+ All Categories
Home > Documents > Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D....

Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D....

Date post: 22-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
97
Linear Independence Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH
Transcript
Page 1: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Linear IndependenceMath 218

Brian D. Fitzpatrick

Duke University

March 3, 2020

MATH

Page 2: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Overview

Geometric MotivationCounting “Directions”

BackgroundLinear Combinations as Matrix MultiplicationAn Important Observation

Definitions and ExamplesDefinitionsExamples

The Linear Independence TestStatementExample

The “Pivot Columns” of a MatrixDefinitionExample

Page 3: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 4: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 5: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 6: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v

3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 7: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 8: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v

3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 9: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 10: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v

−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 11: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 12: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v

−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 13: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 14: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 15: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v } “look like”?

AnswerSpan{ #»v } consists of all “multiples” of { #»v }.

Span{ #»v }

2 · #»v3 · #»v

−2 · #»v−3 · #»v

#»v

Assuming #»v 6= #»

O , Span{ #»v } is the line containing #»v .

Page 16: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 17: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 18: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 19: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 20: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 21: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 22: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 23: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 24: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 25: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

QuestionWhat does Span{ #»v 1,

#»v 2} “look like”?

AnswerSpan{ #»v 1,

#»v 2} consists of all “linear combinations” of { #»v 1,#»v 2}.

Span{#»v 1,#»v 2}

#»v 1

#»v 2

Assuming #»v 1 and #»v 2 are not parallel, Span{ #»v 1,#»v 2} is the plane

containing #»v 1 and #»v 2.

Page 26: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Page 27: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Page 28: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Page 29: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Span{ #»v }Defines a one-directional object (line) if #»v 6= #»

O .

Span{ #»v 1,#»v 2}

Defines a two-directional object (plane) if #»v 1 and #»v 2 are notparallel.

QuestionHow can we determine if Span{ #»v 1,

#»v 2, . . . ,#»v n} defines an

n-directional object?

AnswerSpan{ #»v 1,

#»v 2, . . . ,#»v n} defines an n-directional object if the list

{ #»v 1,#»v 2, . . . ,

#»v n} is linearly independent.

Page 30: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 31: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3.

Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 32: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 33: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 34: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 35: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 36: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)

#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 37: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 38: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

−5 −15 −10 −20−2 −6 −4 −8

2 6 4 8

Note that Col(A) ⊂ R3. Each column is a multiple of the firstcolumn.

3 · #»a 1

−4 · #»a 1

−2 · #»a 1

Col(A)#»a 1

This illustrates that Col(A) = Span{〈−5, −2, 2〉 }.

Page 39: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 40: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 41: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 42: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 43: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3

#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 44: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 45: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Geometric MotivationCounting “Directions”

Example

Consider the matrix A given by

A =

1 2 7 6−8 −16 3 11

3 6 −2 −52 4 −9 −11

Note that Col(A) ⊂ R4.

2 · #»a 1

#»a 3

− #»a 1 + #»a 3#»a 1

This means that Col(A) = Span{〈1, −8, 3, 2〉 , 〈7, 3, −2, −9〉 }.

Page 46: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm.

Every linearcombination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

Page 47: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

Page 48: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

Page 49: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. Every linear

combination

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

b

is of the form A #»c =#»

b where

A =[

#»v 1#»v 2 · · · #»v n

]#»c =

c1c2...cn

b =

b1b2...bm

Note that A is an m × n matrix.

Page 50: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

Example

The linear combination

c1 ·[

131

]+ c2 ·

[0−3

]+ c3 ·

[7−5

]+ c4 ·

[−5−3

]=

[33−11

]may be written as

[1 0 7 −5

31 −3 −5 −3

] c1c2c3c4

=

[33−11

]

Page 51: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundLinear Combinations as Matrix Multiplication

Example

The linear combination

c1 ·[

131

]+ c2 ·

[0−3

]+ c3 ·

[7−5

]+ c4 ·

[−5−3

]=

[33−11

]may be written as

[1 0 7 −5

31 −3 −5 −3

] c1c2c3c4

=

[33−11

]

Page 52: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0.

This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

Page 53: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0. This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

Page 54: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

BackgroundAn Important Observation

ObservationLet { #»v 1,

#»v 2, . . . ,#»v n} be a list of vectors in Rm. The equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O (∗)

can always be solved by c1 = c2 = · · · = cn = 0. This is called thetrivial linear combination.

QuestionWhen is (∗) solved by a nontrivial linear combination?

Page 55: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0.

The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Page 56: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0. The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Page 57: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesDefinitions

DefinitionA list of vectors { #»v 1,

#»v 2, . . . ,#»v n} in Rm is linearly independent if

the only solution to

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

is the trivial solution c1 = c2 = · · · = cn = 0. The list{ #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if it is not linearly

independent.

NoteThe list { #»v 1,

#»v 2, . . . ,#»v n} is linearly dependent if the equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ cn · #»v n =#»

O

has a nontrivial solution.

Page 58: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Note that

(3)

10−4

+ (1)

−21

15

+ (1)

−1−1−3

+ (0)

−53

41

=

000

This means that columns of 1 −2 −1 −50 1 −1 3−4 15 −3 41

are linearly dependent.

Page 59: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Note that

(3)

10−4

+ (1)

−21

15

+ (1)

−1−1−3

+ (0)

−53

41

=

000

This means that columns of 1 −2 −1 −5

0 1 −1 3−4 15 −3 41

are linearly dependent.

Page 60: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Page 61: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Page 62: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Page 63: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,#»v 2,

#»v 3} is linearlyindependent.

Page 64: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0.

Hence { #»v 1,#»v 2,

#»v 3} is linearlyindependent.

Page 65: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Determine if the list { #»v 1,#»v 2,

#»v 3} is linearly independent where

#»v 1 = 〈−1, 1, 1, 2〉 #»v 2 = 〈1, −2, −1, −3〉 #»v 3 = 〈1, 0, 0, 2〉

To determine if { #»v 1,#»v 2,

#»v 3} is linearly independent, we consider

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 =#»

O

This gives the system−1 1 1 0

1 −2 0 01 −1 0 02 −3 2 0

1 0 0 00 1 0 00 0 1 00 0 0 0

Thus c1 = c2 = c3 = 0. Hence { #»v 1,

#»v 2,#»v 3} is linearly

independent.

Page 66: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Page 67: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Page 68: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Page 69: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero.

In particular, c1 = c2 = c3 = 0.

Page 70: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

Definitions and ExamplesExamples

Example

Suppose that { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent. Show that

{ #»v 1 − #»v 4,#»v 2 − #»v 4,

#»v 3 − #»v 4} is linearly independent.

SolutionSuppose that

c1 · ( #»v 1 − #»v 4) + c2 · ( #»v 2 − #»v 4) + c3 · ( #»v 3 − #»v 4) =#»

O

Then

c1 · #»v 1 + c2 · #»v 2 + c3 · #»v 3 + (−c1 − c2 − c3) · #»v 4 =#»

O (∗)

Since { #»v 1,#»v 2,

#»v 3,#»v 4} is linearly independent, each coefficient in

(∗) must be zero. In particular, c1 = c2 = c3 = 0.

Page 71: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has full column rank.

Page 72: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has

full column rank.

Page 73: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestStatement

NoteThe equation

c1 · #»v 1 + c2 · #»v 2 + · · ·+ ck · #»v k =#»

O

is given by the augmented matrix[#»v 1

#»v 2 · · · #»v k#»

O]

So, { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if

A =[

#»v 1#»v 2 · · · #»v k

]has full column rank.

Page 74: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestStatement

Theorem (The Linear Independence Test)

The list { #»v 1,#»v 2, . . . ,

#»v k} is linearly independent if and only if[#»v 1

#»v 2 · · · #»v k

]has full column rank.

Page 75: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

Page 76: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

Page 77: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−14, −5, −5, −3〉 , 〈−53, −19, −18, −13〉 , 〈78, 28, 26, 20〉 }

is linearly independent.

SolutionNote that

rref

−14 −53 78−5 −19 28−5 −18 26−3 −13 20

=

1 0 20 1 −20 0 00 0 0

Since rank = 2 < # columns, the list is linearly dependent.

Page 78: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

Page 79: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

Page 80: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list

{〈−1, −5, −1, 1〉 , 〈7, −14, −1, −2〉 , 〈33, −31, 2, −13〉 }

is linearly independent.

SolutionNote that

rref

−1 7 33−5 −14 −31−1 −1 2

1 −2 −13

=

1 0 00 1 00 0 10 0 0

Since rank = 3 = # columns, the list is linearly independent.

Page 81: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

Page 82: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤

3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

Page 83: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3.

Since rank(A) 6= # columns = 4, the list isnot linearly independent.

Page 84: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The Linear Independence TestExample

Example

Determine if the list 1

5−5

,

−2−914

,

−6−29

35

,

526−23

is linearly independent.

SolutionThe matrix

A =

1 −2 −6 55 −9 −29 26−5 14 35 −23

satisfies rank(A) ≤ 3. Since rank(A) 6= # columns = 4, the list isnot linearly independent.

Page 85: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

Page 86: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

Page 87: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixDefinition

DefinitionThe pivot columns of a matrix A are the columns of A thatcorrespond to pivot columns in rref(A).

Example

Consider the calculation

rref

A3 −9 7−2 6 2

1 −3 −613 −39 0

=

1 −3 00 0 10 0 00 0 0

The pivot columns of A are 〈3, −2, 1, 13〉 and 〈7, 2, −6, 0〉 .

Page 88: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixDefinition

TheoremThe pivot columns of a matrix are linearly independent.

TheoremLet { #»v 1,

#»v 2, . . . ,#»v d} be the pivot columns of A. Then

Col(A) = Col([

#»v 1#»v 2 · · · #»v d

])

In particular, every column of A is a linear combination of the pivotcolumns of A.

Page 89: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixDefinition

TheoremThe pivot columns of a matrix are linearly independent.

TheoremLet { #»v 1,

#»v 2, . . . ,#»v d} be the pivot columns of A. Then

Col(A) = Col([

#»v 1#»v 2 · · · #»v d

])

In particular, every column of A is a linear combination of the pivotcolumns of A.

Page 90: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 91: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 92: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 =

− 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 93: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1

#»a 3 = 4 · #»a 1#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 94: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 =

4 · #»a 1#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 95: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4

Page 96: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 =

7 · #»a 1 + 6 · #»a 4

Page 97: Linear Independence - Math 218bfitzpat/teaching/218s20/lectures/... · Math 218 Brian D. Fitzpatrick Duke University March 3, 2020 MATH. Overview Geometric Motivation Counting \Directions"

The “Pivot Columns” of a MatrixExample

Example

Consider the calculation

rref

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

=

1 −3 4 0 70 0 0 1 60 0 0 0 0

This shows that

Col

1 −3 4 −3 −11−2 6 −8 7 28

5 −15 20 −11 −31

= Col

1 −3−2 7

5 −11

We also have

#»a 2 = − 3 · #»a 1#»a 3 = 4 · #»a 1

#»a 5 = 7 · #»a 1 + 6 · #»a 4


Recommended