+ All Categories
Home > Documents > LINDE’s activities for design and development of 2 ... · 2 processing unit in the Oxyfuel power...

LINDE’s activities for design and development of 2 ... · 2 processing unit in the Oxyfuel power...

Date post: 20-Apr-2018
Category:
Upload: truongtuong
View: 217 times
Download: 4 times
Share this document with a friend
18
Roland Ritter, Linde-KCA Dresden GmbH Yeppoon, 2 nd Oxyfuel C ombustion C onference, S eptemper 14 th 2011, plenary session 3 LINDE’s activities for design and development of the CO 2 processing unit in the Oxyfuel power plant
Transcript

Roland Ritter, Linde-K C A Dresden G mbH Yeppoon, 2nd Oxyfuel C ombustion C onference, S eptemper 14th 2011, plenary sess ion 3

LINDE’s activities for design and development of the CO2 processing unit in the Oxyfuel power plant

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

2

Agenda

1. LINDE‘s way to NOx and SOx removal unit – LICONOX™

2. Using CO2 as refrigerant and the integration of expansions-turbines

3. Possible heat integration

4. Change to increase the CO2-recovery rate – Pressure swing adsorption unit

5. Dynamic simulation

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

3

Development of the Linde-concept – removal of NOx

researched technologies in LINDE-laboratory:

1) catalytic reduction technology with reduction media hydrogen and ammonia

2) alkali based wash unit with ammonia, sodium hydroxide and ammonia derivate (urea)

3) reduction/ regeneration of spent salt solution

CO2-recirculation

Boiler High dust

SCRDust

removalDesulphuri-sation unit

CO2-Compression

state of the art

Raw gascompression

Self introducedOxidation

2 NO + O2 2 NO2NO

Reduction

Absorption

Alkali based washunit+ Ammonia orNaOH

Fertilizer (Nitrat)

N2

NO + NO2

Oxidation

catalytic reactionwith hydrogen orammonia

salt solution(nitrit, nitrat)

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

4

LINDE-concept alkali wash unit (“ cold DeNOx” ) LICONOX™

NO and SO2 Oxidation:

NO+½ O2 NO 2

S O 2 + NO 2 S O 3 + NO

Alkali based wash unit:

S O 2+ 2 NH3 + H2O (NH4)2 S O 3

S O 3+ 2 NH3 + H2O (NH4)2 S O 4

NO + NO 2 + 2 NH3 + H2O 2NH4NO 2

2 NO 2 + 2NH3 + H2O NH4NO 2 + NH4NO 3

2 NO +O 2 + 2 NaOH NaNO 2 + NaNO 3 +H2O

2 NO 2 + 2 NaOH NaNO 2 + NaNO 3 +H2O

Regeneration/ reduction:

NH4NO 2 N2 + 2 H20 (Nitrite-decomposition > 60°C )

with ammonia water …

— reaction of NO and NO2

— reaction of S O2 and S O3

results are nitrite and nitrate …

— reaction to a mix of nitrogen and sulfur fertilizer

— reduction to N2 and H2O poss ible (Denitrification)

Boiler DeNOx unitDust

removalDesulphuri-sation unit

CO2-pre-compression

CO2-recirculation

CO2-finalcompression

pre-purified, compressed gas

small gas s tream (low volume flow rate)

smaller equipment

high conversation rate

parallel removal of S O2, S O3, NO and NO2

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

5

Test phase on the alkali wash unit

simple process flow diagram

FC

PC

AC

TCAI

M

M

FI

FI

LC

FC

AI

TI

AI

SC

SC

4 x

7 x

Kühlwasser

Make-up Wasser

Ammoniak-wasser

Abwasser

Rauchgas

gereinigtesRauchgas

PDI

PDI

TI

TC

AI

T701

P701

E701

P702

P703

D701

M

pH

NOx

first test phase:

27.07. – 07.09.2010 using ammonia water

laboratory results confirmed

second test phase:

26.04. – 27.05.2011

(1) reduction of spent salt solution

(2) using sodium hydroxide

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

6

LICONOX™ - results of pilot plant

Simulat ion and Comparison with measured Data10bar; 24°C; 6,5vol% O2; pH6,5

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30

time sec.

NO

x [v

ppm

]

0,5

0,6

0,7

0,8

0,9

1

nitr

ite

sele

ctiv

ity

[mol

/m

ol]

nit rogen monoxide

nitrogen dioxide

nitrite select ivity

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 10 15 20pressure in bar

NO

x con

vers

ion

pilo

t pl

ant

Extended Kinetic Model

Consideration of NO2 yield and influence onto NO conversion

Determination of kinetic rate constants

Nitrite selectivity forecast

Good correlation between measured data and kinetic model

NOx conversation rate versus pressure

nitrite selectivity versus NO-NO 2 rate on column entry

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

7

Reduction of spent salt solution

Cooling Water

Make up Water

Spent saltSolution(Nitrat)

Ammonia Water

compressedCO2-Gas

purifiedCO2-Gas

Nitrit reduction

pos s ible reduction of s pent s alt s olution:

NO-NO2 removal with 15wt%- ammonia water 100% (B as is )

NO-NO2 removal with 33wt%- s odium hydroxide ca. 46%

NO-NO2 removal with ammonia water and reduction ca. 23%

0

100

200

300

400

500

600

700

800

0 50 100 150 200

Temperture °C

HN

O2

mm

ol/l

pH 7.2

pH 7.6

pH 7.8

Nitrite-content after reduction versus temperature

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

8

Scale up demonstration plant

Simulation: Washer Implementation after 4th Compression Stage

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Battery Limit 1. compressionstage

2. compressionstage

3. compressionstage

4. compressionstage

DeNOx

plant location

% o

f to

tal N

Ox

NONO2

0%

25%

50%

75%

100%

0% 25% 50% 75% 100%NOx conversion simulated

NO

x con

vers

ion

pilo

t pl

ant

Kinetic model confirmed

Model based determination of NO/NO2 profile

Selection of DeNOx position

Performance simulation based on kinetics for demonstration plant

Column height and diameter determination for NOx removal

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

9

Concept for CO2 plant – cryogenic separation

Raw Gas fromOxyfuel Boiler

Pre-Compression

Product-Compression

Purification

CO2 Productto Pipeline

CW

CW

CW

Steam

Vent Gas toAtmosphere

Chilled Water

Condensate

DCC

Drying byAdsorption

Process Water

ActivatedCarbon

Regen. GasHeater

simple process

multi stream heat exchanger

no refrigeration unit necessary

partly condensation of CO2 in raw gas

expansion of the liquid phase close to the triple point of CO2

pressure expansion valves

application of expansions turbines

CW

Separator II

Separator I

HeatExchanger

Booster I/Turbine I

Booster II/Turbine IIProduct-Pre-

Compressor

CO2 Productto Product-Compression

Raw Gas fromDrying Stage

Vent Gas toRegeneration

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

10

Cryogenic separation – energy optimisation

•installation of two turbine-booster combination

– expansion of vapor phase in two stages (compression energy)

– reheating of the cold vapor (refrigeration capacity)

•installation of a product-pre-compressor

– to bring both product streams to the same pressure level

CW

Separator II

Separator I

HeatExchanger

Booster I/Turbine I

Booster II/Turbine IIProduct-Pre-

Compressor

CO2 Productto Product-Compression

Raw Gas fromDrying Stage

Vent Gas toRegeneration

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

11

Application of valve and turbine expansion

Inlet

Inlet Outlet

Outlet

Expansion by Valve

Expansion by

Turbine

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

12

Possible Heat Integration

Heat integration will be optimized in the total oxyfuel process

•flue gas cooling

– plate heat exchanger for heating of BFW

•pre-compression

– compression with intermediate cooling temp. level of C O2 after compress ion 70 – 100°C

– cooling after every second compress ion stage temp. level of C O2 after compress ion 160 – 200°C heating of B F W

– but: higher electric energy consumption for the driver (lower efficiency)

•final CO2-product-compression

– without intermediate cooling

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

13

Increasing of CO2-recovery rate – using PSA-unit

CW

Separator II

Separator I

HeatExchanger

Compressor

Booster II/Turbine IIProduct-Pre-

Compressor

Pressure SwingAdsorption Unit

N2, O2, Ar

Possibilityto ASU

CO2 Product toProduct-Compression

Raw Gas fromDrying Stage

Vent Gas forRegeneration andRecycle beforePre-compression

Application for requirement of high CO2 recovery rates

maximum 99%

higher s pec. energy cons umption (additional recycle)

installation of a pressure swing adsorption unit

C O2-rich fraction for regeneration and fed back into proces s before pre-compres s ion

C O2-lean fraction could be fed to the AS U

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

14

Dynamic modeling of Oxyfuel power plant

Requirement of performance „ Transmission code 2000“

high flexibility of power stations; extreme changing of power load (4… 6%/ min)

especially with high renewables

day and night load

Dynamic simulation is key technology in the execution of Oxyfuel power plant

Goals of dynamic modeling:

ens ure robus t des ign of the plant

improve proces s efficiency

Load change evaluation

dis turbance analys es

C ontrol des ign and tuning

S tart-up and s hut-down analys es

better knowledge of trans ient plant behaviour in the clos e connection of all s eparated plants

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

15

Dynamic Modeling and Simulation Novel CCS processes pose challenges to plant engineering

n

CO2

ue Gas

G U e ts

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

16

A common intuitive HMI for dynamic process analysis is essential for collaboration among subject matter experts

HMI (human machine interface) - CO2 process Overview Screen

Linde-K C A Dres den G mbH 2. Oxyfuel C ombus tion C onference – S es s ion 3 plenary s es s ion / 14. S eptember 2011

17

Reduced models for plant-wide simulation of oxyfuel plants – develop “ black box” models with minimal number of inputs and outputs

B oiler Model

G P U Model

AS U Model

Objective: S tudy overall performance of Oxyfuel proces s , by linking models from different tools , e.g. UniS im, OP T IS IM® (Linde-internal), …

Constraints: K now-how protection, reas onable computing times

P latform-independent model repres entation bas ed on black-box models (reduced models )

E xample: S ys tem Identification for G P U model

GPU model input:

F lue gas condition

GPU model outputs:

-P roduct and vent gas condition

-F eed header pressure

-C ompress ion power demand

Thank you for your attention

Roland Ritter LINDE-KCA DRESDEN GmbH phone +49-351-250 3267 [email protected]


Recommended