+ All Categories
Home > Documents > Lifting Lug Calculation on Dish End

Lifting Lug Calculation on Dish End

Date post: 05-Dec-2015
Category:
Upload: tejas-shah
View: 582 times
Download: 60 times
Share this document with a friend
Description:
Lifting lug for pressure vessel
227
Transcript

INDEX

SR. NO. DESCRIPTION REVISION PAGE NOS.

i CALCULATION COVER SHEET A B C D 0 1

ii LIST OF FABRICATION DRGS. WITH RIVISION STATUS A - - -

iii INDEX A B C - -

iv INDEX (CONTINUE) A B C D -

v INDEX (CONTINUE) A B - - C D

INNER VESSEL STRENGTH CALCULATIONS A - - - -

PART A : ASME CODE CALCULATIONS. A - - - -

1.0 DESIGN DATA A - - - - 1

1.1 MATERIAL OF CONSTRUCTION A - - - - 1

1.2 VESSEL DATA A - - - - 1

1.3 OTHER LOADING AS PER UG 22 A - - - - 1

2.0 EVALUATION OF MATERIAL OF CONSTRUCTION A - - - - 2

3.0 EVALUATION FOR RADIOGRAPHY REQUIREMENTS A - - - - 3

3.1 CODE REQUIREMENT FOR RADIOGRAPHY A - - - - 3

3.2 CUSTOMER REQUIREMENT FOR RADIOGRAPHY A - - - - 3

4.0 JOINT EFFI. FOR VARIOUS CATAGORY OF WELDS A - - - - 4

4.1 JOINT EFFICIENCY FOR SHELL A - - - - 4

4.2 JOINT EFFICIENCY OF HEAD A - - - - 4

5.0 EVALUATION OF DESIGN PRESSURE A - - - - 5

6.0 THICKNESS CALCULATION FOR SHELL CYLINDER A B - - - 6

INDEXSR. NO. DESCRIPTION PAGE NOS.

7.0 THICKNESS CALCULATIONS FOR DISHED ENDS A - - 7

7.1 THICKNESS CALCULATIONS FOR TOP D'END A - - 7

7.1.1 THICKNESS CALCULATION FOR A - - 7

HEMISPHERICAL HEAD

7.1.2 THICKNESS CALCULATIONS FOR TOP D'ENDA B - 8

(2:1) ELLIPSOIDAL HEAD

7.2 THICKNESS CALCULATIONS FOR BOTTOM D'END A - - 9

HEMISPHERICAL HEAD A - - 9

7.2.2 THICKNESS CALCULATIONS FOR BOTOM D'ENDA B - 10

(2:1) ELLIPSOIDAL HEAD

8.0 NOZZLE STUB THICKNESS CALCULATIONS A B C 11

8.1 NOZZLE NECK COMPLIANCE WITH UW-13(h) A

SKETCH FOR NOZZLE ORIENTATION A - - 13

9.0 REINFORCEMENT CALCULATIONS FOR NOZZLES A B - 14

9.1 STRENGTH OF REINFORCEMENTS A - - 159.2 A - - 16

10.0 FILLET SIZE CALCULATIONS FOR NOZZLES A B - 17

11.0 EVALUATION FOR INSPECTION OPENINGS A - - 18

12.0 EVALUA. FOR POST WELD HEAT TREATMENT A - - 19

12.1 EVALUA. FOR POST WELD HEAT TREATMENTA - - 19

DUE TO STRAINING

13.1 AS PER UHA 51 & APPENDIX - JJ A - - 20

13.2 CUSTOMER REQUIREMENT FOR IMPACT TEST A - - 24

13.3 AS PER CODE CASE 2596 A - - 24

14.0EVALUATION FOR COLD STRETH PRESSURE

A - - 25(AS PER CODE CASE 2596)

REINFORCEMENT CALCULATIONS FOR NOZZLES ( AS PER UG-37 OF ASME SEC VIII DIV 1)

INDEXSR. NO. DESCRIPTION PAGE NOS.

PART B SUPPLIMENTARY CALCULATIONS

B1 DETERMINATION OF TRY COCK HEIGHT A - - 26

B2 WEIGHT CALCULATIONS FOR INNER VESSEL A - - 27

B3 SEISMIC LOAD CALCULATIONS A - - 28

B3.1 CHECK FOR SHELL THICKNESS FOR LONGITUDINAL -

STRESSES -

B4 DESIGN OF SKIRT FOR INNER VESSEL A - - 29

B5 DESIGN OF INNER VESSEL STRAP SUPPORT PAD -

B5.1 CALCULATION FOR SIZE OF TWISTED FLAT -

PART C

C1 DESIGN SUMMARY A B - 30

Rev. No. Rev. Date Revised Page Revision Description

LIST OF ABBREVIATIONS

BOT. : Bottom

CG : Centre of Gravity

CIRC. : Circumferencial

COMP. : Compressive

D'END : Dished End

DEG. : Degree

DIA. : Diametre

DIV. : Division

DRG. : Drawing

DRGS. : Drawings

EFF. : Efficiency

FIG. : Figure

HT. : Height

I.D. : Inside diameter

I.V. : Inner Vessel

LAR : Liquid Argon

LIN : Liquid Nitrogen

LOX : Liquid Oxygen

LIQ. : Liquid

LONG. : Longitudional

MAX. : Maximum

MIN. : Minimum

M.O.C. : Material Of Construction

NOM. : Nominal

NOZ. : Nozzle

O.D. : Outside Diameter

REQD. : Required

REV : Revision

RF : Reinforcement

S.F. : Straight Face

SP. : Specific

SR.NO. : Serial Number

Supp. Calc. : Supplimentary Calculation

T.L. : Tangent Line

THK. : Thickness

VOL. : Volume

W.L. : Weld Line

WT. : Weight

1.0 DESIGN DATA :

1.1 MATERIAL OF CONSTRUCTION:SHELL SA 240M TYP 304LDISHED HEAD SA 240M TYP 304LNOZZLE STUB SA 182M F304L / SA 479M TYP 304LREINFORCEMENT PAD SA 240M TYP 304L

1.2 DATA FOR VESSEL

FLUID STOREDTYPE OF D'END 2 : 1 ELLIPSOIDALDESIGN CODE: ASME SECVIII,DIV 1,ED 2007,ADD2009

(CODE CASE 2596) - COLD STRETCH

SR. NO. DESCRIPTION SYMBOL UNIT VALUE

1 Po kg/cm2 (g) 12.25* 1A Po MPa (g) 1.201

2 EXTERNAL VACUUM Pe kg/cm2 (g) 1.0552A EXTERNAL VACUUM Pe MPa (g) 0.1033 INSIDE DIAMETER Di mm 41004 POSITIVE TOLERANCE ON INSIDE DIAMETER c1 mm 05 W.L. TO W.L. LENGTH Ls mm 210006 S. F. OF DISHED ENDS S.F. mm 507 SP. GRAVITY OF VESSEL MATERIAL - 88 SP. GRAVITY OF LIN - 0.8099 MAX. SP. GRAVITY OF FLUID STORED r - 0.809

10 DESIGN TEMPERATURE MDMT deg C -196

10AMax. deg C + 40Min. deg C + 10

11 RADIOGRAPHY FOR L-SEAM OF SHELL, DISH END AND ALL T-JOINTS 100%12 RADIOGRAPHY FOR EACH CIRC. JOINT 100%13 CORROSION ALLOWANCE c mm 014 HEAT TREATMENT NIL

1.3 OTHER LOADING AS PER UG 22

SR. NO. DESCRIPTION APPLICABILITY

1 WEIGHT OF CONTENT & STATIC HEAD APPLICABLE2 SUPER IMPOSED EQUIPMENT NOT APPLICABLE3 ATTACHMENT OF INTERNALS NOT APPLICABLE4 VESSEL SUPPORT APPLICABLE5 CYCLIC & DYNAMIC REACTIONS NOT APPLICABLE6 MECHANICAL LOADING NOT APPLICABLE7 WIND LOAD NOT APPLICABLE8 SEISMIC LOAD APPLICABLE9 IMPACT REACTIONS (DUE TO FLUID SHOCK) NOT APPLICABLE

10 TEMPERATURE GRADIENT AND DIFFERNTIAL NOT APPLICABLEEXPANSION

11 ABNORMAL PRESSURE (CAUSED BY NOT APPLICABLEDEFLAGRATION)

12 TEST PRESSURE AND COINCIDENT STATIC HEAD APPLICABLEACTING DURING THE TEST.

* CONVERSION AS PER APPENDIX GG1 Mpa = 1 N/mm21 lbm = 0.453592 kg1 lbf = 4.448222 N1 kg = 4.448222 / 0.453524 = 9.80665 N

Hence, 1 kg/mm2 = 9.80665 N/mm21 kg/cm2 = 0.0980 N/mm21 kg/cm2 = 0.0980 Mpa

LIQUID N2

MAXIMUM ALLOWABLE WORKING PRESSURE (FOR DESIGN)

r s

rN

COLD STRETCH TEST TEMPERATURE

2.0 EVALUATION OF M.O.C

COMPONENT SPECIFICATION WHETHER P - NO. GROUPPERMITTED BY NO.ASME SEC. II D AND SEC VIII -1

SHELL / RF. PAD SA 240M TYP 304L YES (82/38)# 8 1

DISH SA 240M TYP 304L YES (82/38)# 8 1

NOZZLE STUB SA 182M F304L/ YES (82/34)# / 8 / 1/SA479M TYP 304L YES (86/9)# 8 1

INNER PIPES SA 312M TYP 304 YES (90/15)# 8 1SEAMLESS

INNER PIPE SUPPORTS SA 240M TYP 304L / YES (82/38)# / 8 / 1 /SA479M TYP 304L YES (90/35)# 8 1

SUPPORTS SA 240M TYP 304L YES (82/38)# 8 1

# INDICATES REF. PAGE NO. & LINE NO. OF ASME SEC II PART D

COMPONENT SPECIFICATION ALLOWABLE STRESS AT DESIGN AT TEST

TEMPERATURE TEMPERATURE

S (MPa) Sa (MPa)Sa / S

SHELL / RF. PAD SA 240M TYP 304L 247 @ 247 @ 1

AS PER CODE CASE 2596DISH SA 240M TYP 304L 247 @ 247 @ 1

AS PER CODE CASE 2596NOZZLE STUB SA 182M F304L / 115 115 1

SA 479M TYP 304L

LOWEST VALUE OF Sa / S = 1@' AS PER CODE CASE 2596

NOTE :CAUTIONARY NOTES ARE CONSIDERED AND NONE ARE APPLICABLE.

3.0 EVALUATION FOR RADIOGRAPHY REQUIREMENTS :3.1 CODE REQUIREMENT FOR REDIOGRAPHY (UW-11) :

CLAUSE REQUIREMENT APPLICABILITYREF.

UW11(a)1 ALL BUTT WELDS IN THE SHELL/HEADS TO CONTAIN NOT APPLICABLE

LETHAL SUBSTANCES2 ALL BUTT WELDS WITH t > 1.5" NOT APPLICABLE3 ALL BUTT WELDS IN SHELL AND HEADS OF UNFIRED NOT APPLICABLE

STEAM BOILERS4 ALL BUTT WELDS IN NOZZLES, COMMUNICATING CHAMBERS, NOT APPLICABLE

ETC. ATTACHED TO VESSEL SECTIONS OR HEADS THAT AREREQUIRED TO BE FULLY RADIOGRAPHED UNDER (1) OR (3)ABOVE.

5 ALL CATEGORY A AND D BUTT WELDS IN VESSEL SECTIONS APPLICABLEAND HEADS WHERE THE DESIGN OF THE JOINT OR PART IS BASED ON A JOINT EFFICIENCY PERMITTED BY UW - 12(a)

REQUIREMENTS :

1 CATEGORY 'A' & CATEGORY 'B'

2 CATEGORY 'A' WELDS TO BE FULLY RADIOGRAPHED.3 CATEGORY 'D' WELDS NONE ( AS NONE ARE BUTT WELDS)4 CATEGORY 'B' & CATEGORY 'C'

3.2 CUSTOMER REQUIREMENT FOR RADIOGRAPHY :

NOT SPECIFIED

CONCLUSION :- 1) ALL CATEGORY 'A' WELDS : FULLY RADIOGRAPHED.(LONG SEAM ON SHELL & DISH END

2) ALL CATEGORY 'B' WELDS : FULLY RADIOGRAPHED.(CIRC. SEAM ON SHELL)

3) ALL CATEGORY 'A' WELDS TYPE NO. (1) 4) ALL CATEGORY 'B' WELDS TYPE NO. (1) EXCEPT WELDING OF TOP DISH END AS PER TO SHELL

5)CATEGORY 'B' WELD TYPE NO. (2) UW -12 FOR WELDING OF TOP DISH ENDTO SHELL

CATEGORY'A':- TYPE NO. (1), CATEGORY'B':- TYPE NO. (1) OR TYPE NO. (2). AS PER TABLE UW - 12.

INTERSECTING BUTT WELD JOINTS SHALL BE FULL RADIOGRAPHED (CODE CASE 2596 CL. 5.1 (b)).

4.0 JOINT EFFICIENCY FOR VARIOUS CATEGORY OF WELDS.

4.1 JOINT EFFICIENCY FOR SHELL & DISH WITH CHORDAL SEAM AS PER UW 12 :

DESCRIPTION CATAGORY OF JOINT TYPE NO. DEG. OF JOINT EFFICIENCYRADIO-

GRAPHYSHELL :(a) LONG. SEAM CATEGORY A TYPE (1) FULL 1

(b) CIRC. SEAM CATEGORY B TYPE (1) FULL 1

(c) CIRC. SEAM BETWEEN CATEGORY B TYPE (2) FULL 0.9TOP DISH END AND SHELL WITH BACKING STRIP

DISH:(a) CHORDAL SEAM ** CATEGORY A TYPE (1) FULL 1

4.2 DESIGN EFFICIENCY OF SEAMLESS HEAD AS PER UW 12(a) & UW 12(d)

CASE ( 1 ) HEAD WITH FULLY RADIOGRAPHED CHORDAL SEAM :

( i ) HEAD TO SHELL JOINT : TYPE (1) FOR BOTTOM DISHED HEAD

TYPE (2) FOR TOP DISHED HEAD.

( ii ) HEAD TO SHELL JOINT : FULL RADIOGRAPHED TO UW 51.

HENCE, PER UW 12 (d) DESIGN EFFICIENCY FOR SEAMLESS HEAD IS 1.

** WHEN APPLICABLE

5.0 EVALUATION OF DESIGN PRESSURE (UG 21 & UG 22)

MAWP TO BE MARKED ON VESSEL NAME PLATE Po MPa (g) 1.201kPa (g) 1201

VACUUM CORRECTION Pe MPa (g) 0.103DESIGN PRESSURE (CORRECTED FOR VACUUM) Po + Pe MPa (g) 1.304TOTAL LIQUID HEAD (TRY COCK HEIGHT ) REFER CLAUSE B1 HL ** mm 21685INSIDE DIAMETER Di mm 4100S. F. OF DISHED ENDS S.F. mm 50W.L. TO W.L. LENGTH Ls mm 21000POSITIVE TOLARANCE ON LENGTH TL mm 10

CACULATION FOR STATIC HEAD (SH) :

SYMBOL DESCRIPTION FORMULA UNIT VALUEhi INSIDE DEPTH OF HEAD Di/4 mm 1025.0Ls W.L. TO W.L. LENGTH mm 21000

S.F. S. F. OF DISHED ENDS mm 50H TOTAL INSIDE HEIGHT OF I.V. Ls+2*hi+2*S.F+ TL mm 23160

= 21000 + 2 * 1025 +2*50 +10

STATIC HEAD (SH) IN MPa = 0.809

= 23160 * 0.809 *9.81 /1000000 g = 9.81= 0.1838 Mpa(g) (AS PER CLAUSE NO. 1.2)

(PAGE 1)NOTE: FOR CALCULATION OF DESIGN PRESSURE, THE MAXIMUM VALUE OF PRESSURE

AT BOTTOM OF THE TANK IS CONSIDERED

DESIGN PRESSURE

P= Po + Pe + SH = = 1.3039 + 0.18391.488 MPa (g)

H in mm * r * g/ 106 WHERE r =

m/s2

** STATIC HEAD HAS BEEN CONSIDERED FOR VESSEL FULL OF LIQUID, EVEN THOUGH PROCESS INSTRUMENT LIMIT HIGH LIQUID LEVEL TO TRY COCK HEIGHT.

6.0 THICKNESS CALCULATION FOR SHELL CYLINDER

(UG 27 (c) ASME SEC. VIII DIV.1)SYMBOL DESCRIPTION UNIT VALUE

P DESIGN PRESSURE MPa (g) 1.488Di INSIDE DIAMETER OF VESSEL mm 4100c1 POSITIVE TOLERANCE ON INSIDE DIAMETER mm 0S ALLOWABLE STRESS FOR SHELL MATERIAL MPa 247E JOINT EFFICIENCY FOR LONG. SEAM * 1.00Ec MIN. JOINT EFFICIENCY FOR CIRC. SEAM * 1.00c CORROSION ALLOWANCE mm 0

SYMBOL DESCRIPTION FORMULA UNIT VALUEDic INSIDE DIAMETER OF VESSEL

FOR THICKENSS CALC. Di + c1 + 2c mm 4100.0trs11 SHELL THK. FOR CIRC. STRESS PDic/(2*(S*E - 0.6*P)) mm 12.39

=1.488*4100/(2*(247*1-0.6*1.488)trs21 SHELL THK. FOR LONG. STRES. PDic/(2*(2*S*E+ 0.4*P)) mm 6.17

=1.488*4100/(2*(2*247*1+0.4*1.488)trs31 MIN. THK. AS PER UG 16 (b) mm 1.50

REQUIRED SHELL THICKNESS MAX OF(trs11,trs21,trs31) + c mm 12.39

ts1 PROVIDED SHELL THICKNESS mm 13

CHECK FOR APPLICABILITY OF UG 27 (c)

(a) PROVIDED THICKNESS = 13 mm< 1/2 * (INSIDE RADIUS OF VESSEL)= 1/2 * (Di/2) mm

1025 mm

(b) FOR CIRC. STRESS : (AS PER UG 27 (c) (1) )P = 1.488 MPa

0.385*S*E = 95.095 MPa

P < 0.385*S*E

(c) FOR LONG. STRESS : (AS PER UG 27 (c) (2) )P = 1.488 MPa

1.25*S*Ec = 308.75 MPa

P < 1.25*S*E

FROM (a) OR (b), FORMULA USED AS PER UG 27 (c) (1), IS APPLICABLE FOR CIRC. STRESSFROM (a) OR (c), FORMULA USED AS PER UG 27 (c) (2), IS APPLICABLE FOR LONG. STRESS

* REFER CLAUSE NO. 4 OF THIS CALCULATION FOR JOINT EFFICIENCY VALUE.

tRS

7.0 THICKNESS CALCULATIONS FOR D'END :

7.1.1 THICKNESS CALCULATION FOR SEAMLESS HEMISPHERICAL DISHED ENDS :AS PER UG 32 (b)

SYMBOL DESCRIPTION UNIT VALUEP DESIGN PRESSURE MPa (g) 1.304Di INSIDE DIAMETER OF VESSEL mm 4100c1 POSITIVE TOLERANCE ON INSIDE DIAMETER mm 0S ALLOWABLE STRESS DISHEND MATERIAL MPa 247Et MIN. JOINT EFF. OF HEAD TO SHELL JOINT FOR TOP D'END * 0.90Eh MIN. JOINT EFF. FOR SEAMLESS HEMISPHERICAL HEAD * 1.00

c CORROSION ALLOWANCE mm 0

* REFER CLAUSE NO. 4 OF THIS CALCULATION FOR JOINT EFFICIENCY VALUE.

SYMBOL DESCRIPTION FORMULA UNIT VALUEE JOINT EFFICIENCY OF Et 0.90

HEAD TO SHELL JOINTLch INSIDE SPHERICAL RADIUS ((Di + 2*c + c1)/ 2) mm 2050.0tch REQD. MIN CORRODED THK OF P*Lch / (2*S*Eh - 0.2*P) + c mm 5.41

SEAMLESS HEMISPHERICAL =1.3039*2050/(2*247*1- 0.2*1.3039)HEAD AS PER (UG 32 (f) )

trh3 REQD. MIN THK FOR tch/Et mm 6.02DISHED ENDS AS PER (UG 32 (b) )

CHECK FOR APPLICABILITY OF UG 32 (f)

(a) PROVIDED MIN THICKNESS = 14 mm (refer next page)< 0.356 * Lch= 729.80 mm

tch < 0.356 * Lch

(b) DESIGN PRESSURE = 1.304 MPa (g)< 0.665*S*E = 147.83 MPa (g)

P < 0.665*S*E

FROM (a) OR (b), FORMULA USED AS PER UG 32 (f), IS APPLICABLE FOR THE HEMISPHERICAL HEAD

7.1 THICKNESS CALCULATION FOR TOP D'END :

7.1.2 THICKNESS CALCULATION FOR TOP D'END : UG - 32 (d) ASME SEC. VIII DIV.1)(2:1 ELLIPSOIDAL)

SYMBOL DESCRIPTION UNIT VALUEP DESIGN PRESSURE MPa (g) 1.304

Dic INSIDE DIAMETER OF VESSEL (Di + 2*c + c1) mm 4100S.F. S. F. OF DISHED ENDS *** mm 50

S ALLOWABLE STRESS DISHEND MATERIAL MPa 247E JOINT EFFICIENCY FOR DISHED HEAD * 1.00c CORROSION ALLOWANCE mm 0

* REFER CLAUSE NO. 4 OF THIS CALCULATION FOR JOINT EFFICIENCY VALUE.

SYMBOL DESCRIPTION FORMULA UNIT VALUEtrh1 MIN. D'END THK P * Dic / (2*S*E - 0.2*P) mm 10.83

=1.3039*4100/(2*247*1- 0.2*1.3039)trh2 MIN. THK PER UG - 16 (b) mm 1.60trh3 MIN. THK PER UG - 32 (b) REF. CLAUSE NO. 7.1.1 mm 6.02

REQD. MIN. D'END THK MAX OF ( trh1,trh2,trh3) + c mm 10.83th MIN. PROVIDED MIN. THICKNESS mm 14th NOM. PROVIDED NOM. THICKNESS th1 mm 18

CHECK FOR APPLICABILITY OF UG 32 (d)

(a) PROVIDED MIN. THICKNESS = 14 mm> 0.002 * L (WHERE L=0.9*Dic)= 0.002 * 0.9 * Dic

tch > 7.38

*** CHECK FOR SF : UG 32 (l) & FIG. UW 13.1 (l) REQUIRING TAPER TRANSITION.MINIMUM VALUE FOR SF SHALL BE MINIMUM OF

(a) 3 * THICKNESS 54 mm(b) 1-1/2 INCH 38 mm

MINIMUM SF SHALL BE = 38 mmSF PROVIDED = 50 mm HENCE O.K.

tRDT

7.2 THICKNESS CALCULATION FOR BOTTOM D'END :

7.2.1 THICKNESS CALCULATION FOR SEAMLESS HEMISPHERICAL DISHED ENDS :AS PER UG 32 (b)

SYMBOL DESCRIPTION UNIT VALUEP DESIGN PRESSURE MPa (g) 1.488Di INSIDE DIAMETER OF VESSEL mm 4100c1 POSITIVE TOLERANCE ON INSIDE DIAMETER mm 0S ALLOWABLE STRESS DISHEND MATERIAL MPa 247

Eb MIN. JOINT EFF. OF HEAD TO SHELL JOINT FOR BOTTOM D'END * 1.00Eh MIN. JOINT EFF. FOR SEAMLESS HEMISPHERICAL HEAD * 1.00

c CORROSION ALLOWANCE mm 0

* REFER CLAUSE NO. 4 OF THIS CALCULATION FOR JOINT EFFICIENCY VALUE.

SYMBOL DESCRIPTION FORMULA UNIT VALUEE JOINT EFFICIENCY OF Eb 1.00

HEAD TO SHELL JOINTLch INSIDE SPHERICAL RADIUS ((Di + 2*c + c1)/ 2) mm 2050.0tch REQD. MIN CORRODED THK OF P*Lch / (2*S*Eh - 0.2*P) + c mm 6.18

SEAMLESS HEMISPHERICAL =1.4877*2050/(2*247*1- 0.2*1.4877)HEAD AS PER (UG 32 (f) )

trh3 REQD. MIN THK FOR tch/E mm 6.18DISHED ENDS AS PER (UG 32 (b) )

CHECK FOR APPLICABILITY OF UG 32 (f)

(a) PROVIDED MIN. THICKNESS = 14 mm (Refer Clause no.7.1.2)< 0.356 * Lch= 729.80 mm

tch < 0.356 * L

(b) DESIGN PRESSURE = 1.488 MPa (g)< 0.665*S*E= 164.26 MPa (g)

P < 0.665*S*E

FROM (a) OR (b), FORMULA USED AS PER UG 32 (f), IS APPLICABLE FOR THE HEMISPHERICAL HEAD

7.2.2 THICKNESS CALCULATION FOR BOTTOM D'END : UG - 32 (d) (ASME SEC. VIII DIV.1)(2:1 ELLIPSOIDAL)

SYMBOL DESCRIPTION UNIT VALUEP DESIGN PRESSURE MPa (g) 1.488

Dic INSIDE DIAMETER OF VESSEL (Dic + 2*c + c1) mm 4100S.F. S. F. OF DISHED ENDS *** mm 50

S ALLOWABLE STRESS DISHEND MATERIAL MPa 247E JOINT EFFICIENCY FOR DISHED HEAD * 1.00c CORROSION ALLOWANCE mm 0

SYMBOL DESCRIPTION FORMULA UNIT VALUEtrh1 MIN. D'END THK P * Dic / (2*S*E - 0.2*P) mm 12.35

=1.4877*4100/(2*247*1- 0.2*1.4877)trh2 MIN. THK PER UG - 16 (b) mm 1.60trh3 MIN. THK PER UG - 32 (b) REF. CLAUSE NO. 7.2.1 mm 6.18

REQD. MIN. D'END THK MAX OF ( trh1,trh2,trh3) + c mm 12.35

th MIN. PROVIDED MIN. THICKNESS mm 14th NOM. PROVIDED NOM. THICKNESS th2 mm 18

CHECK FOR APPLICABILITY OF UG 32 (d)

(a) PROVIDED MIN. THICKNESS = 14 mm> 0.002 * L (WHERE L=0.9*Dic)= 0.002 * 0.9 * Dic

tch > 7.38

*** CHECK FOR SF : UG 32 (l) & FIG. UW 13.1 (l) REQUIRING TAPER TRANSITION.MINIMUM VALUE FOR SF SHALL BE MINIMUM OF

(a) 3 * THICKNESS 54 mm(b) 1-1/2 INCH 38 mm

MINIMUM SF SHALL BE = 38 mmSF PROVIDED = 50 mm HENCE O.K.

* REFER CLAUSE NO. 4 OF THIS CALCULATION FOR JOINT EFFICIENCY VALUE.

tRDB

8.0 NOZZLE STUB THICKNESS CALCULATIONS :

NOZZLE WALL THICKNESS FOR INTERNAL PRESSURE AS PER UG-45(MAX. DESIGN PRESSURE AT BOTTOM IS CONSIDERED )

NOZZLE MARK N1 N2,N4 N3 N5,N6

NOZZLE/STUB SIZE mm DN 50 DN 50 DN 80 DN 15LOCATION OF NOZZLE BOT. D'END TOP D'END BOT. D'END TOP D'ENDDESIGN PRESSURE P MPa (g) 1.488 1.488 1.488 1.488DESIGN TEMPERATURE deg C -196 / 40 -196 / 40 -196 / 40 -196 / 40STUB O.D. Do mm 78 78 122.8 34NEAREST HIGHER NB SIZE PIPE DN 80 DN 80 DN 125 DN 32(Ref. ASME B 36.10M)CORROSION ALLOWANCE c mm 0 0 0 0NOZZLE MATERIAL SA 182M F304L/ SA 182M F304L/ SA 182M F304L/ SA 182M F304L/

SA 479M TYP 304L SA 479M TYP 304L SA 479M TYP 304L SA 479M TYP 304LALLOWABLE STRESS S MPa 115 115 115 115JOINT EFFICIENCY E 1 1 1 1RADIUS (Do/2) Ro mm 39 39 61.4 17AS PER UG 45 (a)i) Tmin = P*Ro/(S*E+0.4P)+c Tmin mm 0.50 0.50 0.79 0.22(AS PER APPENDIX 1 - 1a(1)) ii) NOZZLES ENDS ARE NO NO NO NOTHREDED ? (YES/NO) *AS PER UG 45 (b) (1) i) tmin PER UG-16 (b) = 1.5+c tmin mm 1.50 1.50 1.50 1.50LOCATION OF NOZZLE BOT. D'END TOP D'END BOT. D'END TOP D'END(ii) SMLS. TOP HEAD THICKNESS (CL. 7.1.2) mm 10.83 10.83 10.83 10.83(iii) SMLS. BTM HEAD THICKNESS (CL. 7.2.2) mm 12.35 12.35 12.35 12.35

mm 10.83 10.83 10.83 10.83AS PER UG-45(b)(2) FOR EXTERNAL PRESSURE mm N.A.AS PER UG-45(b)(3)

mm 10.83 10.83 10.83 10.83AS PER UG-45(b)(4)STD WALL THICKNESS Sw mm 5.49 5.49 6.55 3.56REFER ASME B36.10MIN. WALL THK. (UG-45(b)(4) ** mm 4.80 4.80 5.73 3.120.875*Sw + CAS PER UG-45(b)

mm 4.80 4.80 5.73 3.12AS PER UG-45MIN. REQUIRED NOZ. THK. mm 4.80 4.80 5.73 3.12

PROVIDED THK tn mm 11.61 11.61 20.00 10.08

tRDT

tRDB

(iv)GREATER OF tmin,tRDT,tRDB t1

t2

GREATER OF t1 & t2 t3

t4

SMALLER OF t3 & t4 t5

t6

GREATER OF Tmin & t5

B

DOC NO 1071022004-V-023 PAGE: of

REVISION C PREPARED BY: BTD

DATE 14.09.11 CHECKED BY:

MODEL NO. V31312AC APPROVED BY:

JOB NO. 1071022004

DOC NO 1071022004-V-023 PAGE: of

REVISION C PREPARED BY: BTD

DATE 14.09.11 CHECKED BY:

MODEL NO. V31312AC APPROVED BY:

JOB NO. 1071022004

NOZZLE MARK N7 N10 N11, N12, N13,N14

NOZZLE/STUB SIZE mm DN 15 DN 100 DN 50LOCATION OF NOZZLE BOT. D'END TOP D'END SHELLDESIGN PRESSURE P MPa (g) 1.488 1.488 1.488DESIGN TEMPERATURE deg C -196 / 40 -196 / 40 -196 / 40STUB O.D. Do mm 44 148.2 78NEAREST HIGHER NB SIZE PIPE DN 40 DN 125 DN80(Ref. ASME B 36.10M)CORROSION ALLOWANCE c mm 0 0 0NOZZLE MATERIAL SA 182M F304L/ SA 182M F304L/ SA 182M F304L/

SA 479M TYP 304L SA 479M TYP 304L SA 479M TYP 304LALLOWABLE STRESS S MPa 115 115 115JOINT EFFICIENCY E 1 1 1RADIUS (Do/2) Ro mm 22 74.1 39AS PER UG 45 (a)i) Tmin = P*Ro/(S*E+0.4P)+c Tmin mm 0.28 0.95 0.50(AS PER APPENDIX 1 - 1a(1)) ii) NOZZLES ENDS ARE NO NO NOTHREDED ? (YES/NO) *AS PER UG 45 (b) (1) i) tmin PER UG-16 (b) = 1.5+c tmin mm 1.50 1.50 1.50LOCATION OF NOZZLE BOT. D'END TOP D'END SHELL(ii) SMLS. TOP HEAD THICKNESS (CL. 7.1.2) mm 10.83 10.83 10.83(iii) SMLS. BTM HEAD THICKNESS (CL. 7.2.2) mm 12.35 12.35 12.35

mm 10.83 10.83 10.83AS PER UG-45(b)(2) FOR EXTERNAL PRESSURE mm N.A.AS PER UG-45(b)(3)

mm 10.83 10.83 10.83AS PER UG-45(b)(4)STD WALL THICKNESS Sw mm 3.68 6.55 5.49REFER ASME B36.10MIN. WALL THK. (UG-45(b)(4) ** mm 3.22 5.73 4.800.875*Sw + CAS PER UG-45(b)

mm 3.22 5.73 4.80AS PER UG-45MIN. REQUIRED NOZ. THK. mm 3.22 5.73 4.80

PROVIDED THK tn mm 15.08 20.00 11.61

* AS NOZZLE ENDS ARE NOT THREADED, UG-31(c) (2) IS NOT APPLICABLE.** MINIMUM WALL THICKNESS CONSIDERING MILL UNDER TOLERANCE (12.5 %)

INCLUSIVE OF CORROSION ALLOWANCE.

tRDT

tRDB

(iv)GREATER OF tmin,tRDT,tRDB t1

t2

GREATER OF t1 & t2 t3

t4

SMALLER OF t3 & t4 t5

t6

GREATER OF Tmin & t5 B

C

8.1 NOZZLE NECK COMPLIANCE WITH UW-13(h)

t1

AS PER FIGURE UW 13.4.(a)

NOZZLE MARK SIZE tp (mm)**

N1, 50NB 60.3 54.8 2.76 0.50 0.40 2.41N2, N4 50NB 60.3 54.8 2.76 0.50 0.40 2.41

N3 80NB 88.9 82.8 3.05 0.79 0.63 2.67N5, N6 15NB 21.3 13.8 3.73 0.22 0.18 3.26

N7 15NB 21.3 13.8 3.73 0.28 0.23 3.26N10 100NB 114.3 108.20 3.05 0.95 0.76 2.67

N5, N6, N7 40NB 48.26 42.72 2.77 0.50 0.40 2.42

**MINIMUM WALL THICKNESS OF CONNECTING PIPE (CONSIDERING TOLERANCE)

FD3 FD4

FD4 (mm) FD3 (mm)t1(mm)=

(D4-D3)/2 ***

trn=Tmin (mm)

trn1=0.8*trn (mm)

CONCLUSION: AS t1 IS NOT LESS THAN THE GREATER OF trn1 AND tp FOR ABOVE ALL NOZZLES, HENCE ACCEPTABLE.

9.0 REINFORCEMENTS FOR NOZZLES: UG 36 (c)(3)

NOZZLE MARK N1 N2,N4 N3 N5,N6

NOZZLE / STUB SIZE mm DN 50 DN 50 DN 80 DN 15STUB O.D Don mm 78 78 122.8 34STUB THICKNESS to mm 11.61 11.61 20.00 10.08SIZE OF CORRODED FINISHED OPENING * d mm 54.78 54.78 82.8 13.84

NOZZLE MARK N7 N10 N11, N12N13,N14

NOZZLE / STUB SIZE mm DN 15 DN 100 DN 50STUB O.D Don mm 44 148.2 78STUB THICKNESS to mm 15.08 20.00 11.61SIZE OF CORRODED FINISHED OPENING * d mm 13.84 108.20 54.78

* ALL NOZZLES ON D'END ARE PERPENDICULAR TO SURFACE OF D'END.

(a) NOMINAL THICKNESSES OF HEAD : 18 mm >10 mm (b) MAX. SIZE OF FINISHED OPENING

FOR NOZZLES

N1,N2,N4,N5,N6,N7 < 60 mm

(c) ALL SINGLE NOZZLES ARE ISOLATED OPENINGS. (d) NO TWO OPENINGS SHALL FORM A CLUSTER.

& (e) OPENINGS IN VESSEL DO NOT SUBJECT TO RAPID FLUCTUATION IN PRESSURECOMPLIANCE TO (c) & (d) EACH NOZZLE SHALL BE LOCATED IN SUCH A WAY THAT NO TWO UNREINFORCED OPENING SHALL HAVE THEIR CENTERS CLOSER TO EACH OTHER THAN 2.5*(d1+d2) WHERE d1 & d2 ARE FINISHED DIAMETERS OF TWO ADJACENT OPENINGS.

FOR NOZZLES ON TOP DISHED HEAD :

NOZZLES MARKS FINISHED OPENING MIN. DIST. BET. ACTUAL DISTANCESIZE (mm) NOZZLES (mm) BET. NOZZLES

d1 d2 2.5 * (d1 + d2) (mm)

N2 & N10 54.78 108.20 407.45 600N2 & N6 54.78 13.84 171.55 459N6 & N4 13.84 54.78 171.55 459N4 & N5 54.78 13.84 171.55 459HENCE ALL NOZZLES ARE ISOLATED OPENING PER UG 36.

FOR NOZZLES ON BOTTOM DISHED HEAD :

NOZZLES MARKS FINISHED OPENING MIN. DIST. BET. ACTUAL DISTANCESIZE (mm) NOZZLES (mm) BET. NOZZLES

d1 d2 2.5 * (d1 + d2) (mm)N1 & N3 54.78 82.80 343.95 600

N1 & N7 54.78 13.84 171.55 600

HENCE ALL NOZZLES ARE ISOLATED OPENING PER UG 36.

NOTE :

FOR COMPLIANCE TO (c ) & (d) EACH NOZZELE SHALL BE LOCATED IN SUCH A WAYTHAT NO TWO UNREINFORDED OPENING SHALL HAVE THEIR CENTERS CLOSER TO EACH OTHER THAN 2.5*(d1+d2). WHERE, d1 & d2 ARE FINISHED DIAMETERS OF TWO ADJACENT OPENINGS.

CONCLUSION : HENCE REINFORCEMENT CALCULATIONS ARE NOT REQUIRED AS PERUG-36 (c)(3) OF ASME SECTION VIII, DIV-1 FOR N1,N2,N4,N5,N6,N7.

9.0.2 REINFORCEMENT CALCULATIONS ARE PERFORMED FOR NOZZLE N3 & N10 AS PER CLAUSE 9.2

9.1 STRENGTH OF REINFORCEMENTS (UG 41)

9.1.1. NOZZLES N1,N2,N4,N5,N6,N7

1. NOZZLES N1,N2,N4,N5,N6,N7, DO NOT REQUIRE REINFORCEMENT AS PER UG 36 (c) (3) AS DEMONSTRATED IN CLAUSE NO. 9.0

2. ATTACHMENT WELDS FOR NOZZLES N1,N2,N4,N5,N6,N7 ARE AS PER UW16.1 (c). (REFER CLAUSE 10 )

HENCE ATTACHMENT WELDS FOR NOZZLE N1,N2,N4,N5,N6,N7ARE EXEMPTED FROM STRENGTH CALCULATION AS PER UW 15(b).

10. FILLET SIZE CALCULATIONS FOR NOZZLES (UW 16) :

tn

tc

NOZZLE NOZZLE LOCATION TYPE THK, OF THK. OF MIN. SIZE MIN. SIZE FILLET MARK /STUB (FIG.) SHELL NOZZLE OF FILLET OF FILLET SIZE

SIZE OR HEAD AT THROAT (LEG) PROVIDED* **

(mm) (mm) (mm) (mm) (mm) (mm)t tn tc1 tc

N1 DN50 BOT D'END UW-16.1 (c) 14 11.61 8.13 6.00 8.49 10

N2 DN50 TOP D'END UW-16.1 (c) 14 11.61 8.13 6.00 8.49 10N3 DN80 BOT D'END UW-16.1 (c) 14 20.00 9.80 6.00 8.49 10N4 DN50 TOP D'END UW-16.1 (c) 14 11.61 8.13 6.00 8.49 10

N5 DN15 TOP D'END UW-16.1 (c) 14 10.08 7.06 6.00 8.49 10N6 DN15 TOP D'END UW-16.1 (c) 14 10.08 7.06 6.00 8.49 10N7 DN15 BOT D'END UW-16.1 (c) 14 15.08 9.80 6.00 8.49 10

N10 DN100 TOP D'END UW-16.1 (c) 14 20.00 9.80 6.00 8.49 10N11 DN50 SHELL UW-16.1 (c) 13 11.61 8.13 6.00 8.49 10N12 DN50 SHELL UW-16.1 (c) 13 11.61 8.13 6.00 8.49 10N13 DN50 SHELL UW-16.1 (c) 13 11.61 8.13 6.00 8.49 10N14 DN50 SHELL UW-16.1 (c) 13 11.61 8.13 6.00 8.49 10

* MINIMUM OF 6 mm ( 1/4" ) OR 0.7 * MIN. OF (t , tn)

** SIZE OF FILLET LEG = SIZE OF FILLET AT THROAT / 0.707

0.7 * MIN. OF (t , tn)

SYMBOL DESCRIPTION FORMULA UNIT N3 N10tn NOZZLE WALL THICKNESS mm 20.00 20.00d SIZE OF CORRODED FINISHED OPENING mm 82.8 108.20

LOCATION OF NOZZLE BTM D/END TOP D/END

trREQUIRED THK. OF DISH END

PDi/(2*(S*E - 0.2*P))+C.A. mm 10.83 10.83(AS PER UG-37(a))

t MIN. DISH END THK # mm 16.00 16.00

trn REQD. THK. OF NOZZLE mm 0.79 0.95h INSIDE PROJ. OF NOZZLE mm 30.00 20.00ti THK. OF INTER. PROJ. OF NOZ. tn-2*c mm 20.00 20.00

E1 FOR OPENING IN SOLID PLATE 1 1Sn ALLOWABLE STRESS IN NOZZLE Mpa 115 115Sv ALLOWABLE STRESS IN VESSEL Mpa 247 247Sp ALLOWABLE STRESS IN RF ELEMENT MPa 115 115F CORRECTION FACTOR 1 1fr1 STRENGTH REDUCTION FACT. Sn/Sv 0.466 0.466fr2 STRENGTH REDUCTION FACT. Sn/Sv 0.466 0.466fr3 STRENGTH REDUCTION FACT. MIN OF Sn/Sv OR Sp/Sv 0.466 0.466fr4 STRENGTH REDUCTION FACT. Sp/Sv 0.466 0.466

A AREA REQUIRED d*tr*F+2*tn*tr*F*(1-fr1) 1128.0 1403.0

(a) d*(E1*t - F*tr) 428.3 559.7

(b) 2*(t+tn)*(E1*t - F*tr) 372.4 372.4

(c) 2*tn*(E1*t-F*tr)*(1-fr1) 110.6 110.6

A1a (a) - (c) 317.7 449.1

A1b (b) - (c) 261.9 261.9

A1 AREA AVAILABLE IN D'END MAX( A1a , A1b ) 317.7 449.1

A2a 5*(tn-trn)*fr2*t 715.5 709.4

A2b 2*(tn-trn)*(2.5*tn+te)*fr2 894.4 886.8

A2 AREA AVAIL. IN NOZ.OUT PROJ. MIN( A2a , A2b) 715.5 709.4

A3a 5 * t * ti * fr2 744.9 744.9

A3b 5 * ti * ti * fr2 931.2 931.2

A3c 2 * h * ti * fr2 558.7 372.5

A3 A AVAIL. IN INWARD NOZ.PROJ MIN(A3a,A3b,A3c) 558.7 372.5

leg SIZE OF WELD LEG mm 10 10A41 A AVAIL. IN OUT. NOZ. WELD 47 47

A43 A AVAIL. IN INW. NOZ. WELD 47 47

Atp TOTAL A PROVIDED WITHA1+A2+A3+A41+A43 1685.0 1577.5

REINFORCING ELEMENTCHECK WHETHER Atp > A YES YES

IS PROVIDED REINFORCMENT SUFFICIENT? YES YES

# Assumed min. thickness at center of Dishend.

9.2 . REINFORCEMENT CALCULATIONS : (As per UG-37 of ASME SEC VIII DIV 1)

trs1

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

(leg)2 * fr2 mm2

(leg)2 * fr2 mm2

mm2

SYMBOL DESCRIPTION FORMULA UNIT N3 N4Atn NOZZLE WALL THICKNESS mm 11.90 12.60d SIZE OF CORRODED FINISHED OPENING mm 108.2 82.8

LOCATION OF NOZZLE D/END D/END

trREQUIRED THK. OF DISH END

PDi/(2*(S*E - 0.6*P))+C.A. mm 10.83 10.83(AS PER UG-37(a))

t SPECIFIED DISH END THK mm 10.00 10.00

trn REQD. THK. OF NOZZLE mm 4.80 5.73h INSIDE PROJ. OF NOZZLE mm 15.00 0.00ti THK. OF INTER. PROJ. OF NOZ. tn-2*c mm 11.90 0.00

E1 FOR OPENING IN SOLID PLATE 1 1F CORRECTION FACTOR 1 1

fr1 STRENGTH REDUCTION FACT. Sn/Sv 1 1fr2 STRENGTH REDUCTION FACT. Sn/Sv 1 1fr3 STRENGTH REDUCTION FACT. MIN OF Sn/Sv OR Sp/Sv 1 1fr4 STRENGTH REDUCTION FACT. Sp/Sv 1 1

A AREA REQUIRED d*tr*F+2*tn*tr*F*(1-fr1) 1171.5 896.5

(a) d*(E1*t - F*tr) -89.5 -68.5

(b) 2*(t+tn)*(E1*t - F*tr) -36.2 -37.4

(c) 2*tn*(E1*t-F*tr)*(1-fr1) 0.0 0.0

A1a (a) - (c) -89.5 -68.5

A1b (b) - (c) -36.2 -37.4

A1 AREA AVAILABLE IN SHELL MAX( A1a , A1b ) -36.2 -37.4

A2a 5*(tn-trn)*fr2*t 354.8 343.4

A2b 2*(tn-trn)*(2.5*tn+te)*fr2 422.2 432.7

A2 AREA AVAIL. IN NOZ.OUT PROJ. MIN( A2a , A2b) 354.8 343.4

A3a 5 * t * ti * fr2 595.0 0.0

A3b 5 * ti * ti * fr2 708.1 0.0

A3c 2 * h * ti * fr2 357.0 0.0

A3 A AVAIL. IN INWARD NOZ.PROJ MIN(A3a,A3b,A3c) 357.0 0.0

leg SIZE OF WELD LEG mm 10 10A41 A AVAIL. IN OUT. NOZ. WELD 100 100

A43 A AVAIL. IN INW. NOZ. WELD 100 100

leg OUTER ELEMENT WELD LEG mm 10.0 10.0A42 A AVAIL. IN OUT ELEMENT WELD 100.0 100.0Atp TOTAL A PROVIDED WITH

A1+A2+A3+A41+A42+A43+A5 975.6 506.0REINFORCING ELEMENT

CHECK WHETHER Atp > A NO NOIS PROVIDED REINFORCMENT SUFFICIENT? NO NO

9 . REINFORCEMENT CALCULATIONS : (As per UG-37 of ASME SEC VIII DIV 1)

trs1

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

mm2

(leg)2 * fr2 mm2

(leg)2 * fr2 mm2

(leg)2 * fr4 mm2

mm2

9.2 REINFORCEMENT CALCULATIONS FOR NOZZLE N3 (AS PER UG-37 OF ASME SEC VIII DIV 1)

NOZZLE MARK N3,

tn NOZZLE WALL THICKNESS to mm 11.61

d SIZE OF CORRODED FINISHED OPENING mm 54.78

LOCATION OF NOZZLE BOTTOM D'END

r DISTANCE OF CENTER OF R.PAD FROM CENTER OF HEAD. mm 625

dr DIAMETER OF THE ENTIRE R.PAD (With weld leg) = Dp+2*Leg mm 152

d1 80% OF SHELL DIAMETER mm 3280

d2 DIAMETER OF THE FARTHEST DISTANCE OF THE ENTIRE R.PAD

FROM CENTER OF HEAD = 2*(r+dr/2) mm 1402

tr REQUIRED THK. OF D'ENDmm 9.75

(AS PER UG-37(a))

IF d1> d2 THEN RAD = K1*D IN 0.9*Di*Pt/(2*S*E-0.2*Pt)+C.A. mm 9.75

IF d1< d2 THEN E = 1 IN D*P/(2*S*E-0.2*P)+C.A. mm 10.83

t SPECIFIED DISHEND THK(MIN.) th MIN. mm 14.00

trn REQD. THK. OF NOZZLE Tmin mm 0.50

h INSIDE PROJ. OF NOZZLE mm 10

ti THK. OF INTER. PROJ. OF NOZ. tn-2*c (c = 0) mm 11.61

E1 FOR OPENING IN SOLID PLATE 1 1

F CORRECTION FACTOR 1 1

fr1 STRENGTH REDUCTION FACT. Sn/Sv 1

fr2 STRENGTH REDUCTION FACT. Sn/Sv 1

fr3 STRENGTH REDUCTION FACT. LESSER OF Sn/Sv OR Sp/Sv 1

fr4 STRENGTH REDUCTION FACT. Sp/Sv 1

A AREA REQUIRED d*tr*F+2*tn*tr*F*(1-fr1) 533.9

(a) d*(E1*t - F*tr) 233.1

(b) 2*(t+tn)*(E1*t - F*tr) 217.9

(c) 2*tn*(E1*t-F*tr)*(1-fr1) 0.0A1a (a) - (c) 233.1A1b (b) - (c) 217.9A1 AREA AVAILABLE IN SHELL MAX( A1a , A1b ) 233.1A2a 5*(tn-trn)*fr2*t 777.6A2b 5*(tn-trn)*fr2*tn 644.8

A2 AREA AVAIL. IN NOZ.OUT PROJ. MIN( A2a , A2b) 644.8

A3a 5 * t * ti * fr2 812.7

A3b 5 * ti * ti * fr2 674.0

A3c 2 * h * ti * fr2 232.2

A3 A AVAIL. IN INWARD NOZ.PROJ MIN(A3a,A3b,A3c) 232.2

leg SIZE OF WELD LEG mm 10.0

A41 A AVAIL. IN OUT. NOZ. WELD 100.0

A43 A AVAIL. IN INW. NOZ. WELD 100.0

Dpm1 d + 2*tn + 2*t -2 * leg mm 86.0Dpm2 2*d - 2*leg mm 89.6Dpmax FOR R.PAD WITH IN RF. LIMIT MAX(Dpm1,Dpm2) mm 89.6

Dp DIA. OF R. PAD <Dpmax mm 0te THICKNESS OF ELEMENT mm 0A5 A AVAIL. IN ELEMENT (Dp-d-2*tn)*te*fr4 mm 0.0leg OUTER ELEMENT WELD LEG mm 0.0A42 A AVAIL. IN OUT ELEMENT WELD mm 0.0

At TOTAL A PROVIDED WITHOUT A1+A2+A3+A41+A43 1310.1REINFORCING ELEMENT

At > A HENCE REINFORCING ELEMENT IS NOT REQUIRED FOR NOZZLE N3.

mm2

mm2

mm2

mm2 mm2 mm2 mm2 mm2 mm2

mm2

mm2

mm2

mm2

mm2

(leg)2 * fr2 mm2

(leg)2 * fr2 mm2

(leg)2 * fr4

mm2

9.1.1 STRENGTH OF REINFORCEMENTS FOR NOZZLE M AS PER UG-37(ALL DIMENSIONS INDICATED BELOW ARE CORRODED DIMENSIONS.)

NOZZLE MARK #REF!

tn NOZZLE WALL THICKNESS to mm 12.00

d SIZE OF CORRODED FINISHED OPENING mm #REF!

LOCATION OF NOZZLE TOP D'END

REQUIRED THK. OF D'END trh (REF 7.1.2) mm 10.83

t SPECIFIED DISHEND THK(MIN.) th MIN. mm 14.00

trn REQD. THK. OF NOZZLE Tmin mm #REF!

h INSIDE PROJ. OF NOZZLE mm 0

ti THK. OF INTER. PROJ. OF NOZ. tn-2*c (c = 0) mm 0.00

E1 FOR OPENING IN SOLID PLATE 1 1

F CORRECTION FACTOR 1 1

fr1 STRENGTH REDUCTION FACT. Sn/Sv 1

fr2 STRENGTH REDUCTION FACT. Sn/Sv 1

fr3 STRENGTH REDUCTION FACT. LESSER OF Sn/Sv OR Sp/Sv 1

fr4 STRENGTH REDUCTION FACT. Sp/Sv 1

A AREA REQUIRED d*tr*F+2*tn*tr*F*(1-fr1) #REF!

(a) d*(E1*t - F*tr) #REF!

(b) 2*(t+tn)*(E1*t - F*tr) 165.0

(c) 2*tn*(E1*t-F*tr)*(1-fr1) 0.0A1a (a) + (c) #REF!A1b (b) + (c) 165.0A1 AREA AVAILABLE IN SHELL MAX( A1a , A1b ) #REF!

A2a 5*(tn-trn)*fr2*t #REF!A2b 5*(tn-trn)*fr2*tn #REF!

A2 AREA AVAIL. IN NOZ.OUT PROJ. MIN( A2a , A2b) #REF!

A3a 5 * t * ti * fr2 0.0

A3b 5 * ti * ti * fr2 0.0

A3c 2 * h * ti * fr2 0.0

A3 A AVAIL. IN INWARD NOZ.PROJ MIN(A3a,A3b,A3c) 0.0

leg SIZE OF WELD LEG ### mm 10.0

A41 A AVAIL. IN OUT. NOZ. WELD 100.0

A43 A AVAIL. IN INW. NOZ. WELD 100.0

At TOTAL A PROVIDED WITHOUT A1+A2+A3+A41+A43 #REF!REINFORCING ELEMENT

At < A HENCE REIFORCING ELEMENT IS REQUIRED FOR NOZZLE M .

### ACTUAL SHALL BE MORE THAN 10 MM.

tRDT

mm2

mm2

mm2

mm2 mm2 mm2 mm2 mm2 mm2

mm2

mm2

mm2

mm2

mm2

(leg)2 * fr2 mm2

(leg)2 * fr2 mm2

mm2

Dpm1 d + 2*tn + 2*t -2 * leg mm #REF!Dpm2 2*d - 2*leg mm #REF!Dpmax FOR R.PAD WITH IN RF. LIMIT MAX(Dpm1,Dpm2) mm #REF!

Dp DIA. OF R. PAD mm 900te THICKNESS OF ELEMENT mm 28

A1 AREA AVAILABLE IN SHELL #REF!

A2ap 5*(tn-trn)*fr2*t #REF!

A2bp 2*(tn-trn)*(2.5*tn+te)*fr2 #REF!

A2p AREA AVAIL. IN NOZ.OUT PROJ. MIN(A2ap , A2bp) #REF!

A3 A AVAIL. IN INWARD NOZ.PROJ 0.0

A41 A AVAIL. IN OUT. NOZ. WELD 100.0

A42 A AVAIL. IN OUTER ELE. WELD 100.0

A43 A AVAIL. IN INW. NOZ. WELD 100.0

A5 A AVAIL. IN ELEMENT (Dp-d-2*tn)*te*fr4 #REF!

Atp TOTAL A PROVIDED WITH A1+A2p+A3+A41+A42 #REF!REINFORCING ELEMENT +A43+A5

Atp > A HENCE THE OPENING IS ADEQUATELY REINFORCED.

mm2

mm2

mm2

mm2

mm2

(leg)2 * fr3 mm2

(leg)2 * fr4 mm2

(leg)2 * fr2 mm2

mm2

mm2

11.0 EVALUATION FOR INSPECTION OPENING : ( UG - 46 (a) )

THE VESSEL IS NOT FOR USE WITH COMPRESSED AIR AND NOT SUBJECT

TO INTERNAL CORROSION OR MECHANICAL ABRASION. HENCE, INSPECTION

OPENING FOR EXAMINATION AND CLEANING IS NOT REQUIRED.

CONCLUSION :

FOR " NON CORROSIVE SERVICE" INSPECTION OPENING IS NOT REQUIRED

AND HENCE NO INSPECTION OPENING IS PROVIDED.

12.0 EVALUATION FOR POST WELD HEAT TREATMENT :

( UHA-32 )

FOR MATERIAL HAVING P-No. 8 AND Gr. No. 1 POST WELD HEAT

TREATMENT IS NEITHER REQUIRED NOR PROHIBITED FOR JOINTS BETWEEN

AUSTENITIC STAINLESS STEELS OF THE P-No. 8 GROUP.

12.1 EVALUATION FOR POST WELD HEAT TREATMENT DUE TO STRAINING :

( UHA-44 )

(a) FOR CYLINDRICAL SHELL FORMED FROM PLATES

Di INSIDE DIAMETER OF VESSEL mm 4100

c1 POSITIVE TOLERANCE ON INSIDE DIAMETER mm 0

ts NOMINAL THICKNESS OF SHELL CYLINDER mm 13

Ro ORIGINAL RADIUS OF SHELL PLATES mm INFINITE

Rf MEAN RADIUS OF SHELL CYLINDER (Di + c1 + ts) / 2 mm 2056.5

% STRAIN AS PER UHA 44(a)(2)(a) 50 * ts / Rf * (1 - Rf / Ro) mm 0.32

= 50*13 /2056.5* (1-0)

(b) FOR DISHED HEADS FORMED FROM PLATES

th NOMINAL THICKNESS OF DISHED HEAD mm 18

r INSIDE KNUCKLE RADIUS (0.17 TIMES Di FOR 2:1 ELLIP HEAD) mm 697

(ACCORDING TO UG32 (d) )

Rf MEAN RADIUS OF DISHED HEAD AFTER FORMING (r + th/2) mm 706

Ro ORIGINAL RADIUS OF PLATE mm INFINITY

% STRAIN AS PER UHA 44(a)(2)(a) 75 * th / Rf * (1 - Rf / Ro) mm 1.91

= 75*18 /706* (1-0)

(c) DESIGN TEMPERATURE = + 40

FOR STAINLESS STEEL GRADE 304L, P-No. 8 Gr No.1, POST WELD HEAT

TREATMENT IS NOT REQUIRED.

PLEASE REFER TABLE UHA-32, NOTE:1

12.2 CUSTOMER REQUIREMENT FOR HEAT TREATMENT :

NO

POST WELD HEAT TREATMENT IS NOT REQUIRED BY CODE .

OC

CONCLUSION :

13.0 EVALUATION FOR IMPACT TEST REQUIREMENTS.

13.1 EVALUATION FOR IMPACT TEST REQUIREMENTS AS PER UHA 51 & APPENDIX -JJ

13.1.1 MATERIAL : AUSTENITIC STAINLESS STEEL

UHA-51(d)(1)(d)

NO

NO

YES

A

START

IS THE MATERIAL A CASTING?

IS THE MATERIAL THERMALLY TREATED AS

DEFINED IN UHA-51(c) ?

IS MDMT COLDER THAN

-48 deg C?

BASE MATERIAL AND HAZ

REQUIREMENTS

WELDING PROCEDURE QULIFICATION

REQUIREMENTS.

WELDING CONSUMABLE PRE-USE

TESTING REQUIREMENTS.

PRODUCTION IMPACT TEST

REQUIREMENTS.

A B C D

13.1.2 BASE MATERIAL AND HAZ IMPACT TESTING REQUIRMENTS.

UHA-51(d)

UHA-51(d)(1)(a)

YES

NO

13.1.3 WELDING PROCEDURE QUALIFICATION IMPACT TESTING REQUIREMENTS

UHA- 51(e)

UHA- 51(e)(1)

YES

UHA- 51(e)(2)(a)

YES

YES

BASE MATERIAL AND HAZ REQUIREMENTS

THE BASE MATERIAL SS

304L?

IS MDMT COLDER THAN

-196 deg C?

IMPACT TEST NOT REQUIRED

WELDING PROCEDURE QULIFICATION

REQUIREMENTS.

ALL BASE MATERIALS

JOINED HAVE C<=0.1%

FILLER METAL CONFIRMING TO

SFA 5.4 OR SFA 5.9 (C<=0.1%)

MDMT COLDER THAN - 104 DEG C

IMPACT TESTING OF WELDING PROCEDURE IS

REQUIRED

A

B

IMPACT TESTING OF WELDING PROCEDURE IS

REQUIRED

13.1.4 WELDING CONSUMABLE PRE -USE TESTING REQUIREMENTS

UHA - 51 (f)

YES

UHA - 51(f)(1),(2),(3)& (4)

NO

YES

UHA-51(f)(4)(e) UHA-51(f) (4) (e)

NO

NO

YES YES

YES

NO

WELDING CONSUMABLE PRE-USE TESTING REQUIREMENTS.

MDMT COLDER THAN - 104 DEG C

1. IS WPS QUALIFIED WITH IMPACT TESTING.

2.IS WELDING PROCESS LIMITED TO GTAW ,SAW & GMAW.

3.IS WELD METAL CONFIRMING TO SFA5.9.

4.IS WELD METAL <= 0.1% C .

GTAW SAW

FILLER METAL LIMITED TO

ER308L,ER316L OR ER310

WELDING CONSUMABLES CERTIFIED BY CONSUMABLE MANUFACTURER FOR IMPACT

TEST AT OR BELOW MDMT FOR EACH HEAT/BATCH

READY FOR PRODUCTION WELDING-ONLY PRE USE TESTED CONSUMABLES OR EXEMPTED

FILLER METAL WITH GTAW TO BE USED

TC AVAILABLE FOR COMBINATION OF

HEAT & EACH BATCH OF FLUX

IMPACT TEST IS REQUIRED

UNACCEPTABLE TO USE WITH MDMTs COLDER

THAN -104 C

C

IS EACH HEAT/LOT OF FILLER METAL

PRE-USE TESTED?

GMAW

13.1.5 PRODUCTION IMPACT TEST REQUIREMENT

UHA - 51 (f)(4)

YES

UHA-51(H)(2)

NO

PRODUCTION IMPACT TEST REQUIREMENTS.

FILLER METAL CONFIRMING TO

SFA 5.4 OR SFA 5.9

PRODUCTION IMPACT TEST PLATES ARE NOT REQUIRED

IS MDMT COLDER THAN

-196 deg C?

D

13.2 CUSTOMER REQUIREMNT FOR IMPACT TESTING : NIL

13.3 EVALUATION FOR IMPACT TEST REQUIREMENTS AS PER CODE CASE 2596

13.3.1 THE COLD STRETCHED BASE MATERIAL SA-240,TYPE 304L NEED NOTE BE IMPACT TESTED WHEN USED IN VESSELS CONSTRUCTED IN ACCORDANCE WITH THIS CODE CASE.

13.3.2 THE WELDING PROCEDURE QUALIFICATION SHALL INCLUDE IMPACT TESTS OF WELDS AND HEAT AFFECTED ZONES(HAZ) MADE IN ACCORDANCE WITH UG-84(h) AND WITH REQUIREMENTS OF UHA-51(a) AT MDMT.

THE SPECIMENS SHALL BE TESTED IN ACCORDANCE WITH THE CODE CASE.

13.3.3 THE VESSEL (PRODUCTIONIMPACT TESTS IN ACCORDANCE WITH UHA-51(h) ARE NOT REQUIRED FOR VESSELS CONSTRUCTED IN ACCORDANCE WITH THIS CODE CASE.

CONCLUSION:

1) PARENT METAL NEED NOT BE IMACT TESTED2) WPS SHALL BE QUALIFIED FOR GMAW/GTAW/SAW/GTAW+SAW PROCESS WITH IMPACT

TESTS AS PER UG 84(h) AT MDMT. 3) PRE USE TESTING OF SAW CONSUMABLES IS REQUIRED PER HEAT/LOT.

MANUFACTURER CERTIFICATION IS ACCEPTABLE.4) WELD MADE WITH ER308L, ER316L, OR ER310 ARE EXEMPTED FROM PRE USE TESTING

OF CONSUMABLES PER UHA 51(f)(4)(e) SINCE WPS SHALL BE QUALIFIED WITH IMPACT TEST AS PER UG 84 (h) AT MDMT.

5) THE WELDING PROCEDURE QUALIFICATION SHALL INCLUDE IMPACT TESTS OF WELDS AND HEAT AFFECTED ZONES(HAZ) MADE IN ACCORDANCE WITH UG-84(h) AND WITH REQUIREMENTS OF UHA-51(a) AT MDMT.

SUPPLEMENTARY CALCULATION TO SATISFY UG-99(c) REQUIRMENTS (SUBMITTED TO AI)

14.1.3 REFERENCE :UG 99 (c)

14.1.3.1 HIGHEST PERMISSIBLE INTERNAL PRESSURE (HPIP) OF TOP/BTM DISH

SYMBOL DESCRIPTION FORMULA VALUES ALLOWABLE STRESS 247

Dic INSIDE DIAMETER OF VESSEL (Di + 2*c + c1) 4100E JOINT EFFICIENCY FOR DISHED HEAD 1c CORROSION ALLOWANCE 0

th nom. PROVIDED NOM. THICKNESS 15Pit HPIP 2*S*E*th nom/(Dic+0.2*th nom)+c 1.80

14.1.3.2 HIGHEST PERMISSIBLE INTERNAL PRESSURE (HPIP) OF SHELL

SYMBOL DESCRIPTION FORMULA VALUES ALLOWABLE STRESS 247

Dic INSIDE DIAMETER OF VESSEL (Di + 2*c + c1) 4100E JOINT EFFICIENCY FOR DISHED HEAD 1c CORROSION ALLOWANCE 0

ts1 PROVIDED SHELL. THICKNESS 12Pis HPIP S*E*ts1/((Dic/2))+0.6*ts1)+c 1.44

14.1.3.3 HIGHEST PERMISSIBLE INTERNAL PRESSURE (HPIP) OF NOZZLES

NOZZLE MARK N1 N3 N5,N6

NOZZLE/STUB SIZE mm DN 50 DN 80 DN 15 LOCATION OF NOZZLE BOT. D'END BOT. D'END TOP D'ENDSTUB O.D. Do mm 78 108 122.8CORROSION ALLOWANCE c mm 0 0 0NOZZLE MATERIAL SA 182M F304/

SA 479M TYP 304ALLOWABLE STRESS S MPa 138 138 138JOINT EFFICIENCY E 1 1 1RADIUS (Do/2) Ro mm 39 54 61.4PROVIDED THK tn mm 11.61 12.60 20.00AS PER UG 45 (a)

Pin = S*E*tn/(Ro+0.6*tn)+c Pin MPa 34.86 28.25 37.60

NOZZLE MARK N10 N7 N5

NOZZLE/STUB SIZE mm DN 100 DN 15 DN 15LOCATION OF NOZZLE TOP D'END BOT. D'END TOP D'ENDSTUB O.D. Do mm 132 34 34CORROSION ALLOWANCE c mm 0 0 0NOZZLE MATERIAL SA 182M F304/

SA 479M TYP 304ALLOWABLE STRESS S MPa 138 138 138JOINT EFFICIENCY E 1 1 1RADIUS (Do/2) Ro mm 66 17 17PROVIDED THK tn mm 11.90 8.44 8.44AS PER UG 45 (a)

Pin = S*E*tn/(Ro+0.6*tn)+c Pin MPa 22.45 52.79 52.79

14.1.3.4 HYDROSTATIC TEST PRESSURE AS PER UG-99 (c)

TOTAL INSIDE HEIGHT OF IV, H = 25435 mmHYDROSTATIC HEAD AT BOTTOM = H in M/10

Phead= 2.544 kg/cm2 (g)Phead= 0.25 MPa

SYMBOL HYDROSTATIC TEST PRESSURE OF FORMULA VALUEPht TOP DISH =Pit x 1.3 2.34Phb BTM DISH =(Pit x 1.3) - Phead 2.09Phs SHELL =(Pis x 1.3) - Phead 1.62

Phn1 NOZZLE N1 (BTM HEAD) =(Pin1 x 1.3) - Phead 45.06Phn2 NOZZLE N2/N4 (TOP HEAD) =Pin2 x 1.3 78.46Phn3 NOZZLE N3 / N8 (BTM HEAD) =(Pin3 x 1.3) - Phead 36.47Phn5 NOZZLE N5 (TOP HEAD) =Pin5 x 1.3 68.62Phn6 NOZZLE N6 (TOP HEAD) =Pin6 x 1.3 29.19Phn7 NOZZLE N7 (BTM HEAD) =(Pin7 x 1.3) - Phead 68.38Phn9 NOZZLE N9 (TOP HEAD) =Pin9 x 1.3 48.88

SUPPLEMENTARY CALCULATION TO SATISFY UG-99(c) REQUIRMENTS (SUBMITTED TO AI)

UNITMPamm

-mmmmMPa

UNITMPamm

-mmmmMPa

N2,N4

DN 50 TOP D'END

340

SA 182M F304/SA 479M TYP 304

1381

1710.08

AS PER UG 45 (a)60.35

TOP D'END

SA 182M F304/SA 479M TYP 304

AS PER UG 45 (a)

UNITMPaMPaMPaMPaMPaMPaMPaMPaMPaMPa

14.0 EVALUATION OF HYDRO TEST/ COLD STRETCH PRESSURE

14.1 EVALUATION OF HYDRO TEST PRESSURE (UG 99 (b) OF ASME SECTION VIII, DIV. 1.)

REFERENCE DATA : UG 99 (b)

COMPONENT SPECIFICATION ALLOWABLE STRESS AS PER ASME SEC.II(D)

AT DESIGN AT TESTSa/STEMP. TEMP.

S (Mpa) Sa (Mpa)SHELL SA 240M TYP 304L 247 247 1DISH END/PAD SA 240M TYP 304L 247 247 1

LOWEST VALUE OF Sa / S = 1

14.1.1 MAWP FOR SHELL AS PER UG-27 (c) ASME SEC. VIII DIV.1

SYMBOL DESCRIPTION FORMULA VALUE UNITS ALLOWABLE STRESS 247 MPa

Dic INSIDE DIAMETER OF VESSEL (Di + 2*c + c1) 4100 mmRic INSIDE RADIUS 2050 mmE JOINT EFFICIENCY FOR DISHED HEAD 1 -c CORROSION ALLOWANCE 0 mm

REQUIRED SHELL THICKNESS 12.39 mmts1 PROVIDED SHELL. THICKNESS 13 mm

MAWP 1.4877 MPa

14.1.2 MAWP FOR TOP/BOTTOM DISHED ENDS AS PER UG-32 (d) ASME SEC. VIII DIV.1

SYMBOL DESCRIPTION FORMULA VALUE UNITS ALLOWABLE STRESS 247 MPa

Dic INSIDE DIAMETER OF VESSEL (Di + 2*c + c1) 4100 mmRic INSIDE RADIUS 2050 mmE JOINT EFFICIENCY FOR DISHED HEAD 1 -c CORROSION ALLOWANCE 0 mm

REQUIRED D'END THICKNESS 10.83 mmthMIN. MIN. THK. AFTER FORMING 14.0thNOM. PROVIDED NOM. THICKNESS 18 mm

MAWP 1.3039 MPa

Po = 1.488 Mpa

14.1.3 CALCULATION OF HYDRO TEST PRESSURE

Hydrotest Press. at top = Ptest=1.3 * Po * Sa / S = 1.934 MPa (g)= 19.73 kg/cm2 (g)

VESSEL SHALL BE HYDROTESTED HORIZONTALLY

PARTICULARS SYMBOL VALUE UNITMAWP CALCULATED BASED ON ABOVE FORMULA Po 1.488 MPa (g)TOTAL INSIDE DIA OF IV H=Di 4100 mm

HYDROTEST PRESSURE AT BOTTOM = [Ptest + H in m/9.81]= [19.735+ (4100/1000/9.81)]=[ 20.15 Kg/cm2 g]

say =[ 20.25 Kg/cm2 g]OR

HYDROTEST PRESSURE AT BOTTOM = (1.94/0.098066 + 4100/9.81/1000)*0.098066= 1.975 MPa g

tRS

PO1 S*E*tRS/(Ric)+0.6*tRS)+c

tRD

PO2 2*tRD*S*E / [ Dic + (0.2*tRD)]

MAWP SHALL BE HIGHER OF PO1 & PO2

say = 1.98 MPa g

14.0 EVALUATION FOR COLD STRETCH PRESSURE (AS PER CODE CASE 2596)

PARTICULARS SYMBOL VALUE UNIT

MAWP MARKED ON NAME PLATE Po 1.201 MPa (g)VACUUM CORRECTION Pe 0.103 MPa (g)DESIGN PRESSURE (CORRECTED FOR VACUUM) : Pt=Po+Pe 1.304 MPa (g)TOTAL INSIDE HEIGHT OF IV H 23160 mm INSIDE DIA. OF INNER VESSEL Di 4100 mm

COLD STRETCHING PRESSURE Pc :Pc = 1.5 * Pt MPa (g)

= 1.96 MPa (g)= 19.96 kg/cm2 (g)

VESSEL WILL BE COLD STRETCHED HORIZONTALLY.

Provided Cold stretch at topPc new 21 kg /cm2 g

2.06 Mpa

COLD STRETCH PRESSURE AT BOTTOM = Pc + Di in M/10= 2.10 MPa (g)

[2.06+ (4100/1000/9.81)]say = 2.10 MPa (g)say = 21.5 kg/cm2 (g)

CHECK FOR APPLICABILITY AS PER CODE CASE:

PROVIDED COLD STRETCH PRESSURE Pc = 2.06 Mpa(g)< 1.6 * Pt (i.e 2.086 Mpa (g))

13.0 EVALUATION FOR IMPACT TEST REQUIREMENTS ( UHA 51)

13.1 EXEMPTION FOR IMPACT TESTING FOR BASE METALS AND HEAT AFFECTED ZONES ( UHA 51(d) ).

AS PER UHA 51 (d) (1) (a), SS 304 MATERIAL, WITH MDMT -196°C, WITH NO HEATTREATMENT PERFORMED, IMPACT TEST IS EXEMPTED FOR PARENT METAL WITH THICKNESS > 2.5 mm.

13.2 REQUIREMENTS FOR IMPACT TESTING FOR WELD METAL :

AS PER UHA 51 (e) (2) (a), FOR AUSTENATIC WELD METAL, HAVING CARBON CONTENTNOT EXCEEDING 0.1% AND PRODUCED WITH SFA5.4 & SFA 5.9; WITH MDMT (-196°C)COLDER THAN -104°C, IMPACT TEST IS REQUIRED AT MDMT (-196°C).

13.3 REQUIRED IMPACT TESTING FOR VESSEL (PRODUCTION) PLATES.

AS PER UHA 51 (f) FOR AUSTENITIC STAINLESS STEEL

UG 84(I) WPS REQUIRED IMPACT TESTING AS PER UHA 51

WELDING PROCESS LIMITED TO SAW & GTAW

SUPPORTING PQR'S WITH IMPACT TESTING AT MDMT OR COLDER

WELD METAL C < 0.1%

FILLER METAL CONFIRMING TO SFA5.4 ORSFA 5.9

GTAW SAW

CONSUMABLE LIMITED TO 308L, 316L, 310 WELDING CONSUMABLE CERTIFIED BY CONSUMABLEMANUFACTURER FOR IMPACT

WPS QUALIFIED WITH IMPACT TEST TEST AT OR BELOW MDMT FOR EACH HEAT/ LOTAT OR BELOW MDMT

TC NOT AVAILABLE FOR COMBINATION OF IMPACT TEST IS NOT REQUIRED HEAT & EACH LOT OF FLUX

IMPACT TEST IS REQUIRED

a) FOR WELDS WITH ONLY GTAW PRODUCTION PLATES NOT REQUIRED.b) SAW WELDS MADE INDIVIDUALLY OR IN COMBINATION WITH GTAW WILL REQUIRE PRODUCTION PLATES.

NUMBER OF COUPON PLATES SHALL BE AS PER SHOP TEST PLAN, PROVIDED BY WELDING ENGG.

MDMT > -196°C (-320°F)

13.4 CUSTOMER REQUIREMENT FOR IMPACT TESTING : NIL

B1 DETERMINATION OF TRY COCK HEIGHT

CAPACITY CALCULATIONS :[FOR DETERMINATION OF VOLUME OF DISHED END

(REF. : APPENDIX D PRESSURE VESSEL DESIGN MANUAL BY DENNIS R. MOSS)

DATA :

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Di INSIDE DIA. OF VESSEL Di mm 4100Ls W.L TO W.L LENGTH Ls mm 21000

S.F. S. F. OF DISHED ENDS S.F. mm 50th NOM. THICKNESS OF D'END th NOM mm 18

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Vh VOL. OF ONE DISHED END 9021737803.3

Vs VOL. OF SHELL (TL TO TL) 278573659973.6

Vg GROSS CAPACITY OF I.V 2*Vh + Vs 296617135580.1

Vnet NET CAPACITY OF I.V. 0.95 * Vg 281786278801.1Vg-c Gross cap committed to customer Vg * 1.02 Liters 302549

Vnet-c Net cap commited to customer Vnet * 1.02 Liters 287422

Vgf FINAL GROSS CAPACITY OF I.V Vg * 1.05 311447992359.1

Vnetf FINAL NET CAPACITY OF I.V. Vnet * 1.05 295875592741.2

CALCULATIONS FOR LIQUID HEAD : (HEIGHT OF TRYCOCK FROM BOTTOM)

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Vnsh VOL. OF LIQ. IN SHELL & UPP- Vnet - Vh 272764540997.9ER D'END DURING OP. COND.

Vns VOL. OF LIQ. IN SHELL MIN(Vnsh , Vs) 272764540997.9

Vnh VOL. REQD. IN UPPER D'END Vnsh - Vns 0.0hi INSIDE DEPTH OF HEAD Di / 4 mm 1025.0

Hvs HEIGHT OF FLUID IN SHELL mm 20660FROM BOT. T.L

Hvh HEIGHT OF FLUID IN UPPER FOR Vnh = mm 0.00

D'END(REF. APP.D of PVDM)HL hi + Hvs + Hvh mm 21685H OVERALL HT. OF I.V. Ls + 2 * (S.F. + hi ) + 2 * th mm 23186

p * Di3 / 24 mm3

p / 4 * Di2 * (Ls + 2*S.F.) mm3

mm3

mm3

mm3

mm3

mm3

mm3

mm3

4*Vns/(p * Di2)

p*Di2*Hvh/4*(1-16*Hvh2/(3*Di2))TOTAL LIQ. HEAD

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Di INNER DIAMETER Di mm 4100

r KNUCKLE RADIUS FOR 2:1 0.17Di mm 697

ELLIPSOIDAL HEAD

Ws WEIGHT OF SHELL kg 28225

th1 TOP D'END THICKNESS th1 mm 18th2 BOTTOM D'END THICKNESS th2 mm 18

B.D.1 BLANK DIA. OF D'END (Di+2*th1)+(Di+2*th1)/24 mm 4885+ 2/3*(r+th1)+2*S.F.+5

Wd1 WEIGHT OF D'ENDS kg 2700B.D.2 BLANK DIA. OF D'END (Di+2*th2)+(Di+2*th2)/24 mm 4885

+ 2/3*(r+th2)+2*S.F.+5

Wd2 WEIGHT OF D'ENDS kg 2700Wd WEIGHT OF D'ENDS Wd1 + Wd2 kg 5400Wot WT. OF NOZZLE / LEGS kg 5500

/ CLOSING RING/MANHOLE ETC.

Wei EMPTY WEIGHT OF I.V. Ws + Wd + Wot kg 39125SAY 39200

WEIGHT OF LIN kg 239363

WEIGHT OF I.V. WITH LIN kg 278563

MAX. OPRERATING WEIGHT kg 278563

B2 WEIGHT CALCULATIONS FOR INNER VESSEL :

p * (Di+ts) * Ls * ts * r s

2 * p/4* (B.D.1)2 * th1 *r s

2 * p/4* (B.D.)2 * th 2 *r s

WLIN rN * Vnet

WoLIN Wei + WLIN

WoMAX MAX(WoLIN,)

SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION)

I IMPORTANCE FACTOR - 1.25

a ACCELERATION COEFFICIENT - 0.11

L MAX. LENGTH OF LEG SUPPORT mm 1000

H VESSEL HEIGHT OUT TO OUT FROM TOP TO BOTTOM D'ENDS mm 23186

hn TOTAL HEIGHT OF VESSEL ABOVE BOT. OF SUPPORTS (H + L) m 24.186

T STRUCTURAL PERIOD OF VIBRATION (hn / 46) sec 0.5258

C EARTHQUAKE DESIGN COEFFICIENT - 0.2111

S SITE FACTOR - 1

Rf STRUCTURAL RESPONSE FACTOR - 2.1

(TABLE 6.2.6 (b) VESSEL ON UNBRACED LEGS)

Wo OPERATING WEIGHT OF EQUIPMENT KG 278563

Gg GRAVITY LOAD (OPERATING WEIGHT OF VESSEL) (CLAUSE 6.2.5) N 2731787

V1 EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) N 343218

V2 MIN. EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) (0.01Gg) N 27318

V3 MAX. EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) N 447168

VN 343218

SAY = N 343300

La HT. OF C.G. OF VESSEL ABOVE BOTTOM W.L. (1/2 *(hn) m 12.09

Me SEISMIC MOMENT AT BOTTOM W.L. V * La N m 4151527

SAY = N m 4151530

B3 SEISMIC LOAD CALCULATION FOR INNER VESSEL

AS PER AS 1170.4 (CLAUSE 6.2.2)

( 1.25 * a / T2/3 )

( I * (C*S / Rf) * Gg )

( I * (2.5*a / Rf) * Gg )

EARTHQUAKE BASE SHEAR TO BE CONSIDERED MIN OF (MAXOF (V1,V2),V3)

SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION)AS PER UBC - 1997

SYMBOL DESCRIPTION FORMULA UNIT VALUEWe EMPTY WT OF INNER VESSEL KG 39200

WT OF LIQUID ARGON KG 239363Wo OPER. WEIGHT OF IV KG 278563E YOUNG'S MODULUS MPa 199817.2

SEISMIC ZONE - 4

SOIL TYPE - SDSEISMIC SOURCE - N/A

Na NEAR SOURCE FACTOR AS PER TABLE 16-S - 1.00Nv NEAR SOURCE FACTOR AS PER TABLE 16-T - 1.00Cv SEISMIC COFFICIENT AS PER TABLE 16-R - 0.64I* IMPORTANCE FACTOR AS PER TABLE 16-K - 1.25R FACTOR AS PER TABLE 16-P - 2.20

Ca SEISMIC COFFICIENT AS PER TABLE 16-Q - 0.44Z SEISMIC ZONE FACTOR AS PER TABLE 16-I - 0.40Ft CONCENTRATED FORCE AT T AS PER 4WEQ-1005-R1,7.6.1 Kg 0.00V1 AS PER 34.2 OF 1634.5 0.56*Ca*I*Wo Kg 85797.51V2 AS PER 34.3 OF 1634.5 ((1.6*Z*Nv*I)/R)*Wo Kg 101295.77V3 AS PER 30.5 OF 1630.2.1 (2.5*Ca*(I/R))*Wo Kg 174102.10V MAX. OF V1, V2 V3 Kg 174102.10Fe SHEAR FORCE V / 1.4 (UBC - 1612.3.2) Kg 124359

N 1219542L.A CG OF VESSEL 2/3 * (H + Hsk)

(FROM BOT. W.L.) mm 6626

Me SEIS. MOMENT (AT BOT. WL) Fe * L.A N.M 8080683

* Important Factor taken here is for California Zone 4.

B3 SEISMIC LOAD CALCULATION FOR INNER VESSEL

WLAR

DUE TO SEISMIC LOAD (UG 23(C)) (REF. L-2.1.2 OF ASME SEC. VIII - DIV. 1)

CHECK FOR TENSION SIDE :

SYMBOL DESCRIPTION FORMULA UNIT VALUE

S1 ALLOWABLE STRESS 1.2 * S (FOR SEIS. COND.) MPa 296.4Ri INSIDE RADIUS OF SHELL Di / 2 mm 2050Ec MIN. JOINT EFF. CIRC. JOINT 0.90W EMPTY WT. OF VESSEL Ws+ Wd KG 33625

ABOVE THE SECTION

Wc WEIGHT OF CONTENTS KG 0trs3 REQUIRED SHELL THICKNESS P*Ri / (2*S1*Ec + 0.4 * P) + m 0.00791

mm 7.91

ts PROVIDED THK. OF SHELL mm 13.00

CHECK FOR COMPRESSION SIDE :

DETERMINATION OF ALLOWABLE STRESS : (UG-23 (b); OF ASME SEC. VIII DIV. 1)

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Ro OUTSIDE RADIUS OF SHELL Ri + ts mm 2063A FACTOR 0.125 / (Ro/ts) 0.0008B FACTOR (FIG. HA-1 OF SEC. II PART D) PSI 9200

MPa 63.42S2 ALLOWABLE COMP. STRESS 1.2 * B (FOR SEIS. COND.) MPa 76.11E2 JOINT EFF. CIRC. JOINT 1 (IN COMPRESSION) 1

trs4 REQUIRED SHELL THICKNESS m 0.00838mm 8.38

ts PROVIDED THK. OF SHELL mm 13.00

B3.1 CHECK FOR SHELL THICKNESS FOR LONGITUDINAL STRESS

WLAR

Me/(p*Ri2*S1*Ec) -(W+Wc)/(p*Di*S1*Ec)

Me/(pRi2*S2*E2) +(W/(p*Di*S2*E2))

B3. SEISMIC LOAD CALCULATIONS FOR INNER VESSEL (IN OPERATING CONDITION)

( AS PER ASCE 7 -05 IN COMBINATION WITH IBC 2006 )

SYMBOL DESCRIPTION FORMULA UNIT V31312AC

W1 Operating Weight of Vessel Kg 278563

Soil Profile Type C

Ss The mapped spectral accelerations for short periods @ 0.355

S1 The mapped spectral accelerations for short periods @ 0.066

Fa Site coefficient defind in Table 1613.5.3(1) 1.2

Fv Site coefficient defind in Table 1613.5.3(2) 1.7

Sms Fa x Ss 0.426

Sm1 Fv x S1 0.1122

The design spectral response acceleration parameter2/3 x Sms 0.28

in the short period . The design spectral response acceleration parameter

2/3 x Sm1 0.0748 at a period of 1.0 sec Height in ft above the base to highest level of the

ft 77.50structure

RResponse modification factor

2.5( As per table 12.2-1 of ASCE 7-05 )

I Occupancy importance factor

1.25( As per sec 11.5-1 of ASCE 7-05 )

Cs Seismic response co-efficient # 0.1420

V Seismic Force at BaseCs *W Kg 39555.946

SAYKg 39600N 388317.6

Occupancy Category as per Table 1604.5 of IBC 2006 IIISeismic Design category as per Table 16135.6(1) &

C1613.5.6(2) of IBC 2006

ρ Redundancy Factor as per sec 12.3.4.1 of ASCE 7-05 1.00

Effect of horizontal seismic force from V Kg 39555.946

Horizontal Seismic Load effect ## 0.7*ρ*QE Kg 27689.162

( As per sec 12.4.1 of ASCE 7-05 ) SAY Kg 27700N 271626

M Seismic Moment at Base ( 2/3)*hn*Eh Kg - M 436026.42

SAYKg- M 436050N-m 4275906

# Cs shall not be less than 0.01, on conservative side not compared with Cs max as per 12.8-3 or 12.8-4 of ASCE 7-05

## 70 % of seismic load considered as per section 2.4.1@ As per customer specification

The maximum considered earthquake spectral response accelerations for short periods as determined in section 1613.5.3

The maximum considered earthquake spectral response accelerations for 1-second period as determined in section 1613.5.3

SDS

SD1

hn

SDS/ ( R/I)

QE

Eh

B4 DESIGN OF SKIRT FOR INNER VESSEL :(REF : PRESSURE VESSEL DESIGN HAND BOOK - BY H.H. BEDNAR )

B4.1 DESIGN DATA :

SR. NO. DESCRIPTION SYMBOL VALUE UNIT1 EMPTY WEIGHT We 403780 N2 OPERATING WEIGHT Wo 2732707 N3 SKIRT HEIGHT FROM DISHED END BOTTOM (MAX) Hsk 435 mm4 C.G. OF VESSEL ABOVE BASE = H/2 + Hsk C.G. 12028 mm7 SEISMIC FORCE AT BASE Fe 271626 N8 SEISMIC MOMENT AT BASE Me 4275906 N m9 MEAN DIA OF SKIRT = Di + ts Dsk 4113 mm

10 THICKNESS OF SKIRT tsk 13 mm11 OUTSIDE DIAMETER OF SKIRT Do 4126 mm12 CODE ALLOWABLE STRESS FOR SKIRT # S 115 MPa

# AS PER PAGE 82, LINE NO. 38 OF ASME SEC. II PART D.

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL :( AS PER UG -23 ( b ) OF ASME SEC. VIII DIV. 1 )

A = 0.125 / (Do / (2*tsk))= 0.125/(4126/(2*13))

= 0.000788

FROM TABLE HA-1 OF ASME SEC II PART D SUBPART 3 FOR ABOVE VALUE OF A

B = 5.56E+01 Mpa= 567.31 Kg/cm2

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS = MIN OF ( S , B ) = 55.631 MPa

LONGITUDINAL STRESS IN SKIRT SHELL :

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL =

= 2732706.6/(3.14*4113*13) +4*4275906.3/(3.14*4113*4113*13) = 16.27 + 24.75583 = 41.02 Mpa

0.737 < 1

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL( CHECK FOR OPENING )

M = MAX. OF Me & Mw M = 4275906.30 Nm Y = MAX. WIDTH OF UNREINFORCED OPENING IN SKIRT = 1000 mm

SLONG = LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL== 2732706.6/(3.14*4113-1000)*13 +4275906.3*1000/((3.14*4113^2/4)

-(1000-4113/2))*13)= 17.6329 + 29.2893= 46.9222 Mpa

SLONGCOMP/SAL = 0.8435< 1

SAL =

SLONG =Wo / ( p * Dsk * tsk ) + 4 * Me / ( p * Dsk 2 * tsk )

SLONG / SAL =

Wo / [(p* Dsk-Y)*tsk] + M / {[p*Dsk2 / 4)-(Y*Dsk/2)]*tsk}

B 5.1 CALCULATION FOR SIZE OF TWISTED FLAT FOR SUSPENSION

SYMBOL DESCRIPTION FORMULA UNITMODEL

V5042ACVg GROSS CAPACITY Ltrs 311448

Vnet NET CAPACITY Ltrs 295876We EMPTY WT. OF INNER VESSEL Kg 39200

- OPERATING MEDIUM - LIN/LOX/LAR

r MAX. SP. GRAVITY OF OP. MED. - 1.398Wo OPER. WT. OF INNER VESSEL *1.2 Kg 543401N NO. OF TWISTED FLAT SUPPORTS Nos 8W WIDTH mm 100t THICKNESS mm 10A CROSS SECTIONAL AREA A = W*t*N MM2 8000

st INDUCED TENSILE STRESS MPa 666Sa ALLOWABLE STRESS MPa 115Sr STRESS RATIO - 5.79

Wo=We + Vnet * r

st = Wo/A

Sr = st/Sa

C1. DESIGN SUMMARY (2:1 ELLIPSOIDAL)

SF = 50THK MIN.** = 13THK. NOM. = 18

** FOR CROWN AND KNUCKLE PORTION ONLY.

I.D.2660 22 THK.

7600

WL

TO

WL

TWISTED FLAT 10MM THKWITH 28 MM THK PAD

SF = 50THK MIN.** = 13THK. NOM. = 18

VOLUME : GROSS VOLUME 5.0103E+10

NET VOLUME 4.7598E+10

WEIGHTS : EMPTY WEIGHT OF I. V. KG 15500WT. OF I.V. WITH LIN. KG 54007WT. OF I.V. WITH LOX. KG 69810WT. OF I.V. WITH LAR KG 82042

NO OF PADS FOR TWISTED FLAT SUSPENTION SYS. = 4LOAD ON EACH PAD =

WT.OF I.V.WITH LAR / NO OF PADS=82043/4

= 20511 KG

WE HAVE CONSIDERED LOAD Fx = 20600 KG

LOAD IN Fy DIRECTION = Fx/COS(60)*=20600/COS(60)*

WE HAVE CONSIDERED LOAD Fz = 41200 KG

MM3

MM3

This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD.

B3. SEISMIC LOAD CALCULATIONS :

REF. : IS : 1893, (PART 1) 2002; CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.

SEISMIC ZONE - I I I

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo OPERATING WEIGHT WE + W LIN Kg 278563

CATEGORY II

I IMPORTANCE FACTOR (Table 6) - 1.0

DAMPING % 2.0

Z SEISMIC ZONE FACTOR (Table 2) - 0.16

Sa/g AV. ACCELRATION COEFF. - 2.5

R RESPONSE REDUCTION FACTOR 4

Ah HORIZONTAL SEISMIC CO-EFFICIENT (Clause 6.4.2) 0.05

[ Ah = Z* I * (Sa/g)/2*R]

Feiv SEISMIC FORCE Ah*Wo Kg 13928.17

SAY Kg 13930

Hiiv OVERALL HEIGHT OF I.V. m 23.186

Hsk HEIGHT OF SKIRT m 1.2

Hcg HEIGHT OF CG OF SEISMIC LOAD FROM BOTTOM OF m 16.257

I.V. SKIRT 2/3 (Hiiv +Hsk)

Me SEISMIC MOMENT AT BASE Feiv * Hcg Kg-m 226465

This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD.

B3. SEISMIC LOAD CALCULATIONS :

REF. : IS : 1893, (PART 4) 2005; CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.

BASED ON SITE SPECIFIC SPECTRA FOR PUNJAB REFINERY PROJECT BHATINDAREF: EIL Doc No. 6812-9-2554-0138

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo OPERATING WEIGHT WE + W LIN Kg 278563

CATEGORY II

I IMPORTANCE FACTOR (Table 2) - 1.75

DAMPING % 2.0

Z/2 WHEN USING SITE SPECIFIC SPECTRA 1

Sa/g * 0.26

R RESPONSE REDUCTION FACTOR 3

Ah HORIZONTAL SEISMIC CO-EFFICIENT (Clause 8.3.1)0.1516667

Ah = [Sa/g] / (R/I)

Feiv SEISMIC FORCE Ah*Wo Kg 42248.78

SAY Kg 42250

Hiiv OVERALL HEIGHT OF I.V. m 23.186

Hsk HEIGHT OF SKIRT m 1.2

Hcg HEIGHT OF CG OF SEISMIC LOAD FROM BOTTOM OF m 16.257

I.V. SKIRT 2/3 (Hiiv +Hsk)

Me SEISMIC MOMENT AT BASE Feiv * Hcg Kg-m 686872

SPECTRAL ACCELERATION COEFFICIENTS BASED ON SITE SPECIFIC SPECTRA FOR BHATINDA (CONSIDERING HIGHER COEFFICIENT)

B4 DESIGN OF SKIRT FOR INNER VESSEL :(REF : PRESSURE VESSEL DESIGN HAND BOOK - BY H.H. BEDNAR )

B4.1 DESIGN DATA :

SR. NO. DESCRIPTION SYMBOL VALUE UNIT1 EMPTY WEIGHT We 403780 N2 OPERATING WEIGHT Wo 2732707 N3 SKIRT HEIGHT FROM DISHED END BOTTOM (MAX) Hsk 1400 mm4 C.G. OF VESSEL ABOVE BASE = H/2 + Hsk C.G. 12993 mm7 SEISMIC FORCE AT BASE Fe 414303 N8 SEISMIC MOMENT AT BASE Me 6735470 N m9 MEAN DIA OF SKIRT = Di + ts Dsk 4113 mm

10 THICKNESS OF SKIRT tsk 14 mm11 OUTSIDE DIAMETER OF SKIRT Do 4127 mm12 CODE ALLOWABLE STRESS FOR SKIRT # S 138 MPa

# AS PER PAGE 82, LINE NO. 38 OF ASME SEC. II PART D.

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL :( AS PER UG -23 ( b ) OF ASME SEC. VIII DIV. 1 )

A = 0.125 / (Do / (2*tsk))= 0.125/(4127/(2*14))

= 0.000848

FROM TABLE HA-1 OF ASME SEC II PART D SUBPART 3 FOR ABOVE VALUE OF A

B = 5.74E+01 Mpa= 585.79 Kg/cm2

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS = MIN OF ( S , B ) = 57.442 MPa

LONGITUDINAL STRESS IN SKIRT SHELL :

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL =

= 2732706.6/(3.14*4113*14) +4*6735470.10066667/(3.14*4113*4113*14) = 15.11 + 36.21034 = 51.32 Mpa

0.893 < 1

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL( CHECK FOR OPENING )

M = MAX. OF Me & Mw M = 6735470.10 Nm Y = MAX. WIDTH OF UNREINFORCED OPENING IN SKIRT = 1000 mm

SLONG = LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL== 2732706.6/(3.14*4113-1000)*14+6735470.10066667*1000/((3.14*4113^2/4)

-(1000-4113/2))*14)= 16.3734 + 42.84144= 59.2148 Mpa

SAL =

SLONG =Wo / ( p * Dsk * tsk ) + 4 * Me / ( p * Dsk 2 * tsk )

SLONG / SAL =

Wo / [(p* Dsk-Y)*tsk] + M / {[p*Dsk2 / 4)-(Y*Dsk/2)]*tsk}

SLONGCOMP/SAL = 1.0309< 1

2:1 ELLIPSOIDALC1. DESIGN SUMMARY SF = 50 mm

THK MIN. = 14 mmTHK. NOM. = 18 mm

I.D. 4100 13 THK.

21

00

0 W

L T

O W

L

13 THK.

VOLUME : GROSS VOLUME 311448

NET VOLUME 295876

WEIGHTS : EMPTY WEIGHT OF I. V. KG 39200OPERATING WEIGHT OF IV KG 278563

m3

m3

B

PCV2 SIZE CALCULATIONS BASED ON LOSS OF VACUUM AT AMBIENT 55 DEG CVERTICAL CRYOGENIC TANK (MODEL NO V16610AC)

DESIGN DATAModel No - -Net capacity VN LitresFluid - -Density of fluid SGL Kg / Ltrs.Latent heat of vaporisation Lo Kcal / KgOutside surface temperature TAInside temperature of fluid TB

TA-TB

INNER VESSELTL - TL Length LIO MInside diameter DII MOutside diameter DIO MThickness of dished end THI M

AIIAIO

Mean surface area of dished end = Sqrt(AII * AIO) AIM

OUTER VESSELInside diameter DOI MOutside diameter DOO MThickness of dished end THO M

AOIAOO

Mean surface area of dished end = Sqrt(AOI * AOO) AOM

INSULATIONMean area of top insulation space = Sqrt(AIM * AOM) AMTMean area of bottom insulation space = Sqrt(AIM * AOM) AMBMean thickness of top insulation space ET MMean thickness of bottom insulation space EB M

SUPPORT SYSTEMNo of rosins NRArea of one rosin ARLength of rosin LR MNo of SKIRTS NL Area of SKIRT ALLength of Lskirt LL MFilm co-efficient of heat transfer between fluid and inner vessel HL

THERMAL CONDUCTIVITY Inner vessel KSOuter vessel KC

Perlite KPRosin KTLeg and supporting bar KL

oC oC oC

Inner surface area of dished end = 1.2 * p / 4 * DII2 M2

Outer surface area of dished end = 1.2 * p / 4 * DIO2 M2

M2

Inner surface area of dished end = 1.2 * p / 4 * DOI2 M2

Outer surface area of dished end = 1.2 * p / 4 * DOO2 M2

M2

M2

M2

M2

M2

KCal/M2HroC

KCal/MHroCKCal/MHroCKCal/MHroCKCal/MHroCKCal/MHroC

CALCULATIONSHeat loss of straight part of inner vessel =

Q1 Kcal / Hr 2 + ln(DIO/DII) + ln(DOI/DIO) + ln(DOO/DOI) HL * DII KS KP KCHeat loss from top dished end =

Q2 Kcal / HrAOO * (TA - TB)

AOO + THI * AOO + ET * AOO + THO * AOO HL* AII KS * AIM KP * AMT KC * AOMHeat loss from bottom dished end =

Q3 Kcal / HrAOO * (TA - TB)

AOO + THI * AOO + EB * AOO + THO * AOO HL* AII KS * AIM KP * AMT KC * AOM

Heat loss from rosin support = NR * AR * KT * ( TA - TB ) / LR QR Kcal / Hr

Heat loss from leg support = NL * AL * KL * ( TA - TB ) / LL QL Kcal / Hr

Heat loss from supporting bar=NS * AS * KL * ( TA - TB ) / LS QS Kcal / Hr

QP Kcal / HrHeat gain from inside piping =

(Sum of sectional area / length)*KL*(TA-TB)

Total heat loss = Q1 + Q2 + Q3 + QR + QL + QS + QP Q Kcal / Hr

Liquid loss per day = Q * 24 / (Lo * SGL) Ltrs. / Day

2*p*LIO*(TA - TB)

V LOSS

PCV2 SIZE CALCULATIONS BASED ON LOSS OF VACUUM AT AMBIENT 55 DEG CVERTICAL CRYOGENIC TANK (MODEL NO V16610AC)

DESIGN DATAV16610AC

166632LN2

0.80947.655

-196251

14.853.5503.5660.010

11.87811.98511.931

4.5004.5280.018

19.08519.32319.204

15.13715.1370.7001.100

160.004534

0.4671

0.11171.2001000

7.00046.000

0.03000.252

10.000

3019.64

162.806

103.609

9.826

233.681

0.000

2.000

3531.56

2201.012

INDEXSR. NO. DESCRIPTION PAGE NOS.

i CALCULATION COVER SHEET i

ii INDEX ii

DESIGN OF OUTER VESSEL

1.0 DESIGN DATA FOR OUTER VESSEL STRENGTH CALCULATION 1

2.0 CHECK FOR DISHEND THICKNESS 2

3.0 CHECK FOR SHELL THICKNESS 2

4.0 CHECK FOR STIFFENER RINGS PROPERTIES 3

5.0 WIND LOAD CALCUALTIONS 4

6.0 SEISMIC LOAD CALCULATIONS 5

7.0 DESIGN OF SKIRT FOR OUTER VESSEL 6

7.1 DESIGN OF SKIRT SHELL 7

7.2 DESIGN OF BASE RING 8

7.3 DESIGN OF TOP COMPRESSION RING 10

7.4 DESIGN OF ANCHOR BOLTS 10

8.0 TRUNNION LIFTING LUG CALCULATION 11

5.0 OUTER VESSEL WEIGHT CALCULATIONS :

SYMBOL PARTICULARS FORMULA UNIT VALUE

Ws WT. OF SHELL CYLINDER KG 25828B.D. BLANK DIA. OF DISHED ENDS (Di+2*th)+(Di+2*th)/24 mm 5159

+ 2/3*(r+th)+2*S.F.

Wh WT. OF DISHED ENDS : KG 5908Wst WT. OF STIFFNERS 4900Wex WT. OF SUPPORT, LEG, LUG, KG 500

PAD, PIPEING, VALVES, ETC.Wov WT. OF OUTER VESSEL Ws + Wh + Wst + Wex KG 37136

WeTOTAL EMPTY WT. OF EQUP. Wiv + Wov + Wp KG 95136

SAY = KG 95200

Wo OPERATING WEIGHT OF EQUIP.KG 334563

say 334800

p * (Di+ts) * Ls * ts * r s

2 * p/4* (B.D.)2 * th *rs

We + WL

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

DESIGN OF OUTER VESSEL :

1.0 DESIGN DATA FOR OUTER VESSEL STRENGTH CALCULATION:

DESIGN CODE : ASME SECTION VIII DIV.1,ED-2007,ADD 2008M.O.C. FOR SHELL SA 516 GR 60M.O.C. FOR HEAD SA 516 GR 60CONTENT PERLITE. + VACUUMWORKING PRESSURE VACUUMSECTION OF STIFFNING RING ISA 100 x 100 x 12

SR. NO. DESCRIPTION SYMBOL VALUE UNIT

1DESIGN PRESSURE ( EXTERNAL)

Po 1.055 Kg/cm2(g)1A Po 0.1033 Mpa(g)2 INSIDE DIAMETER Di 5000 mm3 W.L. TO W.L. LENGTH Ls 22500 mm4 SHELL THICKNESS ts 14 mm5 INSIDE CROWN RADIUS R 4000 mm6 INSIDE KNUCKLE RADIUS r 500 mm7 S. F. OF DISHED ENDS S.F. 50 mm8 MINIMUM THICKNESS OF HEAD th min. 15 mm9 NOMINAL THICKNESS OF HEAD th 18 mm

10 CORROSION ALLOWANCE c 3 mm11 MODULUS OF ELASTICITY E 29000000 PSI12 MAX. UNSUPPORTED LENGTH OF VESSEL L 1000 mm13 CROSS-SECTIONAL AREA OF STIFFNER RING As 22.5914 DIST. OF C.G. OF STIFFNER FROM VESSEL WALL CG 70.8 mm15 MOMENT OF INERTIA OF STIFFNER RING 20716 SP. GRAVITY OF VESSEL MATERIAL 7.85 -17 DESIGN TEMPERATURE 0 to+ 65 deg. C18 BASIC WIND SPEED Vb 45 m/s

cm2

Is cm4 r s

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

2.0 CHECK FOR DISHEND THICKNESS : (UG-33(e) & L-6.2 OF ASME SEC.VIII DIV. 1)

SYMBOL PARTICULARS FORMULA UNIT VALUE

thc CORRODED THICKNESS OF DISHEND th min - c mm 12Ro OUTSIDE CROWN RADIUS OF D'END R + th min. mm 4015A FACTOR A 0.125/(Ro/thc) 0.000374B FACTOR B FROM TABLE. CS-2 OF Mpa(g) 3.88E+01

ASME SEC. II, PART DPa MAXIMUM ALLOWABLE EXTERNAL B/(Ro/thc) Mpa(g) 0.1161

WORKING PRESSURE

ACTUAL EXTERNAL PRESSURE = 0.1013 Mpa(g) < 0.1161 Mpa(g)HENCE DISHEND THICKNESS PROVIDED = 15 mm MIN. IS O.K.

3.0 CHECK FOR SHELL THICKNESS : (UG-28 OF ASME SEC. VIII DIV. 1)

SYMBOL PARTICULARS FORMULA UNIT VALUE

Do OUTSIDE DIAMETER OF SHELL Di + 2 * ts mm 5028tsc CORRODED THICKNESS OF SHELL ts - c mm 11Do/t Do / tsc 457.09L/Do L / Do 0.199

A FACTOR A FROM TABLE. G OF 0.0006 ASME SEC. II PART D

B FACTOR B FROM TABLE CS-2 OF Mpa(g) 6.20E+01ASME SEC. II, PART D

Pa MAXIMUM ALLOWABLE EXTERNAL 4*B/(3*(Do/t)) Mpa(g) 0.181WORKING PRESSURE

ACTUAL EXTERNAL PRESSURE = 0.1013 Mpa (g) < 0.181 Mpa (g)HENCE SHELL THICKNESS PROVIDED = 14 MM IS O.K.

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

4.0 CHECK FOR STIFFENER RINGS PROPERTIES (UG-29 OF ASME SEC. VIII. DIV. 1)

4.1 DETERMINATION OF REQUIRED MOMENT OF INERTIA

SYMBOL PARTICULARS FORMULA UNIT VALUE

P DESIGN EXT. PRESSURE -Po Mpa(g) 0.1033Do OUTSIDE DIA. OF SHELL Di + 2 * ts mm 5028t CORODED SHELL THICKNESS ts - c mm 11

As C/S AREA OF STIFFNER As 2259Ls DIST. BETWEEN LINE OF SUP. L mm 1000B FACTOR B 3/4*(P*Do)/(t+As/Ls) Mpa(g) 29.38A FACTOR A FROM TABLE. CS-2

OF ASME SEC. II PART D 0.000303CORRESPONDING TO BREQUIRED M.I. OF 9331757 RING + SHELL 933.176

CONVERSION: 1 PSI = 0.00689 Mpa(g)

4.2 DETERMINATION OF MOMENT OF INERTIA PROVIDED

W

SYMBOL PARTICULARS FORMULA UNIT VALUE

W EFFECTIVE WIDTH OF SHELL 1.1 * SQRT(Do * t) mm 258.69COMBINED C.G. DISTANCE mm 39.266PROVIDED COMBINED M.I. 9401281.1

940

<PROVIDED COMBINED MOMENT OF INERTIA IS MORE THAN REQUIRED COMBINED MOMENT OF INERTIA HENCE SELECTED SECTION OF STIFFNER RING IS O.K.

mm2

Is' (Do2 * Ls * (t+As/Ls) * A)/10.9 mm4 cm4

Xbar [W*t2/2 + As*(t+CG)]/[W*t+As]Is' pro W * t * [t/2 - Xbar]2 + Is mm4

+ As*(CG+t - Xbar)2 cm4

Is' Is' pro

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

5. WIND LOAD CALCULATIONS: (AS PER CLAUSE 8 OF IS 875 PART 3, 1987)

AS PER FIG. - 1 (LOCATION : BHATINDA,PUNJAB)

BASIC WIND SPEED Vb = 47 m/S

PROBABILITY FACTOR (K1) = 1.07 AS PER CLAUSE 5.3.1 AND TABLE - 1

STRUCTURE SIZE FACT. (K2) = 1.07 AS PER CLAUSE 5.3.2 REFERE TABLE - 2

TERRAIN HEIGHT AND STRUCTURE SIZE FACTOR

CATEGORY : 2 CLASS : A

TOPAGRAPHY FACTOR ( K3) = 1.0

DESIGN WIND PRESSURE : Vz = K1 * K2 * K3 * Vb 53.8103 m/S

WIND PRESSURE Pz = 0.6 * Vz2 1737.329 N/m2 177.2 kg/m2

WIND RESISTING DIAMETER B = Do = Di + 2*ts 5028 mm5.028 m

HEIGHT OF O.V FROM BASE, H = Ls+2*S.F+2*Ho+Hsp 25986 mm

Vd * b = Vz * H = 1398.31 m2 / SEC > 6 M2 / SEC

Height/widtH / Do = 5.168

HENCE, FORCE COEFFICIENTS Cf = 0.5 (REFER : TABLE 23 ) HOWEVER CONSIDER = 0.7

EFFECTIVE FRONTAL AREA Ae = Do * H 130.658 m2

WIND SHEAR AT BASE FWT = Cf * Ae * Pz= 16206.8 kg

SAY = 16300 kg

WIND MOMENT AT BASE MWT = Fw * C.G= 223603 kg-m

SAY = 223610 kg-m

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

6. SEISMIC LOAD CALCULATIONS :

REF. : IS : 1893, (PART1) 2002 ; CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.

SEISMIC ZONE - I I I

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo OPERATING WEIGHT WO + W LIN Kg 199765

CATEGORY III IMPORTANCE FACTOR (Table 6) - 1.0

DAMPING % 2.0Z SEISMIC ZONE FACTOR (Table 2) - 0.16

Sa/g AV. ACCELRATION COEFF.- 2.5

R RESPONSE REDUCTION FACTOR 4Ah HORIZONTAL SEISMIC CO-EFFICIENT (Clause 6.4.2 ) 0.0500

[ Ah = Z I Sa / 2 R g ] Feov SEISMIC FORCE Ah*Wo Kg 9988.25

SAY Kg 9990Hio OVERALL HEIGHT OF O.V. Ls+2*S.F+2*Ho+Hsp m 25.986Hcg HEIGHT OF CG OF SEISMIC LOAD FROM BOTTOM OF m 13.718

O.V. ( Ls+2*S.F+2*Ho)/2 +HspMe SEISMIC MOMENT AT BASE Feov * C.G Kg-m 137043

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.0 DESIGN OF SKIRT FOR OUTER VESSEL :

M.O.C. FOR SKIRT : IS 2062 GR B REF. DRG. NO. 1010922004-V-024A REV 02

SR. DESCRIPTION SYM- VALUE UNITNO BOL1 EMPTY WEIGHT (Minimum Weight) We 71700 kg

2 Wo 199765 kg

3 HEIGHT OF SKIRT ABOVE BASE Hsp 1275 mm

4 C.G. OF VESSEL ABOVE BASE C.G. 10590 mm

5 WIND FORCE AT BASE Fw 160884 N

6 WIND MOMENT AT BASE Mw 2207054 Nm

7 SEISMIC FORCE AT BASE Fe 98002 N

8 SEISMIC MOMENT AT BASE Me 1344390 Nm

9 O.D OF SKIRT Do 4125 mm

10 THICKNESS OF SKIRT tsk 12 mm

11 MEAN DIA OF SKIRT = Di + tsk Dsk 4113 mm

12 WIDTH OF BASE PLATE b 132 mm

13 THICKNESS OF BASE PLATE 25 mm

14 THICKNESS OF TOP PLATE 25 mm

15 THICKNESS OF GUSSET tg 12 mm

16 NO. OF ANCHOR BOLTS Nb 16 NOS.

17 SIZE OF ANCHOR BOLTS M 24 Inch18 ROOT AREA OF ONE BOLT Ab 324

19 PITCH CIRCLE DIAMETER (PCD) OF ANCHOR BOLTS pcd 4235 mm

20 DESIGN TEMPERATURE (MINIMUM / MAXIMUM) T 0 / 65 deg C21 PERMISSIBLE TENSILE STRESS IN BOLT f 120022 PERMISSIBLE SHEAR STRESS IN BOLT fs 80023 TENSILE STRENGHT OF IS 2062 Gr B 4181.124 YIELD STRENGHT OF IS 2062 Gr B FOR SKIRT 2549.525 CODE ALLOWABLE STRESS FOR SKIRT S 1194.6

26 BASE / TOP PLATE YIELD STRENGTH fy 2447.5

27 ALLOWABLE BEARING PRESSURE FOR CONCRETE fbp 50.0

OPERATING WEIGHT

tb

tt

mm2

kg/cm2

kg/cm2

fT kg/cm2

fY kg/cm2

kg/cm2

kg/cm2

kg/cm2

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.1 DESIGN OF SKIRT SHELL :

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL:

(As per UG-23(b) of ASME SEC. VIII DIV.1)

A = 0.125/(Do / (2*tsk))

= 0.125/(4125/(2*12))

= 7.273E-04

FROM TABLE CS-2 OF ASME SEC IID, SUBPART 3 (FOR ABOVE VALUE OF A)

B = 84.31 Mpa

= 860.32

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS= MIN OF (S, B)

= 860.32

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL:M = MAX OF Me & Mw

= 2207054 Nm= 225060 kgm

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL== 199765*100/(3.14*4113*12)+4*2207053.8*10*E+05/(3.14*4113^2*12)/9.80665= 128.83 + 141.16= 269.99

0.31< 1

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL (CHECK FOR OPENING):

M = MAX OF Me & MwM = 2207054 Nm

= 225057 kg m

Y = MAX. WIDTH OF UNREINFORCED OPENING IN SKIRT= 3200 mm

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL==

= 450.93

0.52< 1

kg/cm2

SAL =

kg/cm2

SLONG =Wo*100 / (p * Dsk * tsk) + 4 * M *105/ (p * Dsk2 * tsk)

kg/cm2

SLONG / SAL =

SLONG =Wo*100 / [(p * Dsk - Y) * tsk] + M *105 / { [(p * Dsk2 /4) - (Y * Dsk /2 ) ] * tsk}199765*100/[(3.14*4113-3200)*12]+225056.86*100000/{[(3.14*4113^2/4)-(3200*4113/2)]*12}

kg/cm2

SLONG / SAL =

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.2 DESIGN OF BASE RING :

p = BEARING PRESSURE DUE TO M AND Wo==

= 12.83 + 11.71= 24.55 kg/cm2< 50.00

n = WIDTH OF BASE PLATE AT OUT SIDE OF SKIRT= 70 mm

a = WIDTH OF BASE PLATE AT INSIDE OF SKIRT= 50 mm

fbb = MAX BENDING STRESS IN BASE RING(INNER PORTION)== (24.55*50*50/2)/(25*25/6)= 294.60< 2170.10 (1.33*2/3 * fy)

C3 = WIDTH OF BASE PLATE = 50 mm (INNER PROJECTION PROVIDED)

C2 = WIDTH OF BASE PLATE = 70 mm (OUTSIDE PROJECTION PROVIDED)

g = BOLT DIST. FROM FACE OF SKIRT = 55 mm

pcd = 2*g + Do= 4235 mm

Bp = ACTUAL BEARING PRESSURE= 24.55

fb = PERMISSIBLE BENDING STRESS OF BASE PLATE= 0.66 * fy= 1615.34

Mbp = BENDING MOMENT IN BASE PLATE DUE TO "Bp"

== (24.55*50*50/200)= 306.88

tb1 req. = REQUIRED THICKNESS OF BASE PLATE (FOR INSIDE PROJECTION )

= SQRT ( 6 * Mbp / fb)

4*M *105/ (p * Dsk2)/b + Wo *100 / (p * Dsk)/b4*225056.86*100000/(3.14*4113^2)/132+199765*100/(3.14*4113)/132

kg/cm2

(p*a2/2) / (tb2/6)

kg/cm2

kg/cm2

Bp * C32 / 2

kg /cm2

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

= 1.0676 cm= 10.676 mm

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

DETERMINATION OF THICKNESS REQUIRED FOR OUTSIDE PROJECTION

B.S == 831.6 mm

i.e. l / b (REF. PROCESS EQUIP. DESIGN BY BROWNELL & YOUNG)= 0.0842

HENCE, FROM TABLE 10.3 OF THE REF.

Mx = -0.02440 /100= -0.0244*24.55*(831.55/100)^2/100= -4142.1 kg cm/cm

My = 0.48190 /100

= 0.4819*24.55*70*70/100

= 579.7 kg cm/cm

Mmax = MAX OF (Mx,My)= 579.7 kg cm/cm

tb2 req. = REQUIRED THICKNESS OF BASE PLATE ( FOR OUTSIDE PROJECTION)= SQRT ( 6 * Mmax / (1.33*fb))= 1.27 cm= 12.72 mm

tb pro. = 25 mm> 12.724 mm (HENCE SAFE)

p * pcd / Nb

C2 / B.S =

* Bp * B.S2

* Bp * C22

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.3 DESIGN OF TOP COMPRESSION PLATE :

FULL BOLT LOAD= Ab * f /100= 3888 kg

HOLE DIA IN TOP PLATE = 36 mm

c = CLEAR DISTANCE BETWEEN TWO VERTICAL GUSSETS= 80 mm

N = 100 (OUTSIDE PROJECTION PROVIDED)

fbt = MAX BENDING STRESS IN TOP PLATE== 194.40< 1631.65 (2/3 * fy)

7.4 DESIGN OF ANCHOR BOLTS :

TENSILE LOAD ON ANCHOR BOLTS DUE TO WIND LOADING (EMPTY):Tb1= 4 * Mw /pcd - We

= 140883 kg

TENSILE LOAD ON ANCHOR BOLTS DUE TO SEISMIC LOADING (OPERATING):Tb2= 4 * Me / pcd - Wo

= 4 * (1344390.0642 / 9.806 ) / (4235/1000) - 199765= -70274 kg (NEGATIVE VALUE INDICATES COMPRESSION)

Tb2 < Tb1 HENCE WIND LOAD GOVERNS ANCHOR BOLT DESIGNTb= Tb1

= 140883 kg

Ar= REQUIRED BOLT AREA= Tb / f*Nb= 7.34= 733.8 mm2< 324 mm2

Ab > Ar ,HENCE DESIGN IS SAFE.

CHECK FOR SHEAR IN ANCHOR BOLT

SHEAR STRESS IN ANCHOR BOLT DUE TO SEISMIC FORCEFs = Fe / Nb *Ab

= 192.79 < 800 kg/cm2

HENCE , DESIGN IS SAFE .

FBOLT =

dh =

(FBOLT * c) / (4 * (N - dh) * tt2)*100

kg/cm2

cm2

kg/cm2

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

5. WIND LOAD CALCULATIONS: (AS PER CLAUSE 8 OF IS 875 PART 3, 1987)

AS PER FIG. - 1 (LOCATION : BHATINDA,PUNJAB)

BASIC WIND SPEED Vb = 47 m/S

PROBABILITY FACTOR (K1) = 1.07 AS PER CLAUSE 5.3.1 AND TABLE - 1

STRUCTURE SIZE FACT. (K2) = 1.07 AS PER CLAUSE 5.3.2 REFERE TABLE - 2

TERRAIN HEIGHT AND STRUCTURE SIZE FACTOR

CATEGORY : 2 CLASS : A

TOPAGRAPHY FACTOR ( K3) = 1.0

DESIGN WIND PRESSURE : Vz = K1 * K2 * K3 * Vb 53.8103 m/S

WIND PRESSURE Pz = 0.6 * Vz2 1737.329 N/m2 177.2 kg/m2

WIND RESISTING DIAMETER B = Do = Di + 2*ts 5028 mm5.028 m

HEIGHT OF O.V FROM BASE, H = Ls+2*S.F+2*Ho+Hsp 26161 mm

Vd * b = Vz * H = 1407.73 m2 / SEC > 6 M2 / SEC

Height/widtH / Do = 5.203

HENCE, FORCE COEFFICIENTS Cf = 0.5 (REFER : TABLE 23 ) HOWEVER CONSIDER = 0.7

EFFECTIVE FRONTAL AREA Ae = Do * H 131.538 m2

WIND SHEAR AT BASE FWT = Cf * Ae * Pz= 16315.9 kg

SAY = 16400 kg

WIND MOMENT AT BASE MWT = Fw * C.G= 224975 kg-m

SAY = 224980 kg-m

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

6. SEISMIC LOAD CALCULATIONS :

REF. : IS : 1893, (PART 4) 2005 ; CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.

BASED ON SITE SPECIFIC SPECTRA FOR PUNJAB REFINERY PROJECT BHATINDAREF: EIL Doc No. 6812-9-2554-0138

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo OPERATING WEIGHT WO + W LIN Kg 199765

CATEGORY III IMPORTANCE FACTOR (Table 2) - 1.75

DAMPING % 2.0Z/2 WHEN USING SITE SPECIFIC SPECTRA 1T TIME PERIOD (sec) FOR 65 feet VERTICAL VESSEL 0.80

Sa/g 0.17

R

3

Ah HORIZONTAL SEISMIC CO-EFFICIENT (Clause 8.3.1 )0.0992

Ah = [Sa/g] / (R/I)Feov SEISMIC FORCE Ah*Wo Kg 19810

SAY Kg 19820Hio OVERALL HEIGHT OF O.V. Ls+2*S.F+2*Ho+Hsp m 26.161Hcg HEIGHT OF CG OF SEISMIC LOAD FROM BOTTOM OF m

13.718O.V. ( Ls+2*S.F+2*Ho)/2 +Hsp

Me SEISMIC MOMENT AT BASE Feov * C.G Kg-m 271891

SPECTRAL ACCELERATION COEFFICIENTS BASED ON SITE SPECIFIC SPECTRA FOR BHATINDA FOR T = 0.800

RESPONSE REDUCTION FACTOR FOR MECHANICALLY ANCHORED STEEL VESSELS

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.0 DESIGN OF SKIRT FOR OUTER VESSEL :

M.O.C. FOR SKIRT : IS 2062 GR B REF. DRG. NO. 1010922004-V-024A REV 02

SR. DESCRIPTION SYM- VALUE UNITNO BOL1 EMPTY WEIGHT (Minimum Weight) We 71700 kg

2 Wo 199765 kg

3 HEIGHT OF SKIRT ABOVE BASE Hsp 1275 mm

4 C.G. OF VESSEL ABOVE BASE C.G. 10590 mm

5 WIND FORCE AT BASE Fw 160818 N

6 WIND MOMENT AT BASE Mw 2206154 Nm

7 SEISMIC FORCE AT BASE Fe 194355 N

8 SEISMIC MOMENT AT BASE Me 2666161 Nm

9 O.D OF SKIRT Do 4125 mm

10 THICKNESS OF SKIRT tsk 12 mm

11 MEAN DIA OF SKIRT = Di + tsk Dsk 4113 mm

12 WIDTH OF BASE PLATE b 132 mm

13 THICKNESS OF BASE PLATE 25 mm

14 THICKNESS OF TOP PLATE 25 mm

15 THICKNESS OF GUSSET tg 12 mm

16 NO. OF ANCHOR BOLTS Nb 16 NOS.

17 SIZE OF ANCHOR BOLTS M 2418 ROOT AREA OF ONE BOLT Ab 324

19 PITCH CIRCLE DIAMETER (PCD) OF ANCHOR BOLTS pcd 4235 mm

20 DESIGN TEMPERATURE (MINIMUM / MAXIMUM) T 0 / 65 deg C21 PERMISSIBLE TENSILE STRESS IN BOLT (STUD) # 175422 PERMISSIBLE SHEAR STRESS IN BOLT (STUD) fs 122723 TENSILE STRENGHT OF IS 2062 Gr B 4181.124 YIELD STRENGHT OF IS 2062 Gr B FOR SKIRT 2549.525 CODE ALLOWABLE STRESS FOR SKIRT S 1194.6

26 BASE / TOP PLATE YIELD STRENGTH fy 2447.5

27 ALLOWABLE BEARING PRESSURE FOR CONCRETE fbp 50.0

# Bolt (Stud) material = SA193 B7

OPERATING WEIGHT

tb

tt

mm2

kg/cm2

kg/cm2

fT kg/cm2

fY kg/cm2

kg/cm2

kg/cm2

kg/cm2

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.1 DESIGN OF SKIRT SHELL :

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL:

(As per UG-23(b) of ASME SEC. VIII DIV.1)

A = 0.125/(Do / (2*tsk))

= 0.125/(4125/(2*12))

= 7.273E-04

FROM TABLE CS-2 OF ASME SEC IID, SUBPART 3 (FOR ABOVE VALUE OF A)

B = 84.31 Mpa

= 860.32

ALLOWABLE LONGITUDINAL COMPRESSIVE STRESS= MIN OF (S, B)

= 860.32

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL:M = MAX OF Me & Mw

= 2666161 Nm= 271877 kgm

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL== 199765*100/(3.14*4113*12)+4*2666160.8*10*E+05/(3.14*4113^2*12)/9.80665= 128.83 + 170.52= 299.35

0.35< 1

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL (CHECK FOR OPENING):

M = MAX OF Me & MwM = 2666161 Nm

= 271873 kg m

Y = MAX. WIDTH OF UNREINFORCED OPENING IN SKIRT= 3000 mm

LONGITUDINAL COMPRESSIVE STRESS IN SKIRT SHELL==

= 486.13

0.57< 1

kg/cm2

SAL =

kg/cm2

SLONG =Wo*100 / (p * Dsk * tsk) + 4 * M *105/ (p * Dsk2 * tsk)

kg/cm2

SLONG / SAL =

SLONG =Wo*100 / [(p * Dsk - Y) * tsk] + M *105 / { [(p * Dsk2 /4) - (Y * Dsk /2 ) ] * tsk}199765*100/[(3.14*4113-3000)*12]+271872.74*100000/{[(3.14*4113^2/4)-(3000*4113/2)]*12}

kg/cm2

SLONG / SAL =

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.2 DESIGN OF BASE RING :

p = BEARING PRESSURE DUE TO M AND Wo==

= 15.50 + 11.71= 27.22 kg/cm2< 50.00

n = WIDTH OF BASE PLATE AT OUT SIDE OF SKIRT= 70 mm

a = WIDTH OF BASE PLATE AT INSIDE OF SKIRT= 50 mm

fbb = MAX BENDING STRESS IN BASE RING(INNER PORTION)== (27.22*50*50/2)/(25*25/6)= 326.64< 2170.10 (1.33*2/3 * fy)

C3 = WIDTH OF BASE PLATE = 50 mm (INNER PROJECTION PROVIDED)

C2 = WIDTH OF BASE PLATE = 70 mm (OUTSIDE PROJECTION PROVIDED)

g = BOLT DIST. FROM FACE OF SKIRT = 55 mm

pcd = 2*g + Do= 4235 mm

Bp = ACTUAL BEARING PRESSURE= 27.22

fb = PERMISSIBLE BENDING STRESS OF BASE PLATE= 0.66 * fy= 1615.34

Mbp = BENDING MOMENT IN BASE PLATE DUE TO "Bp"

== (27.22*50*50/200)= 340.25

tb1 req. = REQUIRED THICKNESS OF BASE PLATE (FOR INSIDE PROJECTION )

= SQRT ( 6 * Mbp / fb)

4*M *105/ (p * Dsk2)/b + Wo *100 / (p * Dsk)/b4*271872.74*100000/(3.14*4113^2)/132+199765*100/(3.14*4113)/132

kg/cm2

(p*a2/2) / (tb2/6)

kg/cm2

kg/cm2

Bp * C32 / 2

kg /cm2

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

= 1.1242 cm= 11.242 mm

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

DETERMINATION OF THICKNESS REQUIRED FOR OUTSIDE PROJECTION

B.S == 831.6 mm

i.e. l / b (REF. PROCESS EQUIP. DESIGN BY BROWNELL & YOUNG)= 0.0842

HENCE, FROM TABLE 10.3 OF THE REF.

Mx = -0.02440 /100= -0.0244*27.22*(831.55/100)^2/100= -4592.6 kg cm/cm

My = 0.48190 /100

= 0.4819*27.22*70*70/100

= 642.7 kg cm/cm

Mmax = MAX OF (Mx,My)= 642.7 kg cm/cm

tb2 req. = REQUIRED THICKNESS OF BASE PLATE ( FOR OUTSIDE PROJECTION)= SQRT ( 6 * Mmax / (1.33*fb))= 1.34 cm= 13.40 mm

tb pro. = 25 mm> 13.398 mm (HENCE SAFE)

p * pcd / Nb

C2 / B.S =

* Bp * B.S2

* Bp * C22

This is proprietory document of INOX INDIA LTD. Content of this page shall not be either copied or xeroxed without the written permission from INOX INDIA LTD. Baroda

7.3 DESIGN OF TOP COMPRESSION PLATE :

FULL BOLT LOAD= Ab * f /100= 5683 kg

HOLE DIA IN TOP PLATE = 36 mm

c = CLEAR DISTANCE BETWEEN TWO VERTICAL GUSSETS= 80 mm

N = 100 (OUTSIDE PROJECTION PROVIDED)

fbt = MAX BENDING STRESS IN TOP PLATE== 284.15< 1631.65 (2/3 * fy)

7.4 DESIGN OF ANCHOR BOLTS :

TENSILE LOAD ON ANCHOR BOLTS DUE TO WIND LOADING (EMPTY):Tb1= 4 * Mw /pcd - We

= 140796 kg

TENSILE LOAD ON ANCHOR BOLTS DUE TO SEISMIC LOADING (OPERATING):Tb2= 4 * Me / pcd - Wo

= 4 * (2666160.79256 / 9.806 ) / (4235/1000) - 199765= 57039 kg

Tb2 < Tb1 HENCE WIND LOAD GOVERNS ANCHOR BOLT DESIGNTb= Tb2

= 140796 kg

Ar= REQUIRED BOLT AREA= Tb / f*Nb= 5.02= 501.7 mm2< 324 mm2

Ab > Ar ,HENCE DESIGN IS SAFE.

CHECK FOR SHEAR IN ANCHOR BOLT

SHEAR STRESS IN ANCHOR BOLT DUE TO SEISMIC FORCEFs = Fe / Nb *Ab

= 382.33 < 800 kg/cm2

HENCE , DESIGN IS SAFE .

FBOLT =

dh =

(FBOLT * c) / (4 * (N - dh) * tt2)*100

kg/cm2

cm2

kg/cm2

This is a proprietary document of Inox India Ltd. Content of this page shall not be either copied or xeroxed without the written permission from Inox India Ltd. Vadodara.

8.0 Trunnion (lifting lug) Calculation.( Reference :-Pressure Vessel Design Manual ,Dennis R. Moss, III Edition (Procedure 7-8) )

Material of constuctionLug Material SA 106 Gr BPad material SA 516 Gr 70 Input Data

DESCIBTION VALUE UNIT

1 Applied equipment weight We 71700 Kg2 Pipe size 355.6 mm3 Pipe thk/Sch t1 19 mm4 Pad diameter d1 700 mm5 Pad thickness t2 14 mm6 Impact Factor Df 1.57 Total no.of lifting lug Nt 4 Nos.8 No. of lifting lug (under consideration) N 2 Nos.9 Angle of lifting a 30 deg

10 Total Lug length L 170 mm10A Effective Lug Length e 120 mm12 Weld leg at lug to pad U 14 mm13 Weld leg at lug to shell J 14 mm

TRUNNION ONLY

TRUNNION PROPORTIES

Cross Section area ,A A=((OD^2-ID^2)*3.14/4,20091.7417 mm2

Section Modulus,Zx Z= (OD/2)^2*t*3.14) 1886979(* Z, Section modulus)

SR.NO.

d0

W1

This is a proprietary document of Inox India Ltd. Content of this page shall not be either copied or xeroxed without the written permission from Inox India Ltd. Vadodara.

MATERIAL PROPORTIESLug Yield strength, Sya 24.470 Kg/mm^2Pad Yield strength Syb 22.440 Kg/mm^2Lug Allowable stress Sa =Sya*0.6 14.682 Kg/mm^2Pad Allowable stress Sb =Syb*0.6 13.464 Kg/mm^2

Allowable tension stress, St 22.02314.682 Kg/mm^2 (the smaller of 1.5Sa or 0.6Sya) 14.682

Allowable bending stress Sb 20.19613.464 Kg/mm^2 (the smaller of 1.5Sb or 0.66Syb) 13.464

Allowable shear stress Sya*0.4 9.79 Kg/mm^2Allowable weld stress St*0.49(as per UW 15) 7.19 Kg/mm^2

CONSIDERING DYNAMIC EFFECT ON EQUIPMENTTotal weight of Equipmet W =We*Df 107550 kgVertical Load per Lug V =W/N 53775 kgLifting Load per Lug, W1 62094 kgHorizontal Load per Lug, P 31047 kg

STRESS AT LUGShear stress at Lug due to We : S1Shear stress S1=2*W1/A 6.18 Kg/mm^2

Allowable stress 9.79 Kg/mm^2

Tension stress at top of Lug due to V : S2Tension stress S2= V/A 2.68 Kg/mm^2

Allowable stress 14.68 Kg/mm^2

Vessel Vertical Longitunal moment . 6453000 Kgf-mBending stress in trunnion : S3 S3 =We*e/Zx 3.42 Kg/mm^2

Allowable stress 13.464 Kg/mm^2

Vesse HorizontalCircumferential moment . 3725641.29 Kgf-mBending stress in trunnion ; S4 S4 =Mc/Zx 1.97 Kg/mm^2

Allowable stress 13.464 Kg/mm^2

STRESS AT WELD

Shear stress in weld part at Lug to Pad, SW1 1.91 Kg/mm^2SW1= W1^0.5*e/(3.14*do*U)

Shear stress in weld part at Shell to Pad, SW2 0.97 Kg/mm^2SW2= W1^0.5*L/(3.14*d1*J)

Bending Stress in weld part at Lug to Pad , SW3 4.0 Kg/mm^2

=V/cos(a)=V*Tan(a)

ML=V*e

Mc=P*e

This is a proprietary document of Inox India Ltd. Content of this page shall not be either copied or xeroxed without the written permission from Inox India Ltd. Vadodara.

SW3 =W1/(3.14*do*U)

Allowable stress SW 7.19418 Kg/mm^2

This is a proprietary document of Inox India Ltd. Content of this page shall not be either copied or xeroxed without the written permission from Inox India Ltd. Vadodara.

CONCLUSION

STRESS AT LUG ACTUAL ALLOWABLE RESULT

1 Shear stress at Lug due to We : S1 6.18 9.79 OK2 Tension stress at top of Lug due to V : S2 2.68 14.68 OK3 Bending stress in trunnion (Vertical) : S3 3.42 13.464 OK4 Bending stress in trunnion (Horizontal) : S4 1.97 13.464 OK

STRESS AT WELD1 Shear stress in weld part at Lug to Pad, S 1.91 7.19 OK2 Shear stress in weld part at Shell to Pad,S 0.97 7.19 OK3 Bending Stress in weld part at Lug to Pad,SW3 3.97 7.19 OK

SR.NO.

DESIGN OF OUTER VESSEL :

1.0 DESIGN DATA :

DESIGN CODE : C.G.A -341, 2007M.0.C. FOR SHELL SA 516 GR 70M.O.C. FOR HEAD SA 516 GR 70INSULATION PERLITE UNDER VACUUMWORKING PRESSURE VACUUMSECTION OF STIFFNING RING L75 X 75 X 10 ( IS 2062 Gr.B )

SR. DESCRIPTION SYMBOL VALUE UNITNO.

1 DESIGN PRESSURE Po -1.033 BAR g2 MINIMUM COLLAPSING PRESSURE P 30 PSI

2A MINIMUM COLLAPSING PRESSURE P 2.07 BAR g3 INSIDE DIAMETER Di 4500 mm4 W.L. TO W.L. LENGTH Ls 16572 mm5 SHELL THICKNESS ts 14 mm6 INSIDE CROWN RADIUS R 4050 mm7 INSIDE KNUCKLE RADIUS r 500 mm8 S. F. OF DISHED ENDS S.F. 50 mm9 MINIMUM THICKNESS OF HEAD th min. 15 mm10 NOMINAL THICKNESS OF HEAD th 18 mm11 CORROSION ALLOWANCE (EXTERNAL) c 3 mm12 MODULUS OF ELASTICITY E 2.89E+07 PSI

13A ACTUAL. MAX UNSUPPORTED LENGTH OF VESSEL La 2100 mm

14 CROSS-SECTIONAL AREA OF STIFFNER RING A 1903.0015 DIST. OF C.G. OF STIFFNER FROM VESSEL WALL CG 71.60 mm16 MOMENT OF INERTIA OF STIFFNER RING 177.00 cm4 17 SP. GRAVITY OF VESSEL MATERIAL 7.8518 DESIGN TEMPERATURE ( MINIMUM /MAXIMUM ) 0 / 82 DEG. C19 HEIGHT OF SUPPORT FROM BOTTOM OF O.V Lsp 1000 mm20 EMPTY WEIGHT OF INNER VESSEL Wiv 39200 kg

21 APPROX. DENSITY OF PERLITE Dp 11022 WEIGHT OF PERLITE Wp 18800 kg

23 WEIGHT OF LIQUID 239363 kg

mm2

Is r s

kg/m3

WL

2.0 CRITICAL COLLAPSING PRESSURE

1 SHELL : ( 3.6.2.1 OF CGA 341 )

Pc shell=ACTUAL = 49.430 PSI g

REQUIRED > 30 PSI g

2 DISHED END : (3.6.2.5 OF CGA 341 )

Pchead = = 0.25*28862510*((15-3) /4050)^2

ACTUAL = 63.347 PSI gREQUIRED > 30.000 PSI g

3. CALCULATIONS FOR STIFFENER RING .

1 REQUIRED MOMENT OF INERTIA OF COMBINED SECTION : (3.6.2.4 OF CGA 341)

I' = ( E is in PSI for this calculations )= (1.38*(4500+2*14)^3*2100)/28862510

E = 198800 Mpa

= 9.32E+06 = 2.89E+07 PSI

= 932.145

2 DETERMINATION OF MOMENT OF INERTIA PROVIDED : ( 3.6.2.2 OF CGA 341 )

W = EFFECTIVE WIDTH OF OUTER SHELL PLATE ON EACH SIDE OF THE ATTACHMENT TO THE RING

== 0.78*POWER((4500+2*14)/2*(14-3),0.5)

= 123.092 mm= 12.309 cm

2.6*E*[(ts-C)/(Di+2*ts)]2.5 / {[La/(Di + 2*ts)] - 0.45*[(ts-C) / (Di + 2*ts)]0.5}

0.25*E*((thmin - C) / R)2

1.38*(Di+2*ts)3 * L / E

mm4

cm4

0.78*{(Di + 2*ts)/2* (ts-C)}0.5

DETERMINATION OF PROPERTIES OF COMBINED SECTION.

2*W

Xbar =

= 37.32 mmIyy = PROVIDED COMBINED M.I.

=

= 8947717.5

PROVIDED = 894.772

REQUIRED > 932.145

3.1 CALCULATIONS FOR THE NO. OF STIFFNERS REQUIRED :

HEIGHT OF DISHED ENDS Ho = CRo -SQRT((CRo-Do/2)*(CRo+Do/2-2*ro))

4068-SQRT((4068-4536/2)*(4068+4536/2-2*518)== 979 mm

WHERE CRo = OUTSIDE CROWN RADIUS= R + th= 4068 mm

ro = OUTSIDE KNUCKLE RADIUS= r + th= 518 mm

Do = OUTSIDE DIAMETER= Di + 2*th= 4536 mm

HENCE Ho = 979 mm

Ls1 = TOTAL EFFECTIVE LENGTH OF SHELL FOR DETERMINATION OF STIFFNERS= Ls + 2*S.F. + 2/3 * Ho= 16572+2*50+2/3*979.4

= 17325 mm

NO. OF STIFFENER REQUIRED= (Ls1 / La)+1 = 10 TOTAL

(As dished ends are to be considered as stiffening rings)NO OF STIFF REQUIRED 8 NosNst ACTUAL PROVIDED 8 Nos

[2*W*(ts-C)2/2 + A*(ts-C+CG)]/[2*W*(ts-C) +A]

2*W*(ts-C)*[(ts-C)/2 -Xbar]2 + Is + A*(CG + ts - Xbar)2

mm4

cm4

cm4

4.0 WEIGHT CALCULATION WEIGHT OF THE OUTER VESSEL SHELL : Ws = 25828 kgHEAD WEIGHT OF OUTER VESSEL : Wh = 5935 kgWHERE, BLANK DIA. ' B.D.' = (Di+2*th)+(Di+2*th)/24+2/3*(r+th)+2*S.F.

= 5171 mmWEIGHT OF STIFFENERS Wst = 3250 kgWEIGHT OF SKIRT Wsk= 3047 kgWEIGHT OF BASE RING Wb = 307 kgWEIGHT OF TOP SHEAR PLATE Wtp = 250 kgWEIGHT OF TRUNION PAD Tp = 92 kgWEIGHT OF TRUNION PAD AT OUTSIDE Tpo = 80 kgWEIGHT OF TRUNION PIPE Tpp = 70 kgWEIGHT OF CHAIR AT BASE PLATE Wch = 150 kgWEIGHT OF PAINTS (APPROX.) Wp = 200 kgWEIGHT OF SAFETY DEVICE Wsd = 150 kgWEIGHT OF NAME PLATE, BRACKETS,PATCH PLATE, Wx = 200 kgSKIRT /VALVE SUPPORT CHANNELS/ANGLES, 50

HENCE TOTAL EXTRA WEIGHT Wext = 7846 kgTOTAL EMPTY WEIGHT OF OUTER VESSEL Wov = 39609 kg

TOTAL EMPTY WEIGHT OF EQUIPMENT: Wiv + Wov + Wp We = 97609 kgSAY = 97650 kg

OPERATING WEIGHT OF EQUIPMENT: We + WL Wo = 337013 kgSAY = 337050 kg

WIND RESISTING DIAMETER Di + 2*ts Do = 4528 mm= 4.528 m

OUTSIDE TO OUTSIDE HEIGHT OF OUTER VESSEL H - Lsp = 18631 mm

HEIGHT OF THE VESSEL FROM G.L. Ls +2*Ho + 2*SF + Lsp H = 19631 mm

p*(Di+ts)*Ls*ts *rs2*p/4*(B.D.)2*th*rs

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

5. WIND LOAD CALCULATIONS: (AS PER CLAUSE 8 OF IS 875 PART 3, 1987)

AS PER FIG. - 1 (LOCATION : BHATINDA,PUNJAB)

BASIC WIND SPEED Vb = 47 m/S

PROBABILITY FACTOR (K1) = 1.07 AS PER CLAUSE 5.3.1 AND TABLE - 1

STRUCTURE SIZE FACT. (K2) = 1.07 AS PER CLAUSE 5.3.2 REFERE TABLE - 2

TERRAIN HEIGHT AND STRUCTURE SIZE FACTOR

CATEGORY : 2 CLASS : A

TOPAGRAPHY FACTOR ( K3) = 1.0

DESIGN WIND PRESSURE : Vz = K1 * K2 * K3 * Vb 53.8103 m/S

WIND PRESSURE Pz = 0.6 * Vz2 1737.329 N/m2 177.2 kg/m2

WIND RESISTING DIAMETER B = Do = Di + 2*ts 5028 mm5.028 m

HEIGHT OF O.V FROM BASE, H = Ls+2*S.F+2*Ho+Lsp 26161 mm

Vd * b = Vz * H = 1407.73 m2 / SEC > 6 M2 / SEC

Height/widtH / Do = 5.203

HENCE, FORCE COEFFICIENTS Cf = 0.5 (REFER : TABLE 23 ) HOWEVER CONSIDER = 0.7

EFFECTIVE FRONTAL AREA Ae = Do * H 131.538 m2

WIND SHEAR AT BASE FWT = Cf * Ae * Pz= 16315.9 kg

SAY = 16400 kg

WIND MOMENT AT BASE MWT = Fw * C.G= 224975 kg-m

SAY = 224980 kg-m

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed

without the written permission from INOX INDIA LTD, Baroda

6. SEISMIC LOAD CALCULATIONS :

REF. : IS : 1893, (PART1) 2002 ; CRITERIA FOR EARTHQUAKE RESISTANT DESIGN OF STRUCTURES.

SEISMIC ZONE - I I I

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo OPERATING WEIGHT WO + W LIN Kg 199765

CATEGORY III IMPORTANCE FACTOR - 1.0

DAMPING % 2.0Fo SEISMIC ZONE FACTOR - 0.16

Sa/g AV. ACCELRATION COEFF.-

0.28

B CO-EFFICIENT FOR DIFF. SOIL FOUNDATION SYSTEM 1.2Ah HORIZONTAL SEISMIC CO-EFFICIENT 0.05376

[ Ah = B* I * Fo * (Sa/g)]Feov SEISMIC FORCE Ah*Wo Kg 10739.37

SAY Kg 10740Hio OVERALL HEIGHT OF O.V. m 26.161Hcg HEIGHT OF CG OF SEISMIC LOAD FROM BOTTOM OF m 13.718

O.V. Me SEISMIC MOMENT AT BASE Feov * C.G Kg-m 147331

5 SEISMIC LOAD CALCULATIONS FOR OUTER VESSEL (IN OPERATING CONDITION)(AS PER UBC 1997)

SYMBOL DESCRIPTION FORMULA UNIT VALUEWo OPER. WEIGHT OF OUTER VESSEL (extra 25%) kg 421313

SEISMIC ZONE - IVSOIL TYPE - SD

SEISMIC SOURCE - N/A

Ct NUMERICAL CO-EFFICIENT FOR STEEL MOMENT 0.035

RESISTING FRAMES

hn HEIGHT FROM BASE TO THE UPPER feet 64.60

MOST PORTION OF THE STRUCTURE

T PERIOD OF VIBRATION sec 0.797521561Na NEAR SOURCE FACTOR AS PER TABLE 16-S - 1.00Nv NEAR SOURCE FACTOR AS PER TABLE 16-T - 1.00Cv SEISMIC COFFICIENT AS PER TABLE 16-R - 0.64I IMPORTANCE FACTOR AS PER TABLE 16-K - 1.25R FACTOR AS PER TABLE 16-P - 2.20

Ca SEISMIC COFFICIENT AS PER TABLE 16-Q - 0.44Z SEISMIC ZONE FACTOR AS PER TABLE 16-I 0.400

V1 AS PER 30.4 OF 1630.2.1 Wo*Cv*I/(R*T) kg 192100.820V2 AS PER 34.2 OF 1634.5 0.56*Ca*I*Wo kg 129764.25V3 AS PER 34.3 OF 1634.5 ((1.6*Z*Nv*I)/R)*Wo kg 153204.55V4 AS PER 30.5 OF 1630.2.1 (2.5*Ca*(I/R))*Wo kg 263320.31V' AS PER CLIENT REQUIREMENT ---------- --- ------V' MAX. OF V1, V2,V3 kg 192100.82V MIN OF V',V4 kg 192100.82

SHEAR FORCE IN KG V / 1.4 (UBC - 1612.3.2) kg 137214.87Fe SHEAR FORCE IN N V / 1.4 * 9.806 N 1345529.03Fe SAY = N 1345530La HT. OF C.G. OF VESSEL ABOVE BOTTOM W.L. 2/3 *H m 13.09Me SEISMIC MOMENT AT BOTTOM W.L. V * La N m 17609061

SAY = N m 17609070

Ct(hn)3/4

5.0 SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION)

( AS PER ASCE 7 -05 IN COMBINATION WITH IBC 2006 )

SYMBOL DESCRIPTION FORMULA UNIT V5042AC

W1 Operating Weight of Vessel (extra 25%) Kg 421313

Soil Profile Type D

Ss 230

S1 80

Fa Site coefficient defind in Table 1613.5.3(1) 1

Fv Site coefficient defind in Table 1613.5.3(2) 1.5

Sms Fa x Ss 2.3

Sm1 Fv x S1 1.2

The design spectral response acceleration parameter2/3 x Sms 1.53

in the short period . The design spectral response acceleration parameter

2/3 x Sm1 0.8 at a period of 1.0 sec Height in ft above the base to highest level of the

ft 37.75structure

RResponse modification factor

3( As per table 12.2-1 of ASCE 7-05 )

I Occupancy importance factor

1( As per sec 11.5-1 of ASCE 7-05 )

Cs Seismic response co-efficient # 0.5111

V Seismic Force at BaseCs *W Kg 215337.5

SAYKg 215400N 2112212.4

Occupancy Category as per Table 1604.5 of IBC 2006 IIISeismic Design category as per Table 16135.6(1) &

D1613.5.6(2) of IBC 2006

ρ Redundancy Factor as per sec 12.3.4.1 of ASCE 7-05 1.30

Effect of horizontal seismic force from V Kg 215337.5

Horizontal Seismic Load effect ## 0.7*ρ*QE Kg 195957.12

( As per sec 12.4.1 of ASCE 7-05 ) SAY Kg 196000N 1921976

M Seismic Moment at Base ( 2/3)*hn*Eh Kg - M 1503117.3

SAYKg- M 1503150N-m 14739889

# Cs shall not be less than 0.01, on conservative side not compared with Cs max as per 12.8-3 or 12.8-4 of ASCE 7-05

## 70 % of seismic load considered as per section 2.4.1@ As per customer specification

The mapped spectral accelerations for short periods as detemined in section 1613.5.1 @

The mapped spectral accelerations for short periods as detemined in section 1613.5.1 @

The maximum considered earthquake spectral response accelerations for short periods as determined in section 1613.5.3

The maximum considered earthquake spectral response accelerations for 1-second period as determined in section 1613.5.3

SDS

SD1

hn

SDS/ ( R/I)

QE

Eh

CHECK FOR STRENGTH OF OUTER VESSEL DURING LIFTING & SHIPPING.

OUTER VESSEL SHALL BE LIFTED USING TRUNIONS PROVIDED ON VESSEL SHELL.THE VESSEL SHALL BE SUPPORTED AT TWO LOCATION(MAIN TWO SUPPORTS) AT THE SAME SECTION WHERE TRUNIONS ARE PROVIDED. AT THE SECTION ADDITIONAL THREE ANGLE RING STIFFENERS(AS LOAD RINGS) ARE PROVIDED.

DESIGN DATA :

ALLOWABLE STRESS FOR SHELL MATERIAL S 138 MPAYIELD STRENGTH OF THE SHELL MATERIAL Fy 250 MPAYOUNG'S MODULUS OF ELASTICITY E 2.00E+05 MPAINSIDE DIA. OF OUTER VESSEL SHELL Di 4500 mmTL TO TL LENGTH OF OUTER VESSEL SHELL L 16672 mmTHICKNESS OF OUTER VESSEL SHELL ts 14 mmOUTER VESSEL CORROSION ALLOWANCE c 3 mmMEAN RADIUS OF OUTER VESSEL SHELL (Di + ts)/2 r 2257 mmAV. DIST. OF LINE OF SUP. FROM TL DURING LIFTING/SHIPPING A 3250 mmMEAN DEPTH OF D'END OF VESSEL b 1161.00 mmEMPTY WEIGHT OF THE EQUIPMENT We 0 KGINTERNAL DESIGN PRESSURE Pm 0 MPACRITICAL COLLAPSING PRESSURE SHELL Pc shell 16.83 psiMIN. LIMIT FOR CRITICAL COLLAPSING PRESSURE Pc min 15 psi

DETERMINATION OFALLOWABLE AXIAL COMPRESSIVE STRESSES:

S = ALLOWABLE TENSILE STRESS FOR SHELL MATERIAL= 138.00 MPA

Sc = ALLOWABLE COMPRESSIVE STRESS (REF. UG - 23 (b) ; OF ASME SEC.VIII, DIV. 1)

FACTOR A = 0.125 / (Ro/ts) = 0.125 * ((Di + 2*ts)/2/ts)= 0.000773

B = 77.57 Mpa (FROM FIG. CS2 ; ASME SEC. II, PART D)

Sc = MIN. OF (S,B)= 77.57 MPA

DETERMINATION OF SECTIONAL PROPERTIES OF STIFFNER RINGS AT SUPPORT LOCATION.

STIFFNER SECTION = ISA 100 x 100 x 12NO OF STIFFNER PROVIDED AT LIFTING LOCATION = 3

CROSS-SECTIONAL AREA OF STIFFNER RING A1 = 19.03 FOR ONE RING SUPPORT

DIST. OF C.G. OF STIFFNER FROM VESSEL WALL = 71.6 mm

177.0MAX. SPACING BETWEEN TWO STIFFNERS = 200.00 mm

cm2

MOMENT OF INERTIA OF STIFFNER RING Is = cm4

DETERMINATION OF MOMENT OF INERTIA PROVIDED

W1= EFFECTIVE WIDTH OF OUTER SHELL PLATE ON EACH SIDE OF THE ATTACHMENT TO THE RING

== 123.09 mm= 12.31 cm

W2 = MAX. AVAILABLE WIDTH ON BOTH SIDE OF THE ATTECHMENT= MAX. SPACING BETWEEN TWO STIFFENERS / 2= 200/2 mm= 100 mm= 10 cm

W = FINAL EFFECTIVE LENGTH ON EACH SIDE OF THE ATTACHMENT RING.

= MIN(W1,W2)= 100 mm

SAY = 10 cm

DETERMINATION OF PROPERTIES OF COMBINED SECTION :

Xbar Max

2 * W

= 4.126 cm

X bar Max = ts+100-Xbar mm= 72.740 mm= 7.274 cm

RADIUS OF RING MEASURED ON NEUTRAL AXIS R' = (ID OF O.V. - 2 * X bar)/22208.74 mm

COMBINED AREA As1 = AREA OF STIFFNER + EFFECTIVE AREA OF SHELL PLATE= 2*W*(ts-c)+A1

= 41.03

As1 = 4103 FOR ONE STIFFNER

As = 12309 FOR THREE STIFFNER

= 123.09

PROVIDED COMBINED M.I.

=

= 832

2497.4 FOR THREE STIFFNER

COMBINED SECTION MODULUS OF RING SUPPORT Z = Iyy/Xbar Max

= 343.331

Z = 343330.77 FOR THREE STIFFNER

0.78*{(Di+2*ts)/2*(ts-C)}0.5

Xbar = [2*W*(ts-c)2/2 + A1*(ts-c+CG)]/[2*W*(ts-c)+A1]

cm2

mm2

mm2

cm2

Iyy =

2*W*(ts-c)*[(ts-c)/2 - Xbar]2 + Is + A1*(CG + ts - Xbar)2

cm4

Iyy = cm4

cm3

mm3

CHECK FOR STRENGTH OF VESSEL DURING LIFTING :

(AS PER CLAUSE G 3.3.3 OF BS-5500)

W1/2 W1/2

FACTORS DEPENDENT ON

0.015 FROM TABLE G.6 OF BS-5500

0.25

LOAD ACTING ON ONE RING DURING LIFTING CONSIDERING 5 % EXTRA FOR ECCENTRICITY & 1.5 TIMES FOR LIFTING FACTOR

W1 = 1.05*We/2 * 1.5= 0 KG= 0 Newtons

f10 = THE MAX. CIRCUMFERENTIAL STRESS IN THE RING

= (EQ. G.25 OF BS 5500)= 0.00 MPA< 138 MPA HENCE SAFE

q = THE TANGENTIAL SHEAR STRESS IN SHELL ADJACENT TO THE RING SUP.= 0.319 W1 / ((Di+ts)/2*ts)*(L - 2*A)/(L+4*b/3) (EQ. G.24 OF BS 5500)= 0 MPA

q allow = min. of (0.8 * f, 0.06*E*t/((Di+ts)/2))= 74.414010588 MPA> q HENCE SAFE

CHECK FOR STRENGTH OF VESSEL DURING SHIPPING :

g3 = VERTICAL(MAX.) ACCELARATION FACTOR FOR SEA SHIPMENT= 2g

LOAD ACTING ON ONE SUPPORT DURING SHIPPING CONSIDERING 5 % EXTRA FOR ECCENTRICITY & 2 TIMES FOR ACCELERATION FACTOR.

W1 = 1.05*We/2 * 2= 0 KG= 0 N

M3 = LONGITUDINAL BENDING MOMENT AT MID-SPAN

= (EQ. G.7 OF BS5500)= 0 N mm

M4 = LONGITUDINAL BENDING MOMENT AT SUPPORTS= W1*A*(1- (1-A/L+(r2-b2)/(2*A*L))/(1+4*b/(3*L))) (EQ. G.8 OF BS5500)= 0 N mm

f1 = LOGITUDINAL STRESS AT MID-SPAN, AT HEIGHTEST POINT OF THE C/S

= (EQ. G.9 OF BS5500)= 0.000 MPA

f1 allow = Sc = 77.6 MPA

f1 / f1 allow + Pc min/ Pc shell= 0.890< 1.000 HENCE SAFE

q

HALF OF INCLUDED ANGLE OF THE SUPPORT q = 90o (FOR TRUNIONS AT 180o APART)

HALF OF INCLUDED ANGLE K10 =

K11 =

K10*W1*R'/Z + K11*W1/As

W1*L/4 * ( (1+2*(r2 - b2)/L2) / (1 + 4*b/(3*L) - 4*A/L)

Pm * r / (2*ts) - M3 / (p * r2 * ts)

f2 = LOGITUDINAL STRESS AT MID-SPAN, AT LOWEST POINT OF THE C/S

= (EQ. G.10 OF BS5500)= 0.000 MPA< f = 138 MPA (HENCE SAFE)

f3 =

= (EQ. G.11 OF BS5500)WHERE K1 = 1 (TABLE G.2)

= 0 MPA

f3 allow = Sc = 77.6 MPA

f3 / f3 allow + Pc min/ Pc shell= 0.890< 1.000 HENCE SAFE

f4 =

= (EQ. G.12 OF BS5500)WHERE K2 = 1 (TABLE G.2)

= 0.00000 MPA< f = 138 MPA (HENCE SAFE)

q = TANGENTIAL SHEARING STRESSES SHELL NOT NEAR VESSEL END WITH RINGS ADDED

= K3 * W1 / ((Di+ts)/2*ts)*(L - 2*A)/(L+4*b/3) (EQ. G.13 OF BS5500)WHERE K3 = 0.319 (TABLE G.3)

= 0 MPA

q allow = min. of (0.8 * f, 0.06*E*t/((Di+ts)/2))= 74.414010588 MPA> q HENCE SAFE (TABLE G.3)

f7 = CIRCUMFERENTIAL STRESS AT THE HORN OF SADDLE , IN SHELL= C4 * K7 * W1 * r * c / I - K8 * W1 / a (EQ. G.19 OF BS5500)

WHERE C4 = -1 (TABLE G.5)K7 = 0.0316 (TABLE G.5)K8 = 0.303 (TABLE G.5)

c = X bar= 41.260 mm

I =

= 24974046a = As

= 12309f7 = 0 MPA

< 1.25 * f = 172.5 MPA

f8 = CIRCUMFERENTIAL STRESS AT THE HORN OF SADDLE , IN RING= C5 * K7 * W1 * r * d / I - K8 * W1 / a (EQ. G.20 OF BS5500)

WHERE C5 = 1 (TABLE G.5)K7 = 0.0316 (TABLE G.5)K8 = 0.303 (TABLE G.5)

d = X bar Max= 72.740 mm

I =

= 24974046a = As

= 12309f8 = 0 MPA

< 1.25 * f = 172.5 MPA

Pm * r / (2*ts) + M3 / (p * r2 * ts)

LONGITUDINAL STRESS AT THE SADDLES, AT THE HIGHEST POINT OF C/S

Pm * r / (2*ts) - M4 / (K1 * p * r2 * ts)

LONGITUDINAL STRESS AT THE SADDLES, AT THE LOWEST POINT OF C/S

Pm * r / (2*ts) + M4 / (K2 * p * r2 * ts)

FOR q = 150O

Iyy

mm4

mm2

FOR q = 150O

Iyy

mm4

mm2

COMBINED LOADING :

AS PER 5.3.3.2 OF 4WEQ-1515, REV.2, TANKS > 80000 LITERS CAPACITY

AND 60% OF THE LONGITUDINAL LOAD.

CHECK FOR STRESSES IN SKIRT

SYMBOL DESCRIPTION FORMULA UNIT VALUE

ftc4 COMBINED AXIAL STRESS Mpa 26.50

Ftc ALOW. TENSILE/COMP. STRESS 0.6 * fy Mpa 123

fsh4 COMBINED SHEAR STRESS Mpa 2.85

Fsh ALLOWABLE SHEAR STRESS 0.4 * fy Mpa 82.00

CHECK FOR STRESS IN ROSIN SUPPORTS.

SYMBOL DESCRIPTION FORMULA UNIT VALUE

fcr4 COMBINED COMP. STRESS Mpa 12.29

Fcr ALOW. TENSILE/COMP. STRESS fc / 4 Mpa 85.00

CHECK FOR STRESSES IN SKIRT

SYMBOL DESCRIPTION FORMULA UNIT VALUE

ftc5 COMBINED AXIAL STRESS Mpa 36.69

Ftc ALOW. TENSILE/COMP. STRESS 0.6 * fy Mpa 123

fsh5 COMBINED SHEAR STRESS fsh3 Mpa 2.98

Fsh ALLOWABLE SHEAR STRESS 0.4 * fy Mpa 82.00

CHECK FOR STRESS IN ROSIN SUPPORTS.

SYMBOL DESCRIPTION FORMULA UNIT VALUE

fcr5 COMBINED COMP. STRESS fcr3 Mpa 12.71

Fcr ALOW. TENSILE/COMP. STRESS fc / 4 Mpa 85.00

AS ALLOWABLE STRESS > ACTUAL TRESS, FOR ALL CASES, DESIGN IS SAFE.

MAX LOAD ACTING ON ROSIN =fcr4*Ar N 57649.47

<1> THE LATERAL LOAD SHALL BE COMBINED SIMULTANEOUSLY WITH 60% OF THE VERTICAL

0.6*ftc1+SQRT(ftc2 2+ (0.6*ftc3) 2)

SQRT(fsh2 2+ (0.6*fsh3) 2)

SQRT(fcr2 2+ (0.6*fcr3) 2)

<2> THE VERTICAL LOAD SHALL ALSO BE CONSIDERED COMBINED WITH THE LONGITUDINAL LOAD

ftc1+ftc3

LOCAL LOAD ANALYSIS FOR OUTER VESSEL SHELL (V16610AC) Part -1

STABILISER AREA UNDER SHIPPING LOADING:(Ref.: Pressure Vessel Hand Book - H H Bednar, Section 7.4 & Figs 7.6, 7.7, 7.8, 7.9)

Stabilisers are inserted thourgh holes made in outer vessel Inner vessel Outer vesselas shown. Local load analysis is divided into two cases as Add padbelow:

1. Considering stabiliser attached to the shell having ID equal toOD of outer vessel less thk of add padand thickness equal to add pad. Pad

2. Considering add pad attached to the shell having ID equal to StabiliserOD of outer vessel and thickness equal to pad Holder pipe

3 Considering pad attached to the shell having ID equal toID of outer vessel and thickness equal to outer vessel

P = Radial Load = Max load during shipping = 5879 KgDirection of P (I=Inward, O=Outward) O

= Longitudinal Shear Load = 0.00 Kg= Tangential Shear Load = 0.00 Kg= Longitudinal Moment = 0.00 Kg-mm= Tangential Moment = 0.00 Kg-mm

T = Torque = 0.00 Kg-mmp = Design Pressure = 0.000S = Allowable stress = 14.062

Case -1 :Attachment type(C=Circular, R=Rectangular) = C

ro = Outside radius of attachment = 38.00 mm

Di = Shell ID = 4996 mmts = Shell thickness (Add pad thk) = 16 mmR = Mean shell Radius = (Di + ts) / 2 = 2506 mm

Stress at edge of attachment (Stabiliser):g = R / ts = 156.63b = 0.875 * ro / R = 0.013

Cp = From fig 7.6 = 1.75= From fig 7.8 = 0.00= From fig 7.9 = 0.00

From fig 7.10 0.00= Stress due to P = Cp * P / ts^2 = 40.19= = 0.00= = 0.00= = 0.00= = 0.00= = 0.00= Circumferential Stress due to p = p * R / ts = 0.00= Longitudinal Stress due to p = p * R /2* ts 0.00

Longitudinal Stress due to ML=CLL*ML*1000/Ts^2 * R /2* ts = 0= = 40.19

sb = 40.19Allowable combined stress = 2 * S = 28.124

VL

VT

ML

MT

Kg/cm2(g)Kg/mm2

CT

CLT

CLL

s1a Kg/mm2

s2a Stress due to VL = VL / (p * ro * ts) Kg/mm2

s3a Stress due to VT = VT / (p * ro * ts) Kg/mm2

s4a Stress due to ML = CLT * ML / (ts^2 * R * b) Kg/mm2

s5a Stress due to MT = CT * MT /(ts^2 * R * b) Kg/mm2

s6a Stress due to T = T / (2 * p * ro^2 * ts) Kg/mm2

s7a Kg/mm2

s7a1 Kg/mm2

s8a Kg/mm2

sa Combined circumferential stress=s1a+s4a+s5a+s7a Kg/mm2

Combined longitudinal stress=s1a+s7a1+S8a Kg/mm2

Kg/mm2

Case 2Attachment type(C=Circular, R=Rectangular) = C

ro = Outside radius of attachment = 65 mm

Di = Shell ID = 5028 mmts = Shell thickness (Pad Thk) = 12 mmR = Mean shell Radius = (Di + ts) / 2 = 2520 mm

Stress at edge of attachment (Stabiliser):g = R / ts = 210.000b = 0.875 * ro / R = 0.023

Cp = From fig 7.6 = 1.40= From fig 7.8 = 0.00 N/A= From fig 7.9 = 0.00 N/A

From fig 7.10 0.00= Stress due to P = Cp * P / ts^2 = 57.16= = 0.00= = 0.00= = 0.00= = 0.00= = 0.00= Stress due to p = p * R / ts = 0.00= Longitudinal Stress due to p = p * R /2* ts 0.00

Longitudinal Stress due to ML=CLL*ML*1000/Ts62 * R /2* ts = 0= = 57.16

Sb = 57.16Allowable combined stress = 2 * S = 28.124

CT

CLT

CLL

s1a Kg/mm2

s2a Stress due to VL = VL / (p * ro * ts) Kg/mm2

s3a Stress due to VT = VT / (p * ro * ts) Kg/mm2

s4a Stress due to ML = CLT * ML / (ts^2 * R * b) Kg/mm2

s5a Stress due to MT = CT * MT /(ts^2 * R * b) Kg/mm2

s6a Stress due to T = T / (2 * p * ro^2 * ts) Kg/mm2

s7a Kg/mm2

s7a1 Kg/mm2

s8a Kg/mm2

sa Combined circumferential stress=s1a+s4a+s5a+s7a Kg/mm2

Combined longitudinal stress=s1a+s7a1+S8a Kg/mm2

Kg/mm2

Case -3 :

Pad type(C=Circular, R=Rectangular) = C

rp = Outside radius of pad = 100.0 mm

Di = Shell ID = 5000 mm

ts = Shell thickness = 14 mm

R = Mean shell Radius = (Di + ts) / 2 = 2507 mm

Stress at edge of attachment (Pad):g = R / ts = 179.071b = 0.875 * rp / R = 0.035

Cp = From fig 7.6 = 1.00

= From fig 7.8 = 0.00 N/A

= From fig 7.9 = 0.00 N/A

From fig 7.10 0.00

= Stress due to P = Cp * P / ts^2 = 29.99

= = 0.00

= = 0.00

= = 0.00

= = 0.00

= = 0.00

= Stress due to p = p * R / ts = 0.00

= Longitudinal Stress due to p = p * R /2* ts 0.00

Longitudinal Stress due to ML=CLL*ML*1000/Ts62 * R /2* ts = 0.00

= = 29.99

= 29.99

Allowable combined stress = 2 * S = 28.124

Compression check for stabilisers:

Do = OD of stabiliser = 76.00 mm

Di = ID of stabiliser = 0.00 mm

Ar = = 4536.46

= Compressive stress in stabiliser = P / Ar = 1.30

Allowable compressive stress = 3.47

CT

CLT

CLL

s1p Kg/mm2

s2p Stress due to VL = VL / (p * rp * ts) Kg/mm2

s3p Stress due to VT = VT / (p * rp * ts) Kg/mm2

s4p Stress due to ML = CLT * ML / (ts^2 * R * b) Kg/mm2

s5p Stress due to MT = CT * MT /(ts^2 * R * b) Kg/mm2

s6p Stress due to T = T / (2 * p * rp^2 * ts) Kg/mm2

s7p Kg/mm2

s7a1 Kg/mm2

s8a Kg/mm2

sa Combined circumferential stress=s1a+s4a+s5a+s7a Kg/mm2

sb Combined longitudinal stress=s1a+s7a1+S8a Kg/mm2

Kg/mm2

Cross sectional area of stabiliser = p/4*(Do2-Di2) mm2

fcr Kg/mm2

Fcr Kg/mm2

SYMBOL DESCRIPTION FORMULA UNIT VALUE

O.D. OF STABILZER BAR MM 76

I.D. OF STABILIZER BAR MM 0

C/S AREA OF STAB. BAR 4536.46

COMP. LOAD ON BAR SEISMIC LOAD KG 124359

N 1219542

IT IS ASSUMED THAT THE TOTAL LOAD ACTS ON ANY ONE COLUMN OF BARS

NO OF ROWS OF STABILIZER BARS NOS 2.00

FC1 FC1 = FC /Nc N 609770.83

COMP. STRESS IN BAR MPa 134.42

fc COMPRESSIVE STRENGTH OF ROSIN MPa 339.8

ALLOWABLE COMP. STRESS fc/4 MPa 84.9

RATIO 1.582

< 1.00(SAFE)

B4 DESIGN CHECK FOR STABILIZERS FOR INNER VESSEL

DOR

DIR

AS p / 4 * (DOR2 - DIR

2) MM2

FC

NC

COMPRESSSIVE LOAD ON EACH BAR

sCR FC1 / ( AS)

sCRA

sCR / sCRA

B4 EVALUATION OF EXTERNAL PRESSURE DUE TO PERLITE

Outside Volume of Inner vessel V1OD 4126 mm

WL to WL 21010 mmDish type 2 : 1 Ellipsoidal

SF 50 mm

Volume 291.45

Inside Volume of Outer vessel V2ID 4500 mm

Radius 2250 mmWL to WL 16572 mm

Crown Radius 4050 mmCoefficient 0.30334 -

Knuckle Radius 50 mmSF 50 mm

Volume 266.75

Volume of perlite V = V2 - V1

-24.69

Weight of perlite Wp = V * 110-2716 Kg

OUTER SURFACE AREA OF SHELL 273.67

OUTER SURFACE AREA OF DISHED END 19.26

TOTAL OUTER SURFACE AREA OF IV 312.18

PRESSURE DUE TO PERLITE Pp1= -0.0009 Kg/Cm2

CONCLUSION : EXTERNAL PRESSURE DUE TO PERLITE ON I.V IS NEGLIGIBLE HENCE NOT CONSIDERED.

m3

m3

m3

M 2

M 2

M 2

B6 LIFTING HOOK DESIGN CALCULATIONS :

REFERANCE BOOK: PRESSURE VESSEL DESIGN HAND BOOK BY HENRY H. BEDNAR (SECOND EDITION)

We = EMPTY WEIGHT OF TANK = 39200 kg

a) PROPERTIES OF WELD :a.1) LIFTING LUG ON DISH END

Y22

w1t1 = SIZE OF W1 FILLET LEG 22 mmt2 = SIZE OF W2 FILLET LEG 22 mm

L1 = LENGTH OF W1 150 mm L2 w2

L2 = LENGTH OF W2 200 mm L1

w1 = THICKNESS OF LUG 22 mm Xw2 = WIDTH OF W2 75 mm

75

YPROPERTIES OF W1 :

a1 = EFFECTIVE AREA OF W1 a2 = EFFECTIVE AREA OF W2

= 2* L1 * t1 * 0.707 = 2*(L2 + w2) * t2 * 0.707= 4666.2 mm2 = 8554.7 mm2

Ixx1 = M.I. @ X-X AXIS OF W1 Ixx2 = M.I. @ X-X AXIS OF W2

= == 8749125 mm4 = 44069667 mm4

Iyy1 = M.I. @ Y-Y AXIS OF W1 Iyy2 = M.I. @ Y-Y AXIS OF W2

= == 564610.2 mm4 = 9842766 mm4

Zxx1 = SECTIONAL MODULUS @ X-X AXIS Zxx2 = SECTIONAL MODULUS @ X-X AXIS= 2*Ixx1 / L1 = 2*Ixx2 / L2= 116655 mm3 = 440697 mm3

Zyy1 = SECTIONAL MODULUS @ Y-Y AXIS Zyy2 = SECTIONAL MODULUS @ Y-Y AXIS= 2*Iyy1 / w1 = 2*Iyy2 / w2= 51328.2 mm3 = 262474 mm3

2/12 *L13 * t1*0.707 2/12 *L23 * t2*0.707+ 2*w2*t2*.707*(L2/2)2

2*L1*t1*0.707*(w1/2)2 2/12 *w23 * t2*0.707+2*L2*t2*0.707*(w2/2)2

b) DETERMINATION OF MAX. PERMISSIBLE STRESS

ALLOABLE SHEAR STRESS IN LIFTING LUG= 0.4 * YIELD STRESS OF LUG MATERIAL= 0.4 * 21.09 kg / mm2 (FOR SA240M TYP304 , Fy = 21.093 kg/mm2)= 8.44 kg / mm2

CHECK FOR LIFTING LUG

W = MAX POSSIBEL WEIGHT ON LUG WHILE LIFTED WITH SINGLE CRANE= We/2*1.5 kg= 29400 kg

Fv 60 DEGREEF

R1 = RADIUS OF LIFTING LUGq Fh = 66 mm

r1 = RADIUS OF HOLE IN THE LUG= 26 mm

Fh h1 = DIST. OF HOLE FROM WELD= 60 mm

h2 = DIST. OF HOLE FROM W2(AT CENTER)

= 68 mm

Fv = VERTICAL COMPONENT OF FORCE ON LIFTING LUG= W= 29400 kg

Fh = HORIZONTAL COMPONENT OF FORCE ON LIFTING LUG== 16974.1 kg

F = RESULTANT FORCE

== 33948.2 kg

SHEAR STRESS IN LIFTING LUG= F / (2*(R1-r1)*w1)= 19.29 kg / mm2 < 8.4372 kg / mm2 ( SAFE )

ss per =

q (MIN) =

W / (TAN q )

SQRT(Fv2 + Fh2)

ss =

CHECK FOR WELD W1 :

M1 = Fh * h1= 1018446 kg mm

STRESS IN WELD DUE TO M1= M1/Zxx1= 8.730 kg / mm2

Fv / a1= 6.301 kg / mm2

Fh / a1= 3.638 kg / mm2

RESULTANT SHEAR STRESS IN WELD

== 15.465 kg / mm2 < 8.44 kg / mm2 ( SAFE )

CHECK FOR WELD W2 :

M2 = Fh * h2= 1154239 kg mm

STRESS IN WELD DUE TO M2= M2/Zxx2= 2.619 kg / mm2

Fv / a2= 3.437 kg / mm2

Fh / a2= 1.984 kg / mm2

RESULTANT SHEAR STRESS IN WELD

=6.373 kg / mm2 < 8.44 kg / mm2 ( SAFE )

SUMMERY

ACTUAL STRESSES,kg/mm2 ALLOWABLE STRESSES,kg/mm2 SHEARE STRESSES IN LUG 19.29 8.44 SHEARE STRESSES IN

15.465 8.44WELD BETWEEN LUG & PAD SHEARE STRESSES IN

6.373 8.44WELD BETWEEN PAD &D'END

sb1 =

sv1 =

sh1 =

sr1 =

SQRT((sb1+sv1)2+sh12)

sb2 =

sv2 =

sh2 =

sr2 =

SQRT((sv2+sb)2+sh22)

C1. DESIGN SUMMARY (2:1 ELLIPSOIDAL)

SF = 40THK MIN.** = 14THK. NOM. = 18

** FOR CROWN AND KNUCKLE PORTION ONLY.

4100 13

21

00

0 W

L T

O W

L

TWISTED FLAT 75 x 8mmWITH 150 x 200 x 16MM THK PAD

SF = 40THK MIN.** = 14THK. NOM. = 18

VOLUME : GROSS VOLUME 311447992359.1

NET VOLUME 295875592741.2

WEIGHTS : EMPTY WEIGHT OF I. V. KG 39200WT. OF I.V. WITH LIN. KG #REF!WT. OF I.V. WITH LOX. KG #REF!WT. OF I.V. WITH LAR KG 278563

NO OF TWISTED FLAT = 3LOAD ON EACH TWISTED FLAT =

=278564/3= 92854 KG

WE HAVE CONSIDERED LOAD Fx = 92900 KG

LOAD IN Fy DIRECTION = Fx/COS(60)*=92900/COS(60)*

WE HAVE CONSIDERED LOAD Fy = 185800 KG

MM3

MM3

WT.OF I.V.WITH LAR / NO OF TWISTED FLAT

DOC NO V0638AC - D01 PAGE: of

REVISION 0 PREPARED BY: JPP

DATE 19.03.09 CHECKED BY: DVP

MODEL NO. V0638AC APPROVED BY: DVP

JOB NO. STOCK

This is a proprietory document of Inox India Ltd. Contents of this page shall not be either copied or Xeroxed without the written permission from Inox India Ltd.

1. STRENGTH CAL. FOR OUTER VESSEL FOR EXTERNAL PRESSURE:

1.1. DESIGN DATA :JOB NO : STD

CAPACITY : 6 m3DESIGN CODE : C.G.A - 341, 2007.

M.O.C. FOR SHELL IS2062 Gr A/BM.O.C. FOR HEAD SA 516 GR 70

FLUID STORED PERLITE + VACUUMWORKING PRESSURE VACUUM

STIFFNING RING ISA 75 X 75 x 10

SR. NO. DESCRIPTION SYMBOL VALUE UNITV0638AC

1 DESIGN PRESSURE Po -1.0332 MINIMUM COLLAPSING PRESSURE P 30 PSI3 INSIDE DIAMETER Di 2200 MM4 W.L. TO W.L. LENGTH Ls 2730 MM5 SHELL THICKNESS ts 8 MM6 INSIDE CROWN RADIUS R 2200 MM7 INSIDE KNUCKLE RADIUS r 50 MM8 S. F. OF DISHED ENDS S.F. 50 MM9 MINIMUM THICKNESS OF HEAD th min. 6.2 MM

10 NOMINAL THICKNESS OF HEAD th 8 MM11 CORROSION ALLOWANCE C 0 MM12 MODULUS OF ELASTICITY E 2.90E+07 PSI13 MAX. UNSUPPORTED LENGTH OF VESSEL ALLOWED L 3060 MM

13A ACTUAL MAX UNSUPPORTED LENGTH La 3060 MM

14 CROSS-SECTIONAL AREA OF STIFFNER RING A 14.0215 DIST. OF C.G. OF STIFFNER FROM VESSEL WALL CG 52.80 MM

16 MOMENT OF INERTIA OF STIFFNER RING 71.4017 SP. GRAVITY OF VESSEL MATERIAL 7.8518 DESIGN TEMPERATURE -20 & 55 DEG. C19 HEIGHT OF LEG SUPPORT FROM BOTTOM OF O.V Lsp 550 MM

20 ** WIND PRESSURE (TABLE 16-F OF UBC - AT 58 mps) 211.520 WEIGHT OF PERLITE Wp 18800 KG21 EMPTY WEIGHT OF INNER VESSEL Wiv 39200 KG22 WEIGHT OF LIQUID WL #REF! KG

KG/CM2 g

CM2

Is CM4 r s

qs KG/M2

This is a proprietory document of Inox India Ltd. Contents of this page shall not be either copied or Xeroxed without the written permission from Inox India Ltd.

1.2. CRITICAL COLAPSING PRESSURE

1 SHELL : ( 3.6.2.1 OF CGA 341)

Pc shell == 43.61 PSI> 30.00 PSI

2 DISHED END : (3.6.2 OF CGA 341)

Pc head == 57.58 PSI> 30.00 PSI

1.3. CALCULATIONS FOR STIFFNER RING.

1 REQUIRED MOMENT OF INERTIA OF COMBINED SECTION : (3.6.2.4 OF CGA 341)

= 158.46

2 DETERMINATION OF MOMENT OF INERTIA PROVIDED : (3.6.2.2 OF CGA 341)

W = EFFECTIVE WIDTH OF OUTER SHELL PLATE ON EACH SIDE OF THE ATTACHMENT TO THE RING

== 73.44 MM= 7.344 CM

DETERMINATION OF PROPERTIES OF COMBINED SECTION.

2 * W

= 3.490 CM

PROVIDED COMBINED M.I.

=

= 277.64

> 158.46

2.6 * E *[(ts-C)/(Di+2*ts)]2.5 / {[L/(Di+2*ts)] - 0.45*[(ts-C)/(Di+2*ts)]0.5}

0.25 * E * ((th min - C) / R)2

I' = 1.38 * (Di + 2*ts)3 * L / E

CM4

0.78*{(Di+2*ts)/2*(ts-C)}0.5

Xbar = [2*W*(ts-C)2/2 + A*(ts-C+CG)]/[2*W*(ts-c)+A]

Iyy =

2*W*(ts-C)*[(ts-C)/2 - Xbar]2 + Is + A*(CG + ts - Xbar)2

CM4

CM4 ( I' )

This is a proprietory document of Inox India Ltd. Contents of this page shall not be either copied or Xeroxed without the written permission from Inox India Ltd.

CALCULATIONS FOR NO. OF STIFFNER REQUIRED.

HEIGHT OF DISHED ENDS Ho = CRo - SQRT((CRo - Do/2)*(CRo + Do/2 - 2* ro))

WHERE CRo = OUTSIDE CROWN RADIUS= R + th= 2208 MM

ro = OUTSIDE KNUCKLE RADIUS= r + th= 58 MM

HENCE Ho = 332 MM

Ls1 = TOTAL EFFECTIVE LENGTH OF SHELL FOR DETERMINATION OF STIFFNERS= Ls + 2*S.F. + 2/3 * Ho= 3051.33 MM

NO. OF STIFFNER REQUIRED= Ls1 / L + 1= 2 TOTAL

ON SHELL Ns= 0 (As dished ends are to be considered as stiffening rings)

2. DETERMINATION OF SECTIONAL PROPERTIES OF C/S OF LEG SUPPORT

HEIGHT OF WEB h MMWIDTH OF FLANGE w MMTHICKNESS OF WEB tw MMTHICKNESS OF FLANGE tf MM

C.S AREA = (h - 2*tf)*tw + 2 * w * tf

A = 3176.88

= 31.77 w

Cy = h/2 tw= 100 mm tf

10 CMCx = ((h-2*tf)*tf*tw/2 + 2*w * tf*(w/2))/A

= 21.404 mm= 2.140438 CM

Ixx =

= 16800191

= 1680.02

Iyy =

= 2423714

= 242.37

Z xx = Ixx / Cy

= 168001.9

= 168.0019

Z yy = Iyy / (w - Cx)

= 30837.78

= 30.83778

ISMB 100 11.5 14.6 100 75 7.2 4 257.5 40.8ISMB 125 13 16.6 125 75 7.6 4.4 449 43.7ISMB 150 14.9 19 150 80 7.6 4.8 726.4 52.6ISMB 175 19.3 24.62 175 90 8.6 5.5 1272 85ISMB 200 25.4 32.33 200 100 10.8 5.7 2235.4 150

mm2

Cm2

1/12*(h-2*tf)3*tw + 2*tf*w*(tf/2-Cy)2 + 2/12*w*tf3

mm4

cm4

1/12*(h-2*tf)*tw3 + (h-2*tf)*tw*(tw/2 - Cx)2 + 2/12*tf*w3+2*tf*w*(w/2-Cx)2

mm4

cm4

mm3

cm3

mm3

cm3

Designation

Weight per Meter W in KG.

Sectional Area A IN CM2

Depth of Section h

IN mm

Width of Flange b

in mm

Thickness of Flange tf in mm

Thickness of Web tw

in mm

Moment of Inertia in cm4

Ixx Iyy

ISMB 250 37.3 47.55 250 125 12.5 6.9 5131.6 334.5ISMB 300 44.2 56.26 300 140 12.4 7.5 8603.6 453.9ISMB 350 52.4 66.71 350 140 14.2 8.1 13630.3 537.7ISMB 400 61.6 78.46 400 140 16 8.9 20458.4 622.1ISMB 500 86.9 110.74 500 180 17.2 10.2 45218.3 1369.8ISMB 600 122.6 156.21 600 210 20.8 12 91813 2651

Connection Detaiil in mm

C51.5 10.9 9 4.5 98 65 17.5 35.5 3.571.8 11.7 9 4.5 98 89.2 17.9 35.3 3.796.9 13.1 9 4.5 98 113.9 18.05 37.6 3.9

145.4 18.9 10 5 98 134.5 20.25 42.25 4.25223.5 30 11 5.5 98 152.7 23.65 47.15 4.35

Moduli of Section in cm3 Radius at

Root r1 in mm

Radius at Toe r2 in

mm

Slope of Flange in D degreeZxx Zyy h1 h2 b1

410.5 53.5 13 6.5 98 194.1 27.95 59.05 4.95573.6 64.8 14 7 98 241.5 29.25 66.25 5.25778.9 76.8 14 7 98 288 31 65.95 5.55

1022.9 88.9 14 7 98 334.4 32.8 65.55 5.951808.7 152.2 17 8.5 98 424.1 37.95 84.9 6.63060.4 252.5 20 10 98 509.7 45.15 99 7.5

Connection Detaiil in mm

g35 55 1235 55 1240 55 1250 55 1255 60 16

Maximum Size of Flange Rivet in mm

g1 (Min)

65 65 2280 65 2280 65 2280 70 22

100 75 28140.1 80 25, 32

3.0 SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION)

AS PER AP STANDARD 4WEQ-1005 REV 1 & UBC - 1997

V0638AC

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo LAR OPER. WEIGHT OF EQUIPMENT Kg #REF!

N NO. OF LEG Nos 3

L LENGTH OF LEG CM 777

E YOUNG'S MODULUS 2038951

g GRAVITIONAL ACCELARATION 981

IXX MI OF LEG SUPPORT @ X-X 1680.02

IYY MI OF LEG SUPPORT @ Y-Y 242.37

Y DEFLECTION CM #REF!T PERIOD OF VIBRATION SEC #REF!

SEISMIC ZONE Considering California Zone - 4

SOIL TYPE - SD

Na NEAR SOURCE FACTOR AS PER TABLE 16-S - 1.00

Nv NEAR SOURCE FACTOR AS PER TABLE 16-T - 1.20

Cv SEISMIC COFFICIENT AS PER TABLE 16-R - 0.77

I* IMPORTANCE FACTOR AS PER TABLE 16-K - 1.25R FACTOR AS PER TABLE 16-P - 2.20

Ca SEISMIC COFFICIENT AS PER TABLE 16-Q - 0.44

Z SEISMIC ZONE FACTOR AS PER TABLE 16-I - 0.40

Ft CONCENTRATED FORCE AT TOP AS PER 4WEQ-1005-R1,7.6.1 Kg 0.00

V1 AS PER 34.2 OF 1634.5 0.56*Ca*I*Wo Kg #REF!

V2 AS PER 34.3 OF 1634.5 ((1.6*Z*Nv*I)/R)*Wo Kg #REF!

V3 AS PER 30.5 OF 1630.2.1 (2.5*Ca*(I/R))*Wo Kg #REF!

V MAX. OF V1, V2 V3 Kg #REF!Fe SHEAR FORCE V / 1.4 (UBC - 1612.3.2) Kg #REF!

* IMPORATNCE FACTOR IS CONSIDERED FOR CALIFORNIA

Kg/CM2

CM/SEC2

CM4

CM4

2*Wo*L3/(3*N*E(IXX+IYY))

2*p*(Y/g)1/2

5.0 OUTER VESSEL WEIGHT CALCULATIONS :

SYMBOL PARTICULARS FORMULA UNIT VALUE

Ws WT. OF SHELL CYLINDER KG 2061B.D. BLANK DIA. OF DISHED ENDS (Di+2*th)+(Di+2*th)/24 mm 2442

+ 2/3*(r+th)+2*S.F.

Wh WT. OF DISHED ENDS : KG 589Wst WT. OF STIFFNERS 1100Wex WT. OF SUPPORT, LEG, LUG, KG 500

PAD, PIPEING, VALVES, ETC.Wov WT. OF OUTER VESSEL Ws + Wh + Wst + Wex KG 4250

WeTOTAL EMPTY WT. OF EQUP. Wiv + Wov + Wp KG 7460

SAY = KG 7500

Wo OPERATING WEIGHT OF EQUIP.KG #REF!

say #REF!

p * (Di+ts) * Ls * ts * r s

2 * p/4* (B.D.)2 * th *rs

We + WL

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

DESIGN OF OUTER VESSEL :

1.0 DESIGN DATA :

DESIGN CODE : ASME SECTION VIII DIV.1,ED-2007M.O.C. FOR SHELL SA 516 GR 70M.O.C. FOR HEAD SA 516 GR 70CONTENT PERLITE. + VACUUMWORKING PRESSURE VACUUMSECTION OF STIFFNING RING ISA 100 x 100 x 10

SR. NO. DESCRIPTION SYMBOL VALUE UNIT

1 DESIGN PRESSURE Po 0.1033 Mpa(g)2 INSIDE DIAMETER Di 4500 mm3 W.L. TO W.L. LENGTH Ls 16572 mm4 SHELL THICKNESS ts 14 mm5 INSIDE CROWN RADIUS R 4050 mm6 INSIDE KNUCKLE RADIUS r 500 mm7 S. F. OF DISHED ENDS S.F. 50 mm8 MINIMUM THICKNESS OF HEAD th min. 15 mm9 NOMINAL THICKNESS OF HEAD th 18 mm

10 CORROSION ALLOWANCE (EXTERNAL) c 3 mm11 MODULUS OF ELASTICITY E 29000000 PSI12 MAX. UNSUPPORTED LENGTH OF VESSEL L 1250 mm13 CROSS-SECTIONAL AREA OF STIFFNER RING As 19.0314 DIST. OF C.G. OF STIFFNER FROM VESSEL WALL CG 71.6 mm15 MOMENT OF INERTIA OF STIFFNER RING 17716 SP. GRAVITY OF VESSEL MATERIAL 7.85 -17 DESIGN TEMPERATURE -20 to+55 deg. C

cm2

Is cm4 r s

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

2.0 CHECK FOR DISHEND THICKNESS : (UG-33(e) & L-6.2 OF ASME SEC.VIII DIV. 1)

SYMBOL PARTICULARS FORMULA UNIT VALUE

thc CORRODED THICKNESS OF DISHEND th min - c mm 12Ro OUTSIDE CROWN RADIUS OF D'END R + th mm 4065A FACTOR A 0.125/(Ro/thc) 0.000369B FACTOR B FROM TABLE. CS-2 OF Mpa(g) 3.83E+01

ASME SEC. II, PART DPa MAXIMUM ALLOWABLE EXTERNAL B/(Ro/t) Mpa(g) 0.1130

WORKING PRESSURE

ACTUAL EXTERNAL PRESSURE = 0.1013 Mpa(g) < 0.1130 Mpa(g)HENCE DISHEND THICKNESS PROVIDED = 6.2 MM MIN. IS O.K.

3.0 CHECK FOR SHELL THICKNESS : (UG-28 OF ASME SEC. VIII DIV. 1)

SYMBOL PARTICULARS FORMULA UNIT VALUE

Do OUTSIDE DIAMETER OF SHELL Di + 2 * ts mm 4528tsc CORRODED THICKNESS OF SHELL ts - c mm 11Do/t Do / tsc 411.64L/Do L / Do 0.276

A FACTOR A FROM TABLE. G OF 0.0005 ASME SEC. II PART D

B FACTOR B FROM TABLE CS-2 OF Mpa(g) 5.25E+01ASME SEC. II, PART D

Pa MAXIMUM ALLOWABLE EXTERNAL 4*B/(3*(Do/t)) Mpa(g) 0.170WORKING PRESSURE

ACTUAL EXTERNAL PRESSURE = 0.1013 Mpa (g) < 0.170 Mpa (g)HENCE SHELL THICKNESS PROVIDED = 8 MM IS O.K.

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

4.0 CHECK FOR STIFFENER RINGS PROPERTIES (UG-29 OF ASME SEC. VIII. DIV. 1)

4.1 DETERMINATION OF REQUIRED MOMENT OF INERTIA

SYMBOL PARTICULARS FORMULA UNIT VALUE

P DESIGN EXT. PRESSURE -Po Mpa(g) 0.1033Do OUTSIDE DIA. OF SHELL Di + 2 * ts mm 4528t CORODED SHELL THICKNESS ts - c mm 11

As C/S AREA OF STIFFNER As 1903Ls DIST. BETWEEN LINE OF SUP. L mm 1250B FACTOR B 3/4*(P*Do)/(t+As/Ls) Mpa(g) 28.01A FACTOR A FROM TABLE. CS-2

OF ASME SEC. II PART D 0.000280CORRESPONDING TO BREQUIRED M.I. OF 8248298 RING + SHELL 824.830

CONVERSION: 1 PSI = 0.00689 Mpa(g)

4.2 DETERMINATION OF MOMENT OF INERTIA PROVIDED

W

SYMBOL PARTICULARS FORMULA UNIT VALUE

W EFFECTIVE WIDTH OF SHELL 1.1 * SQRT(Do * t) mm 245.49COMBINED C.G. DISTANCE mm 37.372PROVIDED COMBINED M.I. 8405898.7

841

<PROVIDED COMBINED MOMENT OF INERTIA IS MORE THAN REQUIRED COMBINED MOMENT OF INERTIA HENCE SELECTED SECTION OF

HENCE, STIFFNER RING IS O.K.

mm2

Is' (Do2 * Ls * (t+As/Ls) * A)/10.9 mm4 cm4

Xbar [W*t2/2 + As*(t+CG)]/[W*t+As]Is' pro W * t * [t/2 - Xbar]2 + Is mm4

+ As*(CG+t - Xbar)2 cm4

Is' Is' pro

_____________________________________________________________________________________This is proprietory document of INOX INDIA LTD. Contents of this page shall not be either copied or xeroxed without

the written permission from INOX INDIA LTD, Baroda

4.3 CALCULATIONS FOR NO. OF STIFFENER REQUIRED.

HEIGHT OF DISHED ENDS Ho = CRo - SQRT((CRo - Do/2)*(CRo + Do/2 - 2* ro))

WHERE CRo = OUTSIDE CROWN RADIUS= R + th= 4068.00 mm

ro = OUTSIDE KNUCKLE RADIUS= r + th= 518.00 mm

HENCE Ho = 978 mm

Ls1 = TOTAL EFFECTIVE LENGTH OF SHELL FOR DETERMINATION OF STIFFENERS= Ls + 2*S.F. + 2/3 * Ho= 17324.00 mm

NO. OF STIFFENER REQUIRED= Ls1 / L -1= 14 TOTAL

3. SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION) FOR EQUIPMENT

AS PER AP STANDARD 4WEQ-1005 REV 1 & UBC - 1997

VA2118A

SYMBOL DESCRIPTION FORMULA UNIT VALUE

Wo LAR OPER. WEIGHT OF EQUIPMENT WITH LAR Kg 22500

N NO. OF LEG Nos 3

L LENGTH OF LEG CM 791

E YOUNG'S MODULUS 2038951

g GRAVITIONAL ACCELARATION 981

IXX MI OF LEG SUPPORT @ X-X 6777.25

IYY MI OF LEG SUPPORT @ Y-Y 2653.19

Y DEFLECTION CM 229.0652T PERIOD OF VIBRATION SEC 3.0362

SEISMIC ZONE Considering california zone - 4

SOIL TYPE - SD

Na NEAR SOURCE FACTOR AS PER TABLE 16-S - 1.00

Nv NEAR SOURCE FACTOR AS PER TABLE 16-T - 1.20

Cv SEISMIC COFFICIENT AS PER TABLE 16-R - 0.77

I* IMPORTANCE FACTOR AS PER TABLE 16-K - 1.25R FACTOR AS PER TABLE 16-P - 2.20

Ca SEISMIC COFFICIENT AS PER TABLE 16-Q - 0.44

Z SEISMIC ZONE FACTOR AS PER TABLE 16-I - 0.40

Ft CONCENTRATED FORCE AT TOP AS PER 4WEQ-1005-R1,7.6.1 Kg 0.00

V1 AS PER 34.2 OF 1634.5 0.56*Ca*I*Wo Kg 6930

V2 AS PER 34.3 OF 1634.5 ((1.6*Z*Nv*I)/R)*Wo Kg 9818

V3 AS PER 30.5 OF 1630.2.1 (2.5*Ca*(I/R))*Wo Kg 14063

V MAX. OF V1, V2 V3 Kg 14063

Fe SHEAR FORCE V / 1.4 (UBC - 1612.3.2) Kg 10045

* Importance factor is taken for California Zone 4

Kg/CM2

CM/SEC2

CM4

CM4

2*Wo*L3/(3*N*E(IXX+IYY))

2*p*(Y/g)1/2

NOT TO GIVE AS PER AP1515

As per Air Prod directive Lateral accn factor for LOX is 0.536

LAF LAR Fe / W LAR 0.446

LAF LOX Fe / W LOX 0.536Fe LOX SHAER FORCE Fe LOX = W0 * LAF LOX kg 18771

Fe SHAER FORCE CONSIDERED Max of Fe LAR,Fe LOX kg 18771

LATERAL ACCELERATION FACTOR (For LAR Service)LATERAL ACCELERATION FACTOR (For LOX Service)

98504.8

SEISMIC LOAD CALCULATIONS (IN OPERATING CONDITION)

I IMPORTANCE FACTOR - 1.25

a ACCELERATION COEFFICIENT - 0.11

L MAX. LENGTH OF LEG SUPPORT mm mm 550

H VESSEL HEIGHT OUT TO OUT FROM TOP TO BOTTOM D'ENDS mm 5538

hn TOTAL HEIGHT OF VESSEL ABOVE BOT. OF SUPPORTS (H + L) m m 6.088

T STRUCTURAL PERIOD OF VIBRATION (hn / 46) sec 0.1323

C EARTHQUAKE DESIGN COEFFICIENT - 0.5294

S SITE FACTOR - 1

Rf STRUCTURAL RESPONSE FACTOR - 2.1

(TABLE 6.2.6 (b) VESSEL ON UNBRACED LEGS)

Wo OPERATING WEIGHT OF EQUIPMENT KG #REF!

Gg GRAVITY LOAD (OPERATING WEIGHT OF VESSEL) (CLAUSE 6.2.5) N #REF!

V1 EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) N #REF!

V2 MIN. EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) (0.01Gg) N #REF!

V3 MAX. EARTHQUAKE BASE SHEAR (CLAUSE 6.2.2) N #REF!

VEARTHQUAKE BASE SHEAR TO BE CONSIDERED N #REF!

MIN OF {[MAXOF (V1,V2)],V3} SAY = N #REF!

La HT. OF C.G. OF VESSEL (1/2 *(H)+L m 3.32

MeSEISMIC MOMENT AT BOTTOM W.L. V * La N m #REF!

SAY = N m #REF!

6 SEISMIC LOAD CALCULATION FOR OUTER VESSEL

AS PER AS 1170.4 (CLAUSE 6.2.2)

( 1.25 * a / T2/3 )

( I * (C*S / Rf) * Gg )

( I * (2.5*a / Rf) * Gg )

7 WIND LOAD CALCULATIONS OUTER VESSEL :

(REF. AS 1170.2)

REGIONAL 3S GUST WIND SPEED FOR ANNUAL PROBABILITY OF m/sec 88

EXCEEDANCE OF 1/500, FOR REGION D

WIND DIRECTION MULTIPLIER (FOR ANY DIRECTION) - 1

TERRAIN/ HEIGHT MULTIPLIERS - 1.05

FOR TERRAIN CATEGORY 2, HEIGHT <= 5 m ( TABLE 4.1(A) )

SHIELDING MULTIPLIER ( SECTION 4.3.1 ) - 1

- 1

SITE WIND SPEED (ANY DIRECTION) M/S 92.4

SECTION-2 CLAUSE-2.2

DESIGN WIND SPEED M/SEC 92.4

DENSITY OF AIR KG/M3 1.2

AERODYNAMIC SHAPE FACTOR (CLASUE C.5.2) - 0.63

DYNAMIC RESPONSE FACTOR (CLAUSE 2.4.1) - 1

P DESIGN WIND PRESSURE N/m2 3227.28

D OUTSIDE DIAMETER OF VESSEL m 2.216

L HEIGHT OF VESSEL m 6.215

Fw WIND FORCEP * D * L N 44447.6

SAY = N 44500

Mw WIND MOMENTP * D * L * L/2 N m 138120.92

VR

VR = FD * 80 m/sec WHERE FD = 1.1

Md

MZ,cat

MS

Mt TOPOGRAPHIC MULTIPLIER (= Mn) ( SECTION 4.4.1(B) )

Vsit VR * Md (MZ,cat * MS * Mt)

Vdes

(= Vsit, FOR NO SPECIFIC CARDIAL DIRECTION)

Qair

Cfig

Cdyn

(0.5 * Qair ) Vdes2 * Cfig * Cdyn

Mw WIND MOMENTSAY = N m 138150

8. CALCULATION OF LEG, BASE PLATE & ANCHOR BOLT UNDER SEISMIC LOAD:

8.1 DESIGN DATA :

SR. NO. DESCRIPTION SYMBOL VALUE UNIT1 OPERATING WEIGHT Wo #REF! KG

EMPTY WEIGHT 35700OUTSIDE DIA OF THE VESSEL Do 2216

2 PCD OF LEG SUPPORT PCD 1950 MM3 NUMBER OF LEGS N 3 NOS.4 MAX HEIGHT OF LEG SUPPORT ABOVE BASE Lsp 791 MM5 WL TO WL OF O/V H 4730 MM

OVERALL HEIGHT OF THE VESSEL Ht 62156 DISTANCE FROM LEG ATTACHMENT TO WL TO WL L 112 MM7 C.G. OF VESSEL ABOVE BASE = H/2+L+Lsp C.G. 3268 MM8 SEISMIC FORCE AT BASE Fe #REF! KG9 SEISMIC MOMENT AT BASE = Fe * C.G. Me #REF! KG M

DESIGN WIND PRESSURE Pw 329.31 Kg/m210 WIND FORCE AT BASE. Fw 4538 Kg11 WIND MOMENT AT BASE Mw 14087 KG M10 LEG SUPPORT WIDTH W 200 MM11 LEG SUPPORT HEIGHT Hsp 250 MM12 THICKNESS OF LEG SUPPORT tsp 10 MM13 ECCENTRICITY e 0 MM14 NO OF BOLTS PER LEG Nb 4 No15 SIZE OF BOLT M3316 ROOT AREA OF BOLT Ab 6.751 CM217 PERMISSIBLE TENSILE STRESS IN BOLT ## fat per 1720 KG/CM218 PERMISSIBLE SHEAR STRESS IN BOLT ## fsh per 1032 KG/CM219 WIDTH OF BASE PLATE B 400 MM20 LENGTH OF BASE PLATE D 425 MM21 PROJECTION OF BASE PLATE b 100 MM22 THICKNESS OF BASE PLATE t bp 45 MM23 WIDTH OFBASE PLATE ON OPEN SIDE L1 400 MM

## BOLTS TO BE ARRANGED BY CLIENT

8.2 DESIGN OF LEG SUPPORT :

8.2.1 DETERMINATION OF LOADING SEISMIC :

Fe1 = SEISMIC FORCE AT TOP OF LEG= Fe= #REF! KG

SAY = #REF! KG

Me1 = SEISMIC MOMENT AT TOP OF LEG= Fe1 * (C.G. - Lsp)= #REF! KG M

Pcomp. = MAX. COMP. FORCE IN ONE LEG = Wo/N + 4 * Me1 / (N*PCD)= #REF! KG

SAY = #REF! KG

Ts= TOP SHEAR IN ONE LEG= Fe1/N= #REF! KG

BM= BENDING MOMENT AT BASE OF EACH LEG= Ts*Lsp= #REF! KG. M

8.2.2 DETERMINATION OF LOADING WIND:

Fw1 = WIND FORCE AT TOP OF LEG= Pw*Do*(Ht-Lsp)= 3958 KG

SAY = 4000 KG

Mw1 = WIND MOMENT AT TOP OF LEG= Fw1 * (Ht. - Lsp)/2= 10848 KG M

Pcomp. = MAX. COMP. FORCE IN ONE LEG = Wo/N + 4 * Mw1 / (N*PCD)= #REF! KG

SAY = #REF! KG

Ts= TOP SHEAR IN ONE LEG= Fw1/N= 1333 KG

BM= BENDING MOMENT AT BASE OF EACH LEG= Ts*Lsp= 1055 KG. M

8.2.3 MAX. LOAD ON LEG SUPPORT FOR DESIGN

Pcomp. = MAX. COMP. FORCE IN ONE LEG= MAX(Pcomp.e,Pcomp.w)= #REF! Kg

BM = MAX. BENDING MOM. AT BASE OF EACH COLUMN= MAX(BMe,BMw)= #REF! Kg m

DISTRIBUTION OF BASE SHEAR ON LEGS DUE TO SEISMIC FORCE FeFe

SUPPORT A SUPPORT A IS MORE CRITICAL

X'' X''

X' X'

SUPPORT B SUPPORT B

MOMENT OF INERTIA @ X'-X' AXIS

Ix'x' =

= 5746.2

TOTAL OF M.I @ AXIX PERPENDICULAR TO SEISMIC LOADIyy + 2*Ix'x'

= 14145.655

BASE SHEAR AT SUPPORT AFsA =

= 750.24778 KG

MOMENT @ MINOR AXIS AT BASE OF SUPPORT AMbA = FsA*Lsp

= #REF! KGCM

A = C/S AREA

= 63.000 (AS SHOWN IN ATTACHED SHEET)

MI = MOMENT OF INERTIA

= 6777.25 (AS SHOWN ATTACHED SHEET)

Zx = SECTIONAL MODULUS= MI /Cy

= 542.18 (AS PER ATTACHED SHEET)

re = RADIUS OF GYRATION= SQRT(MI / A)= 10.372 CM

SLENDERNESS RATIO= Hsp/re= 7.626

30O 30O

Ixx*COS2300+IYY*SIN2300

CM4

S I =

CM4

Fw1*Iyy/ S I

CM2

CM4

CM3

l =

fcc = ELASTIC CRITICAL STRESS

=

= 345992.37

fy = Yield Strength= 2549.00 KG/CM2 (YIELD FOR IS2062 UPTO 20THK)

IS2062 is equivalent toA36n = A FACTOR

= 1.40

ALLOWABLE AXIAL COMPRESSIVE STRESS

=

= 1528.27

CHECK FOR STRESSES AT BASE OF LEG SUPPORTS:

Pcomp. / A + BM / Zx

= #REF!

STRESS RATIO == #REF!< 1.00

8.3 DESIGN OF BASE PLATE :

BPmax = MAX. BEARING PRESSURE BELOW BASE PLATE

=

= #REF!

b = PROJECTION OF BASE PLATE BEYOND LEG SUPPORT= 100= 10 CM

Mbp = MOMENT AT FACE OF LEG DUE TO BEARING PRESSURE

== #REF! KG CM

Zbp = SECTIONAL MODULUS OF BASE PLATE

=

= 135.000

Mbp / Zbp

= #REF!

< 0.66*2447 = 1615.02(YIELD FOR IS2062 UPTO 40THK IS 240MPA

=2447 KG/CM2 )Mbpc = MOMENT INSIDE LEG DUE TO BEARING PRESSURE

== #REF! KG CM

Mbpc / Zbp

= #REF!

< 0.66*2447 = 1615.02

p2*E/l2

KG/CM2

sac =

MIN OF (0.6*fcc*fy/{[(fcc)n+(fy)n]1/n} & 0.6*fy)

KG/CM2

sac cal =

KG/CM2

sac cal / sac

Pcomp / (B*D) + 6 * BM /B2*D

KG / CM2

BPmax * b2 * B / 2

B * tbp2 / 6

CM3

sb1 =

KG / CM2

KG / CM2 KG/CM2

BPmax * L12 /12

sb2 =

KG / CM2

KG / CM2 KG/CM2

8.4 CHECK FOR ANCHOR BOLTS :

Te leg = TENSION IN ONE LEG DUE TO EARTHQUAKE LOAD= 4 * Me / (N * PCD) - Wo / N= #REF! KG= #REF!

Tw leg = TENSION IN ONE LEG DUE TO WIND LOAD= 4 * Mw / (N * PCD) - Wo / N= -2267.653 KG= -2267

Te leg < Tw leg HENCE WIND LOAD GOVERNS ANCHOR BOLT DESIGN

T leg= MAX. TENSION IN ONE LEG= #REF! KG

MAX. FORCE IN ONE BOLT(TENSILE) Tb = T leg / Nb= #REF! KG

SAY = #REF! KG

ROOT AREA OF BOLT Aroot = 6.751

MAX. TENSILE STRESS IN ONE BOLT fat = Tb / Aroot

= #REF!

SHEAR FORCE IN ONE BOLT SHb = Fe1 / (N * Nb)= #REF! KG= #REF! KG

MAX. SHEAR STRESS IN ONE BOLT fsh = SHb / Aroot

= #REF!

STRESS RATIO == #REF!< 1

CM2

KG/CM2

KG/CM2

SQRT ( (fat/fat per)2 + (fsh/fsh per)2 )

6.0 WIND LOAD CALCULATION FOR OUTER VESSEL:(AS PER ASCE 7-98)(REF : SPC No. OO-ZA-E-09003 CLAUSE - 2.1

SYMBOL DESCRIPTION FORMULA UNIT VALUE

H HT. OF THE VESSEL FROM G.L. Ls +2*Ho +2*SF + Lsp m #REF!Do WIND RESISTING DIAMETER Di + 2*ts m #REF!V BASIC WIND SPEED m / sec #REF!

EXPOSURE CKz VELOCITY PRES. EXPOSURE COEFF. FROM TABLE 6.5 1.24

FACTOR FOR x >> Lh FROM FIG. 6.2 0Kzt TOPOGRAPHY FACTOR 1Kd WIND DIRECTIONALITY FACTOR FROM TABLE 6.6 0.95I IMPORTANCE FACTOR 1qz VELOCITY PRESSURE (6.5.10) #REF!qzc VELOCITY PRESSURE IN kg/m2 qz / 9.806 #REF!G GUST COEFFICIENT FROM SEC. 6.5.8 (FOR RIGID STR.) 0.85Cf NET FORCE COEFFICIENT 0.70Af WIND RESISTING AREA H * Do #REF!Fw WIND FORCE AT BASE qzc * G * Cf * Af kg #REF!

SAY (SECTION 6.5.13) kg #REF!Mw WIND MOMENT AT BASE qzc * G * Cf * Af * H/2 kg m #REF!

SAY kg m #REF!

CHECK FOR WIND INDUSED VIBRATIONS AS PER 32- SAMSS -004 CALUSE 7.11.2

CASE -1

H = #REF! < 30 m H/Do = #REF! < 15

CASE - 2 = #REF! > 400

HENCE, WIND INDUSED VIBRATION IS NOT REQUIRED.

K2

(1+K1*K2*K3)2

0.613 * Kz * Kzt * Kd * V2 * I N / m2

kg / m2

FOR CYLINDERS (6.10 TABLE)

m2

W / HDo2

DESIGN OF OUTER VESSEL LEG SUPPORT FOR V-483 :

CALCULATION FOR LEG, BASE PLATE :(Ref. Bednar)

DESIGN DATA :

SR. NO. DESCRIPTION SYMBOL VALUE UNIT1 OPERATING WEIGHT Wo 17624 KG2 BCD OF LEG SUPPORT BCD 2240 MM3 NUMBER OF LEGS N 4 NOS.4 MAX HEIGHT OF LEG SUPPORT ABOVE BASE Lsp 1450 MM5 LENGTH OF SHELL COURSE H 3020 MM6 DISTANCE FROM LEG ATTACHMENT TO WL TO WL L 0 MM

7 C.G. 2919 MM

8 SEISMIC FORCE AT BASE Fe 8469 KG9 SEISMIC MOMENT AT BASE = Fe * C.G. Me 24721.01 KG M

10 LEG SUPPORT WIDTH W 100 MM11 LEG SUPPORT LENGTH Hsp 200 MM12 THICKNESS OF LEG SUPPORT tsp 10.8 MM13 ECCENTRICITY e 0 MM14 NO OF BOLTS PER LEG Nb 2 No15 SIZE OF BOLT M2016 ROOT AREA OF BOLT Ab 2.21 CM217 PERMISSIBLE TENSILE STRESS IN BOLT ## fat per 1720 KG/CM218 PERMISSIBLE SHEAR STRESS IN BOLT ## fsh per 1032 KG/CM219 WIDTH OF BASE PLATE B 350 MM20 LENGTH OF BASE PLATE D 350 MM21 PROJECTION OF BASE PLATE b 75 MM22 THICKNESS OF BASE PLATE t bp 24 MM23 WIDTH OFBASE PLATE ON OPEN SIDE L1 350 MM

## BOLTS TO BE ARRANGED BY CLIENT

Properties for ISMB200

Ixx = 2235.4

Iyy= 150Area= 32.33

4.2 DESIGN OF LEG SUPPORT :

DETERMINATION OF LOADING :

Fe1 = SEISMIC FORCE AT TOP OF LEG= Fe= 8469.0 KG

SAY = 8500 KG

Me1 = SEISMIC MOMENT AT TOP OF LEG= Fe1 * (C.G. - Lsp)= 12487 KG M

Pcomp. = MAX. COMP. FORCE IN ONE LEG = Wo/N + 4 * Me1 / (N*PCD)= 9980.3 KG

SAY = 10000 KG

C.G. OF VESSEL ABOVE BASE = C.G. IN OPERATING CONDITION+L+Lsp

cm4

cm4

DESIGN OF OUTER VESSEL LEG SUPPORT FOR V-483 :

MOMENT OF INERTIA @ X'-X' AXIS

Ix'x' =

= 1192.7

TOTAL OF M.I @ AXIX PERPENDICULAR TO SEISMIC LOAD4*Ix'x'

= 4770.8

BASE SHEAR AT SUPPORT AFsA =

= 267.250776 KG

MOMENT @ MINOR AXIS AT BASE OF SUPPORT AMbA = FsA*Hsp

= 38751.3625 KGCM

A = C/S AREA

= 32.330

MI = MOMENT OF INERTIA

= 2235.40

Zx = SECTIONAL MODULUS= MI /Cy

= 168.00

re = RADIUS OF GYRATION= SQRT(MI / A)= 8.315 CM

SLENDERNESS RATIO= Hsp/re= 17.438

Ixx*COS245°+IYY*SIN2450

CM4

S I =

CM4

Fe1*Iyy/ S I

CM2

CM4

CM3

l =

DESIGN OF OUTER VESSEL LEG SUPPORT FOR V-483 :

fcc = ELASTIC CRITICAL STRESS

=

= 66178.98

fy = Yield Strength= 2549.00 KG/CM2 (YIELD FOR IS2062 UPTO 20THK)

n = A FACTOR = 1.40

ALLOWABLE AXIAL COMPRESSIVE STRESS

=

= 1518.06

CHECK FOR STRESSES AT BASE OF LEG SUPPORTS:

Pcomp. / A + BM / Zx

= 539.97

STRESS RATIO == 0.356< 1.33

4.3 DESIGN OF BASE PLATE :

BPmax = MAX. BEARING PRESSURE BELOW BASE PLATE

=

= 51.28

b = PROJECTION OF BASE PLATE BEYOND LEG SUPPORT= 75= 7.5 CM

Mbp = MOMENT AT FACE OF LEG DUE TO BEARING PRESSURE

== 50481.5 KG CM

Zbp = SECTIONAL MODULUS OF BASE PLATE

=

= 33.600

Mbp / Zbp

= 1502.43

< 0.66*2447 = 1615.02(YIELD FOR IS2062 UPTO 40THK IS 240MPA

=2447 KG/CM2 )Mbpc = MOMENT INSIDE LEG DUE TO BEARING PRESSURE

== 5235.1 KG CM

Mbpc / Zbp

= 155.81

< 0.66*2447 = 1615.02

p2*E/l2

KG/CM2

sac =

MIN OF (0.6*fcc*fy/{[(fcc)n+(fy)n]1/n} & 0.6*fy)

KG/CM2

sac cal =

KG/CM2

sac cal / sac

Pcomp / (B*D) + 6 * BM /B2*D

KG / CM2

BPmax * b2 * B / 2

B * tbp2 / 6

CM3

sb1 =

KG / CM2

KG / CM2 KG/CM2

BPmax * L12 /12

sb2 =

KG / CM2

KG / CM2 KG/CM2

DESIGN OF OUTER VESSEL LEG SUPPORT FOR V-483 :

4.4 CHECK FOR ANCHOR BOLTS :

Te leg = TENSION IN ONE LEG DUE TO EARTHQUAKE LOAD= 4 * Me / (N * PCD) - Wo / N= 6630.16563 KG= 6650

Tw leg = TENSION IN ONE LEG DUE TO WIND LOAD= NOT CONIDERED

T leg= MAX. TENSION IN ONE LEG= 6650.0 KG

MAX. FORCE IN ONE BOLT(TENSILE) Tb = T leg / Nb= 3325 KG

SAY = 3330 KG

ROOT AREA OF BOLT Aroot = 2.21

MAX. TENSILE STRESS IN ONE BOLT fat = Tb / Aroot

= 1506.8

SHEAR FORCE IN ONE BOLT SHb = Fe1 / (N * Nb)= 1058.63 KG= 1060 KG

MAX. SHEAR STRESS IN ONE BOLT fsh = SHb / Aroot

= 479.64

STRESS RATIO == 0.9917< 1.33

Leg Support Properties (For Ref). :

ISMB 100 11.5 14.6 7.2 4 257.5 40.8 51.5 10.9ISMB 125 13 16.6 7.6 4.4 449 43.7 71.8 11.7ISMB 150 14.9 19 7.6 4.8 726.4 52.6 96.9 13.1ISMB 175 19.3 24.62 8.6 5.5 1272 85 145.4 18.9ISMB 200 25.4 32.33 10.8 5.7 2235.4 150 223.5 30ISMB 250 37.3 47.55 12.5 6.9 5131.6 334.5 410.5 53.5ISMB 300 44.2 56.26 12.4 7.5 8603.6 453.9 573.6 64.8ISMB 350 52.4 66.71 14.2 8.1 13630.3 537.7 778.9 76.8ISMB 400 61.6 78.46 16 8.9 20458.4 622.1 1022.9 88.9ISMB 500 86.9 110.74 17.2 10.2 45218.3 1369.8 1808.7 152.2ISMB 600 122.6 156.21 20.8 12 91813 2651 3060.4 252.5

CM2

KG/CM2

KG/CM2

SQRT ( (fat/fat per)2 + (fsh/fsh per)2 )

Designation

Weight per Meter W in KG.

Sectional Area A IN CM2

Thickness of Flange tf in

mm

Thickness of Web tw

in mm

Moment of Inertia in cm4 Moduli of Section in cm3

Ixx Iyy Zxx Zyy

LL2

Page 145

LIFTING HOOK DESIGN CALCULATIONS :

We = EMPTY WEIGHT OF TANK = 81 KG

A) PROPERTIES OF WELD :A.1) LIFTING LUG ON DISH END

Y8

W1 t1 = SIZE OF W1 FILLET LEG 5t2 = SIZE OF W2 FILLET LEG 5

W2L1 = LENGTH OF W1 75

75 L2 = LENGTH OF W2 95

X 95 X w1 = THICKNESS OF LUG 8

w2 = WIDTH OF W2 40

30 DEGREER1 = RADIUS OF LIFTING LUG

40 = 30 mm

r1 = RADIUS OF HOLE IN THE LUGY = 15 mm

h1 = DIST. OF HOLE FROM W1 (AT CENTER)= 40 mm

h2 = DIST. OF HOLE FROM W2 (AT CENTER)= 45 mm

PROPERTIES OF W1 :

a1 = EFFECTIVE AREA OF W1 a2 = EFFECTIVE AREA OF W2= 2* L1 * t1 * 0.707 = 2*(L2 + w2) * t2 * 0.707

= 530.25 = 954.45

Ixx1 = M.I. @ X-X AXIS OF W1 Ixx2 = M.I. @ X-X AXIS OF W2

= =

= 248554.6875 = 1143204

Iyy1 = M.I. @ Y-Y AXIS OF W1 Iyy2 = M.I. @ Y-Y AXIS OF W2

= =

= 8484 = 306366.7

Zxx1 = SECTIONAL MODULUS @ X-X AXIS Zxx2 = SECTIONAL MODULUS @ X-X AXIS= 2*Ixx1 / L1 = 2*Ixx2 / L2

= 6628.125 = 24067.46

Zyy1 = SECTIONAL MODULUS @ Y-Y AXIS Zyy2 = SECTIONAL MODULUS @ Y-Y AXIS= 2*Iyy1 / w1 = 2*Iyy2 / w2

= 2121 = 15318.33

q (MIN) =

MM2 MM2

2/12 *L13 * t1*0.707 2/12 *L23 * t2*0.707+ 2*w2*t2*.707*(L2/2)

MM4 MM4

2*L1*t1*0.707*(w1/2)2 2/12 *w23 * t2*0.707+2*L2*t2*0.707*(w2/2)

MM4 MM4

MM3 MM3

MM3 MM3

LL2

Page 146

DETERMINATION OF MAX. PERMISSIBLE STRESS

FOR E7018 ELECTRODES NOMINAL TENSILE STRENGTH IS 70 ksi = 49.217

MAX. PERMISSIBLE SHEAR STRESS ON EFFECTIVE AREA OF WELD= 0.3 * NOMINAL TENSILE STRESGTH OF WELD METAL

= 14.765

ALLOABLE SHEAR STRESS IN LIFTING LUG= 0.44 * YIELD STRESS OF LUG MATERIAL

= 0.44 * 24 (FOR IS 2062 MATERIAL)

= 10.560

CHECK FOR LIFTING LUGS ON DISHED ENDS

TANK IN VERTICAL POSITION AND IS LIFTED WITH TWO LUGS ON DISHED ENDS

30 DEGREEW = 1.2 * We

= 97.2 KG R1 = RADIUS OF LIFTING LUGW = 75 MM

r1 = RADIUS OF HOLE IN THE LUG= 15 MM

Fh1 = DIST. OF HOLE FROM W1

(AT CENTER)q q = 40 MM

h2 = DIST. OF HOLE FROM W2(AT CENTER)

= 45 MM

= W / 2= 48.6 KG

Fh = HORIZONTAL COMPONENT OF FORCE ON LIFTING LUG== 84 KG

Fhx = Fhy == 0.0 KG = 84 KG

CHECK FOR WELD W1 :

Mx1 = Fhx * h1 My1 = Fhy * h1= 0 KG MM 3367.107 KG MM

KG / MM2

s per =

KG / MM2

ss per =

KG / MM2

KG / MM2

q (MIN) =

W / ( 2*TAN q )

Fh * COS 90O Fh * SIN 60O

LL2

Page 147

STRESS IN WELD DUE TO Mx STRESS IN WELD DUE TO My= Mx/Zxx1 = My/Zyy1

= 0.000 = 1.588

Fv / a1

= 0.092

Fh / a1

= 0.159

RESULTANT SHEAR STRESS IN WELD

=

= 1.687 < 14.77 ( SAFE )

CHECK FOR WELD W2 :

Mx2 = Fhx * h2 My2 = Fhy * h2= 0 KG MM = 3788 KG MM

STRESS IN WELD DUE TO Mx STRESS IN WELD DUE TO My= Mx2/Zxx2 = My2/Zyy2

= 0.000 = 0.247

Fv / a2

= 0.051

Fh / a2

= 0.088

RESULTANT SHEAR STRESS IN WELD

=

0.311 < 14.77 ( SAFE )

CHECK FOR STRESS IN LIFTING LUG:

F == 97 KG

SHEAR STRESS IN LIFTING LUG= F / (2*(R1-r1)*w1)

= 0.10 < 10.56 ( SAFE )

sbx1 = sby1 =

KG / MM2 KG / MM2

sv1 =

KG / MM2

sh1 =

KG / MM2

sr1 =

SQRT((sbx1+sby1+sv1)2+sh12)

KG / MM2 KG / MM2

sbx2 = sby2 =

KG / MM2 KG / MM2

sv2 =

KG / MM2

sh2 =

KG / MM2

sr2 =

SQRT((sbx2+sby2+sv2)2+sh22)

KG / MM2 KG / MM2

SQRT(Fh2 + Fv2 )

ss =

KG / MM2 KG / MM2

LL2

Page 148

MMMM

MM

MM

MMMM

SECTIONAL MODULUS @ X-X AXIS

SECTIONAL MODULUS @ Y-Y AXIS

* t2*0.707+ 2*w2*t2*.707*(L2/2)2

* t2*0.707+2*L2*t2*0.707*(w2/2)2

LL2

Page 149

RADIUS OF LIFTING LUG

RADIUS OF HOLE IN THE LUG

DIST. OF HOLE FROM W1

DIST. OF HOLE FROM W2

LL2

Page 150

STRESS IN WELD DUE TO My

STRESS IN WELD DUE TO My

SAFETY DEVICE SIZING FOR OUTER VESSEL

(Ref.: Clause 6.4.2 of CGA - 341 - 2002)

Vg = Gross capacity of inner vessel = 172.000

Vw = Water capacity of inner vessel = Vg * 1000 = 172000 Kg

Ar = Required discharge area = 0.34*Vw = 58480.00

Di = Safety device inside diameter (6" NB Sch 40S) = 154.00 mm

Ai = = 18626.50

N = Number of safety devices = 4

Ap = Provided discharge area of safety devices = Ai * N = 74506.01

As Ap > Ar, selected size for safety device is OK

m3

mm2

Discharge area of one safety device = p/4 * Di2 mm2

mm2


Recommended