+ All Categories
Home > Science > Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A. K. Deepa-Paresh...

Lignin-depolymerization-aromatic monomers-solid acid-heterogeneous catalyst-A. K. Deepa-Paresh...

Date post: 20-Jan-2017
Category:
Upload: deepa-a-k
View: 496 times
Download: 1 times
Share this document with a friend
24
Depolymerization of lignin over heterogeneous catalyst having acidic functionality Presented by, A. K. Deepa Research guide: Dr. Paresh L. Dhepe Catalysis & Inorganic Chemistry Division CSIR-National Chemical Laboratory, Pune, India Tel. 91-20-25902024, Fax. 91-20-25902633, Email: [email protected] Group Webpage: http://academic.ncl.res.in/pl.dhepe
Transcript

Depolymerization of lignin over

heterogeneous catalyst having acidic functionality

Presented by,

A. K. Deepa

Research guide: Dr. Paresh L. Dhepe

Catalysis & Inorganic Chemistry Division

CSIR-National Chemical Laboratory, Pune, India

Tel. 91-20-25902024, Fax. 91-20-25902633,

Email: [email protected]

Group Webpage: http://academic.ncl.res.in/pl.dhepe

Biomass Biomass can be defined as “the total mass of living organisms or recently living organisms in a given area or of a given species usually expressed as dry weight” It can be plant derived or animal derived

Biomass can be converted into high energy fuels and chemicals similar to those obtained from fossil feedstocks

Less expensive If produced in renewable basis biomass energy can reduce the net CO2 in the atmosphere thereby

reducing global warming Low concentration of sulfur help to reduce the acid rain phenomenon

Major sources of biomass Bio-refinery concept

Advantages of biomass over fossil feestocks

Biomass Sources

Animal residues

CO2

Chemicals

Energy

Fuels

Carbon sources

Biorefinery

2

Lignocellulosic biomass

1. J. Zheng, L. RehmannInt. J. Mol. Sci. 2014, 15, 18967-18984 2. Study on availability of Indian biomass resources for exploitation; Technology Information, Forecasting and

Assessment Council (TIFAC)

Lignocellulosic biomass is plant derived non edible biomass World annual production of lignocellulosic biomass is ca. 1-5x 1010 MT (metric tons)1

India produces ca. 623.4 MMT(per annum) of cropwaste (lignocellulosic material)2

Adapted from Chem. Rev. 2010, 110, 3552-3599

3

Lignocellulosic biomass contain cellulose (38-50 %), hemicellulose (23-32 % ) & lignin (15-25 %)

Adapted from, B. Kamm, P. Gruber, and M. Kamm, Biorefineries-Industrial Processes and Products, pages 165

Natural production of lignin 20 billion tons/year India produces ca. 125 MT of lignin/year Paper and pulp industry produces ca. 70 MT of Kraft lignin/year But 99 % of Kraft lignin is burnt for power generation Only about 1% of Kraft lignin are commercialized per year by MeadwestVaco in US Approximately 1 MT of lignosulfonates and 10,000 tons of soda lignin are generated from sulfite

and soda pulping industries, respectively Cellulose to ethanol produces ca. 1-3 kg of lignin as waste/kg of ethanol produced

Availability of Lignin

Aromatic nature

Abundant availability

Lignin

Value added

chemicals & fuels

4

Adapted from, Sakakibari, A., Wood Sci. Technology, 1980, 14, 89.

Structure of lignin Major linkages

5

β-O-4 4-O-5 α-O-4

β,β 5,5 β-5 β-1

C-O-C linkages: 60-70 %

C-C linkages: 30-35 %

Valorization of lignin

Lignin

Carbon fibers Polymer

Extenders Substituted lignins Thermoset resins

Composites Adhesives

Binders Preservatives

Polyols

Macromolecules

Combustion Energy

Aromatic monomers

Oxidised products

Hydrocarbon

Syngas products

Depolymerized products

6

Summary on catalytic transformations of lignin Phenol,

guaiacol, syringol (<15%)

CO2, CO, H2

Methoxy phenol, catechol, phenol

Syringol, guaiacol,

catechol(<10%)

Catechols, phenol

Hydrocarbons and gases

Vanillin, vanillic acid

Benzoquinone

J. S. Shabtai, US Patent, 5, 959, 167, 1999. Y. Kou, ChemSusChem, 2008, 1, 626. N. N. Bakhshi, Fuel Process. Technol., 1995, 45, 161. M. Goto, Chem. Eng. Technol., 2007, 30, 1113. N. N. Bakhshi, Bioresour. Technol., 1991, 35, 57. Chem Review 2010, 110, 3552

High T, Coke & gas

Homogeneous catalyst

Precious metals

High T, Coke & gas

Homogeneous acids

High T Coke & gas as

major products

Homogeneous base

High T & P coke &char

7

a. Commercial lignin: Organosolv lignin, Dealkaline lignin

b. Industrial lignin: ORG, EORG

c. Isolated lignin: Bagasse lignin (Organosolv technique)

Substrate and its properties

a M.W determined by MALDI TOF, b by GPC, c from Aldrich

Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Substrate Source M.W (Da)

Elemental analysis

(%)

ICP-OES Na

(mg)

EDAX (Element

)

TGA-DTG (Residue

%)

Monomer molecular formula*

C H S N2 Air

Dealkalinea,b TCI 60,000

65 7 1 29 C, O, Na, S 36 17 C9H10.62O2.89S0.06

Organosolvb Aldrich Mn=2285 Mw=4575

P.D=2

65 6 0 0 C, O 40 2 C9H10O3

Alkalic Aldrich Mn=5000 Mw=28000

P.D=5.6

61 6 1 70 C,O, Na 30 2 C8.47H10O3.3S0.05

ORGb Industry Mn=4177 Mw=7059 P.D=1.68

57 8 0 0 C, O 34 0 C8.5H10O4

EORG Industry nd 59 5 0 1.1 C, O 36 3 C9H10O4

Bagasse lignin

Synthes-ized

nd 51 7 0 0 C, O, K, Cl 30 0 C7.9H10.1O15.9

8

Properties of solid acids (for lignin depolymerization)

aBrunauer–Emmett–Teller surface area, bPorevolume, bPorediameter [Autosorb1C Quantachrome, instrument]

dAcidity measured by means of TPD of NH3[Micrometrics Autochem-2910 instrument] .

Catalyst

Structure

Nitrogen sorption NH3-TPDd

BET SA a

(m2g-1)

V b

(cm3g-1)

D c

(nm)

Weak acid sites (mmolg-1)

Stong acid sites (mmolg-1)

Total

acidity

(mmolg-1)

H-USY (Si/Al=15) Micro 873 0.45 0.61 0.06 0.49 0.55

H-ZSM-5 (Si/Al=11.5) Micro 423 0.22 0.60 0.37 0.61 0.97

H-BEA (Si/Al=19) Micro 761 0.34 0.60 0.25 0.66 0.91

H-MOR (Si/Al=10) Micro 528 0.22 0.59 0.5 0.65 1.18

Nb2O5 -- 115 -- -- 0.30 -- 0.30

SO42-/ZrO2 -- 84 0.02 -- nd nd nd

Clay (K10) Layered 246 0.3 -- 0.09 0.33 0.42

Al pillared clay Layered nd nd nd nd nd nd

SiO2-Al2O3 Micro-meso 532 0.82 4.90 0.17 0.46 0.63

10%MoO3/SiO2 Nonporous nd nd nd 0.09 - 0.09

9

Depolymerization of lignin over solid acid catalysts

Lignin

Solid acids

T≤ 250 C, N2

H2O:CH3OH(1:5 v/v)

Zeolites Clay

Sulphated zirconia SiO2-Al2O3

O O

Si Al

O

Si

H

O

O O O O OO

Organic solvent soluble

monomers

10

Deepa et. al, ACS Catalysis, 2015, 5, 365–379 Deepa et. al, Patent Application no: IN 2889 DEL 2010, US 13/467,128, AU 2012202602, BR 102012017987-3, ES 201300399

Reaction conditions

Lignin (0.5g), Solid acid catalyst (0.5g), Solvent: H2O:CH3OH (1:5)v/v, Temp: 215-270 °C,

Time: 30-120 minutes, rpm: 500,1000 rpm, Pressure: 0.1-0.7 MPa N2 at RT.

Batch mode reactor (100 ml Parr) used for depolymerization studies of lignin

11

Reaction charge

Reaction

RM in MeOH+H2O

Centrifugation

Solid(Catalyst + coke or char)

Solution(CH3OH solb.)

Rotavap

EtOAc CHCl3 DEE

Solb.*

THF

Solb.*Solb.*

Insolb. Insolb. Insolb.

*Analyzed in GC-FID, GC-MSand

Products isolated by column chromatography

Solb.*

Insolb.

Work up procedure

H-USY gave the maximum aromatic monomer yield of 60 % with Dealkaline lignin and 35 % with Organosolv lignin as a substrate at 250 °C, 30 minutes, 500 rpm and 0.7MPa N2

H-USY catalyst was found to be deactivated in recycle runs XRD, N2 sorption, NH3-TPD, ICP-OES, 29Si and 27Al NMR showed that structural deformation and or poisoning of

of the H-USY catalysts after lignin depolymerization reaction

Dealkaline lignin(0.5g), Solid acid catalyst(0.5g), H2O:CH3OH (1:5 v/v), 250 °C, 30 minutes, 500 rpm, 0.7MPa N2 Aromatic monomers extracted using THF

Dealkaline Organosolv Catalytic results

0 20 40 60 80 100

1.18

0.97

0.91

0.63

0.55

0.42

0.35

0.3

0.09

0.45

0

Aromatic monomers (%)

To

tal a

cid

ity

(m

mo

lg-1

)

Noncatalytic SO4

2/ZrO2

10% MoO3/SiO2

Nb2O5

Al pillared clay

Clay, K10

H-USY(Si/Al=15)

SiO2-Al2O3(Si/Al=5.3)

H-BEA (Si/Al=19)

H-ZSM-5 (Si/Al=11.5)

H-MOR (Si/Al=10)

0

5

10

15

20

25

30

35

40

Aro

mat

ic m

on

om

ers

yiel

d(%

)

Catalyst

Organosolv lignin(0.5g), Solid acid catalyst(0.5g), H2O:CH3OH (1:5 v/v), 250 °C, 30 minutes, 500 rpm, 0.7MPa N2

Aromatic monomers extracted using DEE

12 Deepa et. al, RSC Adv., 2014, 4, 12625-12629

Confirmation of aromatic monomer formation

Analysis of dealkaline lignin reaction mixture, (a) GC-FID analysis and (b) HPLC analysis Reaction conditions: Dealkaline lignin (0.5 g), SiO2-Al2O3 (0.5 g), H2O:CH3OH (1:5 v/v), 250 °C, 30 min., 500 rpm, 0.7 MPa N2 at RT.

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

(a)

(b)

(b) HPLC

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

(a)

(b)

(a) GC-FID

13 Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Products identified by GC-MS

14

GPC analysis

0 5 10 15 20 25 30 35 40 45

-150

-100

-50

0

50

100

150

200

250

300

350

Det

ecto

r re

sponce

(a.

u)

Retention volume (mL)

Blank

MeOH soluble RM

Dealkaline lignin

To further confirm the products formed are aromatic monomers, THF soluble products were also analyzed by MALDI-TOF technique to verify that no high molecular weight fragments (1000-10,000 gmol-1) are formed.

MALDI-TOF analysis

0 5 10 15 20 25 30-40

-20

0

20

40

60

Retention volume (mL)

Det

ecto

r re

sponce

(a.

u)

THF soluble products

15 Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Quantification of aromatic monomers

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

nR

IU-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

nR

IU

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

RID: RI Signal

12 percTHF solb 40 58 2 comp 0.8ml rep

Retention Time

Area

Width

Minutes

(a)

(b)

Reaction conditions: Dealkaline lignin (0.5 g), SiO2-Al2O3 (0.5 g), H2O:CH3OH (1:5 v/v), 250 °C, 30 min., 500 rpm, 0.7 MPa N2 at RT.

16

Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Correlation between lignin and aromatic monomers structures and functional groups

4000 3500 3000 2500 2000 1500 1000 500

800858

1022

11071201

1265

1372

1458

1508

15941708

2852

2924

3395

Wavenumber (cm-1)

794

1022

1118

1455

1595

16903357

Dealkaline lignin

Products

% T

ran

smitt

an

ce(I) FTIR

17 Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Correlation between lignin and aromatic monomers structures and functional groups

(IIA) 1H NMR (700 MHz)

18

19

Correlation between lignin and aromatic monomers structures and functional groups

(IIB) 13C NMR (700 MHz)

Comparison of catalytic activities between solid acids and homogeneous acids

Minutes

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

pA

0

10

20

30

40

50

60

70

80

90

100

pA

0

10

20

30

40

50

60

70

80

90

100

11

.31

9

12

.77

3

Front Signal

H2SO4 RM

Retention Time

m/z=220

m/z=166

m/z=252

m/z=234m/z=270

m/z=152

Minutes

6 7 8 9 10 11 12 13 14 15 16 17 18 19

pA

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

pA

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

11

.32

0

12

.78

1

Front Signal

HCl THF solb

Retention Time

m/z=220

m/z=166

m/z=152

m/z=252

m/z=234 m/z=270

m/z=234

Reaction conditions: dealkaline lignin (0.5 g), Acid (pH = 2), H2O:CH3OH (1:5 v/v), 250 °C, 30 min., 500 rpm, 0.7 MPa N2 at RT. Products are extracted in THF solvent.

HCl H2SO4

29 % and 39 % of THF soluble products was observed for HCl and H2SO4 respectively Few products with m/z value 152, 166, 220 corresponding to aromatic monomers, were also observed

in the non catalytic reaction. Along with this, m/z values of 252, 234, 270 which corresponds to higher molecular weight fragments were also observed.

It can be concluded that homogeneous acids like HCl or H2SO4 depolymerizes dealkaline lignin to give mainly dimers or oligomers as products, instead of giving aromatic monomers as major products under the above reaction conditions 20

Catalytic results: Optimization of reaction conditions for Dealkaline

lignin depolymerization reaction

Catalyst : SiO2-Al2O3

Temperature effect: 215 °C (1 %), 230 °C (25 %), 250 °C (29 %), 275 °C (15 %) Pressure effect: 0.1 MPa (24 %), 0.7 MPa (29 %) Time effect (@500rpm) : 30min. (29 %), 60min. (44 %), 90min. (56%), 120min. (56 %) Stirring speed (@30min.): 500 rpm (29 %), 1000 rpm (58%) Solvent effect: H2O:CH3OH (29%), H2O:C2H5OH (29 %) Solvent ratios: H2O:CH3OH (1:5)v/v (29 %), H2O:CH3OH (1:1)v/v (22 %), H2O:CH3OH (5:1)v/v (1 %) (1%) Substrate to catalyst ratio (S/C wt/wt): 1 (29 %), 2 (22 %) Optimized reaction conditions: T=250 °C; P=0.7MPa; t=90min. (@500rpm), rpm=1000 rpm (@30min.); solvent= H2O:CH3OH (1:5)v/v, S/C wt/wt=1 Catalysts were recycled upto 3 cycles with slight decrease in the activity

21 Deepa et. al, RSC Adv., 2014, 4, 12625-12629

Catalytic results Substrate effect

Dealkaline lignin, alkali lignin, bagasse-lignin, ORG and EORG lignin show ca. 60 % aromatic monomers yield.

0

10

20

30

40

50

60

70

Org

anic

solv

ent so

luble

pro

ducts

(%

)

Lignin

22 Deepa et. al, ACS Catalysis, 2015, 5, 365–379

Lignin (0.5 g), SiO2-Al2O3 (0.5 g), H2O:CH3OH (1:5 v/v, 30 mL), 250 oC, 30 min., 1000 rpm, 0.7 MPa N2 at RT Products are extracted in THF for dealkaline lignin, in DEE for organosolv lignin, in EtOAc for alkali/EORG/bagasse lignin and CHCl3 for ORG lignin

Product isolation and characterization o Product isolation was done using column chromatography.

o 3 Monomer products were isolated & confirmed using GCMS & NMR.

23 Deepa et. al, ACS Catalysis, 2015, 5, 365–379

In summary, for the first time that lignin can be converted to aromatic monomers below 250 °C using bare solid acid catalysts

Even the lignin having molecular weight of 60,000 Da was successful depolymerized into value added aromatic monomers with very high yields (60%) using solid acid catalysts under inert atmosphere

A variety of catalysts ranging from crystalline to amorphous were used in the study and it was observed that catalysts having well defined structure were prone to undergo alterations

Monomers were isolated using column chromatography (3 nos)

Conclusions

24

Solid acid catalysed depolymerization of lignin into value added aromatic monomers. A. K. Deepa and Paresh L. Dhepe, RSC Adv., 2014, 4, 12625-12629. http://pubs.rsc.org/en/Content/ArticleLanding/2014/RA/c3ra47818a#!divAbstract Lignin depolymerization into aromatic monomers over solid acid catalysts. A. K. Deepa and Paresh L. Dhepe, ACS Catalysis, 2015, 5, 365–379. http://pubs.acs.org/doi/abs/10.1021/cs501371q Depolymerization of lignin using solid acid catalysts. A. K. Deepa and Paresh L. Dhepe, Patent Application no: IN 2889 DEL 2010, US 13/467,128, AU 2012202602, BR 102012017987-3, ES 201300399. http://www.google.com/patents/US20120302796

For further reading………


Recommended