement summary

Locations and depths

Linear-scan points

Page 8: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

8

MMRS RobustnessMMRS normal performance remained over 2-week 50 km route

Naphthalene spectra at the beginning and end of the tripBlue: 06/17 15:09 Red: 06/29 20:54

• Peak position• Accounts• Relative peak

intensity

Page 9: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

9

Gypsum (CaSO4 2H∙ 2O )

For low s/n spectra, single peak at 1008 was assigned to gypsum.

Minerals identified -- 3 sulfates

200 400 600 800 1000 3200 3400 3600

1008

Raman Shift (cm-1)

Gypsum (CaSO4-2H

2O)

MMRSLocale 5, surface

PeakWidth=11 cm-1

200 400 600 800 1000 3200 3400 3600

1008

Raman Shift (cm-1)

Gypsum (CaSO4-2H

2O)

LabLocale 5, surface

PeakWidth=8.6 cm-1

Page 10: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

10

Anhydrite (CaSO4)

Minerals identified -- 3 sulfates

400 600 800 1000 1200

415 49

4

620

671

1136

1008

418 50

0 610 62

9

676

1129

1017

Raman Shift (cm-1)

MMRS Anhydrite (CaSO

4)

Gypsum (CaSO4-2H

2O)

200 400 600 800 1000 1200

1017

Raman Shift (cm-1)

Anhydrite (CaSO4)

MMRS Lab

Locale 6B, PitDepth=80 cm

Page 11: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

11

OH str. A-sym. Str.

Sym. Str.

A-sym. Bend. Sym. bend.

Gypsum (CaSO4 2H∙ 2O ) 3494,3407 1135 1008 670, 620 494,415

Anhydrite (CaSO4 ) 1128 1017 676,629,612 499,416

-CaSO4(a) 1168 1025 674,632 492,422

Bassanite (CaSO4 0.5H∙ 2O(b)) 3700,3475 1128 1015 668,628 489,427

(a) Only observed in lab. Chio, Sharma and Muenow, American Mineralogist, 89: 390 (2004) (b) Not certainly identified in this study. From Yang, Wang and Freeman, 40th LPSC (2009): 2128

400 600 800 1000 1200

422 49

2 632

674

102541

5

494

620

671

1136

1008

418 50

0

610 62

9

676

1129

1017

Raman Shift (cm-1)

Anhydrite (CaSO4),MMRS

Gypsum (CaSO4-2H

2O), MMRS

-CaSO4, Lab

Minerals identified -- 3 sulfates in Atacama-2013 samples

Page 12: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

12

In the MMRS spectra of Atacama samples, only the strongest peaks between 508 - 516 cm-1 show up. They are assigned to the group of feldspar. The peak positions indicate alkali-feldspars, i.e. Na & K-feldspar.

[a]Freeman, Wang, Kuebler, Jolliff and Haskin, The Canadian Mineralogist, 46: 1477 (2008).

Feldspar groupThe Raman spectra slightly vary. The strongest Raman peaks fall within a narrow region of 505 and 515 cm-1 (a).

Minerals identified – K, Na -feldspar

Best assigned as ternary feldspar with most albite contribution[a].

100 200 300 400 500 600 700 800 900 1000 1100

289

478

510

762

813

Raman Shift (cm-1)

MMRS Lab

Locale 9. PitDepth=30 cm

Page 13: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

13

Calcite (CaCO3) ??CO3

Carbonates have the strongest Raman peak, 1, between 1000 – 1100 cm-1 .

Minerals identified – two carbonates

The spectra are weak, only appeared once in the analyzed spectra, might be K2CO3 or BaCa(CO3)2.

200 400 600 800 1000 1200

278 71

3

1085

Raman Shift (cm-1)

MMRS Lab

Locale 6B, PitDepth=10 cm

900 950 1000 1050 1100 1150

1066

Raman Shift (cm-1)

MMRS Lab

Locale 6B, PitDepth=80 cm

Low s/n spectra: Calcite/aragonite

Page 14: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

14

Anatase (TiO2), quartz (SiO2) and hematite (Fe2O3)

Hematite and graphite are only identified in lab-measured spectra.

Minerals identified – igneous and graphite

Graphite

0 1000

411

1319

lab Fe2O

3 + quartz

Locale 11, Pit, D=80cm

MMRS quartz (SiO2)

Locale 9, Pit, D=10 cm

638

515

398

204

464

151

Raman Shift (cm-1)

MMRS anatase (TiO2)

Locale 11, surface

1000 1200 1400 1600 1800 2000

Grap

hit

e D

-ban

d +

Hem

ati

te

1587, G

rap

hit

e G

-ban

d

Raman Shift (cm-1)

Graphite, LabLocale 10, DrilledDepth=30 cm

0 100 200 300 400 500 600 700 800

23

6

44

5

60

96

38

Raman Shift (cm-1)

TiO2

Anatase Rutile

rruff database532 nm, unoriented

Page 15: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

15

V. Quantitative phase distributions: point counting method

Quartz peak Gypsum peak Anatase peaks

50 points in 19 spectra in 2 spectra in 3 spectra

1-phase points 2+3+4+9+10+5-8+17-22+26+24+25 16 13+40+38

2-phase points 23+27 23+27

Percentage of Informative spectra = (19+2+3) / 50 = 48 %Quartz proportion percentage = 19 / 50 = 38%(To be developed -- weighted with Raman cross section of solid phases)

MMRS spectraLocale: 9, pitDepth= 10 cm

(a) Haskin, Wang, Rockow, Jolliff, Korotev and Viskupic, J. Geophy. Res. 102: 19293 (1997).

Page 16: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

16

• Averaged informative percentages: Lab 48%; MMRS 29%.• Exposure time and accumulation numbers:

Lab: 1000 ms x 10acc - 2000 msx10 acc; MMRS: 100ms x 10 -200ms x 20 .

• Laser focus condition.

Percentage of informative spectra

C7G C5G C12F C3G C1G C10F C8F C1F C5C C3C C1E C1C C15 C13 C6 C0

0

20

40

60

80

100

Info

rmat

ive

Per

cent

age

Samples

lab mmrs

Page 17: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

17

Depth (cm) 0 10 30 80Number of

measurements 8 14 19 20

Anhydrite/Bassanite 1 0.9 2.6 21

Gypsum 23 11 6.4 11

Quartz 8 10 12 11

Feldspar 13 8 6 4

The relative distribution of anhydrite/bassanite increases sharply at the depth of 80 cm; Gypsum prefers surface.

Quartz Gypsum Anhydrite(+Bassanite)

Fspar Calcite TiO2 Fe2O3

Percentage 10 11 8 7 2 1.8 0.3

Mean proportional percentages

Proportional percentages over depths

Phase distributions (Point proportion)7 sites, 31 samples, 59 measurements (non-informative

measurements were removed), 1680 mmrs + 1550 lab points/spectra

Page 18: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

18

V. Phase distributions: anhydrite and gypsum

0

50

100

0

50

100

0

50

100

2 4 6 8 10

0

50

100

D= 0cm

Dep

th (

cm)

Locale Number

D= 10cm

D= 30cm

Anhydrite/Bassanite

MMRS,Drill MMRS,Pit Lab, Drill Lab, Pit

D= 80cm

0

50

100

0

50

100

0

50

100

2 4 6 8 10

0

50

100

D= 0cm

Dep

th (

cm)

Locale Number

D= 10cm

D= 30cm

Gypsum

MMRS,Drill MMRS,Pit Lab, Drill Lab, Pit

D= 80cm

0

50

100

0

50

100

0

50

100

2 4 6 8 10

0

50

100

D= 0cm

Dep

th (

cm)

Locale Number

D= 10cm

D= 30cm

Quartz

MMRS,Drill MMRS,Pit Lab, Drill Lab, Pit

D= 80cm

Page 19: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

19

Conclusion• First time integration of MMRS on a rover and reliable operation over the 50

miles 2-week trip; demonstrated the robustness of its opt-mechanical construction.

• Preliminary data analysis results: – Autonomous MMRS spectra of subsurface materials identified 3 sulfates, 2

carbonates, a type of feldspar, quartz and anatase (TiO2).

– Reduced carbon and hematite (Fe2O3) are also identified in lab spectra.– The percentage of informative MMRS spectra (29%) is lower than lab’s

(48%) (accumulation time and laser focus condition are among the reasons).

– Mineral phase distributions as a function of depths show that anhydrite distribution increases abruptly at the depth of 80 cm.

• Next trip to Atacama: – 1) More calibration; – 2) Better sample filling and longer measurement time;– 3) More samples and points to decrease statistical uncertainty;– 4) Immediate MMRS measurements after sample collection.

Page 20: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

20

Acknowledgement Jie Wei1, Alian Wang1, James L. Lambert2, David Wettergreen3, Nathalie Cabrol4 and Kimberley Warren-Rhodes4

CMU rover teamGreydon Taylor FoilDavid KohanbashJames Peter TezaSrinivasanVijayaranganMichael Wagner

HoneybeeDrill teamGale PaulsenSean Chulhong Yoon

Local supportGuillermo ChongJonathan BijmanRaul Arias O.

FundingASTEP (NASA )McDonnell Center for the Space Sciences, Washington University in St. Louis

Page 21: “Life in the Atacama” 2013 Rover Field Campaign in Chile Autonomous Analysis of Robotic Core Materials by the Mars Microbeam Raman Spectrometer (MMRS)

21

Thanks for your attention!

Please visit Poster 227219 and 227240 in Hall D, 2-4 pm, 5-6:60 pmfor Raman spectroscopy detection of biomarkers and zeolites


Recommended