+ All Categories
Home > Documents > lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels...

lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels...

Date post: 13-Sep-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
102
Rapport de stage de M2 Les espaces vectoriels topologiques comme mod` ele quantitatif de DiLL Sous la direction de Christine Tasson, Au Laboratoire PPS, Universit´ e Paris Diderot, Paris. Marie Kerjean - M2 MPRI - [email protected] Introduction La logique lin´ eaire est un syst` eme dont la syntaxe et la s´ emantique entretiennent des rapports ´ etroits, s’enrichissant l’une l’autre au fil des ´ etudes. La logique lin´ eaire diff´ erentielle est un exemple caract´ eristique de ce tressage entre syntaxe et s´ eman- tique : la possibilit´ e de diff´ erentier une preuve fut pressentie ` a partir d’une ´ etude emantique de la logique lin´ eaire (les espaces de finitude de [Ehr05], et les espaces de Kothe de [Ehr02]), et engendra la syntaxe de la logique lin´ eaire diff´ erentielle (DiLL) (voir [ER06]). De nouveau, la recherche d’un mod` ele de DiLL donna nais- sance aux espaces convenants (voir [BET10]), cat´ egories diff´ erentielles et mod` eles de ILL qui sont le point de d´ epart de mon stage. Le grand int´ erˆ et de ces espaces est qu’ils sont d’abord des espaces vectoriels topologiques, et qu’ils ouvrent ainsi la voie ` a une ´ etude de LL par l’analyse fonctionelle. La logique lin´ eaire invent´ ee par Girard (voir [Gir87]) est une logique classique o` u la gestion des ressources est prise en compte. Les preuves peuvent ˆ etre lin´ eaires (utiliser une seule fois leur hypoth` ese de d´ epart) ou non-lin´ eaires (utiliser plusieurs fois leur hypoth` ese de d´ epart). La logique lin´ eaire diff´ erentielle int` egre le proces- sus de lin´ earisation d’une preuve : celui-ci correspond, dans la s´ emantique d´ eno- tationelle o` u une preuve est une fonction, ` a la diff´ erentiation d’une fonction. Les mod` eles de DiLL sont donc fondalementalement des mod` eles de LL o` u l’on peut diff´ erentier. Cela justifie la recherche de mod` eles de DiLL inspir´ es de l’analyse fonctionelle ou de la g´ eom´ etrie diff´ erentielle : on souhaiterait que la lin´ earisation d’une preuve 1
Transcript
Page 1: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Rapport de stage de M2

Les espaces vectorielstopologiques comme modele

quantitatif de DiLL

Sous la direction de Christine Tasson,Au Laboratoire PPS, Universite Paris Diderot, Paris.

Marie Kerjean - M2 MPRI [email protected]

Introduction

La logique lineaire est un systeme dont la syntaxe et la semantique entretiennentdes rapports etroits, s’enrichissant l’une l’autre au fil des etudes. La logique lineairedifferentielle est un exemple caracteristique de ce tressage entre syntaxe et seman-tique : la possibilite de differentier une preuve fut pressentie a partir d’une etudesemantique de la logique lineaire (les espaces de finitude de [Ehr05], et les espacesde Kothe de [Ehr02]), et engendra la syntaxe de la logique lineaire differentielle(DiLL) (voir [ER06]). De nouveau, la recherche d’un modele de DiLL donna nais-sance aux espaces convenants (voir [BET10]), categories differentielles et modelesde ILL qui sont le point de depart de mon stage. Le grand interet de ces espacesest qu’ils sont d’abord des espaces vectoriels topologiques, et qu’ils ouvrent ainsila voie a une etude de LL par l’analyse fonctionelle.

La logique lineaire inventee par Girard (voir [Gir87]) est une logique classiqueou la gestion des ressources est prise en compte. Les preuves peuvent etre lineaires(utiliser une seule fois leur hypothese de depart) ou non-lineaires (utiliser plusieursfois leur hypothese de depart). La logique lineaire differentielle integre le proces-sus de linearisation d’une preuve : celui-ci correspond, dans la semantique deno-tationelle ou une preuve est une fonction, a la differentiation d’une fonction. Lesmodeles de DiLL sont donc fondalementalement des modeles de LL ou l’on peutdifferentier.

Cela justifie la recherche de modeles de DiLL inspires de l’analyse fonctionelleou de la geometrie differentielle : on souhaiterait que la linearisation d’une preuve

1

Page 2: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

corresponde exactement a la differentiation d’une fonction differentiable entre es-paces vectoriels. Par ailleurs, depuis ses debuts la logique lineaire entretient un lienfort avec l’algebre lineaire : travailler avec des espaces vectoriels et des fonctionslineaire realise ce lien. De plus, la logique lineaire provient d’une etude des preuvescomme sommes disjonctives de preuves n-lineaire (voir [Gir88]) : les espaces vec-toriels permettent d’ecrire nos preuves comme des series entieres, s’accordant ainsiavec la premiere semantique de la logique lineaire.

Contributions et contenu du rapport Ce rapport de stage resume les resul-tats que j’ai obtenus durant mon stage de M2 au laboratoire PPS, sous la directionde Christine Tasson. La partie principale, en francais, presente la problematiquea laquelle nous avons voulu repondre, et le resultat principal du stage. Celui-ci consiste en la construction d’un modele de DiLL constitue d’espace vectorielstopologiques reflexifs (ou ”reflexif” prend ici un sens legerement different de celuicommunement admis). Une des particularites de ces espaces pour qui est habituea l’analyse fonctionnelle, reside dans le fait que nos fonctions sont bornologiques,c’est-a-dire envoie un borne sur un borne, et non continues. Cela necessite dereecrire beaucoup de theoremes. Par ailleurs, il a fallu determiner quelles seriesentieres et quelles topologies pouvaient convenir a nos espaces. La troisieme an-nexe, en anglais, detaille ces preuves.

Nous atteignons ce resultat apres deux etudes intermediaires. Premierement,on explicite les relations qu’entretiennent les deux definitions d’espace convenant(voir [FK88] et [KM97]). Ainsi, ceux de [BET10] sont bases sur le premier livre, etnous choisirons d’utiliser des espaces qui sont en particulier des espaces convenantsdu deuxieme livre. Cette analyse, detaillee dans la premiere annexe, n’est pasnecessaire a la comprehension des resultats suivants.

La deuxieme annexe expose en anglais le detail d’un resultat intermediaire, oul’on montre que les espaces vectoriels topologiques complets sont une categoriedifferentielle ainsi qu’un modele de la logique lineaire intuitionniste. Ce resultatrepond a la premiere exigence d’espaces convenants quantitatifs.

2

Page 3: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Table des matieres.

1 La logique lineaire differentielle 51.1 Syntaxe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51.2 Semantique de la logique lineaire . . . . . . . . . . . . . . . . . . . . . 51.3 Semantique quantitative et formule de Taylor . . . . . . . . . . . . . . 8

2 Espaces vectoriels topologiques localement convexes 92.1 Topologies et bornologies sur les espaces vectoriels . . . . . . . . . . . 92.2 Les theoremes d’Hahn Banach . . . . . . . . . . . . . . . . . . . . . . . 11

3 Espaces convenants 133.1 Les espaces convenants de Frolicher, Kriegl et Michor . . . . . . . . . 133.2 Les espaces convenants comme modele de ILL . . . . . . . . . . . . . 14

4 Espaces reflexifs comme modele de DiLL 154.1 Espace vectoriels reflexifs . . . . . . . . . . . . . . . . . . . . . . . . . . 154.2 Une categorie monoıdale close . . . . . . . . . . . . . . . . . . . . . . . 174.3 Une categorie cartesienne close . . . . . . . . . . . . . . . . . . . . . . 184.4 Exponentielle et codereliction . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusion 22

Bibliographie 23

A Espaces convenants dans FK et KM 25A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25A.2 La Mackey-completude et les espaces convenants . . . . . . . . . . . . 26A.3 Les espaces bornologiques complets . . . . . . . . . . . . . . . . . . . . 29A.4 Les passages entre FK, KM et Conv . . . . . . . . . . . . . . . . . . 32A.5 Adjonctions dans le premier diagramme . . . . . . . . . . . . . . . . . 34A.6 Espaces de fonctions lisses . . . . . . . . . . . . . . . . . . . . . . . . . 35

B Complete vector spaces as a quantitative model of ILL 43B.1 Complete vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 44B.2 A monoidal closed category . . . . . . . . . . . . . . . . . . . . . . . . . 44B.3 A cartesian closed category . . . . . . . . . . . . . . . . . . . . . . . . . 47

B.3.1 Holomorphic functions in C . . . . . . . . . . . . . . . . . . . . 48B.3.2 Holomorphic curves in lctvs . . . . . . . . . . . . . . . . . . . . 48B.3.3 Power series and holomorphic functions between lctvs . . . . 50B.3.4 The product of complete spaces . . . . . . . . . . . . . . . . . . 54B.3.5 Convergence of power series . . . . . . . . . . . . . . . . . . . . 54

3

Page 4: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

B.3.6 Quant is cartesian closed . . . . . . . . . . . . . . . . . . . . . . 57B.4 The exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61B.5 A differential structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66B.5.2 Lin as a differential category . . . . . . . . . . . . . . . . . . . 68

C Reflexive spaces as a quantitative model of Differential LinearLogic 69C.1 Reflexivity for bornological duals . . . . . . . . . . . . . . . . . . . . . 70

C.1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70C.1.2 Weakly-complete and quasi-complete spaces . . . . . . . . . . 70C.1.3 Reflexivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71C.1.4 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

C.2 A monoidal closed category . . . . . . . . . . . . . . . . . . . . . . . . . 75C.2.1 Preliminary : Hahn-Banach extension theorem for bornolog-

ical maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75C.2.2 Bornological linear maps . . . . . . . . . . . . . . . . . . . . . . 76C.2.3 The reflexivity of Ls(E,F ) . . . . . . . . . . . . . . . . . . . . 77C.2.4 The tensor product . . . . . . . . . . . . . . . . . . . . . . . . . 79C.2.5 Lin is monoidal closed . . . . . . . . . . . . . . . . . . . . . . . 80

C.3 A cartesian closed category . . . . . . . . . . . . . . . . . . . . . . . . . 81C.3.1 Holomorphic functions in C . . . . . . . . . . . . . . . . . . . . 82C.3.2 Holomorphic curves in lctvs . . . . . . . . . . . . . . . . . . . . 82C.3.3 Power series and holomorphic functions between lctvs . . . . 84C.3.4 The product of reflexive spaces . . . . . . . . . . . . . . . . . . 89C.3.5 Convergence of power series . . . . . . . . . . . . . . . . . . . . 90C.3.6 Quant is cartesian closed . . . . . . . . . . . . . . . . . . . . . . 92

C.4 The exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96C.5 A differential structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

C.5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100C.5.2 Quant as a model of DiLL . . . . . . . . . . . . . . . . . . . . . 101

4

Page 5: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

1 La logique lineaire differentielle

1.1 Syntaxe

La logique lineaire est un systeme ou, pour dupliquer une formule, on demande acelle ci d’etre marquee. Elle provient de l’etude des espaces coherents par Girard(voir [Gir88]) : ces espaces sont un modele denotationnel de la logique classique,ainsi qu’un modele d’un langage de programmation (PCF). La logique lineaire estune logique classique, puisque toute formule sera equivalente a sa double negation.La grammaire des formules de la logique lineaire est la suivante :

A,B ∶∶= 1∣∣⊺∣0∣A`B∣A⊗B∣A⊕B∣A&B∣!A∣?Aou ` est la disjonction multiplicative, × la conjonction multiplicative, ⊕ la disjonc-tion additive et & la conjonction additive. Intuitivement, le connecteur ! permetde marquer une formule qui pourra etre dupliquee. Une preuve !A ⊢ B est doncune preuve non-lineaire de B sous l’hypothese A. On definit la negation A d’uneformule A par :

(A&B) = A ⊕B (A⊕B) = A &B

(A`B) = A ⊗B (A⊗B) = A `B

!A =?A ?A =!A

1 = = 1

0 = ⊺ ⊺ = 0

Cette negation est par definition involutive. Par ailleurs, on voit grace aux reglesde la logique lineaire que 1 est l’element neutre de ⊗, celui de `, ⊺ celui de & et0 celui de ⊕. On ecrit A⊸ B = A `B l’implication lineaire et A⇒ B =!A⊸ Bl’implication non-lineaire.

La logique lineaire differentielle a les memes formules que la logique lineaire,mais pas les memes regles : le groupe exponentiel est modifie (voir la figure 1).On peut deja remarquer que la regle de co-dereliction permet de transformer unepreuve non-lineaire en une preuve lineaire. Les autres regles co-structurelles dugroupe exponentiel permettent de faire apparaıtre un operateur differentiel sur lespreuves. Pour un expose de la logique lineaire differentielle, on peut lire [Ehr11].On presente ci-dessous les regles de la logique lineaire differentielle.

1.2 Semantique de la logique lineaire

Le but de ce stage etait de s’inspirer des espaces convenants pour trouver un modelequantitatif de la logique lineaire, et de la logique lineaire differentielle si possible.

5

Page 6: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• Groupe identite :

(axiom)⊢ A,A⊢ Γ,A ⊢ A,∆

(cut)⊢ Γ,∆

• Groupe multiplicatif :

(1)⊢ 1⊢ Γ ()⊢ Γ,

⊢ Γ,A1,A2 (`)⊢ Γ,A1 `A2

⊢ Γ,A ⊢∆,B(⊗)⊢ Γ,∆,A⊗B

• Groupe additif :

⊺⊢ Γ,⊺⊢ Γ,A ⊢ Γ,B

&⊢ Γ,A&B

⊢ Γ,A1 ⊕L⊢ Γ,A1 ⊕A2

⊢ Γ,A2 ⊕R⊢ Γ,A1 ⊕A2

• Groupe exponentiel :

⊢ Γ, ?A, ?A(contraction)⊢ Γ, ?A

⊢ Γ, !A, !A(co-contraction)⊢ Γ, !A

⊢ Γ (affaiblissement)⊢ Γ, ?A⊢ Γ (co-affaiblissement)⊢ Γ, !A

⊢ Γ,A(dereliction)⊢ Γ, ?A

⊢ Γ,A(co-dereliction)⊢ Γ, !A

Figure 1: Les regles de DiLL

Nous avions donc besoin de connaıtre les structure categoriques qui interpretentnos regles. Pour une description complete de la semantique denotationnelle de lalogique lineaire, le lecteur peut se referer a [Mel08].

La semantique denotationelle d’une logique consiste a decrire les formules denotre logique par les objets d’une categorie, et une preuve d’une formule dans un

6

Page 7: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

contexte par une fleche entre les objets interpretant respectivement le contexte etla formule. On veut que deux formules soient equivalentes dans notre logique si etseulement si elles ont la meme interpretation dans notre categorie.

Dans la logique lineaire, nous sommes face a deux sortes d’implication (doncde fleches), associees chacune a deux conjonctions differentes. Nous avonsl’implication lineaire A⊸ B = A`B et l’implication non-lineaire A⇒ B =!A⊸ B.Un modele de la logique lineaire est informellement une categorie se comportantbien vis-a-vis de chacune de ces implications. Plusieurs formalisations existentpour la semantique de la logique lineaire, et nous allons utiliser celle dite de Seely:

Definition 1.1. Une categorie de Seely est une categorie monoıdale close (L,⊗,1),munie d’un produit ×, d’un objet terminal ⊺, et d’une comonade (!, ρ, d) telle qu’onait les isomorphismes naturels :

m2E,F ∶ !E ⊗ !F → !(E & F ) et m0 ∶ 1→ ⊺

tels que (!,m) ∶ (L,&,⊺)→ (L,⊗,1) soit un foncteur symmetrique monoıdal.

Theoreme 1.2. Voir [Mel08]. Une categorie de Seely ⋆-autonome est un modelede la logique lineaire.

Nous cherchons donc une categorie monoıdale close, ⋆-autonome (c’est-a-diremuni d’une objet telle que (A⊸ )⊸ ) ≃ A, munie d’une comonade telle quela categorie de co-Kleisli de cette comonade soit cartesienne close. La dernierecondition nous donnera alors l’isomorphisme de Seely demande dans la definition.

Concretement, la loi monoıdale modelisera la conjonction multiplicative ⊗, etle produit cartesien modelisera la conjonction additive &. Les fonctions de la cate-gorie de co-Kleisli seront nos preuves non-lineaires, et les fonctions de la premierecategorie seront nos preuves lineaires. On confondra desormais une formule etl’objet l’interpretant, ainsi qu’une preuve et la fonction l’interpretant.

Nous cherchons de plus un modele de la logique lineaire differentielle (voir[Ehr11], partie 4). Nous en avons un lorsque l’on a un modele de la logique lineaire,muni en plus d’un operateur de co-dereliction dA ∶ A⊸!A verifiant quelques bonnesproprietes. d est l’interpretation semantique de la regle de co-dereliction. Les re-gles d’affaiblissement, de dereliction et de contraction decoulent de la structurede comonade de !. L’interpretation des regles de co-affaiblissement et de co-contraction n’est pas requise, car elle decoule de la structure de co-algebre de !A,qui elle meme provient du caractere symmetrique monoıdal de !. On a donc dejaune fleche cA ∶!A⊗!A⊸!A et une fleche wA ∶ 1⊸!A. L’operateur de co-derelictionpermet de construire l’operateur de differentiation qui operera sur les fleches non-lineaires de la categorie. En effet, pour une fonction non-lineaire f ∶!A ⊸ B, onecrit :

7

Page 8: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Df ∶ A⊗!A1⊗d⊸ !A⊗!A

cA⊸!Af⊸ B

Nous sommes donc a la recherche d’une categorie dont les objets sont desespaces vectoriels lineaires (pour la linearite algebrique des interpretations desimplications lineaires), topologiques (pour qu’il y existe limites et derivees), munied’une loi interne ⊗ qui la rende monoıdale close pour les fonctions lineaires, d’unproduit cartesien, d’un type de fonctions non-lineaires rendant notre categoriecartesienne, et d’un objet dualisant rendant notre categorie cartesienne close. Ilapparaıt que cet objet dualisant ne peut etre que l’element neutre 1 pour ⊗ (voir4.8 dans [Mel08]). Comme il devient des maintenant evident que ⊗ ressembleraau produit tensoriel algebrique bien connu, notre objet dualisant sera le corps desscalaires, et demander a notre categorie d’etre ⋆-autonome revient a demander ases objets d’etre reflexifs.

1.3 Semantique quantitative et formule de Taylor

Comme explique dans l’introduction, nous voulons plus qu’un modele de DiLL.Nous voulons un modele qui s’accorde avec la semantique quantitative de la logiquelineaire. Qu’est ce qu’un modele quantitatif ? C’est informellement un modeleou chaque fonction non-lineaire peut etre decomposee en une somme sur n defonctions n-lineaires. Cela correspond a une interpretation en terme de ressourcede l’evaluation d’un programme (donc d’une preuve, d’apres la correspondance deCurry-Howard). En effet, un programme consomme un nombre fini de fois sonargument. Un nombre inconnu, mais fini. Lorsqu’il n’utilise qu’une seule fois sonargument, on parle d’un programme lineaire. Par extension semantique, lorsque leprogramme utilise n-fois son argument, on parle d’un programme n-lineaire. Onpeut donc ecrire tout programme P comme disjonction de programmes n-lineaires:

P =∑n

Pn.

Chercher un modele quantitatif de LL revient a chercher une categorie de Seelydont les fleches de la categorie de co-Kleisli verifient l’egalite ci-dessus. C’est alorsque l’on peut faire correspondre les termes utilises en semantique de la LL etl’algebre lineaire. Lorsque les objets de notre categorie sont des espaces vectoriels,on cherche a ecrire toute fonction de la categorie de co-Kleisli comme une sommede fonctions n-lineaires.

f =∑n

fn

.

8

Page 9: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Cette egalite prend encore plus de sens lorsque l’on cherche un modele deDiLL. En effet, la formule ci-dessus s’apparente a la formule de Taylor en analysefonctionnelle :

f(x) =∑n

1

n!dnf(0)(xn)

Lorsque notre modele comporte un operateur analogue a la differentielle, onpeut chercher a ecrire toute preuve comme la somme de ses derivees n-iemes.Pour les applications syntaxiques de cette idee, le lecteur peut voir [ER08]. Oncherche donc a avoir une categorie de co-Kleisli ou les fonctions sont egales a leurformule de Taylor. On pourra chercher a avoir une egalite locale (en utilisant desfonctions reelles analytiques comme lors de mon stage de M1, ou holomorphes).On parvient ici a avoir des fonctions egales en tout point a leur formule de Tayloren 0, i.e. des series entieres entre espaces vectoriels.

2 Espaces vectoriels topologiques localement

convexes

Comme nous l’avons dit, nous voulons interpeter nos formules par des espacesvectoriels topologiques. Nous allons demander a ces espaces d’etre separes afin degarantir l’unicite de nos derivees, et localement convexes afin de pouvoir utiliserles theoremes d’Hahn-Banach, de Banach-Steinhauss et surtout la propriete 2.6.

Cette propriete justifie egalement le fait que l’on travaille avec des bornes etdes bornologies : ceux-ci sont beaucoup plus simples dans leur utilisation que lestopologies. Les resultats rappeles dans cette partie sont demontres dans [Jar81]ou [Kot69].

2.1 Topologies et bornologies sur les espaces vectoriels

Definition 2.1. Un espace vectoriel topologique E est un espace vectoriel surun corps K muni d’une topologie (i.e. un ensemble d’ouverts contenant l’espaceentier et l’ensemble vide, clos par union quelconque et intersection finie) qui verifiequelques bonnes proprietes : on veut que l’addition E ×E → E et la multiplicationpar un scalaire E ×K→ E soient continues.

Desormais, toutes les topologies que l’on considerera sur nos espaces vectorielsseront separees. Par necessite pour les series entieres, nous travaillerons avecK = C.

9

Page 10: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Convexite Nous demanderons de plus a nos espaces vectoriels d’etre locale-ment convexes : ce sont des espaces possedant une base d’ouverts convexes.Comme l’addition est continue, cela revient a demander d’avoir une base de voisi-nages de 0 convexes.

D’apres [Jar81] 6.1.4, nous avons dans ce cas une base de voisinage de 0 ab-solument convexe.

Definition 2.2. Un sous-ensemble C d’un espace vectoriel sur K est dit absolu-ment convexe lorsque pour tout x, y ∈ C, pour tout λ,µ ∈ K, si ∣λ∣, ∣µ∣ < 1 alorsλx + µy ∈ C. Cela revient a dire que C est convexe et equilibre.

L’avantage des ensembles equilibres (donc des ensembles absolument convexes)est qu’ils nous permettent de faire de l’arithmetique : pour un ensemble absolumentconvexe, on a par exemple C + 2C = 3C, ce qui est faux lorsque l’ensemble n’estpas equilibre.

Proposition 2.1.1. Lorsque U est un ensemble absolument convexe, alors U ⊆ 3U .

Preuve. Soit y ∈ U . Soit x ∈ U . Comme U est convexe, on a [x, y[⊆ U . Donc enparticulier z = x + y−x

2 ∈ U . Donc y = 2z − x ∈ U .

On note desormais evtlc pour designer les espaces vectoriels topologiques locale-ment convexes separes. Par defaut, E et F designent ici des evtlc sur C

Definition 2.3. On note E′ le dual topologique d’un evtlc E, c’est-a-direl’ensemble des fonctions lineaires continues de E dans K.

On parlera de topologie faible par rapport a E′ pour la topologie engendree parE′ sur E.

Bornes et fonctions bornologiques Nous allons beaucoup travailler avec desbornes. Neanmoins, dans un espace qui n’est pas norme, la notion intuitive de”boule” ne peut plus etre formalisee. On definit donc nos bornes comme les en-semble qui ne partent pas a l’infini, c’est-a-dire ceux qui peuvent etre absorbes partout voisinage de 0.

Definition 2.4. Un sous-ensemble B de E est dit borne lorsque pour tout voisi-nage de 0 U , il existe λ ∈ K tel que B ⊆ λU .

L’ensemble de tous ces bornes forme alors une bornologie sur E, c’est-a-dire unecollection de sous-ensembles close par union finie, close a gauche pour l’inclusion etrecouvrant E. Pour une description de la theorie des bornologies, le lecteur peutse referer a [HN77].

10

Page 11: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Un ensemble qui absorbe tout borne est dit bornivore. Le travail de Frolicheret Kriegl, ainsi que de Blute, Ehrhard, et Tasson dans [BET10] portait justementsur les topologies telles que tout bornivore est un voisinage de 0. Comme justifiedans la premiere annexe, nous nous affranchissons de cette condition ici.

Definition 2.5. Une fonction entre deux evtlc est dite bornologique lorsqu’elleenvoie un borne sur un borne.

Une fonction lineaire continue est en particulier bornologique, mais l’inversen’est pas toujours vraie (voir la proposition C.2.7 et la proposition C.2.8).Dans l’optique de travailler avec des fonctions bornologiques, on note E× ledual bornologique d’un evtlc E, c’est-a-dire l’espace des fonctions lineairesbornologiques de E dans K. Par defaut, parler de toplogie faible sur un evtlc re-viendra a parler de la topologie engendree sur cet espace par son dual bornologique.

Theoreme 2.6. Un sous-ensemble B d’un evtlc E est borne si et seulement s’ilest scalairement borne, c’est-a-dire si pour tout l ∈ E′ l(B) est borne dans K

Corollaire 2.7. La cloture fermee d’un borne est encore un borne.

Preuve de 2.6. Ceci est une partie du theoreme de Mackey-Arens. On peut entrouver une demonstration dans [Sch71], IV.3.2.

Il en decoule que l’on a le meme resultat pour E×, etant donne que toutefonction lineaire continue est bornologique et que tout borne est en particulierenvoye sur un borne par une fonction de E×. Ainsi, un ensemble B est borne si etseulement si pour tout l ∈ E×, l(B) est borne.

2.2 Les theoremes d’Hahn Banach

Nous presentons maintenant rapidement les consequences du theoreme de Hahn-Banach que nous utiliserons. Le theoreme de Hahn-Banach est fondamental dansla theorie des espaces vectoriels topologiques, et est la raison pour laquelle noustravaillerons avec des espaces localement convexes.

Theoreme 2.8 (Theoreme d’extension de Hahn-Banach). Soit E un espace vecto-riel reel ou complexe, et p une semi-norme sur E. Si F est un sous-espace vectorielde E, si u est une forme lineaire sur F bornee par p∣F , alors il existe u une formelineaire sur E qui soit bornee par p et telle que u∣F = u.

Voir [Jar81] 7.2.2 pour la demonstration.

Theoreme 2.9 (Theoreme de separation de Hahn-Banach). Soit E un evtlc se-pare, et x et y deux points distincts de E. Alors il existe l ∈ E′ telle que l(x) ≠ l(y).

11

Page 12: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Voir [Jar81], 7.2.3 pour la demonstration.

Corollaire 2.10. Soit E un evtlc, A un convexe ferme de E et x ∉ A, x ∈ E. Ilexiste alors u ∈ E′ tel que ∣u(x)∣ > 1 et pour tout a ∈ A ∣u(a)∣ ≤ 1.

Voir le corollaire 7.3.6 dans [Jar81].

Corollaire 2.11. Soit E un evtcl, A un convexe ferme de E et x ∉ A, x ∈ E. x ∈ E.Il existe alors u ∈ E′ tel que ∣u(x)∣ > 1 et pour tout a ∈ A ∣u(a)∣ = 0

Proposition 2.2.1. Soit E un evtlc, et C un sous-ensemble convexe de E. AlorsC est faiblement ferme par rapport a E′ si et seulement s’il est ferme.

Preuve. Un ensemble faiblement ferme par rapport a E′ est toujours fortementferme, car un ouvert faible est en particulier un ouvert fort. Supposons maintenantque C est fortement ferme, et montrons que E ∖ C est faiblement ouvert. Soitx ∉ C. Comme x est compact, d’apres le theoreme d’Hahn-Banach il existeu ∈ E′ et s > 0 tel que pour tout C : Re(u(x)) < s < Re(u(c)). Donc E ∖ Ccontient u−1(]−∞; s[×R, qui est un voisinge faible de x. E∖C est donc faiblementferme.

Les theoremes de Hahn-Banach utilisent classiquement le dual topologique E′.Nous en adaptons quelques uns ci-dessous a l’utilisation de E×.

Les theoremes de Hahn-Banach pour E×

Proposition 2.2.2. Soit E un evtlc, x ∈ E et B un sous-ensemble convexe etferme de E. Alors x ∈ B si et seulement si l ∈ E×, l(x) ∈ l(B).

La demonstration decoule de 2.10, et du fait que E′ ⊂ E×.On peut egalement adapter le theoreme de prolongement de Hahn-Banach au

cas de E×. Ce theoreme est demontre en annexe, voir C.2.5.

Theoreme 2.12. Soit E un evtlc, F un sous-espace de E heritant de sa topologie.Alors toute forme lineaire bornologique sur F peut etre prolongee en une formelineaire bornologique sur E.

Polaires et paires duales

Il nous reste a detailler le theoreme bipolaire, et pour cela nous introduisons leconcept de paire duale.

Definition 2.13. Une paire duale est un triplet (E;F ;<,>) ou E et F sont desespaces vectoriels sur le meme corps R ou C, et <,> une application bilineaire deE × F dans le corps des scalaires. On demande de plus a <,> de verifier les deuxproprietes de separation suivantes :

12

Page 13: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• ∀x ∈X ∖ 0 ∃y ∈ Y ∶ ⟨x, y⟩ ≠ 0

• ∀y ∈ Y ∖ 0 ∃x ∈X ∶ ⟨x, y⟩ ≠ 0

Ainsi, lorsque E est un evtlc separe, E et E′ forment une paire duale. <,> estjuste le module de l’application d’une forme lineaire a un element de E, et les deuxproprietes demandees sont verifiees : la premiere par separation, la deuxieme pardefinition de la fonction nulle. Comme E′ ⊆ E×, (E,E×) est egalement une paireduale. De meme, (E×,E) forme une paire duale, avec < x, l >= ∣l(x)∣.

Definition 2.14. Considerons (E1,E2) une paire duale, et A un sous ensemble deE1. Le polaire A de A est le sous-ensemble de E2 constitue des elements l telsque : ∀x ∈ A,< x, l >≤ 1.

Pour un expose sur les polaires, on peut lire [Jar81], chapitre 8.Si E est un evtlc, le bipolaire A d’un sous-ensemble de E est l’ensemble des

elements x ∈ E tels que pour tout l ∈ A, ∣l(x)∣ ≤ 1.

Theoreme 2.15 (Theoreme Bipolaire). Si E1,E2 est une paire duale, E1 un evtlc,et A un sous-ensemble de E1, alors A est la cloture fermee absolument convexede A.

Voir [Sch71] IV.1.5 pour une demonstration de ce theoreme. Lorsque E2 = E′1,

le theoreme se deduit plus directement du theoreme de separation de Hahn-Banach.Nous avons maintenant introduit les prerequis necessaires : nous avons expose

notre but (un modele quantitatif de DiLL), et notre outil (l’analyse fonctionnelle).Nous presentons maintenant les travaux historiques sur ces questions.

3 Espaces convenants

Cette section est d’abord consacree a une exposition du travail de Frolicher, Krieglet Michor dans les deux livres [FK88] et [KM97]. Ils definissent des evtlc partic-uliers qu’ils qualifient de convenants. Ces livres sont le point de depart du travaileffectue dans [BET10], que nous presenterons. Cet article fut a son tour le pointde depart de mon stage.

3.1 Les espaces convenants de Frolicher, Kriegl et Michor

Nous exposons le travail effectue par Kriegl et Michor dans le debut de [KM97]. Lesdefinitions different un peu de celles de [FK88] : les espaces convenants de Frolicheret Kriegl sont des evtlc Mackey-complets a la topologie bornologique, alors queceux de Kriegl et Michor sont plus simplement des evtlc Mackey-complets. Uneetude des differences entre ces definitions est faite dans la premiere annexe.

13

Page 14: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

La Mackey-completude est une condition sur la convergence de certaines suitesde Cauchy, minimale pour beaucoup de proprietes.

Definition 3.1. Un reseau (xγ)γ∈Γ dans E est dit de Mackey-Cauchy s’il existeun borne B de E et un reseau decroissant vers 0 de scalaires (λγ,γ′) tel que pourtous γ, γ′ ∈ Γ, xγ − xγ′ ∈ λγ,γ′B.

Definition 3.2. Un evtlc E est dit Mackey-complet si toute suite de Mackey-Cauchy converge.

Cette condition de completude a bien d’autres caracterisations, voir [KM97]2.14, et est parfois appellee completude locale (”local completeness”) dans la lit-terature. L’interet de cette definition est encore une fois de pouvoir travailler surdes bornes. La Mackey-completude est par exemple suffisante a assurer l’existencede l’integrale des courbes lipschitziennes sur des bornes de R. Cette definitiona cependant un defaut, car elle est trop generale. Je n’ai pas trouve de contre-exemple pour cette definition : puisqu’etre de Mackey-Cauchy est une proprieterestrictive, etre Mackey-complet est une propriete tres generale. Ces espaces veri-fient de nombreuses de proprietes interessantes, dont la proposition 3.1.1 est unexemple. Il s’agit d’une adaptation du theoreme de Banach-Steinhauss dont ontrouve la demonstration dans [KM97] 5.18.

Proposition 3.1.1. Soit E un espace Mackey-complet et F un evtlc. Alors unensemble de fonctions lineaires continues bornologiques de E vers F est equibornesi et seulement s’il est borne en tout point de E.

La demonstration de ce fait utilise effectivement le theoreme de Banach-Steinhausspour les espaces de Banach, et le fait qu’un espace Mackey-complet est un evtls telque tous les espaces normes EB engendres par les B bornes absolument convexessont des espaces de Banach.

Par ailleurs, les suites de Mackey-Cauchy ont l’interet d’etre preservees parles fonctions bornologiques, et du fait que les bornes sont exactement les scalaire-ment bornes, les suites de Mackey-Cauchy dans la topologie faible sont encore deMackey-Cauchy dans la topologie forte. Ce sont deux outils que l’on utilisera parexemple dans la preuve de C.4.5 ou de C.3.33.

3.2 Les espaces convenants comme modele de ILL

Dans leur article [BET10], C.Tasson, R.Blute et T.Ehrhard ont extrait des livres deFrolicher, Kriegl et Michor une categorie modele de Ia logique lineaire intuitionnistequi etait egalement une categorie differentielle. Leurs objets sont des evtlc Mackey-complets a la topologie bornologique, comme dans [FK88]. Ci-dessous se trouveun resume de leurs constructions, dont sont inspirees la plupart des constructionsde l’annexe B, et quelques constructions de l’annexe C.

14

Page 15: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Objets : evtlc Mackey-complets a la topologie bornologique.Categorie monoıdale close Conv :

• E ⊗ F est le Mackey-complete de E ⊗ F muni de la topologie bornologiqueayant pour bornes les B1 ⊗B2, B1 et B2 etant des bornes de E et F respec-tivement.

• E ⊸ F est l’espace des fonctions lineaires bornologiques de E vers F , munide la topologie bornologique ayant pour bornes les ensembles uniformementbornes sur les bornes de E.

Categorie cartesienne close Conv! :

• E × F est le produit cartesien de E et F , muni de la topologie produit.

• E ⇒ F est l’ensemble des fonctions ”lisses”de E vers F , ou lisse designe icile fait d’envoyer une courbe lisse c ∶ R→ E sur une courbe lisse f c ∶ R→ F .

Exponentielle ! ∶ Conv → Conv associe a un espace E le plus petit sous-espaceconvenant de C∞(E,R)′ contenant les evaluations evx en un point x de E.Codereliction coderE ∶ E →!E est telle que coderE(x) = lim

t→0

evtx−ev0t .

Figure 2: Les espaces convenants comme modele de ILL

4 Espaces reflexifs comme modele de DiLL

J’expose ici le resultat final de ce stage, et certainement le plus interessant. Onconstruit un modele de DiLL constitue d’evtlc reflexifs. Par rapport aux es-paces convenants de [BET10], on s’affranchit de la necessite d’avoir une topologiebornologique, et on utilise comme fonctions non-lineaires non pas des fonctionslisses mais des series entieres. Pour travailler avec ces series entieres nous utilisonsla theorie des fonctions holomorphes entre evtlc.

Commencons par un resume des constructions de notre modele :

4.1 Espace vectoriels reflexifs

Notre point de depart dans la construction de nos objets est l’exigence d’une cate-gorie ⋆-autonome, c’est-a-dire une categorie modelisant l’equivalence en logiqueclassique entre ¬¬A et A. Comme explique dans l’introduction, il apparaıt viteque cela revient, lorsque notre formule est modelisee par un espace vectoriel, ademander a notre espace d’etre reflexif. Ici, nous utilisons le mot reflexif pourles espaces egaux et isomorphes a leur bidual bornologique, alors que dans lalitterature ce mot est d’abord utilise pour les espaces isomorphes a leur bidual

15

Page 16: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Objets : Les evtlc complexes tels que E×× = E.Categorie monoıdale close Lin :

• E ⊗ F est le produit tensoriel algebrique de E et F , muni de la topologieayant comme bornes les B1 ⊗ B2, ou B1 et B2 sont bornes dans E et Frespectivement.

• E ⊸ F = L(E,F ) est l’espace des fonctions lineaires bornologiques de E versF , muni de la topologie d’uniforme convergence sur les bornes de E.

• E`F = B(E× ×F ×,C), l’ensemble des fonctions bilineaires bornologiques deE ×F vers C, muni de la topologie de la convergence uniforme sur les bornesde E.

• 1 et sont interpretes par C.

Categorie cartesienne close Quant :

• E × F est le produit cartesien de E et F , muni de la topologie produit.

• E ⇒ F = S(E,F ) est l’ensemble des series entieres de E vers F , muni de latoplogie de la convergence uniforme.

• E⊕F = E×0⊔0×F est le biproduit des espaces vectoriels E et F , munide la topologie engendree par les voisinages de 0 de E et de F .

• 0 et ⊺ sont interpretes par 0.

Exponentielle ! ∶ Lin→ Lin associe a un espace E l’evtlc S(E,C)×.Codereliction coderE ∶ E →!E est telle que coderE(x) = lim

t→0

evtx−ev0t .

Figure 3: Les espaces reflexifs comme modele de DiLL

topologique. Beaucoup des proprietes enoncees ici ne sont vraies que dans le casbornologique, et fausses dans le cas topologique. Toutes les preuves des resultatsenonces ici se trouvent dans l’annexe C.

Definition 4.1. Un evtlc E est dit reflexif lorsque E×× = E, c’est-a-dire lorsquetoutes les fonctions de E×× sont des evalutations en un point x de E : evx ∶ l ∈E× ↦ l(x).

Cette egalite point par point suffit a avoir un isomorphisme :

Proposition 4.1.1. Voir la proposition C.1.7. Lorsque qu’un evtlc E est reflexif,on a un isomorphisme bornologique entre E et E××.

16

Page 17: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Par ailleurs ces espaces reflexifs vont etre complets dans un certain sens, com-pletude qui nous suffira a avoir l’integration et les convergences souhaitees ensuite.

Theoreme 4.2. Un evtlc E reflexif est en particulier faiblement quasi-complet,donc Mackey-complet. Voir les propositions C.1.10 et C.1.14.

Ici, le terme faiblement quasi-complet designe un espace ou toutes les suites borneesqui sont de Cauchy pour la topologie engendree par E× convergent.

Theoreme 4.3. Soit E un evtlc reflexif. Pour tout borne de E, pour toute fonctionbornologique f ∶ C→ E, il existe v ∈ E tel que pour tout l ∈ E×, l(v) = ∫

B

l(f(z))dz.

v est l’integrale faible de f sur B.

Ce theoreme est demontre en C.1.16. Il suffit pour le demontrer d’ecrirel’integrale faible comme un element de E××, donc de E car E est reflexif.

4.2 Une categorie monoıdale close

Nous decrivons dans ce paragraphe Lin, qui est la categorie des evtlc reflexifs etdes fonctions lineaires bornologiques entre eux. Lorsque l’on dira que deux espacessont isomorphes, ou que l’on ecrira ≃, cela signifiera qu’il existe un isomorphismebornologique entre les deux, donc une fonction inversible dans Lin entre ces deuxobjets.

Definition 4.4. L(E,F ) est l’espace des fonctions lineaires bornologiques entreE et F , muni de la topologie de la convergence uniforme sur les bornes de E.

Cette topologie est egalement appelee la topologie des bornes-ouverts, car elleest engendree par les voisinages de 0 du type :

UB,U = l∣l(b) ⊆ U

ou B est un borne de E et U un voisinage de 0 dans F .

Theoreme 4.5. Lorsque E et F sont reflexifs, L(E,F ) est reflexif.

Ce theoreme est demontre en C.2.12. Voici les grandes lignes de cette demon-stration :

• On considere l’espace Ls(E,F ) des fonctions lineaires entre E et F , muni dela topologie de la convergence simple. On demontre que le dual bornologiquede cet espace est egal a E ⊗ F ×, c’est-a-dire que tout forme lineairebornologique sur Ls(E,F ) s’ecrit comme une somme finie ∑

1≤i≤nfi evxi avec

fi ∈ F × et xi ∈ E. On en conclut que cet espace est reflexif.

17

Page 18: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• On considere l’espace L(E,F ) des fonctions lineaires bornologiques entre Eet F . Grace a la propriete 3.1.1, on sait que les bornes dans L(E,F ) muni dela topologie de sa convergence simple sont exactement les equibornes, doncles bornes de L(E,F ) muni de la topologie de la convergence uniforme surles bornes.

• On demontre a l’aide du theoreme de Hahn-Banach 2.12 pour les fonctionsbornologiques que L(E,F ) est dense dans L(E,F ), et cela nous permet deconclure.

Definition 4.6. On definit le produit tensoriel E ⊗ F de deux evtlc comme leproduit tensoriel algebrique de E et F muni de la topologie vectorielle ayant commebase de voisinages de 0 les ensembles absorbant tous les B1⊗B2, ou B1 et B2 sontdes ensembles bornes dans E et F respectivement.

Proposition 4.2.1. E ⊗ F est reflexif quand E et F le sont.

Cette proposition est demontree en C.2.17. Elle utilise le fait que si le dual estreflexif, alors l’espace lui meme l’est egalement.

Theoreme 4.7. Lin est une categorie monoıdale close.

4.3 Une categorie cartesienne close

La majeure partie du travail presente ici consiste a introduire la theorie des seriesentieres entre espaces vectoriels topologiques. Je n’ai pas retrouve ailleurs lesobjets utilises ici, mais les demonstrations s’inspirent de [BS71] et la theorie desfonctions holomorphes entre evtlc se retrouve dans le deuxieme chapitre de [KM97]et dans [Gro53]. Nous allons definir la categorie Quant des evtlc reflexifs et desseries entieres entre eux, puis montrer que celle-ci est cartesienne close.

Dans C, une serie entiere est une somme convergente (partout ou sur un disqueborne) de la forme ∑

nanzn. Ici, nous allons redefinir la notion de monome de degre

n, a travers les formes n-lineaires.

Definition 4.8. On ecrit Ln(E,F ) l’espace des monomes bornologiques de degren de E vers F , c’est-a-dire l’ensemble des fonctions f telles qu’il existe une fonctionf n-lineaire bornologique de E × ... ×E vers F verifiant f(x) = f(x, ..., x).

Dans C, une convergence simple (c’est-a-dire en chaque point mais sans condi-tion supplementaire sur la convergence) d’une serie entiere implique sa convergenceuniforme sur un disque. Cela n’est plus verifie lorsque l’on passe aux evtlc. Nousallons donc exiger des series entieres que nous utiliserons une convergence uniformesur les bornes de leur codomaine.

18

Page 19: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Definition 4.9. Une serie entiere entre deux evtlc E et F est une somme conver-gente uniformement sur les bornes ∑

n≥0fn de n-monomes bornologiques.

Definition 4.10. On note S(E,F ) l’espace des series entieres de E vers F , munide la topologie de la convergence uniforme sur les bornes de E.

Proposition 4.3.1. Toute serie entiere est bornologique.

Cette proposition est une premiere justification de la coherence de nos defini-tions, et est demontree en C.3.14.

Fonctions holomorphes. Nous reprenons ici la definition d’holomorphie deKriegl et Michor dans [KM97]. Comme nos espaces ont plus de proprietes queles espaces Mackey-complets, nous pouvons tirer de ces fonctions holomorphes denouvelles caracteristiques utiles : c’est le cas par exemple de l’inegalite de Cauchy.

Definition 4.11. Une courbe holomorphe dans E est une fonction c ∶ C → Epartout complexe derivable. Une fonction holomorphe entre deux evtlc est unefonction envoyant une courbe holomorphe sur une courbe holomorphe.

Theoreme 4.12. Une serie entiere est une fonction holomorphe.

Ce theoreme necessite plusieurs lemmes techniques : il est demontre en C.3.20.Il est neanmoins fondamental, car il nous permet d’acceder a une propriete crucialedes series entieres (demontree en C.3.28) :

Proposition 4.3.2. Toute serie entiere f = ∑n≥1

∈ S(E,F ) verifie une formule de

Cauchy :

fn(x) =1

2πi ∫∣λ∣=r

f(λx)λn+1

Cette formule est importante dans la mesure ou elle nous permet de borner fna partir du comportement de f , et donc de controler la convergence de ∑n fn. Laproposition suivante, demontree en C.3.35, est une illustration de cette possibilite.

Proposition 4.3.3. Si les fn sont des n-monomes bornologiques dont la sommeconverge simplement vers une fonction bornologique, alors la convergence de lasomme est uniforme sur les bornes de l’espace de depart.

19

Page 20: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Quant est une categorie cartesienne close

Definition 4.13. E × F est le produit cartesien de E et F , muni de la topologieproduit. E ⊕ F = E × 0⊔0 × F est le biproduit des espaces vectoriels E et F ,muni de la topologie engendree par les U × 0 et les 0 × V , ou U et V sont desvoisinages de 0 dans E et F respectivement.

Proposition 4.3.4. Lorsque E et F sont reflexifs, alors E × F et E ⊕ F le sontegalement.

Cette proposition est demontree en C.3.24, et repose simplement sur le fait que(E × F )× = E× ⊕ F ×, et que (E ⊕ F )× = E× × F ×.

On ecrit Quant pour la categorie des espaces reflexifs et des series entieres entreeux. Commencons par verifier que Quant est bien une categorie.

Theoreme 4.14. La composition de deux series entieres est une serie entiere.

Ce theoreme est demontre en C.3.19. Ce resultat utilise un lemme importantqui relie la convergence faible d’une serie entiere a sa convergence forte. Il permetdonc de demontrer des resultats de permutation (donc de convergence de certainesseries permutees) dans C, et d’en deduire une convergence dans l’evtlc considere.

Proposition 4.3.5. Une somme de n-monomes qui converge faiblement vers unefonction bornologique uniformement sur les bornes de E, converge en verite forte-ment uniformement sur les bornes de E.

Voir la proposition C.3.33 pour la demonstration, proposition qui nous permetde montrer que Quant est cartesienne close, en se ramenant au theoreme de Fubinidans C (voir le theoreme C.3.40) :

Theoreme 4.15. Pour E,F,G des evtlc reflexifs, on a S(E × F,G) ≃S(E,S(F,G)).

Il reste a verifier que lorsque E et F sont reflexifs, S(E,F ) l’est aussi. Cela sefait comme pour la reflexivite de L(E,F ), par densite de L(E,F )× dans S(E,F )×(voir le theoreme C.3.38)

Theoreme 4.16. Quant est une categorie cartesienne close.

4.4 Exponentielle et codereliction

Exponentielle. Nous avons notre candidate Quant pour la categorie de co-Kleisli, mais il nous reste a trouver une comonade ! lui correspondant. On veutdonc que pour tous espaces reflexifs E et F , L(!E,F ) ≃ S(E,F ). Puisque nousvoulons des espaces reflexifs, il faut que !E ≃ (!E)×× ≃ S(E,C)×.

20

Page 21: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Definition 4.17. On note ! ∶ Quant → Lin le foncteur envoyant un espace E surS(E,C)×, et une serie entiere f ∈ S(E,F ) sur :

!f ∶ S(E,C)× → S(F,C)×

φ↦ (g ∈ S(F,C)↦ φ(g f))

Par abus de langage, on note egalement ! ∶ Lin→ Lin pour la composition de !avec le foncteur oubli de Lin dans Quant. On remarque que cette exponentielleest tres differente de celles connues jusqu’ici (dans les espaces de finitudes ou lesespaces coherents par exemple). Elle ne s’ecrit non pas comme une accumulationde multi-ensembles finis, mais plutot comme un ensemble de continuations avaleurs dans l’espace de fonction qui nous interesse.

Comme lors de la demonstration de C.3.38, on peut decrire les elements deS(E,F )× (voir proposition C.3.39) :

Proposition 4.4.1. Toute forme lineaire de (S(E,F ))× restreinte a L(E,F ) peuts’ecrire comme ∑

1≤i≤nfi evxi avec fi ∈ F × et xi ∈ E.

Cette description nous permet d’ecrire les transformations naturelles qui ac-compagnent ! :

• la co-unite dE ∶!E → E est definie par d(λevx) = λx puis etendue lineairement.

• ρE ∶!E →!!E est definie par ρE(λevx) = λevevx .

(!, d, ρ) forme alors une co-monade. On veut desormais montrer que sa categoriede co-Kleisli est exactement Quant.

Theoreme 4.18. Pour tous espaces reflexifs E et F , on a L(!E,F ) ≃ S(E,F ).

Ce theoreme necessite une demonstration un peu longue faite en C.4.5. Elleutilise principalement le fait que δ ∶ E →!E definie par δ(x) = evx est elle memeune serie entiere.

Pour terminer notre modele de la logique lineaire, il ne nous reste plus qu’ademontrer l’isomorphisme de Seely, qui decoule du fait que Quant est cartesienneclose (voir C.4.7 pour une demonstration).

Theoreme 4.19. Pour E et F reflexifs, on a !E⊗!F ≃!(E × F )

Theoreme 4.20. Lin muni de ! forme une categorie de Seely ⋆-autonome, doncun modele de LL.

21

Page 22: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Codereliction Lin muni de ! forme alors un modele de DiLL. L’unique ingre-dient a rajouter est la co-dereliction, qui interprete l’operateur de differentielle en0.

Definition 4.21.

dE

⎧⎪⎪⎪⎨⎪⎪⎪⎩

E →!E

y ↦ f ∈ S(E,C)↦ limx→0

f(ty) − f(0)t

Dans la partie C.5.2, il est detaille pourquoi cette definition est juste.

5 Conclusion

Nous obtenons donc un modele de la logique lineaire compose d’espaces vectorielstopologiques localement convexes, interpretant egalement la logique lineaire dif-ferentielle et de plus en accord avec la semantique quantitative. Ce resultat peutetre vu comme un aboutissement de l’interpretation des liens entre logique lineaireet algebre lineaire, ou comme un second pas -apres les espaces convenants- vers uneanalogie entre la logique lineaire differentielle et l’analyse fonctionnelle. Ce dernierpoint de vue est interessant, car, alors que les espaces coherents ou les espaces definitude imposaient un cadre de travail discret, nous sommes desormais confrontesa un modele denotationel continu.

Enfin, des progres restent a faire dans la comprehension meme de ce modele.Y-a-t-il un operateur d’iteration ? Dans quelle mesure ces espaces aident-t-il a com-prendre l’ajout a la logique lineaire d’un operateur d’integration (”anti-derivative”dans [Ehr11]) ? Quel est le sens de l’exponentielle que nous utilisons ici ? Cetteconstruction est comme nous l’avons ecris assez generale, et il serait interessant desavoir s’il s’agit d’une exponentielle libre.

Remerciements Je tiens d’abord a remercier Christine Tasson de m’avoir missur le chemin de la semantique quantitative, et pour sa tres grande disponibilitelors de mon stage. Merci a Thomas Ehrhard, pour ses conseils reguliers. Mercia Paul-Andre Mellies, de m’avoir donne l’occasion d’exposer mon travail lors dugroupe de travail de semantique.

Merci egalement a tous les thesards de PPS et a ses visiteurs, et en particuliera mes co-bureaux, pour leur dynamisme et leur conseils. Merci enfin a Tigrane,pour sa relecture de ce document.

22

Page 23: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Bibliographie

[BCS06] R. F. Blute, J. R. B. Cockett, and R. A. G. Seely. Differential categories.Math. Structures Comput. Sci., 16(6):1049–1083, 2006.

[BET10] Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenientdifferential category. 06 2010.

[BS71] Jacek Bochnak and Jozef Siciak. Analytic functions in topological vectorspaces. Studia Math., 39:77–112, 1971.

[Ehr02] Thomas Ehrhard. On Kothe sequence spaces and linear logic. Mathe-matical Structures in Computer Science, 12(5):579–623, 2002.

[Ehr05] Thomas Ehrhard. Finiteness spaces. Mathematical Structures in Com-puter Science, 15(4):615–646, 2005.

[Ehr11] Thomas Ehrhard. A model-oriented introduction to differential linearlogic. 2011.

[ER06] T. Ehrhard and L. Regnier. Differential interaction nets. TheoreticalComputer Science, 364(2):166–195, 2006.

[ER08] Thomas Ehrhard and Laurent Regnier. Uniformity and the Taylor expan-sion of ordinary lambda-terms. Theoret. Comput. Sci., 403(2-3):347–372,2008.

[FK88] A. Frolicher and A. Kriegl. Linear spaces and Differentiation theory.Wiley, 1988.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 1987.

[Gir88] Jean-Yves Girard. Normal functors, power series and λ-calculus. Ann.Pure Appl. Logic, 37(2):129–177, 1988.

[Gir99] Jean-Yves Girard. Coherent Banach spaces: a continuous denotationalsemantics. Theoret. Comput. Sci., 227(1-2):275–297, 1999. Linear logic,I (Tokyo, 1996).

[Gro53] Alexandre Grothendieck. Sur certains espaces de fonctions holomorphes.I. J. Reine Angew. Math., 192:35–64, 1953.

[Gro73] A. Grothendieck. Topological vector spaces. Gordon and Breach SciencePublishers, 1973. Traducteur O. Chaljub.

23

Page 24: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

[Hen88] P. Henrici. Applied and computational complex analysis, volume Vol. 1.John Wiley and sons, 1988.

[HN77] Hogbe-Nlend. Bornologies and Functional Analysis. 1977.

[Jar81] Hans Jarchow. Locally convex spaces. B. G. Teubner, Stuttgart, 1981.Mathematische Leitfaden. [Mathematical Textbooks].

[Kha82] S. M. Khaleelulla. Counterexamples in topological vector spaces, volume936 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1982.

[KM97] Andreas Kriegl and Peter W. Michor. The convenient setting of globalanalysis, volume 53 of Mathematical Surveys and Monographs. AmericanMathematical Society, Providence, RI, 1997.

[Kot69] Gottfried Kothe. Topological Vector spaces. Springer, 1969.

[Mel08] P.-A. Mellies. Categorical semantics of linear logic. Societe Mathematiquede France, 2008.

[Sch71] H.H Schaefer. Topological vector spaces, volume GTM 3. Springer-Verlag,1971.

24

Page 25: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

A Espaces convenants dans FK et KM

Le travail fait successivement par Frolicher et Kriegl dans Linear spaces and Dif-ferentiation theory (abrege en FK), et par Kriegl et Michor dans The convenientsetting of global analysis (abrege en KM) peut sembler different. Chacun de ceslivres choisit sa definition d’espace convenant, et d’espace de fonctions lisses entredeux espaces convenants. On utilise ici les arguments contenus dans FK faisantqu’on obtient plusieurs constructions ”equivalentes”. Les arguments concernant lescaracteres bornologiques des duaux ou des topologies sont trouves tels quels dansFK, ceux concernant la conservation de la Mackey-completude ont du etre trouvesa l’aide des resultats de FK.

A.1 Introduction

Les differents foncteurs sont definis dans le livre de Frolicher et Kriegl, sauf U quiest le foncteur oubli de Conv dans KM . On remarque que tous ils preserventles ensembles et les fleches sous-jacents au categories concernees. On rappelleci-dessous leur definition:

• Deux mementos avant tout: si A et B sont deux sous-ensemble d’un espacevectoriel reel E, on dit que A absorbe B s’il existe λ ∈ R⋆

+ tel que λB ∈ A.Par ailleurs, B est dit absolument convexe si pour tout λ − 1, λ2 ∈ R tels que∣λ1∣ + ∣λ2∣ ≤ 1, pour tout x, y ∈ B, on a λ1x + λ2y ∈ B.

• LCS est la categorie des espaces vectoriels topologiques localement convexeset des fonctions lineaires continues entre ces evtlc (voir 2.1.8 dans FK).

• DV S est la categorie des espaces dualises (ie des espaces vectoriels munisd’un sous-ensemble E’ de leur dual) et des fonctions lineaires preservant lesespaces E’ par composition a droite (voir 2.1.1 dans FK).

• CBS est la categorie des espaces bornologiques convexes (ie un espace vec-toriel muni d’une bornologie vectorielle, telle que l’enveloppe convexe d’unborne soit encore bornee) et des fonctions lineaires bornologiques entre cesespaces bornologiques (voir 2.1.2 de FK).

• δl ∶ LCS → DV S associe a un espace convenant E le FK-espace forme dumeme espace vectoriel muni de l’espace des formes lineaires bornologiques(voir 2.1.9 dans FK).

• µ ∶ DV S → LCS associe a un espace dualise E ce meme espace vectorielmuni de la topologie localement convexe la plus fine telle que E’ soit l’espacedes formes lineaires continues pour cette topologie. On l’appellera desormais

25

Page 26: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

la Mackey-topologie. Concretement, le theoreme de Mackey-Arens (p.158Jarchow) nous dit qu’il s’agit de la topologie de la convergence uniforme surE de tous les disques faiblement-* compacts de E′. µ est un adjoint a gauchede δl (voir 2.1.9 dans FK).

• β ∶ LCS → CBS associe a un evtlc ce meme espace vectoriel muni de sabornologie de von Neumann (un ensemble est borne au sens de von Neumanns’il est absorbe par tout voisinage de 0). C’est une bornologie vectorielleconvexe. β preserve les fleches de LCS (voir 2.1.10 de FK).

• γ ∶ CBS → LCS construit une certaine topologie τ a partir d’un espacebornologique E muni d’une bornologie B. τ est la topologie vectorielle ayantcomme voisinages de 0 les ensembles absolument convexes bornivores. γpreserve les fleches de CBS (voir 2.1.10 dans FK).

• On utilisera egalement deux foncteurs δb ∶ CBS → DV S et son adjoint adroite σb ∶ DV S → CBS. Le premier associe a un espace bornologique cetespace muni de l’ensemble des formes lineaires bornologique sur E, et lesecond associe a E dualise la bornologie des ensembles dont l’image par toutelement de E’ est borne (voir 2.1.7 dans FK).

LCS DV Sδl

-- DV SLCSµ

mmLCS

CBS

β

CBS

LCS

γ

WW DV S

CBS

σb

yyCBS

DV S

δb

88

La convexite demandee ci-dessus pour les ouverts d’une topologie ou les bornesd’une bornologie est fondamentale: c’est elle qui aux formes lineaires de ces espacesd’etre aussi utiles. On rappelle donc ci-dessous une propriete d’analyse fonction-nelle:

Proposition A.1. Soit E un espace vectoriel topologique localement convexe. Unsous-ensemble de E est alors borne (ie absorbe par tout voisinage de 0) ssi il estscalairement borne.

A.2 La Mackey-completude et les espaces convenants

Il s’agit maintenant de distinguer le travail de FK de celui de KM, et d’etudierleurs ressemblances.

26

Page 27: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Definition A.2. Soit E un espace vectoriel muni d’une bornologie B, et (xn)n∈Nune suite de E. Cette suite est dite de Mackey-Cauchy s’il existe un reseau(λn,n′)n,n′∈N de reels decroissants vers 0 et un borne B ∈ B tels que pour toutn,n′ ∈ N on ait xn − xn′ ∈ λn,n′B (voir 2.1 dans KM et 2.2.13 dans FK).

Definition A.3. Un KM espace est un espace vectoriel topologique separe locale-ment convexe c∞-complet, au sens ou toute sequence de Mackey-Cauchy convergepour la topologie τ de E (2.14 dans MK). Ici, le critere de Mackey-Cauchy estdonne vis a vis de la bornologie des ensembles absorbes par tout voisinage de 0.

Definition A.4. On appelle FK espace un espace vectoriel (sur R), muni d’uncertain sous-espace E’ inclue dans le dual de E, tel que E’ est invariant par δb σb, separe les points de E, et telle que toute suite de Mackey-Cauchy convergefaiblement. Ici, le critere de Mackey-cauchy est donne vis-a-vis de la bornologie deσb(E).

On obtient donc deux categories: KM dont les objets sont les KM espaceset les fleches les fonctions lineaires continues entres KM espaces, et FK dont lesobjets sont les FK espaces et les fleches sont les fonctions lineaire m ∶ E1 → E2

telles que m⋆(E′2) ⊆ E′

1. Chacune est une sous-categories pleine de respectivementLCS et DV S.On construit une nouvelle definition d’espace convenants, qui est celle utilisee parBlute, Ehrhard et Tasson dans leur article.

Definition A.5. Un espace convenant est un espace vectoriel topologique locale-ment convexe, dont la topologie est bornologique et separee, et tel que toute suitede Mackey-Cauchy dans E converge. On construit la categorie Conv des espacesconvenants et des fonctions lineaires bornologiques entre espace convenants. Ils’agit d’une sous-categorie pleine de LCS.

Ainsi, parmi ces espaces, deux vivent dans LCS, un dans DV S. Notre but estdesormais de montrer que le diagramme ci-dessous commute, et que les paires defoncteurs qui y sont decrite forment des adjonctions. Pour faire cela, nous detail-lons dans le reste de cette section quelques outils, puis nous effectuons la section1.2 un passage necessaire par les espaces bornologique complet, pour demontrer ensection 1.3 que les fleches du diagramme sont bien definies et en 1.4 que les pairesde foncteurs forment des adjonctions.

FK Convµ // ConvFKδloo

FK

KM

µ

KM

FK

δbβ

OO

KM

Conv

γβ

??

Conv

KM

U

27

Page 28: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition A.6. Il y a dans la prop2osition 2.1.21 de FK quatre figures majeures.Elles ont comme objet ou image des elements de DV S, CBS ou LCS: on travaillesur des espaces vectoriel muni d’un dual, d’une bornologie ou d’une topologie, maisdans tous les cas convexe. On y apprend les quatre egalites suivantes:

• σb δl = β. Ce n’est qu’une reformulation de la prop2osition 1.

• δl γ = δb.

• β µ = σb. Etre borne pour la bornologie de von Neumann associee a laMackey-topologie est la meme chose qu’etre scalairement borne.

• µδb = γ. Dans un espace vectoriel bornologique convexe, il equivaut pour unensemble absolument convexe d’etre bornivore ou d’etre un voisinage dans laMackey-topologie associee a l’ensemble des fonctions lineaires bornologiques.

On remarque que l’on a de plus les deux inclusions suivantes, que l’on demontrefacilement:

Lemme A.7. 1. La topologie de E ∈ LCS est contenue dans celle de γ(β(E)).

2. La bornologie de E ∈ CBS est contenue dans celle de β(γ(E))

Proof. Demontrons par exemple la premiere inclusion: un voisinage de 0 dansE ∈ LCS absorbe tout borne de β(E). Or les voisinages de 0 de γ(β(E)) sont ex-actement ceux qui absorbent tous les bornes de β(E). Comme les deux topologiesconsiderees sont vectorielles, on en deduit que celle de E est contenue dans cellede γ(β(E)).

Ce premier lemme nous permet de montrer un second, plus utilise:

Lemme A.8. 1. Pour tout E ∈ CBS, on a γ(E) = γ(β(γ(E))).

2. Pour tout E ∈ LCS, on a β(E) = β(γ(β(E))).

Proof. En utilisant (1) du lemme 1, on a que la topologie de E est contenue danscelle de β(γ(E)), donc la bornologie de γ(β(γ(E))) est contenue dans celle deγ(E). Un borne absorbe par tout ouvert de β(γ(E)) est en particulier absorbepar tout ouvert de E. De plus, l’inclusion (2) du lemme 1 nous dit que la bornologiede γ(E) est contenue dans celle de γβ(γ(E)). On a donc l’egalite des bornologie,et comme γ et β preservent les espaces et fleches sous-jacentes de leur element dedepart, nous avons: γ(E) = γ(β(γ(E))).La deuxieme egalite se demontre de maniere analogue.

Une fois ces preliminaires exposes, il faut s’attaquer au diagramme. On expliqueimmediatement la partie facile: le fait que le diagramme commute.

28

Page 29: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition A.9. On a bien (γ β µ)(E) = µ(E) pour un FK-espace E, etδl(γ(β(F ))) = δb(β(F )) pour un KM espace F .

Proof. Montrons la premiere egalite. µ(E) est l’espace E muni de la topologiela plus fine telle que δl µ(E) = E. Or (γ β µ)(E) porte une topologie plusfine que µ(E), et, d’apres la prop2osition 2, (δl γ β µ)(E) = (δb β µ)(E) =(γ β µ)(E) = (δb σb)(E) = E car E est un FK-espace. On a donc forcement(γ β µ)(E) = µ(E).Pour la deuxieme egalite, on a δl(γ(β(F ))) = δb(β(F )) = δb(σb(δl(F ))) en appli-quant deux fois la prop2osition 2.

A.3 Les espaces bornologiques complets

Pour montrer que le diagramme est bien definie, les passages de Conv vers FKou KM pourraient se faire des maintenant (lemmes 5 et 8 de la section 1.4).Les autres necessiteront des outils supplementaires, que nous developpons danscette section. Il s’agit principalement de montrer que la convergence faible dessuites de Mackey-Cauchy implique leur convergence. Pour cela, on utilise les es-paces bornologiques complets comme decrits par Hogbe-Nlend dans Bornologiesand Functional Analysis (1977).

Definition A.10. Soit E un espace vectoriel reel et B un sous-ensemble absol-ument convexe de E. On note EB le sous-espace vectoriel engendre par B, munide la norme pB definie par pB(x) = infλ > 0, x ∈ λB (voir 2.1.15 dans FK, ladefinition est egalement dans KM).

Les remarques ci-dessous sont fondamentale pour comprendre l’interet des es-paces bornologiques complets:

Fait A.11.

S E ∈ LCS, si B est un borne de β(E) absolument convexe, alors la convergenced’une suite de EB dans EB implique sa convergence dans E: c’est parce que B estabsorbe par tout voisinage de 0 dans E.

Fait A.12.

Si E ∈ LCS, une suite (xn)n est de Mackey-Cauchy dans E ssi il existe B borneabsolument convexe de E tel que (xn)n est de Cauchy dans EB. Elle Mackey-converge dans E ssi il existe un B tel qu’elle converge dans EB.

Definition A.13. Soit E in CBS. E est dit complet si pour tout borne B′, ilexiste une borne absolument convexe B contenant B′ tel que EB soit un Banach.

29

Page 30: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition A.14. Soit E un espace vectoriel topologique localement convexe.S’equivalent (voir dans 2.2 et 1.6 dans KM):

1. Toute suite de Mackey-Cauchy pour la bornologie de βE converge (ie E ∈KM)..

2. β(E) est un espace bornologique complet.

Proof. (1) => (2). Soit B′ un borne de E. On considere B un borne ferme etabsolument convexe contenant B′. Il s’agit de montrer que EB est un Banach,on choisit donc (xn)n une suite de Cauchy dans EB. (xn)n est donc de Mackey-Cauchy dans E, donc converge vers x ∈ E. En notant λn,n′ = pB(xn−xn′), ce reseautend vers 0 et par definition (xn − xn′) ∈ λn,n′B.Ainsi, si on choisit ε > 0 il existe N ∈ N tel que pour tout n,n′ ≥ N , (xn−xn′) ∈ εB.Soit n ≥ N fixe: pour tout n′ ≥ N , (xn − xn′) ∈ εB et comme (xn − xn′) convergevers (xn − x), comme εB est ferme, on a (xn − x) ∈ εB pour tout n ≥ N . Donc(xn)n Mackey-converge vers x pour le borne B, donc x ∈ EB, et la suite convergevers x dans EB.(2) => (1). Soit (xn)n une suite de Mackey-Cauchy dans E. Cette suite est doncde Cauchy dans un certain EB′ , et converge donc vers x dans un EB ou B′ ⊆ B.Or la convergence dans EB implique la convergence dans E: tout voisinage de 0absorbe B, et donc absorbe les xn − x pour n assez grand. E est donc Mackey-complet.

Corollaire A.15. Si E ∈ LCS, E est Mackey-complet ssi β(E) est complet. Ainsi,pour E ∈ LCS, E ∈ Conv ssi E est invariant par γ β et si β(E) est complet, etE ∈KM ssi β(E) est complet.

Il faut maintenant montrer que l’equivalence de la prop2osition 4 existe egale-ment pour les FK espaces: cela permettra en section 1.4 de prouver que le caracterede Mackey-completion est preserve lors du passage de FK a Conv. En verite, nousn’avons besoin que d’un seul sens de l’equivalence, celui qui nous dit que si E ∈ FK,alors σb(E) est un espace bornologique complet (voir la prop2osition 5). Pour yarriver, un premier lemme est necessaire.

Lemme A.16. Soit E un espace vectoriel dualise. Soit (xn)n une suite faiblementconvergente vers x ∈ E, de Mackey-Cauchy envers un certain ensemble B scalaire-ment borne. Alors (xn) Mackey-converge vers x pour ce meme B: il existe λndecroissante vers 0 telle que pour tout n, xn ∈ λnB.

Proof. On procede comme dans la preuve de prop2osition 4, en supposant sansperte de generalite que B est faiblement clos.

30

Page 31: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition A.17. Soit E un espace vectoriel dualise, dont le dual separe lespoints de E. Si toute suite de Mackey-Cauchy converge faiblement dans E, alorsσb(E) est un espace bornologique complet.

Proof. Le resultat se deduit facilement du lemme precedent. En effet, soit B′

un borne de σb(E). On considere B un borne faiblement ferme et absolumentconvexe contenant B′. Il s’agit de montrer que EB est une Banach. On prenddonc (xn)n une suite de Cauchy dans EB, donc de Mackey-Cauchy dans E. Elleconverge faiblement, donc converge dans B par le lemme 3.

Cette prop2osition est particulierement utile pour demontrer le fait suivant,a savoir que pour une suite de Mackey-cauchy, converger et converger faiblementsont la meme chose.

Corollaire A.18. Soit E un espace vectoriel topologique bornologique localementconvexe et separe. Si toute suite de Mackey-Cauchy (pour la bornologie de β(E))converge faiblement (pour δl(E)), alors toute suite de Mackey-Cauchy converge.

Proof. On applique la prop2osition 5 a l’espace δl(E). σb(δl(E)) = β(E) est donccomplet, donc d’apres la prop2osition 3 toute suite de Mackey-cauchy convergedans E.

Definition A.19. On note Born la categorie des espaces bornologiques convexes,complets, et invariant par β γ (ie ce sont des espaces bornologiques topologiques).

On vient en fait de demontrer que le diagramme suivant est bien defini. Lefait que les espaces de Born soient topologique est necessaire au fait que le criterede Mackey-Cauchy soit le meme lorsque l’on passe de Born dans une des autrescategories.

FK

Born

σb

$$HHH

HHHH

HHHH

HHHH

H

Born

FK

δb

ddHHHHHHHHHHHHHHHH

Conv

Born

β

zzvvvvvvvvvvvvvvvv

Born

Conv

γ

::vvvvvvvvvvvvvvvv

KM

Born

β

OOBorn

KM

γ

31

Page 32: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

A.4 Les passages entre FK, KM et Conv

Il s’agit donc de montrer que le diagramme de la page 3 est bien defini. Le fait qu’ilcommute est demontre dans le lemme 3. Pour plus de clarte, le voici de nouveauci-dessous.

FK Convµ

// ConvFKδloo

FK

KM

µ

KM

FK

δbβ

OO

KM

Conv

γβ

??

Conv

KM

U

Nous allons separer les demonstrations concernant la separabilite des espacesdans FK, KM , ou Conv de celles concernant la Mackey-completion et les in-variances par certains foncteurs. On rappelle qu’un KM-espace ou qu’un espaceconvenant a par definition une topologie separe, et que par definition aussi pourE ∈ FK, le dual de E separe les points de E. On dira dans le dernier cas queE ∈ FK est separe.

Proposition A.20. 1. Si E ∈ Conv, alors δl(E) est separe.

2. Si E ∈ FK, alors la topologie de µ(E) ∈ Conv est separee.

3. Si E ∈KM , alors δb β(E) est separe.

4. Si E ∈ Conv, la topologie de U(E) est separee.

5. Si E ∈KM , alors la topologie de γ β(E) est separee.

Proof. 1. δl(E) est separe: l’espace des formes lineaires continues sur E separeles points de E.

2. µ(E) est munie de la topologie localement convexe la plus fine telle que E’soit l’espace des formes lineaires continues pour cette topologie. Or E′ separeles points de E, et la topologie de µ(E) contient la topologie engendree parE′, donc elle est separee.

3. D’apres la prop2osition 2, δb β(E) = δl(γ β(E)). Or le lemme 1 nous ditque la topologie de E est incluse dans celle de γ β(E), donc cette dernieresepare egalement les points de E. Par ailleurs, on sait que l’on peut deduire

32

Page 33: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

du theoreme d’Hahn-Banach pour les evtlc (i.e. pour les espaces vectorielstopologiques localement convexes) le fait que le dual algebrique d’un evtlcsepare est separe. Donc δl(γ β(E)) est separe.

4. C’est clair, car on garde le meme espace de depart, et la meme topologie surcelui-ci.

5. On procede comme en (3): comme d’apres le lemme 1, la topologie de E estincluse dans celle de γ β(E), cette derniere est egalement separee.

On peut desormais passer au reste des demonstrations, en utilisant dans chaquelemme et sans la rappeler la prop2osition precedente. On utilise dans deux lemmesles resultats de la section 1.3:

• Dans le lemme 5, pour verifier le passage de FK a Conv nous avons besoindu fait que la convergence faible de suite de Mackey-Cauchy implique saconvergence (corollaire 2),

• Dans le lemme 6, pour demontrer que si E inKM sa bornologisation estMackey-complete, nous avons besoin du fait que la Mackey-completudeequivaut a la completude de l’espace bornologique associe (corollaire 1).

Lemme A.21. Si E ∈ Conv, alors δl(E) ∈ FK.

Proof. Soit E ∈ Conv. On a d’apres les egalites de la prop2osition 2 δl(E) =δl(γ(β(E)) = δl(γ(σb(δl(E)))) = δb(σb(δl(E))). Montrons que le caractere de com-pletion est preserve: le critere de Mackey-Cauchy dans δl(E) est defini par rapporta la bornologie σb(δl(E)), qui est exactement celle de β(E) d’apres la prop2osition2. Or dans E, le critere de Mackey-Cauchy est donne pour la bornologie de β(E).Donc toute suite de Mackey-cauchy dans δl(E) est une suite de Mackey-Cauchydans E, et comme E est Mackey-complet elle converge dans E, donc convergefaiblement, donc converge dans δlE.

Lemme A.22. Si E ∈ FK, alors µ(E) ∈ Conv.

Proof. Soit E ∈ FK. On a d’apres la prop2osition 2: (γ(β(µE)))) = γ(σb(E)) =µ(δb(σb(E))) = µ(E) car E est un espace dualise invariant par δb(σb). Montronsque le critere de completion est preserve. Une suite de Mackey-Cauchy dans µ(E)est egalement de Mackey-Cauchy dans E car βµ(E)) = σb(E), donc elle convergedans E. Or par definition de µ 1, la topologie de faible convergence dans µ(E)

1Rappelons le, µ associe a un espace dualise E ce meme espace vectoriel muni de la topologielocalement convexe la plus fine telle que E’ soit l’espace des formes lineaires continues pour cettetopologie.

33

Page 34: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

est exactement la topologie de E. Donc toute suite de Mackey-Cauchy dans µ(E)converge faiblement, donc converge d’apres le corollaire 2. µ(E) est donc Mackey-complet.

Lemme A.23. Si E ∈KM , alors γ(β(E)) ∈ Conv.

Proof. On a γ(β(E)) = γ(β(γ(β(E)))) d’apres le lemme 2, donc la topologiede γ(β(E)) est bien bornologique, elle reste convexe et separee. Montrons queγ(β(E)) est Mackey-complet. Comme E ∈KM , β(E) est un espace bornologiquecomplet. Or β(γ(β(E))) = β(E) d’apres le lemme 2, donc β(γ(β(E))) est un es-pace bornologique complet, et γ(β(E)) est Mackey-complet d’apres la prop2osition4.

Lemme A.24. Si E ∈ Conv, alors U(E) ∈KM

Proof. C’est clair: on ne change ni la topologie, ni la bornologie, donc le critere deMackey-Cauchy et le critere de convergence restent donc inchanges.

Lemme A.25. Si E ∈ FK, alors µ(E) ∈KM .

Proof. D’apres les lemmes 5 et 7.

Lemme A.26. Si E ∈KM , alors δb(β(E))) ∈ FK.

Proof. On a bien δb(σb(δb(β(E)))) = δb(σb(δl(γ(β(E))))) = δb(β(γ(β(E)))) =δb(β(E)). Il ne reste plus a prouver que le fait que toute suite de Mackey-Cauchyconverge.E et δb(β(E)) ont le meme bornologie: on a en effet σb(δb(β(E))) =σb(δl(γ(β(E)))) = β(γ(β(E))) = β(E). Par ailleurs, on sait d’apres le lemme6 que γ(β(E) = µ(δb(β(E)) est Mackey-Complet, et possede la meme bornologieque E. Donc une suite de Mackey-Cauchy dans δbβ(E))) est de Mackey-Cauchydans µ(δb(β(E)), donc converge et converge faiblement dans ce meme espace, etpar definition de µ on voit que cette suite converge dans δb(β(E).

On a donc montre dans les 6 lemmes precedents que les foncteurs etaient biendefinis d’objet en objet. Comme les sous-categories FK, KM , et Conv sont dessous-categories pleines de DV S ou LCS, les foncteurs consideres sont donc biendefinis, et le diagramme de la page 3 est bien defini et commute.

A.5 Adjonctions dans le premier diagramme

Nous avons des adjonctions entre les trois paires de foncteurs presentes dans lediagramme de la page 3.

34

Page 35: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• Lorsque l’on ne restreint pas δl et µ a FK et Conv, il est demontre en 2.1.9du livre de Frolicher et Kriegl que µ est adjoint a gauche de δ. FK et Convetant des sous-categories pleines de DV S et LCS respectivement, ce resultatreste vrai pour les restrictions de notre diagramme.

• Montrons que µ ∶ FK → KM est adjoint a gauche de δb β ∶ KM → FK.D’une part pour E ∈ FK, on a par definition δb σb(E) = E et δb β µ(E) =(δb σb)(E) d’apres la prop2osition 1. L’unite idE ∶ E → (δb β µ)(E) = Eest donc bien definie et preserve evidemment le dual de E par compositiona droite, donc est une fleche de FK.D’autre part, pour E ∈ LCS et d’apres la prop2osition 1 µ(δb(β(E))) =γ(β(E)), or la topologie de γ(β(E)) est plus fine que celle de E, donc laco-unite εE ∶ γ(β(E))→ E;x↦ x est continue, et est une fleche de KM .Les trois foncteurs utilise ici preservant les espaces et fleches des categoriesFK ou KM , on verifie sans peine les equations faisant de µ l’adjoint a gauchede δb β.

• U ∶ Conv → KM est adjoint a droite de γ β ∶ Conv → KM . En effetid ∶ γ β(E)→ E est continue pour E ∈KM , et pour E ∈ Conv, sa topologieest celle de γ β(E), donc id ∶ E → γ β(E) est continue.

A.6 Espaces de fonctions lisses

Au dela de ce premier travail, nous avons besoin de comprendre les differencesentre le travail fait sur les fonctions lisses par Frolicher et Kriegl, et celui fait surces memes fonctions par Kriegl et Michor. Les deux ont la meme definition unpeu particuliere des fonctions lisses (ce sont les fonctions qui envoient les courbeslisses sur les courbes lisses), mais ils ne mettent pas a priori la meme topologiesur ces espaces. Pour les deux paires d’auteurs, les espaces de fonctions lisses sontpourtant des espaces convenants (dans FK ou dans Conv): on verra que l’on peutprolonger le diagramme de la section 1 au cas des espaces de fonctions lisses.

Deux definitions...

Definition A.6.1. Soit E ∈ LCS. Une application c ∶ R → E est dite derivable sien tout point t ∈ R, la limite c′(t) = lim

s→tc(s)−c(t)

s−t existe pour la topologie de E

Definition A.6.2. Une courbe lisse est une courbe n fois derivable pour tout n ∈ N.Une fonction lisse entre deux espaces vectoriels topologiques est une applicationenvoyant toute courbe lisse de son espace de depart sur une courbe lisse de sonespace d’arrivee.

35

Page 36: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Il se trouve qu’equipe de ces fonctions lisses, les espaces convenants forment lacategorie de co-Kleisli de Conv pour une certaine monade. Cette structure donnenaissance a un modele de la logique lineaire intuitionniste, ainsi qu’a une categoriedifferentielle. On retrouve des structures similaires dans les KM-espaces. C’estavec joie que nous decouvrons la une nouvelle difference a combler entre le livrede Frolicher et Kriegl et celui de Kriegl et Michor. En effet, la topologie definiesur l’espace des fonctions lisses n’est pas la meme, alors qu’elle est fondamentalepour prouver qu’il s’agit d’un espace convenant (respectivement d’un KM-espace),et donc que la categorie de co-Kleisli consideree est cartesienne close 2.

Topologie de l’espace des courbes lisses dans KM Voir 3.6 dans KM. SoitE ∈KM . On note C∞KM(R,E) l’espace des courbes lisses dans E, avec la topologiede la convergence uniforme sur les compacts de chaque derivee separement. Lesouverts pour cette topologie sont les

Of,Ω = g ∈ C∞(R,E),∀k ∈ N,∀K un compact ⊂ R,∀x ∈K,f (k)(x) − g(k)(x) ∈ Ω

ou Ω est un voisinage de 0 dans E, et f une courbe lisse.

Topologie de l’espace des courbes lisses dans FK Voir 4.1.9 et 4.2.2 dansFK. Soit E un FK-espace et c ∶ R → E une application. On dit que c est unecourbe faiblement lisse si elle est lisse pour la topologie faible sur E. On munitalors C∞FK(R,E) de la de FK-espace engendre par les δi pour tout i ∈ N 3. Les δi

sont les quotients differentiels d’ordre i:

δi ∶ C∞FK(R,E)→ CBS(R<i>,E)

c↦ δi−1c ∶ (t0, . . . , ti)↦i

t0 − ti(δi1c(t0, . . . , ti1) − δi1c(t1, . . . , ti)).

sachant que l’on definit δ0c = c pour tout c ∈ C∞(R,E), et R<i> comme etantl’ensemble de (i+1)-uplet de reels dont tous les composantes sont deux a deuxdistinctes.

Topologie de l’espace des fonctions lisses dans KM Voir 3.6 dans KM.Une fonctions f ∶ E → F entre deux KM-espaces est dite lisse si elle envoie toutecourbe lisse de E sur une courbe lisse de F . On note l’ensemble des fonctionslisses de E dans F C∞KM(E,F ), on le munit de la structure d’espace vectoriellesimple, et de la topologie initiale engendree par les c⋆ ∶ C∞KM(E,F ) → C∞KM(R, F ),c ∈ C∞KM(R,E)

2Ce dernier resultat etant lui essentiel dans la construction de la monade.3Voir 3.1.2 dans FK: pour ce faire, on prend la structure duale initiale habituelle, puis on la

bornologise en appliquant δ σb.

36

Page 37: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Topologie de l’espace des fonctions lisses dans FK. Une fonction f ∶ E → Fentre deux KM-espaces est dite lisse si elle envoie toute courbe lisse de E sur unecourbe lisse de F . On note l’ensemble des fonctions lisses de E dans F C∞(E,F ),on le munit de la structure d’espace vectorielle simple, et de la topologie initialeengendree par les c⋆ ∶ C∞(E,F )→ C∞(R, F ), c ∈ C∞(R,E)

Lemma A.6.3. Dans FK comme dans KM, un produit fini ou infini d’espacesconvenants est convenant.

Lemma A.6.4. Dans FK comme dans KM, un sous-ensemble ferme d’un ensembleMackey-complet est complet.

Proof. A faire.

Proposition A.6.5. Les espaces C∞(E,F ) et C∞(R, F ) sont des FK-espaceslorsque E,F ∈ FK, et des KM-espaces lorsque E,F ∈KM .

Schema de preuve dans FK (Voir 4.2.10 et 4.4.2 dans FK).

Proof. Attention: ici on utilise la notation CBS la ou les auteurs utilise la notationl∞. On considere les fonctions bornologiques d’une espace dans un autre, quandles auteurs utilisent les l∞-morphismes, qui sont dans notre cas d’espaces precon-venants exactement les fonctions bornologiques.C∞(E,F ) s’injecte dans∏c∈C∞(R,E) C∞(R, F ). On voit facilement que c’est un sous-ensemble ferme de celui-ci, et d’apres les lemmes precedents on n’aurait plus qu’amontrer que les C∞(R, F ) sont des FK-espaces.Ils sont preconvenants (ie invariants sous σb δ) par definition. Il suffit de mon-trer qu’ils sont complet. Pour cela, on choisit une nouvelle notation, et onnote Lipk(R,E) l’espace des courbes scalairement k fois derivables, et dont lak-ieme derivee est scalairement localement lipschitzienne, muni de la structurede FK-espace engendre par les δi, i ≤ k. A vrai dire, C∞(R, F ) s’injecte dans

∏k Lipk(R,E), et l’image de l’injection est close. Il suffit donc de montrer que

Lipk(R,E) est Mackey-complet. Pour cela, on se reduit au cas k = 0 en montrantqu’il y a un isomorphisme de FK-espaces entre Lipk(R,E) et E×Lipk+1(R,E): onne detaille pas l’isomorphisme. Il s’agit bien sur de l’evaluation en un point et dela differentielle d’une part, et de l’integration d’autre part, mais cela necessite desavoir que dans un espace Mackey-complet, on peut integrer sur un segment unecourbe localement lipschitzienne.Pourquoi Lip0(R,E) est-il Mackey-complet ? Car il forme un sous-ensemble closde E ×CBS(R<1>,E) (on lui applique l’injection ev0 × δ1). La derniere etape estdonc de montrer que CBS(R<1>,E) est Mackey-complet (la preconvenance vientdu fait que E est preconvenant). C’est la que les auteurs nous renvoient a 3.6.1,ou l’on explique de maniere un peu floue que CBS(R<1>,E) est un sous ensemble

37

Page 38: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

clos d’un produit de l’ensemble l∞ de l’ensemble des suite bornees de N dans R.Ce dernier, muni de la norme de la convergence uniforme, est un Banach, il estdonc Mackey-complet 4.

Schema de preuve dans KM. Voir 3.6 et 3.11.

Proof. De meme que dans FK, on considere C∞KM(E,F ) s’injecte dans

∏c∈C∞KM (R,E) C∞KM(R, F ), et qu’il resulte en un sous-ensemble clos. Il suffit doncde montrer que les espaces de courbes lisses sont des KM-espace.Soit E un KM-espace. Alors C∞KM(R,E) s’injecte dans ∏n∈NCBS(R,E) parl’application qui a une courbe associe la suite de ses derivees. On munit iciCBS(R,E) de la topologique de la convergence uniforme sur tout les compacts.L’image de cette injection est close: considerons pour le demontrer une suite (ck)de courbe bornologiques dans E, tel que pour tout n lim

k→∞c(n)k = c, ou cn est une

courbe bornologique dans E. Il faut montrer que c0 est lisse et que pour tout n,cn = (c0)(n). Il suffit de montrer ce cas la localement en tout point de R. Fixons-nous t0 ∈ R Pour le cas n = 1 par exemple, definissons

γ ∶⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

R→ E

t ≠ t0 ↦ δ(c0)(t, t0)t0 ↦ c1(t0)

et pour tout k ∈ N

γk ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R→ E

t ≠ t0 ↦ δ(c(0)k (t, t0)t0 ↦ c

(1)k (t0)

Comme E est Mackey-complet, on peut integrer c(1)k sur [0; 1], et pour tout t,

γk(t) = ∫1

0 c(1)k (t0 + λ(t − t0))dλ. Donc γk converge vers ∫

1

0 c(1)(t0 + λ(t − t0))dλ

uniformement sur tout compact de R. Par ailleurs, γk converge aussi simplementvers γ sur R. Donc γ = ∫

1

0 c(1)(t0 + λ(t − t0))dλ, c0 est derivable en t0 de derivee

c1(t0). On fait de meme pour tout n et pour tout t0 ∈ R.Il ne reste plus qu’a montrer que CBS(R,E) est Mackey-complet (voir 2.15

dans KM). On passe pour ca par les espaces bornologiques: on veut montrer quepour tout borne B de cet espace, CBS(R,E)B est un Banach. Or que sont lesbornes de Von Neumann associes a la topologie de la convergence sur tout les

4Voir 1.2.12 dans FK: la structure de FK-espace de CBS(X,E) est engendree par les l∞(c, l) ∶l∞(X,E)→ l∞, pour c ∈ l∞(N,X), l ∈ E′

38

Page 39: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

compacts ? On voit vite qu’il s’agit des ensemble de fonctions envoyant tout bornede R sur un borne de R.

On montre d’abord que si D est un borne de R, alors CBS(D,E) est Mackey-complet. En effet, si on considere un borne B, CBS(D,E)B est l’ensemble desfonctions envoyant D sur un borne de E, que l’on note B. En se rappelant quela norme sur EB est pB(x) = sup

λx∈Bλ on voit que pour f ∈ CBS(D,E)B, pB(f) =

supx∈D

pB(f(x)). Cela nous donne une isometrie entre CBS(D,E)B et CBS(D,EB).Or il est connue que lorsque Y est un Banach, l’ensemble des fonctions allant d’unborne vers ce Banach est lui meme un Banach. Ceci etant valable pour tout B,CBS(D,E) est Mackey-complet.

Que se passe-t-il dans le cas general ? La topologie de la convergence uniformesur tout compact fait que CBS(R,E) s’injecte dans ∏DCBS(D,E). Il suffit demontrer l’image de cette injection est close, ce qui se fait facilement.

... qui s’equivalent

Il s’agit de montrer que sur les espaces de fonctions lisses, on a dans KM et dans FKles memes topologies a une bornologification pres. Il suffit de montrer le resultatpour les espaces de courbes, etant donne que les espaces de fonctions dans KM ouFK sont construits de la meme maniere a partir de leur espaces de courbes.Il y a dans FK un point flou, celui de la topologie sur l’espace l∞(X,E) lorsqueE est un espace convenant, et X un l∞-espace. C’est la bornologification de latopologie initiale engendree par les l∞(c, l) ∶ l∞(X,E) → l∞, pour c ∈ l∞(N,X), l ∈E′. Elle provient donc de la topologie dont est dotee l∞. Celle ci n’est jamaisexplicitee clairement dans FK. Lors de la demonstration de la Mackey-completudede l∞(X,E), il est juste fait reference au fait que l’on dote l∞ de la bornologie del’uniforme convergence sur les bornes(voir la remarque apres 1.2.10). Sa topologie,si elle doit etre bornologique, serait donc la topologie de l’uniforme convergencesur les bornes, utilisee dans KM. Il en va donc de meme sur l∞(N,E), vu queles bornes de E sont les scalairement bornes (ici, comme il est precise en 1.2.8 deFK, tout sous-ensemble de N est considere comme borne, y compris N lui-meme).D’apres le definition des bornes dans un l∞-espace, on obtient alors la topologiede la convergence uniforme sur l∞(X,E) (a detailler eventuellement).Plus simplement, on peut comprendre la remarque apres 1.2.10 comme disant quela bornologie de l∞(X,Y ) est la bornologie de la convergence uniforme sur toutborne de X. C’est ce que nous voulons, pour identifier la topologie decoulant decette bornologie comme etant la bornologie de la convergence uniforme sur toutborne de X, celle utilisee dans KM. 5.

5Rappel: Si X est un ensemble muni d’une bornologie, E un espace vectoriel topologique,la topologie de l’uniforme convergence sur les bornes de l’espace CBS(X,E) a pour base de

39

Page 40: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Nous allons nous contenter de montrer que lorsque E est un FK-espace, lorsquequ’on lui considere le KM-espace µ(E) associe, alors γβ(C∞KM(R, µ(E))) s’injectecontinument dans C∞FK(R,E). Auparavant, on fait un detour par la definition descourbes fortement derivables dans les FK espaces, notion qui pourrait peur-etreservir a montrer que si E est un KM-espace γβ(C∞KM(R, (E))) = C∞FK(R, γβ(E)).

Courbes fortement derivables dans FK

Soit E un FK-espace et c ∶ R → E une application. On dit que c est fortementderivable si la limite c′(t) = lim

s→tc(s)−c(t)

s−t existe (converge faiblement) et si le quotient

converge uniformement sur tout compact de R. On dit qu’une courbe est fortementlisse si elle est fortement derivable et si sa derivee est elle meme fortement lisse.

Proposition A.6.6. Theoreme 4.1.13 de FK. Soit E un FK espace et c une courbedans E. S’equivalent:(1) c est une courbe faiblement lisse(2) c est une courbe fortement lisse.

La demonstration de cette proposition necessite plusieurs outils:

Definition A.6.7. On rappelle la definition de locale lipschitziniate: une courber: soit E un evtlc, c une courbe sur E. On dit que c est localement lipschitziennesi pour tout r ∈ R, il existe un voisinage U de r tel que l’ensemble suivant soitborne:

c(s)−c(t)s−t ∣s, t ∈ U, s ≠ u

Lemma A.6.8. Si f ∶ R → R est derivable de derivee localement lipschitzienne,alors δ2(f) est bornologique.

Proof. Preuve du lemme 10.On remarque que δ1(f)(s, t) = ∫

1

0 f′(s+λ(t−s))dλ. f ′ etant localement lipschitzi-

enne elle est continue, donc δ1(f) est derivable, donc localement lipsichitziennesur R<1> (et se prolonge d’ailleurs en une fonction localement lipschitzienne surR2). Si l’on considere un borne B de R, la fermeture de ce borne etant compact,δ2(s, t, r) = 1

t−r(δ1(s, t) − δ1(s, r)) reste borne pour s, t, r ∈ B.

Lemma A.6.9. Soit E un FK espace et c une courbe dans E. S’equivalent:(1) c est faiblement derivable et sa derivee est localement lipschitzienne.(2) c est fortement derivable et sa derivee est localement lipschitzienne.

voisinage en 0 les WB,O = T ∣T (B) ⊆ O ou B est borne dans X et O est un voisinage de 0 dansE. La bornologie de Von Neuman associee a la topologie de l’uniforme convergence sur les bornesest donc la suivant: un ensemble de fonctions est borne dans CBS(X,E) ssi il envoie tout bornede X vers un borne de E.

40

Page 41: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Preuve du lemme 11(2)⇒ (1) est simple.(1) ⇒ (2). Soit c une courbe dans E faiblement derivable de derivee localementlipschitziene. Fixons-nous A un borne de R, et K un borne dont l’interieur contientA. Pour tout l ∈ E′, l c est derivable de R dans R, et sa derivee (l c)′ = l c′ 6

est localement lipschitzienne. Donc d’apres le lemme 10, l(δ2(c)(K<2>)) = δ2(l c)(K<2>) est borne, donc δ2(c)(K<2>) est borne pour la bornologie faible sur E.Or pour t, s, s′ ∈K,

δ(c)(t, s) − δ(c)(t, s′) = (s − s′)δ2(c)(t, s, s′)Donc le reseau (δ(c)(t, s))s∈K est de Mackey-Cauchy vis-a-vis du borne B. Il con-verge donc vers c′(t), et ce uniformement sur K. c est donc fortement derivable,et sa derivee reste localement lipschitzienne.

Proof. Preuve de la proposition 7.La proposition 7 se deduit du lemme precedent, en tenant compte du fait qu’unefonction continument derivable de R dans R est localement lipschitzienne.

La meme topologie sur les espaces de courbes

Proposition A.6.10. Voir 4.2.7 dans FK. Soit E un FK-espace, k ∈ N et B ⊆C∞FK(R,E), et ai, i ≤ k des reels deux a deux distincts. La structure de C∞FK(R,E)est induite de la meme maniere par les deux ensembles de fonctions suivants:

• δi ∶ C∞(R,E)→ CBS(R<i>,E) ∀i ∈ N

• evai Di ∶ C∞(R,E) → R pour 0 ≤ i ≤ k et Di ∶ C∞(R,E) → CBS(R,E) pouri ≥ k

ou D ∶ C∞(R,E)→ C∞(R,E) associe a une courbe sa courbe derivee.

Proof. Cette proposition se deduit d’une proposition semblable dans le cas Lipk,et du fait que la derivee k-ieme d’une courbe en t ∈ R est la limite que les titendent vers t de δk(t1, ..., tk+1). Lors de la preuve de la proposition dans le casLipk (4.2.1 dans FK), on utilise en particulier une version du theoreme des valeursintermediaire qui dit que pour I intervalle de R, pour f ∶ I → R, si f est k foisderivable alors pour tout i ≤ k, pour tout x ∈ I<k>, il existe ζ ∈ I<k−j> tel queδk(f)(x) = δk−j(f (j))(ζ) (voir 3.15 dans FK).

Proposition A.6.11. Soit E ∈ Conv. Alors l’identite forme une bijection continuede γ β(C∞KM(R,E)) dans σl(C∞FK(R, δl(E))).

6besoin de passer par l’integrale ?

41

Page 42: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Montrons que les espaces vectoriels sous-jacents sont les memes. Soit c unecourbe faiblement lisse sur E ∈ FK. C’est donc egalement une courbe de R dansE. Pour tout t, le reseau des c(s)−c(t)

s−t converge faiblement vers c′(t) lorsque s → t,et c′ est localement lipschitzienne (car continument faiblement derivable) de Rdans E. D’apres le lemme 12, en repassant dans la bornologie faible de E, δ2(c)est bornologique. Comme dans la demonstration de lemme 11, on en deduit quelorsque K est un borne de R le reseau des ( c(s)−c(t)s−t )s∈K est de Mackey-Cauchydans E (d’apres la proposition 2, β = σb δl), donc converge dans µ(E) (β(E) estMackey-complet, voir le diagramme de la section 1). En procedant de meme pourtoutes les derivees n-ieme de c, on montre que c est une courbe lisse de R dans E.Reciproquement, si c est une courbe lisse dans , elle est en particulier une courbefaiblement lisse dans δ(E).

Montrons que la topologie sur γ β(C∞KM(R,E)) est plus fine que celle deσl(C∞FK(R, δl(E))).Comme on le voit dans 2.15 de KM, la topologie definie dans ce livre surCBS(X,E) est la topologie de la convergence uniforme sur tout les bornes deX. C’est egalement celle que l’on trouve sur CBS(X,E) dans FK (voir la discus-sion au debut de 2.3).On remarque ensuite que la famille des Di, i ∈ N induit la meme topologie que lesevai Di ∶ C∞(R,E) → R pour i = 0 et Di ∶ C∞(R,E) → CBS(R,E) pour i ≥ 0:si une suite de courbe converge en un point et que la suite des derivees de cescourbe converge uniformement, alors la suite des courbes converge uniformement,et si une suite de courbe converge uniformement, elle converge en particulier enn’importe quel point de R.Par definition d’une topologie initiale dans FK, la topologie de σl(C∞FK(R, δ(E)))est donc la bornologisation de la topologie initiale engendree par les Di ∶C∞FK(R, δ(E)) → CBS(R, δl(E)). Or dans FK, la topologie sur CBS(R, δl(E))est la topologie bornologique associee a la topologie de la convergence uniformesur les compacts de R pour la topologie faible sur E. Elle est donc plus grossiereque la topologie sur CBS(R,E) dans KM . La topologie sur C∞KM(R,E) etantla topologie initiale engendree par les Di ∶ (C∞KM(R,E)) → CBS(R,E), on a leresultat souhaite.

42

Page 43: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

B Complete vector spaces as a quantitative model

of ILL

This is an intermediate work between convenient spaces and reflexive spaces. Weshow in this section how complete vector spaces are a quantitative model of ILL,as well as a differential category. The main goal of this internship was to adaptconvenient spaces so as to have a quantitative model of Linear Logic: we wantedto have maps verifying a Taylor formula. The first step towards this result was theproof that Mackey-complete spaces and real-analytic maps formed a differentialmodel of ILL, in my M1 internship with R. Blute, University of Ottawa. However,these real-analytic functions are weird, and the Taylor formula they give as a resultis not at all satisfactory. The inspiration for the use of power series come from anarticle of topology [BS71], where the authors briefly define power series betweentopological vector spaces.

Another variation from the work of Blute, Ehrhard and Tasson is that weuse complete and not Mackey-complete vector spaces. This is motivated by tworeasons: on the one hand, Mackey-complete spaces are very common, and thusquite intangible. I did not found in the literature any example of a non Mackey-complete space. Complete spaces are better-known objects, thus it is legitimate toknow if we can work with them. On the other hand, for the sake of quantitativesemantics, we need to work with holomorphic functions, and we need to integratethem. This integration is not possible in Mackey-complete spaces.

Lastly, we abandon the hypotheses of bornological topology made in [BET10].Indeed, this requirement implies to bornologize sometimes our objects, and it givesthem a topology which is in general impossible to describe. This difference is alsofound between the two books on convenient vector spaces: in [FK88] Frolicher andKriegl work with bornological Mackey-complete spaces, while in [KM97] Kriegl andMichor only use Mackey-complete spaces. I studied the correspondence betweenthe two kind of spaces at the beginning of my internship, the results are detailedin the last annex.

We thus will describe a linear non-linear adjunction between two categories:the category of complete spaces bornological linear maps between them and thecategory of complete spaces and power series. To understand why linear nonlinear adjunction modelize Linear Logic, see [Mel08]. First I will recall a fewresults on completeness in topological vector spaces, and then describe successivelythe monoidal closed category of complete vector spaces and bornological linearmaps, and the cartesian closed category of complete vector spaces and power seriesbetween them. Lastly, I will present the comonad making one category the co-Kleisli category of the other. We make use in all these parts of the definitionsmade in section 3, concerning the work done by Frolicher, Kriegl and Michor.

43

Page 44: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

B.1 Complete vector spaces

During all our work on complete spaces, we will work with vector spaces over C.It could be replaced by R for the part on monoidality and linear maps, but it isthen essential when we will come across power series.

Definition B.1.1. Consider E a lctvs, and a net (xγ)γ∈Γ in E. Then this is aCauchy net when for every 0-neighborhood U of 0, there is γ0 ∈ Γ such that ifγ, γ′ ≥ γ0, xγ − xγ′ ∈ U

Definition B.1.2. E is said to be complete when every Cauchy net in E converges.

Proposition B.1.3. A Mackey-Cauchy net is a Cauchy-net.

Proof. Let use the notation above. Since any bounded set B is absorbed by every0-neighborhood U , for γ and γ′ big enough λγ,γ′B ⊆ U .

Corollary B.1.4. A complete space is in particular Mackey-complete.

B.2 A monoidal closed category

Let us first explain the linear maps we will be working with.

Definition B.2.1. Consider l ∶ E → F a linear map between two lcvts. l is saidto be bornological when it sends every bounded of E towards a bounded of F .

Clearly, the composition of two linear bornological map is a linear bornologicalmap. Let us denote Lin the category of complete spaces and linear bornologicalmap.

Proposition B.2.2. A continuous linear map is bornological.

Proof. Consider l ∶ E → F a continuous linear map between two lctvs, and ba bounded set of E. Let us show that l(b) is bounded in F : consider U a 0-neighborhood in E. Then because l(0) = 0 and l is continuous we know thatl−1(0) contains a 0 neighborhood in E. Thus, there is λ such that b ⊆ l−1(0), andconsequently l(b) ⊆ l(λU) = λl(U). l(b) is then bounded and l is bornological.

Proposition B.2.3. The converse is false in general: a bornological linear mapmay not be continuous. However, it is true when the topology of the codomain isbornological, i.e. when all bornivorous subsets of the codomain are 0-neighborhood.

Proof. The first assertion is immediate. Suppose now that the topology of E isbornological, and consider l ∶ E → F a linear bornological function. Consider V a0-neighborhood in F , and let us show that l−1(V ) is bornivorous. This will achieve

44

Page 45: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

the proof for the continuity of l. Consider then b a bounded set in E. Since l(b)is bounded, there is λ ∈ C such that l(b) ⊆ λV . Thus:

b ⊆ l−1(l(b)) ⊆ l(Vλ)λl−1(V )

.

Why do we work with bornological linear maps, and not continuous map forexample ? For multiple reasons :

• Because of 2.6, bounded sets interest us as they relate strong and weaktopologies. This gives us the chance to apply to our lctvs some the resultswe know on C. Note that this is not the case for open sets: weak and strongtopologies differs practically all spaces.

• Because we are finally interested in functions sending holomorphic curves toholomorphic curves. And Kriegl and Michor showed that between Mackey-complete spaces a linear function sends an holomorphic curve on an holo-morphic curve iff it is bornological. See 7.4 [KM97] and B.3.3 below.

Now we can move to spaces of linear maps.

Definition B.2.4. We will note L(E,F ) the space of all linear bornological func-tions between the lctvs E and F , and endow it with the topology of uniformconvergence on bounded sets of E. We write E× for L(E,C), the bornologicaldual of E.

The 0-neighborhood of this vector topology are generated by the :

UB,U = l∣l(B) ⊆ Uwhere B is a bounded set in E and U a 0-neighborhood in F . This topology

is a vector topology exactly because the considered maps are bornological.

Proposition B.2.5. When F is complete, then so is L(E,F ).Proof. Consider (fγ)γ∈Γ a Cauchy net in L(E,F ). First, if we fix x ∈ E, (fγ(x))γ∈Γis clearly a Cauchy-net in F ( x is bounded in E). Thus, fγ → f(x) ∈ F and wehave defined this way a function f ∶ E → F .

f is clearly linear. Consider b a bounded set in E. For all 0-neighborhood Uin F there is γ0 such that for γ, γ′ ≥ 0, (fγ − fγ′)(b) ⊆ U . Thus

f(b) ⊆ U + fγ0(b).

But fγ0 then there is λ such that fγ0(b) is included in λU . Referring to 2.1.1, wehave then f(b) ⊆ (λ + 3)U , and f(b) is bounded. Thus f ∈ L(E,F ).

It is immediate now to see that fγ → f in L(E,F ).

45

Page 46: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Now we want to define a monoidal law on Lin. Of course, we will be using thetensor product. However, the tensor product of two complete spaces is not alwayscomplete. Thus we must complete this tensor product, in order to have an internallaw on our category.

Definition B.2.6. Consider E and F two lctvs. We write E⊗F for the algebraictensor product of the two vector spaces, and endow it with the topology whose 0-neighborhood are the set absorbing all the B1⊗B2, where B1 and B2 are boundedsets of E and F respectively. By definition, this topology is bornological. Now wewrite E⊗F for the completion of E ⊗ F .

Completing a lctvs can be done in several ways, but the Grothendieck comple-tion might be the most meaningful one.

Proposition B.2.7. See [Gro73], Chapter 2, 14. For every lctvs E, there is acomplete lctvs E and an embedding ι ∶ E → E such that for every complete spaceF , for every continuous map f ∶ E → F , there is a unique continuous map f ∶ E → Fsuch that f ι = f . Moreover, if f is linear, then so is f . These facts all comesfrom the fact that E is dense in E

E Eι //E

F

f

E

F

f

Remember also the universal property of the algebraic tensor product : thereis h ∶ E ×F → E ⊗F bilinear such that for every vector space G, for every bilinearmap f ∶ E×F → G there is a unique linear map f⊗ ∶ E⊗F → G such that f = f⊗G.

E × F E ⊗ Fh //E × F

G

f

E ⊗ F

G

f⊗

These two diagram will easily give us the closedness of (Lin,⊗,C).

Theorem B.2.8. For every complete spaces E, F and G

L(E⊗F,G) ≃ L(E,L(F,G))

46

Page 47: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Let us show first that the spaces are pointwise the same. To g ∈ L(E⊗F,G)we associate the bilinear map x ↦ y ↦ g(x ⊗ y) which is indeed bilinear. It isbornological because g is bornological, B1 ⊗B2 is still a bounded in E⊗F since ιis bornological, thus g(b1 ⊗B2) is bounded in G for B1 and B2 are bounded setsof E and F respectively.To f ∈ L(E,L(F,G)) one associate f⊗, which clearly linear and bornological. Thisis possible because f⊗ ∶ E ⊗F → G is linear bornological and since the topology ofE ⊗ F is bornological, f⊗ is continuous. See proposition B.2.2.

Now why is this a bornological isomorphism ?First notice that according to the definition of the topology of E ⊗F , we have

a bornological isomorphisms between L(E,L(F,G)) and L(E ⊗ F,G). Boundedsets in these spaces are sets of functions sending a bounded of E and a boundedofF on a bounded of G.

Let us show then that L(E⊗F,G)) ≃ L(E ⊗ F ). Clearly the restriction of abounded set in L(E⊗F,G)) is a bounded set in L(E⊗F,G). Now take a boundedset B in the second space. Let us show that B ⊆ L(E⊗F,G)) is bounded. Considerf ∈ B and f ∈ B. Because E ⊗ F is dense in E⊗F , for any bounded b in E⊗F wehave:

b = b ∩E ⊗ F .And because the topology of E ⊗F is bornological f and f are continuous. Then

f(b) = f(b ∩E ⊗ F ) ⊆ f(b ∩E ⊗ F ) = f(b ∩E ⊗ F ) ⊆ B(b ∩E ⊗ F ).

B being bounded in L(E ⊗ F ), B(b ∩ E ⊗ F ) is bounded in G, and so is itsclosure. B is then bounded.

B.3 A cartesian closed category

Now that we have our linear category, we want our category of non-linear maps.One of our goal was to have a quantitative model of Linear Logic. We wantedour non linear maps to have a Taylor formula, as good as possible. We went fromreal-analytic maps to holomorphic maps, and to holomorphic maps to entire maps,that is power series. Here, I expose only the case when the non-linear functionsare power series. This part is inspired from [BS71], where the authors describe atheory of holomorphic functions from C to lctvs, and [Gro53], where Grothendieckuse weak integrals to work on holomorphic curves. Kriegl and Michor, in [KM97],have described a theory of holomorphic functions between tvs, but they are limitedby the fact that they cannot integrate those functions. Moreover, they work onMackey-complete spaces, so their result apply to our reflexive spaces thanks toC.1.13, but it makes the proofs more complex. Kriegl and Michor’s holomorphic

47

Page 48: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

functions verify ”locally” a Taylor formula, but for a too weird topology (see 7.19.6in [KM97]).In the preceding subsections concerning reflexive spaces, we could have workequally with vector spaces on R or C. Now, we need our spaces to be vector-spaces over C.

B.3.1 Holomorphic functions in C

Remember what is an holomorphic functions between C and Cn: it is a complexdifferentiable function, that a functions such that for every z ∈ C, the followinglimit exists :

limw→0,w∈C

f(z +w) − f(z)w

An holomorphic function is going to be infinitely many times differentiable inC, and is going to be analytic. That is, for all z0 ∈ C, for all z complex in a smallball around 0, we will have for all z0 ∈ C,

f(z + z0) =∞∑n=0

f (n)(z0)n!

zn

Moreover, such a function verifies the Cauchy formula and the Cauchy inequal-ity: at 0 for example, we have

f (n)(0)n!

= 1

2πi ∫∣λ∣=r

f(λ)λn+1

, and

f (n)(0)n!

∣ ≤ ∣supf(λ∣∣λ∣ = rrn

for all sufficiently small rWe are going to define holomorphic functions from C to a lctvs E, which will be

called holomorphic curves, and demonstrate that when E is reflexive, that we havelocally a Taylor development and a Cauchy formula. The following paragraphs areinspired from [Gro53] and chapter 7 of [KM97].

B.3.2 Holomorphic curves in lctvs

Definition B.3.1. Consider E a lctvs. We say that a function f ∶ C → E is anholomorphic curve when it is everywhere complex differentiable.

Now we are going to show that we could have defined holomorphic curvethrough the dual E× : weak holomorphic curves and holomorphic curves are ex-actly the same thing.

48

Page 49: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Definition B.3.2. A function f ∶ C → E is said to be a weak holomorphic curvewhen if for every l ∈ E×, l f ∶ C→ C is holomorphic.

Before proving our statement, we need to recall a few facts on lipschitz curve.

A curve c ∶ C → E is locally lipschitz when the set c(z)−c(w)z−w is locally bounded

(for each point there is a neighborhood of this point of which the set is bounded).If c is weakly locally bounded, then it is also locally bounded. Indeed, if l c islocally lipschitz, it is lipschitz on every bounded set, since for an increasing finitesequence (ti):

c(tn − c(t0)tn − t0

=∑i<j

tj − titn − t0

c(tj) − c(ti)tj − ti

. Hence

c(z) − c(w)z −w

is weakly bounded on every bounded set of C, thus bounded according to 2.6.

Proposition B.3.3. See [KM97], proposition 7.4. When E is Mackey-complete,a function f ∶ C→ E is strong holomorphic iff it is weak holomorphic.

Proof. Necessity : Consider f a strong holomorphic curve, and l ∈ E×. We want toshow that for all z ∈ C,

limh→0

lf(z+h)−lf(z)h = l f ′(z).

l is not continuous in general, so we cannot conclude immediately. However, letus fix z ∈ C. Because f is holomorphic in z, the difference quotient f(z+h)−f(z)

h ,considered as a functions of h, extends to a functions of h defined everywhereon C, and which is holomorphic too. The value in h = 0 of this curve is exactlyf ′(z). Because it is holomorphic, this function is locally lipschitzian. There is aneighborhood U of 0 and k > 0 such that for every h ∈ U , and every l ∈ E× :

∣ l f(z + h) − l f(z)h

− l f ′(z)∣ ≤ k.h.

Sufficiency. Consider c a weak holomorphic curve. Then for every l ∈ E×,the difference quotient l(c(z+w)−c(z))

w can be extended on all C by a holomorphicfunction. It is then locally bounded, hence the difference quotient is a Mackey-Cauchy net in w. It does then converge, and our function is everywhere complexdifferentiable.

Proposition B.3.4. An holomorphic curve is bornological.

49

Page 50: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. This is a consequence of the fact that every holomorphic curve is a weakholomorphic curve. Indeed, consider f an holomorphic curve and b a bounded setin C. Then for every l ∈ E×, l f is an holomorphic function from C to C. It isthen continuous, and because everything is perfect in C, it makes it bornological.Hence l(f(b)) is bounded, and according to 2.6 f(b) is bounded in E.

Because an holomorphic curve is continuous and E is complete, it can be inte-grated over bounded subsets of C. Thus the integral

1

2πi ∫∣λ∣=r

f(λ)λn+1

dλ.

exists in E. Moreover, for every l ∈ C l c is an holomorphic curve from C toC, hence verifies the Cauchy Formula. Because of 2.2.2, we thus have one E:

Theorem B.3.5. For every holomorphic curve f ∶ C→ E, we have :

f (n)(0)n!

= 1

2πi ∫∣λ∣=r

f(λ)λn+1

B.3.3 Power series and holomorphic functions between lctvs

Holomorphic functions are not interesting us for themselves. As said before, wewant a unique Taylor decomposition everywhere of our non-linear function. We aregoing to define power series independently of our results on holomorphic functions,and then use the fact that these power series will be holomorphic.In C, a power series is an everywhere converging sum ∑

nanzn. We know that it

implies that this sum is going to converge uniformly on every bounded all, and isgoing to be holomorphic.Let us try to do something equivalent between lctvs. The problem is that thereis no way to raise an element to the power n in a tvs. We are going to look toanzn as a n-homogeneous function instead. The use of the Cauchy formula in theproofs here is inspired from [BS71], where the authors work on Gateau-holomorphicfunctions between lctvs.

Definition B.3.6. Let us denote Hn(E,F ) the space of monomials of degree nfrom E to F , i.e. the set of maps f such that there exists a bornological andsymmetric n-linear mapping f verifying f(x) = f(x, ..., x).

When fk is a k-monomial, we will also denote by fk the k-linear function fromwhich fk come. Hence fk(x) = fk(xk), and fk(x1, ..., xk) is the image of the k-tuple(x1, ..., xk) by fk.

50

Page 51: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Remark B.3.7. The bornological n-monomials are exactly the smooth n-homogeneousfunction in the sense of Frolicher, see [KM97] 5.16.1, which are

Definition B.3.8. We say that a function f ∶ E → F is a power series when f ispointwise equal to a converging sum over n ∈ N∗ of n-monomials, and when thissum converge uniformly on bounded subset of E.

For all x ∈ E, f(x) = limn→∞

N

∑n=1

fn(x) with fn ∈ Hn(E,F )

The uniform convergence criteria means that for all B bounded in E, for all neigh-borhood of 0 U in F , there is N ∈ N such that ∀x ∈ B ∑

n≥Nfn(x) ∈ U .

Remark B.3.9. • Inspired by what happens for formal power series, we askour power series to have no constant term, see B.3.30. This is in order toensure that composition between power series still result in a power series.In terms of programs, it says that we do not modelize the constant program.Composition of power series with constant term is an intricate problem inmathematics.

• All of our power series admits 0 as a fix-point. However, I have no idea underwhat condition they can admit more fixpoints. This is work to be done.

Definition B.3.10. We write S(E,F ) the space of power series between E and F ,and we endowed it with the topology of uniform convergence on bounded subsetsof E.

One can just think of a power series as f = ∑nfn, and the converging hypothe-

ses are just here to guarantee that everything works fine regarding holomorphy,cartesian closedness, or completeness.

Proposition B.3.11. All functions in S(E,F ) are bornological.

Proof. Consider f = ∑ fk ∈ S(E,F ), and B a bounded set in E. Let us fix l ∈ F ×

and show that l(f(B)) is bounded. Thanks to 2.6, we will have that f(B) isbounded. We know that ∑ fk converges uniformly, hence weakly uniformly, on B.

Then there is N such that ∣(lf −N

∑k=0

lfk)(B)∣ < 1. Moreover, each of the fk sends

B on a bounded sets, thus (N

∑k=0fk)(B) is a finite sum of bounded subsets, hence a

bounded subset. Then we have

∣l(f(B))∣ ≤ 1 + ∣(N

∑k=0

fk)(B)∣ ≤M

for some M. We have our result.

51

Page 52: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Now we want to show that a power series sends a weak holomorphic curveonto a weak holomorphic curve B.3.17. This result is quite intuitive, as it followswhat happens in C, but it asks for a few technical lemmas, mostly coming from[KM97]. The difficulties come from the fact that we have to get back to metrizablecomplete spaces to reason as we would have done in C. This result is necessarythought because it leads to the Cauchy formula B.3.22 which is used a lot whenworking on the exponential. The reader who do not want to worry about theselemmas can jump directly to theorem B.3.17.

Definition B.3.12. A function f ∶ E → F between two lctvs is holomorphic whenit sends an holomorphic curve onto an holomorphic curve.

Lemma B.3.13. See [KM97] 7.6. A function in a Mackey-complete space E is anholomorphic curve iff it factors locally in an holomorphic curve into EB, for someabsolutely convex bounded set B.

Proof. Consider f an holomorphic curve, z ∈ C and W a compact neighborhoodof z. Let us denote B the absolutely convex closed closure of f(W ). From theCauchy formula and 2.2.2 we have that for r small enough:

rk

k!c(k)(z) ∈ B.

Thus for w close enough to z in C,

∑k≥0

(w − zr

)k rk

k!c(k)(z) ∈∑

k≥0

(w − zr

)k

B.

This is equal to c(w), and gives us that c(w) ∈ EB for w close enough to z. Theconverse proposition is immediate.

Lemma B.3.14. See [KM97] 7.19 . If E and F are complete spaces, then afunction f ∶ E → F is holomorphic iff for all l ∈ F × and B bounded absolutelyconvex in E, l f ∶ EB → C is holomorphic.

Proof. The results follows from the preceding lemma, and from the fact that aweak holomorphic curve is also strongly holomorphic (see B.3.3).

Proposition B.3.15. See lemma 7.14 in [KM97]. Consider E is a complete metriz-able space (hence a space verifying Baire property), and for each k ∈ N fk abornological k-linear symmetric scalar valued function on E. Then the followingfacts are equivalent:

1. The power series ∑ fk(xk) converges pointwise on an absorbing subset of E,

52

Page 53: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

2. The set fk(xk) is bounded on a 0-neighborhood

3. The set fk(x1, ..., xk) is bounded on some neighborhood of 0

4. The power series ∑ fk(xk) converges absolutely on an absorbing subset of E

This is just saying that, as soon as the codomain is complete and metrizable andthe domain is C, a pointwise converging power series is bounded, and convergesuniformly somewhere. This seems quite intuitive, but we cannot get rid of themetrizable hypothesis on E.

Proof. (1) ⇒ (2) Since the domain of the fk is C, their bornologicality impliestheir continuity. Hence, the sets

AK,r = x ∈ E∣ ∣fk(xk)∣ ≤Krk for all k

are closed. Moreover, they do recover E by hypothesis. Then, by Baire property,there is an AK,r whose interior is nonempty. Consider x0 ∈ AK,r and V a neigh-borhood of 0 such that x0 −U ⊆ AK,r. By algebraic manipulations, see lemma 7.13of [KM97], we get for all x ∈ V ∣f(xk)∣ ≤ Kλk for some λ > 0. Then fk(xk) isbounded on V

λ .(2)⇒ (3) Suppose fk(xk) is bounded on a 0-neighborhood U . We have

f(x1, ..xk) =1

k!

1

∑ε1,...εk=0

(−1)k−∑ εjf((∑ εjxj)k)

≤ 1

k!

1

∑ε1,...εk=0

(∑ εj)kRRRRRRRRRRRf⎛⎝(∑ εjxj∑ εj

)k⎞⎠

RRRRRRRRRRR

≤ 1

k!

1

∑ε1,...εk=0

(∑ εj)kC

≤ 1

k!

k

∑j=0

(kj)jkC

≤ C(2e)k

Hence fk(x1, ..., xk) is bounded on U2e .

(3)⇒ (4) If fk(x1, ..., xk) is bounded on U , the power series converges absolutelyon rU , for 0 < r < 1.(4)⇒ (1) is obvious.

Lemma B.3.16. See lemma 7.17 in [KM97]. Consider E a metrizable completevector space, ∑ fk a power series from E to C converging pointwise on a neighbor-hood of 0, and a(z) = ∑anzn a power series from C to E, an ∈ E converging on a0-neighborhood in C. Then the composite of the two power series ∑ fk(a(z)) is apointwise converging power series around 0.

53

Page 54: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. This proof is exactly the one you can find in [KM97].By the precedinglemma there is U a 0-neighborhood in E such that fk(x1, . . . , xk)∣k ∈ N, xj ∈ U isbounded. Since the series ∑anzn converges, there is r such that for all n anzn ∈ U .Then, for ∣z∣ < r

2 :

f(a(z)) =∑k

∑n1

...∑nk

f(an1 , ...ank)zn1+...nk

=∑n∑k

∑n1+...+nk=n

f(an1 , ...ank)zn1+...nk

This permutations are allowed because the f(an1 , ...ank) are bounded, and the

series upon is absolutely converging in C.

Theorem B.3.17. A power series between two complete spaces E and F sendsan holomorphic curve on an holomorphic curve.

Proof. Consider f ∈ S(E,F ). According to B.3.14, we can suppose that E is aBanach space and F is C. But then, composing f with an holomorphic curve intoE, we are just composing f with a curve which is locally a power series. Our resultstems from the preceding lemma.

B.3.4 The product of complete spaces

Definition B.3.18. The cartesian product E×F of two locally convex topologicalvector space E and F is the vector space E×F endowed with the product topology,i.e. the topology generated by the U1 ×U2 where U1 is a 0-neighborhood in E andU2 is a 0-neighborhood in F .

Definition B.3.19. The direct sum E⊕F of two locally convex topological vectorspace E and F is the vector space E × F endowed with the topology generatedby the U1 × 0 and the 0 × U2 where U1 is a 0-neighborhood in E and U2 is a0-neighborhood in F .

Proposition B.3.20. When both E and F are complete lctvs, E ×F and E ⊕Fare complete.

Proof. Immediate.

B.3.5 Convergence of power series

Our final goal is to prove that the category of complete spaces and power seriesbetween them is a cartesian closed category. This will give us the Seely isomor-phism in our model of Intuitionist Linear Logic. First, we need to extract a few

54

Page 55: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

more properties from our non-linear maps. From now on, we suppose lctvs to bementioned to be reflexive, and every integral to be written to be a weak integral.

Proposition B.3.21. If f = ∑ fk is a power series between E and F , then forevery x ∈ E, for every k ∈ N, the n-th derivative in 0 of the curve λ ↦ f(λx) isn!fn(x).

Proof. Because E carries a vector topology, the set λx∣∣λ∣ < 1 is bounded. Then

∑ fk(λx) converges uniformly for ∣λ∣ < 1, and we have (λ↦ f(λx))(n)(0) = n!fn(x).

Proposition B.3.22. Every power series f ∈ S(E,F ) verifies a Cauchy formula.

fn(x) =1

2πi ∫∣λ∣=r

f(λx)λn+1

Proof. For every x ∈ E, λ↦ λx is an holomorphic curve into E, then λ↦ f(λx) isan holomorphic curve into F by B.3.17. This curve verifies a Cauchy formula, asevery holomorphic curve in a reflexive space by B.3.5. The previous propositiongives us the final result.

Remark B.3.23. In fact, every power series which is converges weakly (wrt F ×)uniformly on bounded sets of E verifies the Cauchy formula. Proposition B.3.21can be adapted to these functions, as F × is point separating. These power seriesadmit weak derivatives, and they verify likewise the Cauchy formula above.

Corollary B.3.24. If U is an absolutely convex 0-neighborhood, and r > 0 is suchthat f(rU) ⊆ B with B an absolutely convex closed bounded set, then for all k wehave fk(U) ⊆ B

rk.

Corollary B.3.25. If f ∈ S(E,F ), then the development of f as a sum over k ofk-monomials is unique.

Now we are going to explain two consequence of the Cauchy formula for powerseries. They are very simple and practical, as they link weak convergence andstrong convergence for power series.

Proposition B.3.26. Consider fk, k ∈ N k-monomials from E to F . If ∑ l fkconverges pointwise on E for every l ∈ F ×, then ∑ fk converges pointwise on E

Proof. Let us fix x ∈ E, and λ ∈ C with ∣λ∣ > 1. ∑ l fk(λx) converges for everyl ∈ F ×, hence the set l(fk(λx)) is bounded in C. By 2.6, we know it means thatfk(λx) is bounded in F . Let us write B for the closure of this sets, which is stillbounded by 2.7.

55

Page 56: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Now consider U a 0-neighborhood in E and µ such that B ⊆ µU . Let N be a

natural number such that ∣∞∑k=N

1λk

∣ < µ. Then we have∞∑k=N

fk(x) ⊆∞∑k=N

1λkB ⊆ U ,

thus ∑ fk(x) converges.

Proposition B.3.27. Consider fk, k ∈ N k-monomials from E to F . If ∑ l fkconverges towards l(f) uniformly on bounded subsets of E for every l ∈ F × , andif f is bornological, then ∑ fk converges uniformly on bounded subsets of E.

Proof. Let us fix B0 a bounded set in E, and U a 0-neighborhood in F . We want

to find N ∈ N such that (∞∑k=N

fk)(B0) ⊆ U . From B.3.23, we know that f = ∑ fkstill verifies a Cauchy formula. Thus, we have fk(B0) ⊆ f(2B0)

2kfor every k, hence

(∞∑k=N

fk)(B0) ⊆ (∞∑k=N

12k

) f(2B0). Since for some µ, f(2B0) ⊆ µU and∞∑k=N

12k→ 0,

we have our result.

During this proof, we proved:

Proposition B.3.28. If f = ∑ fk is a power series in S(E,F ), then the partial

sumsN

∑k=1

fk Mackey-converge towards f in S(E,F ): there is B a bounded set in

S(E,F ) and a sequence of positive reals (λn) decreasing towards 0 such that:

∀N, (N

∑k=1

fk − f) ∈ λNB.

We still need another tool to work on our power series. The last propositionhelp us to go from weak convergence to strong convergence, the following willallow us to go from pointwise convergence to uniform convergence, under certainconditions.

Proposition B.3.29. Consider ∑kfk ∶ E → F a pointwise converging series of

bornological k-monomials. If the sum converges towards a bornological function,then the sum does converge uniformly on the bounded sets of E.

Proof. Let us fix l ∈ F ×. For every x ∈ E, ∑ lfk(x) converges towards lf(x) wheref ∶ E → F is bornological. Consider B a bounded set. Then, according to B.3.15,the power series ∑ l fk(x) converges uniformly on EB (as it is a Banach space,see B.1.4), hence on B. We have proved that ∑

kfk converges weakly uniformly

on bounded sets. ByB.3.27, we know that it converges (strongly) uniformly onbounded subsets.

56

Page 57: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

B.3.6 Quant is cartesian closed

Now before proving that reflexive spaces and power series between them are acartesian closed category, we should check that it is indeed a category.

Proposition B.3.30. The composition of two power series is a power series.

This proof is both an adaptation of what happens in formal power series (see[Hen88] chapter 1), and an adaptation of the fact that you can compose two abso-lutely convex power series in C, where they converge absolutely. We explain whathappens in the case of monomials in lctvs, and go back to the scalar case thanksto C.3.32.

Proof. Consider f = ∑ fk ∈ S(E,F ) and g = ∑ gn ∈ (F,G) two power series betweenreflexive spaces. Let us fix x ∈ E. By definition of g, we have gf(x) = ∑

ngn(f(x)).

Let us now fix n. But gn is a n-monomial from E to F , coming from a n-linearsymmetric application. Applied to any finite sum it gives:

gn(y1 + y2 + ⋅ ⋅ ⋅ + ym) = ∑j1+j2+...+jm=n

( n

j1, j2, . . . , jm)gn(yj11 , y

j22 , . . . y

jmm )

where ( nj1,j2,...,jm

) = n!j1!j2!...jm! . Now the function

x↦ gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm)

is a (n × (m

∑k=1k × jk)) monomials. This is easy to see when in C when gn ∶ y ↦ yn

and fk ∶ x ↦ xk: then gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm) = (xj1xj2 . . . xjm)n. In ourtopological space, we use the remark B.3.7, saying that bornological n-monomialsand smooth n-homogeneous functions are the same thing. Here

x↦ gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm)

is clearly a (n × (m

∑k=1k × jk))-homogeneous monomial, and it takes a smooth curve

to a smooth curve when so does gn and the fk. Let us write hn,m for this monomial.

Can we write gn(f(x)) = limm→∞

hn,m(x) ? Yes, we can show as in B.3.28, and

because gn is bornological: if

(m

∑k=1

fk − f) ∈ λmB

then

gn(m

∑k=1

fk(x)) − gn(f(x)) ∈ (λm)ng(B(x)).

57

Page 58: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Since g(B(x)) is bounded in F , for every neighborhood of 0 in F, there is some

rank m for which gn(m

∑k=1

fk(x)) − gn(f(x)) will be included in this neighborhood.

So g(f(x)) = ∑n∑j1+j2+...=n (

nj1,j2,...

)gn(f1(x)j1 , f2(x)j2 , . . . ). If we can permute

these sums, we would have

g(f(x)) =∑N

∑n≤N

∑j1+j2+...=n,

(n×(∞∑k=1

k×jk))=N

( n

j1, j2, . . .)gn(f1(x)j1 , f2(x)j2 , ...)

and this would be a pointwise converging power series. Beware that this isa power series because f has no constant coefficient ! Otherwise the term underN = 0 would be infinite.

Now why can me make this sum commutes ? Let us fix x ∈ E, and l ∈ G. Weproceed like in the proof of B.3.33. We want to permute

l(g(f(x))) =∑n

∑j1+j2+...=n

( n

j1, j2, . . .)l(gn(f1(x)j1 , f2(x)j2 , . . . ))

.But

∑n

∑j1+j2+...=n

( n

j1, j2, . . .)∣l(gn(f1(x)j1 , f2(x)j2 , . . . ))∣

does converge absolutely. Then according to Fubini theorem, we can permute thissum. It converges weakly, hence strongly by B.3.26.

Now g f is a pointwise converging series, and a bornological function becauseboth f and g are. According by B.3.29, g f converges uniformly on boundedsubsets of E, we have then g f ∈ S(E,G)

Let us denote Quant the category of complete spaces and power series betweenthem. Remember that we endow S(E,F ) with the topology of uniform conver-gence on bounded subsets of E. The first thing you want to do for cartesianclosedness is to prove that the space of non-linear function is still an object of ourcategory.

Proposition B.3.31. S(E,F ) is a locally convex topological vector set as soonas F is a reflexive lctvs.

Proof. A 0-neighborhood in S(E,F ) contains some

UB,U = f ∣f(B) ⊆ U

where B is a bounded set in E and U is a 0-neighborhood in F . Those sets areclearly convex when the 0-neighborhood in F are. The sum of two such sets UB1,U1

58

Page 59: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

and UB2,U2 contains UB1∩B2,U1+U2 , and U1 + U2 is a 0-neighborhood when F is alocally convex topological vector spaces, hence addition is continuous. Finally,multiplication by a scalar is continuous since every power series is bornological(see B.3.11).

Theorem B.3.32. The space S(E,F ) is complete when E and F is.

Proof. Consider (fγ)γ∈Γ) a Cauchy-net in S(E,F ). For all x ∈ E, because for every0-neighborhood U in F Ux,U is a 0-neighborhood in S(E,F ), (fγ(x))γ∈Γ) is alsoa Cauchy-neighborhood. F is complete, so each of these Cauchy-nets convergestowards f(x) ∈ F .

Let us show that f ∶ E → F is a power series. First, consider k ∈ N⋆. Becauseof the Cauchy formula B.3.22, if fγ − fγ′ ∈ UB,U , then (fγ)k − (fγ′)k ∈ UB,U ⊆ UB,3U .Then ((fγ)γ)γ∈Γ) is also a Cauchy-net in S(E,F ), converging pointwise towardsfk(x). It is easy to see that fk is k-homogeneous as all the (fγ)k are. But thisis not enough: we want fk to result from a bounded k-linear symmetric mapping.Let us note f⋆γ,k for the k-linear symmetric mapping from which fγ,k result. Thenfor every x1, . . . , xk ∈ E we have, according to proposition 7.13 in [KM97] :

fk(x1, ..xk)⋆ =1

k!

1

∑ε1,...εk=0

(−1)k−∑ εjfk(∑ εjxj)

.Hence it is easy to see that (f⋆γ,k)γ is also a Cauchy net in Lksym(E,F ). Since F

is complete, it converges pointwise towards a function fk∗ which is clearly k-linearand symmetric. Why is fk∗ bornological ? Because for every bounded b in E andevery neighborhood U in F , there is γ0 such that:

f⋆k − f⋆γ0,k ∈ Ubk,U ⊆ Ubn,3Uthus f⋆k (bn) ⊆ 3U + f⋆γ0,k ⊆ λU for some λ since f⋆γ0,k. Then fk is bornological

and it is easy to see that f⋆k (xk) = fk(x).Now we just have to show that f = ∑ fk . Because the fγ are pointwise con-

vergent towards f , it is easy to see that ∑ fk is pointwise convergent towards f .Moreover, f is bornological because all the fγ (it is shown as above for fk). Then,according to proposition B.3.29, ∑ fk does converge uniformly on bounded sets ofE towards f . Thus f ∈ S(E,F )

Lastly, we have that clearly that once f is a power series, since (fγ) is aCauchy net, it converges uniformly on bounded sets towards f . Thus S(E,F ) iscomplete.

Theorem B.3.33. For complete spaces E, F , andG : S(E×F,G) ≃ S(E,S(F,G)).

59

Page 60: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. We know thanks to B.3.20 and B.3.32 that the spaces considered are allreflexive. Let us first notice that if the spaces are equal, the topologies on theseare the same: synthetically, sending B1 ×B2 on a weak 0-neighborhood U is thesame that sending B1 on a function which will send B2 on U . This gives us ahomeomorphism, hence a bornological isomorphism, between the two spaces.We want to show that

φ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S(E × F,G)→ S(E,S(F,G))

∑ fk ↦⎛⎜⎜⎝x↦

⎛⎜⎜⎝y ↦∑

n∑m

(n +mn

)fn+m((x,0), ..., (x,0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

,

m times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(0, y), ..., (0, y))

⎞⎟⎟⎠

⎞⎟⎟⎠

and

ψ ∶⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(E,S(F,G))→ S(E × F,G)

∑n

(fn ∶ x↦∑m

fn,x,m)↦ ((x, y)↦∑k

∑n+m=k

fn,x,m(y))

are well defined, that each one is inverse of one another, are that they are linearand bornological.A few lines of calculus easily show that φ and ψ are inverse of one another. Thedifficulty is in showing that their image is indeed made of power series. We willdo it on ψ, the proof for φ using the same tools and being easier.Here, we are going to go back to what happens in the scalar case, and use the Fu-bini theorem on absolutely converging sums to permute our sums. Then, we willreturn to our power series converging uniformly thanks to C.3.35. Consider indeeda function f ∈ S(E,S(F,G)). Then f can be written as ∑

n(fn ∶ x↦ ∑

mfn,x,m), each

fn being a bornological p-monomial from E to S(F,G), and each fn,x,m being abornological m-monomial from F to G. Let us fix l ∈ G×. We know that for ally ∈ F , θ = l evy is a bornological form on S(E,F ).

Moreover, because f is in particular a pointwise converging power series, hence

weakly converging, we know that ∑nθ (∑

mfn,x,m) = ∑

n∑ml fn,x,m(y) converges for

every x ∈ E. Let us fix x and y. Then for any λ ∈ C bigger in module than 1, wehave that ∑

n∑ml fn,λx,m(λy) converges. Hence, because we are in C, the double

sequence (lfn,λx,m(λy))n,m is bounded, and ∑n∑mlfn,x,m(y) converges absolutely.

Now is the time for Fubini theorem to intervene. Thanks to Fubbini the-orem, we know that in C we can permute absolutely converging double series.Then ∑

k∑

n+m=kl fn,x,m(y) converges and equals ∑

n∑ml fn,x,m(y). The function

60

Page 61: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

(x, y) ↦ ∑n+m=k

fn,x,m(y) is indeed a bornological k-monomial: you can prove it by

algebraic manipulations on monomials or use B.3.7. Hence ψ(f) a weakly point-wise converging power series. Thanks to C.3.32, we see that is converges pointwisestrongly.

To see that ψ(f) converges uniformly on bounded subsets of E, we just have touse the fact that it is bornological : f is bornological thanks to B.3.11, and ψ(f)sends B1×B2 on f(B1)(B2). Now we can use the fact a pointwise converging powerseries which converges towards a bornological function converges uniformly onbounded subsets its codomain (see B.3.29). We conclude that ψ(f) ∈ S(E ×F,G).

Theorem B.3.34. Quant is a cartesian closed category.

Proof. The theorem follows direclty from the preceding proposition.

B.4 The exponential

We have our linear category and our non-linear one, we miss the adjunction be-tween the two. This adjunction results in a monad ! ∶ Lin → Lin, which modelizethe exponential constructor of Linear Logic. As the adjunction will be between aright adjoint from Quant to Lin, and the oblivion functor Lin → Quant as leftadjoint, we will right also ! ∶ Quant → Lin for our right adjoint. The exponentialhere is constructed exactly as in convenient spaces (see [BET10]).

We first need a lemma about a space and its bornological dual. Rememberthat we write E× for L(E,C), the bornological dual of E.

Proposition B.4.1. Consider E a lctvs, and δ ∶ E ↦ E××. Then δ and δ−1 areboth bornological linear maps.

Proof. Remember that E× is endowed with the bornology of the equibounded : aset is bounded in E× iff it sends a bounded set of E on a bounded set of C. δis obviously linear, since its image is a space of linear functions. Consider then abounded set b in E, and a bounded set B in E×. Then δ(b)(B) = B(b) is boundedin C, hence δ(b) is bounded in E××, and δ is bornological.Now, let B be a bounded set of E××. We want to show that δ−1(B) is bounded.Consider l ∈ E×. Then l(δ−1(B)) ⊆ B(l) is bounded in C. δ−1(B) is scalarlybounded, hence bounded by proposition 2.6. Then δ−1 is bornological.

Now what do we want as an exponential ? We want for each complete lctvs Eanother complete lctvs !E satisfying for all F S(E,F ) ≃ L(!E,F ). In particular,(!E)×× = L(!E,C)× = S(E,C)×. Moreover, we know (see B.4.1) that every lctvs G

61

Page 62: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

is bornologically isomorphic to evx ∈ (G)××∣x ∈ G. Thus, !E must be bornologi-cally isomorphic to evx ∈ S(E,C)×∣x ∈ E. As we want !E to be a complete lctvs,the following definition is immediate.

Definition B.4.2. Let us write δ for the function x ↦ δ(x) = evx, defined herebetween E and S(E,C)×. Then we write !E for the completion of the linear spanof δ(E) inS(E,C)×

Definition B.4.3. We write ! ∶ Quant → Lin for the functor sending a reflexivespace E on !E, and a power series f ∈ S(E,F ) on the completion of the linearextension of the following function :

δ(E)→!F

evx ↦ evf(x)

This function is continuous, as the inverse image of UB,ε∩!F is UBf,ε ∩ δ(E).Hence !f is well defined, and is a continuous linear function. So we have indeed!f ∈ L(!E, !F ).

Remember that !E ⊆ S(E,C)× bears the topology of uniform convergence onbounded subsets of S(E,C). It’s a complete lctvs, hence an object of Lin. Wewant now to show the adjunction between Quant and Lin (see B.4.7). For this,we are going to need to work on δ, and show that it is a power series. In fact, δpretty much takes the shape of the functions of its codomain (see [BET10] whereδ is smooth).

Proposition B.4.4. Let us write θn for the function x ∈ E ↦ (f = ∑ fk ∈S(E,C) ↦ fn(x)). Then for all x ∈ E, θn(x) ∈!E, and θn is a bornological n-monomial from E to !E.

Proof. θn is well defined thanks to the uniqueness of the development of a powerseries (see B.3.25). Besides, θn(x) is clearly linear and bornological, since boundedsets of S(E,C) are equibounded.Thus θn(x) ∈ S(E,C)×. Moreover, according toB.3.21 one can write:

θ1(x) = limt→0

δtx − δ0

t.

θn+1(x) = limt→0

θn(tx) − θn(x)t

.

As !E is complete it is in particular closed, and we can show recursively thatθn(x) ∈!E for all x ∈ E.

62

Page 63: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Now θn results from the n-linear symmetric bornological function (x1, ..xn) ↦(f ↦ fn(x1, ..xn))). Again, this function is bornological by definition of the bornol-ogy on !E. Thus, θn is a bornological n-monomial.

Proposition B.4.5. δ ∶ E →!E defined by δ(x) = evx ∶ f ↦ f(x) is in S(E, !E).That is, δ = ∑

kθk is a power series and converges uniformly on bounded sets of E.

Proof. For every f ∈ S(E,C), for every x ∈ E we have δx(f) = f(x) = ∑ fk(x) =∑ θk(x)(f). When we fix x, pointwise we have δx = ∑ θk(x). Do we have thisequality in !E ? That is to say, considering the topology of E, do we have uniformconvergence on every bounded sets of S(E,C) of ∑ θk(x). Indeed, thanks to theCauchy formula: consider B a bounded set of S(E,C), and b an absolutely convexclosed subset of E containing x. For every f ∈ S(E,C), f(x) ∈ B(2b) , whichis a bounded set in C: ∣f(x)∣ ≤ M or every f ∈ S(E,C). Then according to theCauchy formula (see B.3.22), for every k and f we have ∣fk(x)∣ ≤ M

2k. We have

∣∑ θk(B)∣ ≤ (∑k

12k

)M , and uniform convergence of this sum.

From this we can conclude that pointwise, we have δ = ∑ θk. We know that the θkare bornological k-monomials, let us just check that we have uniform convergenceon bounded subsets of E. Let us fix b a bounded subset of E, and UB,ε a 0-

neighborhood in !E. We want to find N such that for all x ∈ b,∞∑k=N

θk(x) ∈ UB,ε,

i.e. N is such that for all x ∈ b, for all f ∈ B , ∣∞∑k=N

θk(x)(f)∣ = ∣∞∑k=N

fk(x)∣ < ε. But

is is again a result of the Cauchy formula. Consider b′ a closed absolutely convexbounded set of E containing b. Then B(2b′) is bounded in C : B(2b′) ⊆ [−M ;M]for some M > 0. Consider N such that ∑

k≥N12k

< εM . Then we have for all x ∈ b, for

all f ∈ B, for all k, ∣fk(x)∣ ≤ M2k

, and ∣∞∑k=N

fk(x)∣ ≤ ∣∞∑k=N

M2k

∣ < ε.

Lemma B.4.6. The series ∑ θk is also what is called a Mackey convergent se-quence: there is B a bounded set in L(E, !E) and a sequence of scalars (λn)nconverging towards 0 such that

(n

∑k=1

θk − δ) ∈ λnB.

Proof. The proof is done exactly as above, using the Cauchy formula. Consider band B two bounded closed absolutely convex sets in E and S(E,C) respectively.Let us denote K for the absolutely convex closed closure of B(2b). Then, by theCauchy formula for power series, we have

n

∑k=1

θk(b)(B) − δ(b)(B) ⊆ (∑k>n

1

λk)K.

63

Page 64: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

K being bounded, we have that for every b and B bounded in E and S(E,Crespectively,

n

∑k=1

θk(b)(B) − δ(b)(B)

∑k>n

1λk

is bounded in C. Hencen

∑k=1

θk(b) − δ(b)

∑k>n

1λk

is bounded in !E. Hence

B =

n

∑k=1

θk − δ

∑k>n

1λk

is a bounded set in L(E, !E), and we have our result.

Theorem B.4.7. For every reflexive space E and F , we have

S(E,F ) ≃ L(!E,F ).

This isomorphism comes from an adjunction between ! ∶ Lin→ Lin and the oblivionfunctor U ∶ Lin→ Quant

Proof. Consider f ∈ S(E,F ). Then define f ∶!E → F as f(evx) = f(x), extendedlinearly and completed. We can define this function on !E as f∣δ(E) is continuous

: f−1∣δ(E)(U) = Uf,U ∩ δ(E). By definition of the completion of a lctvs, !f is linear

and continuous, hence linear and bornological.

Now consider g ∈ L(!E,F ) and define g ∶ E → F by g(x) = g(evx) = g δ.g is not continuous in general, so despite its linearity we cannot conclude thatg(evx) = ∑ g(θk). Now is the time for using the lemma just above. Because g isbornological, we have for every n ∈ N:

g (n

∑k=1

θk − δ) =n

∑k=1

g θk − g δ ∈ λng (B).

Now we see thatn

∑k=1g θk Mackey converge towards g δ, and a few lines of imme-

diate calculus show that the convergence is uniform on bounded sets of E. Theng ∈ S(E,F ), and we have our result.

64

Page 65: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

It is straightforward that ˆg = g,ˇf = f , that g ↦ g and f ↦ f are both linear

and bornological, and this induce an isomorphism which natural in E and F . Wehave our adjunction.

The natural transformations associated to this adjunction are :

• The co-unit d ∶ !E → E defined by the d(λevx) = λx and then extendedlinearly and completed.

• The unit : ι ∶ E → !E, defined by ι(x) = δx.

For the comonad, ! comes then with d and the comultiplication ρ ∶ !E → !!Edefined on basis elements by ρ(λδx) = λδδx . This endows the category Lin witha symmetric monoidal comonad. The preceding theorem shows that Quant is ex-actly the co-Kleisli category Lin!.

This comonad induces a structure of bialgebra on every !E :

• ∆ ∶ !E → !E ⊗ !E is defined by ∆(λevx) = λevx ⊗ evx, then extended linearlyand completed.

• e ∶ !E → C is e(λevx) = λ, and then extended linearly and completed.

• ∶ !E ⊗ !E → !E is (evx ⊗ evy) = evx+y.

• ν ∶ C→ !E is ν(1) = ev0.

All these morphisms are bornological linear maps. So as to have a model ofLinear Logic, we just miss the Seely isomorphism.

Proposition B.4.8. Clearly, we have 1 = C ≃!(⊺) =!0 as S(0,C) = C.

Theorem B.4.9. For every complete spaces E and F we have !E⊗!F ≃!(E × F ).

Proof. The demonstration is inspired by [BET10]. By definition !(E × F ) is com-plete. Let us show that is satisfies the universal property of the tensor product inthe category of complete spaces and linear bornological maps. This will give usthe theorem.

We clearly have our bornological map δ ∶ E × F →!(E × F ). Consider nowf ∶!E×!F → G a bilinear bornological map, where G is a complete lctvs. However,

65

Page 66: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

thanks to the cartesian closedness of Lin and to the adjunction ! between Quantand Lin:

f ∈L(!E,L(!F,G))≃S(E,S(F,G))≃S(E × F,G)≃L(!(E × F ),G)

(1)

The image of f in L(!(E × F ),G) is unique. We have our result.

This concludes our construction of our denotational model of Linear Logic.

Theorem B.4.10. The category Lin, equipped with the comonad !, is quantitativemodel of intuitionist Linear Logic.

B.5 A differential structure

Let us show that is is a differential category, as defined in [BCS06].

B.5.1 Prerequisites

In [BCS06], differential categories were built to modelize more than differentialλ-calculus or differential linear logic, so they are neither closed nor ⋆-autonomous.Note for instance that the fundamental category of finite-dimensional real vectorspaces and smooth maps between them is not closed at all, even though we wouldlike them to be modelized by some differential category. Precisely, the purposeof the study of convenient spaces by Frolicher and Kriegl in [FK88] was to find acartesian closed category on which to do a substantial amount of analysis.

Definition B.5.1. A differential category is a symmetric monoidal category, withan additive law on the Hom-sets, a coalgebra modality, and a differential combi-nator.

A coalgebra modality is a comonad (!, ρ, ε) such that each object !X is equippedwith a good co-algebra structure,of which we won’t give the details. See [BCS06]for a precise explanation, and recall that we need two arrows for each !X : ∆ ∶!X → !X⊗!X and e ∶ !X → I, as well as an arrow : φ ∶ !A⊗!B → !(A⊗B), φ ∶ 1→ !1.

A way to have an additive structure on the Hom-sets is to require a biproductlaw on the category, and then arrows : ∶ !X ⊗ !X → !X and ν ∶ I → !A. We’ll usebiproducts for the differential category on convenient spaces ( Conω ).

Let’s study the differential operator. It’s supposed to be a combinator whichnaturally transforms f ∶ !A → B into Df ∶ A⊗ !A → B. In fact, it is enough for us

66

Page 67: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

to have, for each object A, a deriving transformation dA ∶ A⊗ !A→ !A which wouldcorrespond to D[1!A]. Indeed, suppose we have a differential operator which isnatural in A and in B for each object A, B . Then if the first diagram commutes,the second will :

!C Dg//

!A

!C

!u

!A Bf // B

D

v

C ⊗ !C DD[g[

//

A⊗ !A

C ⊗ !C

u⊗!u

A⊗ !A BD[f[ // B

D

v

Write dA for D[1!A]. Then one has two commuting diagrams :

!A Bf

//

!A

!A

!1

!A !A!1 // !A

B

f

A⊗ !A BD[f[

//

A⊗ !A

A⊗ !A

1⊗!1

A⊗ !A !AdA // !A

B

f

and then can get dA from D and D from dA for all objects A. If biproductsexists, things are even simpler, as dA can be written as dA = (coderA⊗1);, wherecoderA ∶ A→ !A.

Of course, we’ll want D to be additive, null on constant maps, to be the identityon linear maps and to verify the chain rule and Leibniz rule. According to Fiore,it is summarized in the two following diagrams on coderA :

67

Page 68: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• Strength :

A⊗ !B !A⊗ !BcoderA⊗1 // !A⊗ !B !(A⊗B)φ //A⊗ !B

A⊗B

1⊗dA

((RRRRR

RRRRRR

RRRRRR

RRRRRR

R

A⊗B

!(A⊗B)

coderA⊗B

66llllllllllllllllllllll

• Comonad :

A !AcoderA //A

A

1

!A

A

ε

A !AcoderA // !!A

ρ //A

A⊗ 1

A⊗ 1 !A⊗ !A

coderA⊗ν // !!A⊗ !!AcoderA⊗ρ //

B.5.2 Lin as a differential category

Definition B.5.2. The co-dereliction is the category of complete spaces is :

coderE ∶⎧⎪⎪⎪⎨⎪⎪⎪⎩

E →!E

y ↦ limt→0

δ(ty) − delta(0)t

According to B.3.21,we have coderE(y) ∶ f ↦ f1(y) when f = ∑ fk. So coderE =θ1 ∶ E →!E (see B.4.4) is well defined, and is a linear bornological map. We justhave to show that it verifies the strength and comonad diagrams.

68

Page 69: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

C Reflexive spaces as a quantitative model of

Differential Linear Logic

As we have seen in the previous section, complete vector spaces allows us to de-scribe non-linear functions as power series, i.e. programs through a disjunctivesum over n of n-time resource consuming programs. This solve partially our prob-lem : to find a quantitative topological model of Linear Logic.However, we only have a model of Intuitionist Linear Logic. Indeed, the negation¬A of a formula of Linear Logic is interpreted in a denotational model by thedual space of the interpretation of A. The dual space is the space of linear mapsfrom A to the dualizing object, which is Lb(A,C) in our complete or Mackey-complete spaces. Hence, the space corresponding to ¬¬A is its bornological bidualLb(Lb(A,C),C). To have a model of Linear Logic we would like to have a naturalisomorphism between A andLb(Lb(A,C),C), and this for each one of our objectA in our denotational model.

But we know many complete vector spaces which are not isomorphic to theirbornological bidual. Indeed, every Banach space F is a complete vector space,and since it is normable, its continuous dual Lc(F,C) is exactly its bornologi-cal dual Lb(F,C) (see C.2.7). This last one is again normable (by ∣∣ . . . ∣∣∞ ∶ φ ↦supφ(x)∣∣∣x∣∣ ≤ 1), so we have again Lb(Lb(F,C),C) ≃ Lc(Lc(F,C),C) in thecategory of lctvs and bornological linear maps. From this we deduce that a Ba-nach space is isomorphic to its bornological bidual if and only if it is isomorphic(in the bornological sense) to its continuous bidual. Every Banach space which isnot reflexive in the continuous sense is a witness for the fact that Complete spacesdo not modelize Linear Logic. For example, the space c0 of complex sequencesconverging towards 0, with the supremum norm, is a Banach space. Its dual isl1, the space of summable sequences, and its bidual is l∞, the space of boundedsequence. Hence, c0 is not reflexive.

Our new goal is to refine our previous category into a category where everyspace is isomorphic to its bornological bidual. Such a space will be called reflexive.Be careful, reflexivity in our setting is not the same notion as usually, as normallya lcvts is called reflexive when it is equal to its continuous bidual. The bornologicaldual Lb(F,C) of a tvs E will be written E×, the continuous dual Lc(F,C) will bedenoted E′, and the algebraic dual (ie the space L(F,C) of all linear functionsfrom E to C) will be denoted E⋆. As a result, we will find that the whole categoryof reflexive spaces and linear maps / power series between them is a quantitativemodel of DiLL.

69

Page 70: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

The methods I use here are different from those used on complete spaces orconvenient spaces. However, some proofs are still very dependent of the fact that areflexive space is a Mackey-complete space, and it would be nice to simplify them.

C.1 Reflexivity for bornological duals

C.1.1 Terminology

The terms weak topology, or weakly converging refers to σ(E×), the topologygenerated by E× on E. It differs from the usual convention, when weakly refers toσ(E′). When nothing is specified, ”weakly” here will always refer to σ(E×).

C.1.2 Weakly-complete and quasi-complete spaces

We have worked with complete spaces (every Cauchy net converge) and Mackey-complete spaces (every Mackey-Cauchy net converges). Luckily enough, we aregoing to be able to deduce from reflexivity some kind of completeness criterion.To do so, we need a few preliminary definitions.

Definition C.1.1. A lctvs E endowed with a dual F is said to be weakly com-plete, if every Cauchy-net for the topology induced by F on E converges for thistopology.

Proposition C.1.2. A lctvs E which is weakly complete wrt E′ is complete.

Proof. Remember that a convex subset of E which is closed under the weak topol-ogy is closed under the strong topology, see 2.2.1. Consider (xγ)γ∈Γ a Cauchy-netin E. It is in particular a weak Cauchy net, hence it does weakly converge towardssome x ∈ E. Now consider U as strong 0-neighbourhood in E. We know that Ehas basis of closed convex 0-neighbourhood : the topology on E is locally convex,hence it has a basis of 0-neighbourhood made with convex sets, and the familyof closures of these sets still form a 0 neighbourhood. We can suppose that U isconvex and closed. Let us now fix γ0 such that for γ, γ′ ≤ γ0, we have xγ − xγ′ ∈ U .But, since U is also weakly closed by 2.2.1, we also have x − xγ′ ∈ U for all γ′ ≤ γ0.This tells us exactly that our net converges strongly towards x.

Corollary C.1.3. A lctvs E which is weakly complete wrt E× is complete.

Proof. A Cauchy net in E is weakly converging wrt E×, hence wrt E′. The previousproposition concludes.

Definition C.1.4. A lctvs E is said to be quasi-complete if every boundedCauchy net converges.

70

Page 71: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Quasi completeness is not Mackey-completeness. Since a Mackey-Cauchy netis bounded and is a Cauchy net, it is a quasi Cauchy net, thus quasi-completenessimplies Mackey-completeness. But the converse is false : being a bounded Cauchynet does not imply being a Mackey-Cauchy net. Consider for example l1 endowedwith its weak topology. See for example [Kha82], 2.3.(ii).

C.1.3 Reflexivity

Here, we want to adapt results known on reflexivity for continuous duals to ourreflexivity, the one for bornological duals. Of course, we need now to refine thedefinition of a weak topology on a lctvs, as we have two legitimate duals to consider.We have the usual weak topology σ(E′) induced by E′ on E, and the boundedweak topology σ(E×), induced by E× on E. One has :

σ(E′) ⊆ τ(E), σ(E′) ⊆ σ(E×), σ(E×) ⊆ τ(γ β(E)).

We first recall briefly the results on reflexivity for continuous duals. A lctvs Eis said to be reflexive if there is a linear homeomorphism between E and E′′, i.e. δis surjective from E to E′′ and the two spaces bear the same topologies by C.1.6.It can be proved, see [Kot69] 23.5.1, that a space E is reflexive if and only if if andonly if it is weakly quasi-complete wrt E′ and it is quasi-barreled 7. We are goingto adapt this result to our case, and find a simpler characterization of reflexive (inthe bornological meaning) of spaces.

When we consider the bornological dual, things get simpler : it is enough tohave equality between the sets E and E×× to have a bornological isomorphism be-tween (i.e. an isomorphism in our category of lctvs and linear bornological maps).To understand the proofs in this section, you need notions on polars and the bipo-lar theorem defined in subsection 2.2.

First, we need to understand the function relating E and E××. This function,denoted δ, has several domain, and we will work with it in a different setting insection C.4.

Definition C.1.5. Let us denote δ ∶ E ↦ E×× the function mapping x to evx ∶ l ↦l(x). We say that E is reflexive when δ is a bornological isomorphism.

Proposition C.1.6. • evx ∶ E× → C is indeed bornological and linear.

• δ is linear.

7A lctvs is quasi-barreled if and only if every bounded barrel is a 0-neighbourhood, a barrelbeing a set which is convex, balanced, absorbing and closed. Complete metrizable spaces arebarreled, for example.

71

Page 72: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

• δ is bornological.

• δ is injective.

• δ−1 is bornological.

Proof. 1. Clearly, evx(λf +g) = λf(x)+g(x) = λevx(f)+evx(g), so evx is linear.Since a bounded set in E× sends a bounded set on a bounded set, and since xis bounded (it is absorbed by every neighbourhood of 0 since multiplicationby a scalar is continuous), ev − x is bornological.

2. δ is obviously linear, since its image is a space of linear functions.

3. Remember that E× is endowed with the bornology of the equibounded : aset is bounded in E× if and only if it sends a bounded set of E on a boundedset of C. Consider then a bounded set b in E, and a bounded set B in E×.Then δ(b)(B) = B(b) is bounded in C, hence δ(b) is bounded in E××, and δis bornological.

4. According to 2.9, if two points x and y are different, then there is l ∈ E′ ⊆ E×

such that l(x) ≠ l(y). Thus evx(l) ≠ evy(l) and δ(x) ≠ δ(y).

5. Now, let B be a bounded set of E××. We want to show that δ−1(B) is bounded.Consider l ∈ E×. Then l(δ−1(B)) ⊆ B(l) is bounded in C. δ−1(B) is scalarlybounded, hence bounded by proposition 2.6. Then δ−1 is bornological.

Corollary C.1.7. If δ ∶ E ↦ E×× is surjective, then E is reflexive.

Proof. By proposition C.1.6 and proposition C.1.6.

This corollary is fundamental, as it allows us to work pointwise to proove thereflexivity of a space : indeed, we only have to worry about the fact that eachfunction of the bidual must be represented by an x ∈ E, and not to worry aboutthe bornologies of the dual and the bidual.

Now we want prove that reflexive spaces are in some way complete. This willhelp us a lot, since it will help us to integrate or to apply the result of [KM97] toour reflexive spaces. First, we need to adapt the Banach-Alaoglu theorem to oursetting : this technical result can be omitted during a quick reading.

Proposition C.1.8 (Bourbaki-Alaoglu Theorem for E×). Consider E an lctcvsand U a 0-neighbourhood in E. Then U is compact in E×, when E× is endowedwith σ(E).

72

Page 73: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. When endowed with σ(E), E× is a sub-lctvs of CE, endowed with theproduct topology. If U is a compact subset of CE, it is also a compact subset ofE×.Now for all x ∈ E, U(x) is bounded : since E bears a vector topology, there is

λ ∈ C such that λx ∈ U , and then U(x) ⊆ [− 1λ ; 1

λ]. Cx = U(x) is then compactin C. By Tychonov theorem, ∏

x∈ECx is compact in CE, and U ⊆ ∏

x∈ECx is relatively

compact. If U was to be closed, we would have our result.And luckily enough, U is closed in CE endowed with the product topology. Indeed,consider a net (uj)j∈J ∈ (U)J such that for all x ∈ E, uj(x) → l(x) ∈ C. Thenl ∶ x ↦ l(x) is a linear form on E. Since for all x ∈ U , for all j ∈ J we have∣uj(x)∣ ≤ 1, we have that l is bornological and in U. U is closed in a compact, itis then compact in E× endowed with σ(E).

Theorem C.1.9. If a lctvs E is reflexive then its absolutely convex closed andbounded subsets are weakly compact.

Proof. ConsiderE a reflexive space, andB an absolutely convex closed and boundedsubset of E. We are going to use a version of Bourbaki-Alaoglu theorem for E×

which is proved below in proposition C.1.8.B is a 0-neighbourhood in E×, as the topology on it is the topology of uniformconvergence on bounded subsets of E. Then, according to C.1.8, B is compactin E×× endowed with σ(E×). Now as E = E××, the two spaces are the same lctvswhen each one is endowed with σ(E×), and δ−1 is continuous from E××[σ(E×)] toE[σ(E×)]. Considering that B = δ−1(δ(B)) and δ(B) ⊆ B, we have that δ(B) isrelatively compact for σ(E×), then so is B by continuity of δ−1. B being closed, itis compact.

This theorem is also true in the continuous case, where a lctvs is semi-reflexiveif and only if absolutely convex closed and bounded subsets are weakly compact.Here, we do not have a converse proof, although we are interested in one as it wouldgive us a characterization of reflexive spaces through a completeness result. Theconverse proof of continuous spaces does not work here because in the continuouscase the bidual E′′ is an union of bidual, while it is not the case the the bornologicalbidual E××.

Theorem C.1.10. If the absolutely convex closed and bounded subsets of E areE×-compact, then E is σ(E×)-quasi-complete.

Proof. This is immediate since compact subsets are complete.

Corollary C.1.11. A reflexive space is σ(E×)-quasi complete.

73

Page 74: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Theorem C.1.12. If E is σ(E×)-quasi complete, then its closed and boundedsubsets are σ(E×)-compact.

Proof. We know, see [Kot69] 20.9.2, that the σ(E×) completion of E is E×⋆ en-dowed with the topology induced by E×. Take now B a bounded and closed subsetof E, which is σ(E×)-complete by hypothesis. Then B is isomorphic to the clo-

sure of its image δ(B) in E×⋆. But δ(B) = ∏l∈E×

f(B) which is a compact set by

Tychonov theorem again. B is then σ(E×)-compact.

Theorem C.1.13. A σ(E×)-quasi complete space is also Mackey-complete.

Proof. Let us first recall a classical result in topological vector spaces : a Cauchynet converging weakly (for E′) does in fact converge. This is due to the fact thata Cauchy net with a limit point converges, and that the weak closure of a convexequals his closure in a locally convex vector space. Consider now E a σ(E×)-quasicomplete vector space, and (xγ)γ∈Γ a Mackey-Cauchy net in E. There is B abounded set and complex numbers λγ,γ′ such that λγ,γ′ → 0 and

xγ − xγ′ ∈ λγ,γ′B.Let us show that (xγ)γ∈Γ is also a σ(E×) Cauchy net. Consider U a 0-neighbourhood

in σ(E×). U contains a finite intersection of l−1(B(0, ε)) with l ∈ E×, and withoutloss of generality we can work with U = l−1(B(0, ε)).l sends a bounded set on a bounded ball in C, so l(B) ⊆ λB(0, ε) for some λ, andB ⊆ Uλ . So for γ, γ′ big enough, xγ − xγ′ ∈ U and (xγ)γ∈Γ is a σ(E×)-Cauchy net.It is bounded since contained in a dilatation of B ((λγ,γ′) is bounded), and thenit converges for σ(E×), hence for σ(E′). A Mackey-Cauchy net is in particular aCauchy net, and thanks to the remark at the beginning of the proof we know that(xγ)γ∈Γ converges.

Corollary C.1.14. A reflexive space is Mackey complete. Hence, for every abso-lutely convex bounded set B in a reflexive space E, the vector space EB endowedwith the norm pb(x) = infλ∣xλ ∈ B is a Banach space.

We are now allowed to use on reflexive spaces every result we had on Mackey-complete spaces (convenient vector spaces for Kriegl and Michor).

C.1.4 Integration

Next we want to integrate. But our space is not complete. We find an alternative,that is the weak integral. The idea of using this integral can be found in [Gro53],1.3.

74

Page 75: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Theorem C.1.15. In a reflexive space, you have a weak integral for continuousfunctions on compact support. Indeed, for every f ∶ C → E continuous, for everyK ⊆ C compact, there is a v ∈ E such that for every l ∈ E×, l(v) = ∫K l(f(z))dz

Proof. Let us check that

I ∶⎧⎪⎪⎪⎨⎪⎪⎪⎩

E× → C

l ↦ ∫Kl(f(z))dz

is bornological. Consider B a bounded set in E×. Then f being continuous,we know that f(K) is a compact, hence a bounded set in E. This allows us to say

that B(f(K) is a bounded set in C, and then I(B) ⊆ ∫K

1dz×B(f(K)) is bounded.

Because I is clearly linear, we conclude that I ∈ E×× and by reflexivity there isv ∈ E such that I = evv.

Corollary C.1.16. One can prove likewise that in a reflexive space, you have aweak integral for bornological functions f ∶ C→ E on bounded sets of C.

C.2 A monoidal closed category

Now that we have extracted a few properties from the reflexivity condition, wewant to show that reflexive spaces form a model of Linear Logic. We write Lin forthe category of reflexive spaces and bornological linear maps between them. First,we are going to construct the interpretation of the multiplicative constructor, andthe monoidal closed category of reflexive spaces.

C.2.1 Preliminary : Hahn-Banach extension theorem for bornologicalmaps

To prove that our spaces L(E,F ) of bornological linear maps are reflexive whenthe domain is, we are going to look at what happens on spaces L(E,F ) of linearmaps, and then extend each form of the dual L(E,F ) into a form on L(E,F ). Thiscalls for a version of the Hahn-Banach extension theorem adapted to bornologicallinear maps. Remember that a semi-norm on a vector space is a homogeneoussub-additive map between the vector space and the scalar field.

Theorem C.2.1 (Hahn-Banach Theorem). Let E be a vector space, F a subspaceof E and p a semi-norm on E. If u ∈ F ⋆ is such that ∣u∣ ≤ p∣F , then there existsu ∈ E⋆ extending u such that ∣u∣ ≤ p.

See [Jar81] 7.1.2 for a proof. We want a result similar to the one in [Jar81]7.2.1. Remember that for every locally convex topological vector space we can find

75

Page 76: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

a family of semi-norms generating its topology, and in particular the family of allcontinuous semi-norms generates the topology. Considering that a semi-norm isbornological on E if and only if it is continuous for its bornological topology, wehave :

Proposition C.2.2. The bornological topology of a lctvs E is generated by thefamily of all the semi-norms on E which are bornological.

Now we want to characterize bornologicality in terms of semi-norms, as in thefollowing property :

Proposition C.2.3 (See [Jar81] 6.5.4). Let E be a lctvs with a defining familyof semi-norms (pα)α, and T a linear maps from E to the scalar field. Then T iscontinuous if and only if there is ρ and α such that for every x ∈ E :

∣T (x)∣ ≤ ρpα(x)

.

From C.2.2, we can then deduce :

Proposition C.2.4. Let E be a lctvs, and T a linear maps from E to the scalarfield. Then T is continuous if and only if there is ρ and a bornological semi-normp such that for every x ∈ E :

∣T (x)∣ ≤ ρp(x).

Theorem C.2.5. Consider E a lctvs and F a subspace of E inheriting from thetopology on E. If u is a bornological linear map on F , then it can be extendedinto a bornological linear map on E

Proof. Thanks to C.2.4, we know that u is bounded by a bornological semi-norm onE. Thanks to the Hahn-Banach theorem C.2.1, we know that we can extend it intoa linear map bounded by the same bornological semi-norm. Then the extension ofu is again bornological, by C.2.4.

C.2.2 Bornological linear maps

Let us first explain the linear maps we will be working with.

Definition C.2.6. Consider l ∶ E → F a linear map between two lcvts. l is saidto be bornological when it sends every bounded of E towards a bounded of F .Equivalently, l is bornological when for every bounded set b in E, l(b) is boundedin F .

76

Page 77: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition C.2.7. A continuous linear map is bornological.

Proof. Consider l ∶ E → F a continuous linear map between two lctvs, and b abounded set of E. Let us show that l(b) is bounded in F : consider U a 0-neighbourhood in E. Then because l(0) = 0 and l is continuous we know thatl−1(0) contains a 0 neighbourhood in E. Thus, there is λ such that b ⊆ l−1(0), andconsequently l(b) ⊆ l(λU) = λl(U). l(b) is then bounded and l is bornological.

Proposition C.2.8. The converse is false in general : a bornological linear mapmay not be continuous. However, it is true when the topology of the codomain isbornological, i.e. when all bornivorous subsets of the codomain are 0-neighbourhood.

Proof. The first assertion is immediate. Suppose now that the topology of E isbornological, and consider l ∶ E → F a linear bornological function. Consider Va 0-neighbourhood in F , and let us show that l−1(V ) is bornivorous. This willachieve the proof for the continuity of l. Consider then b a bounded set in E.Since l(b) is bounded, there is λ ∈ C such that l(b) ⊆ λV . Thus :

b ⊆ l−1(l(b)) ⊆ l(Vλ) ⊆ λl−1(V )

.

Why do we work with bornological linear maps, and not continuous map forexample ? For multiple reasons :

• Because of 2.6, bounded sets interest us as they link strong and weak topolo-gies. This gives us the chance to apply to our lctvs all the results we know onC. Note that this is not the case for open sets : weak and strong topologiesdiffers practically all spaces.

• Because we are finally interested in functions sending holomorphic curves toholomorphic curves. And Kriegl and Michor showed that between Mackey-complete spaces a linear function sends an holomorphic curve on an holo-morphic curve if and only if it is bornological. See 7.4 [KM97] and C.3.8below.

C.2.3 The reflexivity of Ls(E,F )

Let us denote Ls(E,F ) the space of all linear functions from a lctvs E to a lctvs F ,endowed with the topology of simple convergence (the topology whose open setsare the Ux,O = f ∣f(x) ∈ O with x ∈ E and O a 0-neighbourhood in F ). Likewise,we denote Ls(E,F ) the space of bornological linear functions endowed with thetopology of simple convergence. As usual, L(E,F ) is the space of all bornological

77

Page 78: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

linear maps between E and F , endowed with the topology of uniform convergenceon sets of EFrom the theorem C.2.5, we know that every map φ ∈ (Ls(E,F ))× can be extendedas a map in Ls(E,F )×. This gives us a reason for trying to understand the dualof Ls(E,F ), and hence its reflexivity, through the dual of L(E,F ).

Proposition C.2.9. The bornological dual of Ls(E,F ) is pointwise equal to E ⊗F ×.

Proof. First, let us notice that as a topological vector space, Ls(E,F ) is exactly

∏α∈A

F , where A is an algebraic basis for E. Then, his dual is (Ls(E,F ))× = ⊕α∈A

F ×.

But elements of ⊕α∈A

F × are exactly finite sums of f evx, with x ∈ E and f ∈ F⊗,

which are exactly the elements of E ⊗ F ×.

In the following proposition, we use an adaptation of Banach-Steinhauss the-orem in the Mackey-complete spaces, which can be found in [KM97], proposition5.18.

Proposition C.2.10. When E is reflexive, then (Ls(E,F ))× = (L(E,F ))×.

Proof. If E is reflexive, then it is Mackey-complete by C.1.13 and C.1.11. Byproposition 3.1.1 we know that the bounded sets of L(E,F ) and Ls(E,F ) are thesame. Then, (L(E,F ))× and (Ls(E,F ))× are the same lctvs.

Proposition C.2.11. Any form of (L(E,F ))× can be written as ∑1≤i≤n

li evxi with

li ∈ F × and xi ∈ E.

Proof. Consider z ∈ (L(E,F ))×. According to theorem C.2.10 (L(E,F ))× =(Ls(E,F ))×, and Ls(E,F ) is a subspace of Ls(E,F ), so we can extend z intoan element z of Ls(E,F ))×.But we know that z = ∑

1≤i≤nli evxi with li ∈ F × and xi ∈ E. So z∣L(E,F ) =

∑1≤i≤n

fi evxi ∣L(E,F ) = z∣L(E,F )) = ∑1≤i≤n

fi evxi ∣L(E,F ) .

Now we have everything we need to conclude. The proof of the followingtheorem is inspired by proposition 5.4.12 of [FK88] : they use the same diagramto reason, but their function being continuous the arguments are not the same.

Theorem C.2.12. When E and F are reflexive, L(E,F ) is reflexive.

78

Page 79: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. We want to show that δ ∶ L(E,F ) → (L(E,F ))×× is surjective. But whenF is reflexive, we have the following diagram, where δ⋆ is bijective :

L(E,F )

L(E,F ××)

δ⋆

???

????

????

?L(E,F ) L(E,F )××δ // L(E,F )××

L(E,F ××)

φ

with

φ ∶ L(E,F )×× → (L(E,F ××))

l ↦ (x ∈ E ↦ (f ∈ F × ↦ l(f evx)))We can check that (φ δ) δ−1

⋆ = Id. So proving that δ is surjective is the samethan proving that φ is injective. Consider now l ∈ Ker(φ), and z ∈ (L(E,F ))×.According to the previous proposition, we can write, with li ∈ F × and xi ∈ E :

l(z) = l(z∣L(E,F ))= l( ∑

1≤i≤nli evxi ∣L(E,F ))

= ∑1≤i≤n

l(li evxi ∣L(E,F ))

= ∑1≤i≤n

φ(l)(xi)(li)

= 0

This is true for all z ∈ (L(E,F ))×, we have that l = 0 and φ is injective. Thusδ is surjective and L(E,F ) is reflexive.

C.2.4 The tensor product

We are now ready to define the tensor product of two lctvs, reflexive when bothof them are reflexive.

Definition C.2.13. Consider E and F two lctvs. We are familiar with theiralgebraic tensor product E⊗F , the vector space generated by the family x⊗y∣x ∈E,y ∈ F. We endow this vector space with the finest topology such that theB1 ⊗ B2 are bounded, for B1 bounded in E and B2 bounded in F . This is thetensor product of two lctvs. Its topology is nothing but the topology generated bythe bornivorous subsets for the bornology B1 ⊗B2, ie β(B1 ⊗B2.

Lemma C.2.14. If E is reflexive, then so is E×.

Proof. If E = E××, then E× = E×××

79

Page 80: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition C.2.15. If E is a closed subspace of F , and if F is reflexive, then sois E.

Proof. Consider l ∈ E××. We have that F × ⊆ E×, so l is also a bornological formon F ×. Then by reflexivity of F there is y ∈ F such that l(f) = f(y) for all f ∈ E×.Let us show that y ∈ E. If it is not the case, then by Hahn-Banach separationtheorem (see 2.11), we have u ∈ F ′ such that ∣u(y)∣ > 1 and for all x ∈ E ∣u(x)∣ = 0.But being continuous u is also bornological, and we have u(y) = l(u) = l(u∣E) = 0.And we have our contradiction.Now consider f ∈ E×. By C.2.5, f can be extended as a bornological form f in F ×.We have now l(f) = l(f∣E) = f∣E(y) = f(y) since y ∈ E. We conclude that l = evyand E is reflexive.

Lemma C.2.16. If E× is reflexive, then so is E.

Proof. If E× is reflexive, so is E××. But endowed with the σ(E×)-topology, Eis a closed subset of E×× endowed with the σ(E×)-topology. According to theprevious proposition, we have that E = (E,σ(E×))××. But the bounded sets of Eand (E,σ(E×)) are exactly the same. Indeed, by 2.6 the bounded sets of E withits first topology are exactly those whose image is bounded by any l ∈ E×. Butthe open sets of E endowed with σ(E×) are those whose image under anyl ∈ E× isopen. Hence, the bounded sets of E endowed with σ(E×) are those absorbed bythe sets hose whose image under any l ∈ E× is open, that is to say they are exacltythe same as those of E endowed with its first topology. Then E× = (E,σ(E×))×,and E = E××.

Proposition C.2.17. If E and F are reflexive, then so is E ⊗ F .

Proof. We have (E ⊗ F )× = L(E,F ×). But if F is reflexive, so is F × and becauseE is reflexive theorem C.2.12 shows that L(E,F ×) is reflexive. We just have toapply the preceding lemma to have that E ⊗ F is reflexive.

C.2.5 Lin is monoidal closed

Theorem C.2.18. E ⊗ F verifies the universal property of tensor product inthe category of reflexive spaces and bornological linear maps : there is a bilinearbornological mapping h ∶ E × F → E ⊗ F such that for any bornological bilinearmap f ∶ E × F → G, there is a unique f ∶ E ⊗ F → G linear and bornological suchthat f = f h.

80

Page 81: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

E × F E ⊗ Fh //E × F

G

f

E ⊗ F

G

f

Proof. Consider E,F,G reflexive spaces and f as in the proposition. Defining fby f ∶ x ⊗ y ↦ f(x, y), we see that f is linear and bornological. The uniquenessof f follows from the universal property of E ⊗F in the category of vector spacesand linear map.

Theorem C.2.19. Lin is monoidal closed.

Proof. This follows from C.2.18 and C.2.12. Indeed, for every E, F , G reflexivespaces we want an isomorphism in Lin between L(E ⊗ F,G) and L(E,L(F,G),and we want this isomorphism to be natural in F and G. C.2.12 guaranties thatL(F,G) is indeed an object of Lin, and C.2.18 that so is E ⊗ F . The universalproperty of the tensor product tells us that we have a bijection between L(E⊗F,G)and L(E,L(F,G), and that this bijection is linear. By the definitions of thebounded sets on the spaces we consider, we see that this bijection and its inverseare bornological. The naturality of the isomorphism follows.

C.3 A cartesian closed category

Now that we have our linear category, we want our category of non-linear maps.One of our goal was to have a quantitative model of Linear Logic. We wantedour non linear maps to have a Taylor formula, as good as possible. We went fromreal-analytic maps to holomorphic maps, and to holomorphic maps to entire maps,that is power series. Here, I expose only the case when the non-linear functionsare power series. This part is inspired from [BS71], where the authors describe atheory of holomorphic functions from C to lctvs, and [Gro53], where Grothendieckuse weak integrals to work on holomorphic curves (but for the continuous dual).Kriegl and Michor, in [KM97], have described a theory of holomorphic functionsbetween tvs, but they are limited by the fact that they cannot integrate thosefunctions. Moreover, they work on M-complete spaces, so their result apply to ourreflexive spaces thanks to C.1.13, but it makes the proofs more complex. Kriegland Michor’s holomorphic functions verify ”locally” a Taylor formula, but for a tooweird topology (see 7.19.6 in [KM97]).In the preceding subsections concerning reflexive spaces, we could have workequally with vector spaces on R or C. Now, we need our spaces to be vector-spaces over C.

81

Page 82: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

C.3.1 Holomorphic functions in C

Remember what is an holomorphic functions between C and Cn : it is a complexdifferentiable function, that a functions such that for every z ∈ C, the followinglimit exists :

limw→0,w∈C

f(z +w) − f(z)w

An holomorphic function is going to be infinitely many times differentiable inC, and is going to be analytic. That is, for all z0 ∈ C, for all z complex in a smallball around 0, we will have for all z0 ∈ C,

f(z + z0) =∞∑n=0

f (n)(z0)n!

zn

Moreover, such a function verifies the Cauchy formula and the Cauchy inequal-ity : at 0 for example, we have

f (n)(0)n!

= 1

2πi ∫∣λ∣=r

f(λ)λn+1

, and

∣f(n)(0)n!

∣ ≤ ∣supf(λ∣∣λ∣ = rrn

for all sufficiently small rWe are going to define holomorphic functions from C to a lctvs E, which will be

called holomorphic curves, and demonstrate that when E is reflexive, that we havelocally a Taylor development and a Cauchy formula. The following paragraphs areinspired from [Gro53] and chapter 7 of [KM97].

C.3.2 Holomorphic curves in lctvs

Definition C.3.1. Consider E a lctvs. We say that a function f ∶ C → E isweakly holomorphic curve when for all l ∈ E×, l f ∶ C→ C is holomorphic.

Then we can talk of the weak derivatives of f as elements of (E×)⋆ : fn(z) ∶l ∈ E× → (l f)n(z).

Proposition C.3.2. If f is weakly holomorphic, then f ′(z) ∈ E×× for all z ∈ C. IfE is reflexive, then f ′ is a function in E and is again weakly holomorphic.

82

Page 83: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Let us show the first point of the proposition. The second point followsimmediately. Consider z ∈ C and B a bounded set in E×. The for all l ∈ E×,

f ′(z)(l) = (l f)′(z) = limh→0

l f(z + h) − l f(z)h

.

Consequently, the set K = f(z+h)−f(z)h ∣h∣≤1 is weakly bounded (a converging net

in C is bounded), then bounded in E. We have then f ′(z)(l) ∈ l(K) in C. But

B(K) is bounded, and so is B(K). Then f ′(l) ⊆ B(K), and f ′ ∈ E××.

Corollary C.3.3. If E is reflexive, then for any weakly holomorphic curve f wehave f (n)(z) ∈ E for all n ∈ N and z ∈ C.

Proposition C.3.4. If E is reflexive and f is a weakly holomorphic curve in E,then f is bornological.

Proof. Consider B a bounded set in C. For all l ∈ E×, l(f(B)) = (l f)(B) is theimage in C of a bounded set by a holomorphic hence continuous function. f(B)is then weakly bounded, and bounded by C.2.10.

Proposition C.3.5. A weakly holomorphic function is continuous.

Proof. Consider f a weakly holomorphic curve, z ∈ C, and U ⊆ C a neighbourhoodof 0. According to the previous proposition and to the proposition C.1.16, we canweakly integrate f ′ in E. We have consequently :

f(z + h) − f(z) =ζ=h

∫ζ=0

f ′(z + ζ)dζ for all h ∈ U .

Let us denoteK the absolute convex closure of the bounded set f ′(z+ζ)∣ζ ∈ [0;h].K is a bounded set, and we have f(z+h)−f(z) ∈ h.K. This gives us the continuityof f (every neighbourhood of 0 is going to absorb K).

Propositions C.3.4 and C.1.16 tell us that we can weakly integrate in E everyholomorphic functions on a bounded set. We can then transpose the results onholomorphic functions we have in C using the weak integral.

Theorem C.3.6. For every holomorphic curve f ∶ C→ E, we have :

f (n)(0)n!

= 1

2πi ∫∣λ∣=r

f(λ)λn+1

We could have defined holomorphy otherwise : since we know how to derivea curve f ∶ C → E, we can say that an homophorphic curve would be a infinitelymany times complex derivable function.

83

Page 84: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Definition C.3.7. A curve f ∶ C → E is said to be strong holomorphic whenit is everywhere complex differentiable.

Proposition C.3.8. A function f ∶ C→ E is holomorphic if and only if it is weakholomorphic.

Proof. Necessity : See [KM97], proposition 7.4. Consider f a strong holomorphiccurve, and l ∈ E×. We want to show that for all z ∈ C,

limh→0

lf(z+h)−lf(z)h = l f ′(z).

l is not continuous in general, so we cannot conclude immediately. However, letus fix z ∈ C. Because f is holomorphic in z, the difference quotient f(z+h)−f(z)

h ,considered as a functions of h, extends to a functions of h defined everywhereon C, and which is holomorphic too. The value in h = 0 of this curve is exactlyf ′(z). Because it is holomorphic, this function is locally lipschitzian. There is aneighbourhood U of 0 and k > 0 such that for every h ∈ U , and every l ∈ E× :

∣ l f(z + h) − l f(z)h

− l f ′(z)∣ ≤ k.h.

Sufficiency. See [Gro53], Theorem 1 ( we could have proceed as is [KM97]7.4, the proof there works for all Mackey-complete spaces). Suppose f is a weakholomorphic curve. Then for all l ∈ E×, and thanks to C.3.2, we have :

l f(z + h) − l f(z)h

− l f ′(z) = 1

h

z+h

∫z

l(f ′(ζ)) − (l f)′(z)dζ

= 1

h

z+h

∫z

l(f ′(ζ)) − l(f ′(z))dζ

Denote K the absolutely convex closed closure of f ′(ζ) − f ′(z)∣ζ ∈ [z; z + h].

Then l(f(z+h)−f(z)h − f ′(z)) ∈ l(K) for all l ∈ E×, and thanks to Hahn-Banach

separation theorem 2.2.2 we have that f(z+h)−f(z)h − f ′(z) ∈ K . But since f ′ is

strongly continuous, for each absolutely convex closed neighbourhood of 0 U in E,we have K ⊆ U for h small enough, and we have our result.

C.3.3 Power series and holomorphic functions between lctvs

Holomorphic functions are not interesting us for themselves. As said before, wewant a unique Taylor decomposition everywhere of our non-linear function. We aregoing to define power series independently of our results on holomorphic functions,

84

Page 85: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

and then use the fact that these power series will be holomorphic.In C, a power series is an everywhere converging sum ∑

nanzn. We know that it

implies that this sum is going to converge uniformly on every bounded all, and isgoing to be holomorphic.Let us try to do something equivalent between lctvs. The problem is that thereis no way to raise an element to the power n in a tvs. We are going to look toanzn as a n-homogeneous function instead. The use of the Cauchy formula in theproofs here is inspired from [BS71], where the authors work on Gateau-holomorphicfunctions between lctvs.

Definition C.3.9. Let us denote Hn(E,F ) the space of monomials of degreen from E to F , i.e. the set of maps f such that there exists a bornological andsymmetric n-linear mapping f verifying f(x) = f(x, ..., x).

When fk is a k-monomial, we will also denote by fk the k-linear function fromwhich fk come. Hence fk(x) = fk(xk), and fk(x1, ..., xk) is the image of the k-tuple(x1, ..., xk) by fk.

Remark C.3.10. The n-monomials are exactly the smooth n-homogeneous func-tion in the sense of Frolicher, see [KM97] 5.16.1.

Definition C.3.11. We say that a function f ∶ E → F is a power series when fis pointwise equal to a converging sum over n ∈ N∗ of n-monomials, and when thissum converge uniformly on bounded subset of E.

For all x ∈ E, f(x) = limn→∞

N

∑n=1

fn(x) with fn ∈ Hn(E,F )

The uniform convergence criteria means that for all B bounded in E, for all neigh-bourhood of 0 U in F , there is N ∈ N such that ∀x ∈ B ∑

n≥Nfn(x) ∈ U .

Remark C.3.12. • Inspired by what happens for formal power series, we askour power series to have no constant term, see B.3.30. This is in order toensure that composition between power series still result in a power series.In terms of programs, it says that we do not modelize the constant program.Composition of power series with constant term is an intricate problem inmathematics.

• All of our power series admits 0 as a fix-point. However, I have no idea underwhat condition they can admit more fixpoints. This is work to be done.

Definition C.3.13. We write S(E,F ) the space of power series between E and F ,and we endowed it with the topology of uniform convergence on bounded subsetsof E.

85

Page 86: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

One can just think of a power series as f = ∑nfn, and the converging hypothe-

ses are just here to guarantee that everything works fine regarding holomorphy,cartesian closedness, or reflexivity.

Proposition C.3.14. All functions in S(E,F ) are bornological.

Proof. Consider f = ∑ fk ∈ S(E,F ), B a bounded set in E, and U a 0-neighbourhoodin F We know that ∑ fk converges uniformly on B. Then there is N such that

f −N

∑k=1

fk)(B) ⊆ U . Moreover, each of the fk sends B on a bounded sets, thus

(N

∑k=1

fk)(B) is a finite sum of bounded subsets, hence a bounded subset. Then we

havef(B) ⊆ λU

for some scalar λ. We have our result.

Now we want to show that a power series sends a weak holomorphic curveonto a weak holomorphic curve C.3.20. This result is quite intuitive, as it followswhat happens in C, but it asks for a few technical lemmas, mostly coming from[KM97]. The difficulties come from the fact that we have to get back to metrizablecomplete spaces to reason as we would have done in C. This result is necessarythought because it leads to the Cauchy formula C.3.28 which is used a lot whenworking on the exponential. The reader who do not want to worry about theselemmas can jump directly to theorem C.3.20.

Definition C.3.15. A function f ∶ E → F between two lctvs is holomorphicwhen it sends an holomorphic curve onto an holomorphic curve.

Lemma C.3.16. See [KM97] 7.6. A function in a Mackey-complete space E isan holomorphic curve if and only if it factors locally in an holomorphic curve intoEB, for some absolutely convex bounded set B.

Proof. Consider f an holomorphic curve, z ∈ C and W a compact neighbourhoodof z. Let us denote B the absolutely convex closed closure of f(W ). From theCauchy formula and 2.2.2 we have that for r small enough :

rk

k!c(k)(z) ∈ B.

Thus for w close enough to z in C,

∑k≥0

(w − zr

)k rk

k!c(k)(z) ∈∑

k≥0

(w − zr

)k

B.

This is equal to c(w), and gives us that c(w) ∈ EB for w close enough to z. Theconverse proposition is immediate.

86

Page 87: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Lemma C.3.17. See [KM97] 7.19 . If E and F are reflexive spaces, then a functionf ∶ E → F is holomorphic if and only if for all l ∈ F × and B bounded absolutelyconvex in E, l f ∶ EB → C is holomorphic.

Proof. The results follows from the preceding lemma, and from the fact that aweak holomorphic curve is also strongly holomorphic (see C.3.8).

Proposition C.3.18. See lemma 7.14 in [KM97]. Consider E is a complete metriz-able space (hence a space verifying Baire property), and for each k ∈ N fk abornological k-linear symmetric scalar valued function on E. Then the followingfacts are equivalent :

1. The power series ∑ fk(xk) converges pointwise on an absorbing subset of E,

2. The set fk(xk) is bounded on a 0-neighbourhood

3. The set fk(x1, ..., xk) is bounded on some neighbourhood of 0

4. The power series ∑ fk(xk) converges absolutely on an absorbing subset of E

This is just saying that, as soon as the codomain is complete and metrizable andthe domain is C, a pointwise converging power series is bounded, and convergesuniformly somewhere. This seems quite intuitive, but we cannot get rid of themetrizable hypothesis on E.

Proof. (1) ⇒ (2) Since the domain of the fk is C, their bornologicality impliestheir continuity. Hence, the sets

AK,r = x ∈ E∣ ∣fk(xk)∣ ≤Krk for all k

are closed. Moreover, they do recover E by hypothesis. Then, by Baire property,there is an AK,r whose interior is nonempty. Consider x0 ∈ AK,r and V a neigh-bourhood of 0 such that x0 − U ⊆ AK,r. By algebraic manipulations, see lemma7.13 of [KM97], we get for all x ∈ V ∣f(xk)∣ ≤ Kλk for some λ > 0. Then fk(xk)is bounded on V

λ .

87

Page 88: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

(2)⇒ (3) Suppose fk(xk) is bounded on a 0-neighbourhood U . We have

f(x1, ..xk) =1

k!

1

∑ε1,...εk=0

(−1)k−∑ εjf((∑ εjxj)k)

≤ 1

k!

1

∑ε1,...εk=0

(∑ εj)kRRRRRRRRRRRf⎛⎝(∑ εjxj∑ εj

)k⎞⎠

RRRRRRRRRRR

≤ 1

k!

1

∑ε1,...εk=0

(∑ εj)kC

≤ 1

k!

k

∑j=0

(kj)jkC

≤ C(2e)k

Hence fk(x1, ..., xk) is bounded on U2e .

(3)⇒ (4) If fk(x1, ..., xk) is bounded on U , the power series converges absolutelyon rU , for 0 < r < 1.(4)⇒ (1) is obvious.

Lemma C.3.19. See lemma 7.17 in [KM97]. Consider E a metrizable completevector space, ∑ fk a power series from E to C converging pointwise on a neighbour-hood of 0, and a(z) = ∑n>0 anz

n a power series from C to E, an ∈ E converging ona 0-neighbourhood in C. Then the composite of the two power series ∑ fk(a(z))is a pointwise converging power series around 0.

Proof. This proof is exactly the one you can find in [KM97].By the precedinglemma there is U a 0-neighbourhood in E such that fk(x1, . . . , xk)∣k ∈ N, xj ∈ Uis bounded. Since the series∑anzn converges, there is r such that for all n anzn ∈ U .Then, for ∣z∣ < r

2 :

f(a(z)) =∑k

∑n1

...∑nk

f(an1 , ...ank)zn1+...nk

=∑n∑k

∑n1+...+nk=n

f(an1 , ...ank)zn1+...nk

This permutations are allowed because the f(an1 , ...ank) are bounded, and the

series upon is absolutely converging in C.

Theorem C.3.20. A power series between two reflexive spaces E and F sends anholomorphic curve on an holomorphic curve.

88

Page 89: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Consider f ∈ S(E,F ). According to C.3.17, we can suppose that E is aBanach space and F is C. But then, composing f with an holomorphic curve intoE, we are just composing f with a curve which is locally a power series. Our resultstems from the preceding lemma.

C.3.4 The product of reflexive spaces

Definition C.3.21. The cartesian product E × F of two locally convex topo-logical vector space E and F is the vector space E ×F endowed with the producttopology, i.e. the topology generated by the U1×U2 where U1 is a 0-neighbourhoodin E and U2 is a 0-neighbourhood in F .

Definition C.3.22. The direct sum E⊕F of two locally convex topological vectorspace E and F is the vector space E × F endowed with the topology generatedby the U1 × 0 and the 0 × U2 where U1 is a 0-neighbourhood in E and U2 is a0-neighbourhood in F .

Proposition C.3.23. The dual of E × F is E× ⊕ F ×, and the dual of E ⊕ F isE× × F ×.

Proof. Consider l ∈ (E × F )×. Then lE×0 ∈ E×, and l0×F ∈ F ×, so l ∈ E× ⊕ F ×.Conversely, if l = (l1, l2) ∈ E× ⊕ F ×, then one can define for (x, y) ∈ E × F l(x, y) =l1(x) + l2(y). Then we easily see that l is linear, and it is bornological since thebounded sets of E × F are the B1 ×B2 where B1 is a bounded set in E and U2 isa bounded set in F .The topology of (E ×F )× is generated by the UB1×B2,ε = f ∣∣f(B1 ×B2)∣ < ε, whilethe topology of E× ⊕F × is generated by the UB1,ε1 × 0 and the 0×UB2,ε2 . ButUB1,ε1 ×0 ⊆ UB1×B2,ε and UB1×0,ε1 ⊆ UB1,ε1 , then the two topologies are the same.The proof that (E ⊕ F )× = E× × F × is done likewise.

Corollary C.3.24. When E and F are reflexive, then so are E × F and E ⊕ F .

Definition C.3.25. When I is an ordered set, when for all i ∈ I Ei is a lctvs, thenwe can define ∏

i∈IEi as the vector space product over I of the Ei, endowed with the

topology having as a 0 basis the pr−1j (Ui) with Ui a 0-neighbourhood in Ei. We

define ⊕i∈IEi as the direct sum of the vector spaces Ei, endowed with the topologyhaving as a basis at 0 the unions of the 0× ...0×Ui × 0..., where i ∈ I and Uiis a 0-neighbourhood in Ei.

Proposition C.3.26. Bounded sets in ⊕i∈IEi are finite sums of bounded setsBi ⊆ Ei and bounded sets in ∏

i∈IEi are product over i ∈ I of bounded sets Bi ⊆ Ei.

89

Page 90: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

C.3.5 Convergence of power series

Our final goal is to prove that the category of reflexive spaces and power series be-tween them is a cartesian closed category. This will give us the Seely isomorphismin our model of Linear Logic. First, we need to extract a few more propertiesfrom our non-linear maps. From now on, we suppose lctvs to be mentioned to bereflexive, and every integral to be written to be a weak integral.

Proposition C.3.27. If f = ∑ fk is a power series between E and F , then forevery x ∈ E, for every k ∈ N, the n-th derivative in 0 of the curve λ ↦ f(λx) isn!fn(x).

Proof. Because E carries a vector topology, the set λx∣∣λ∣ < 1 is bounded. Then

∑ fk(λx) converges uniformly for ∣λ∣ < 1, and we have (λ↦ f(λx))(n)(0) = n!fn(x).

Proposition C.3.28. Every power series f ∈ S(E,F ) verifies a Cauchy formula.

fn(x) =1

2πi ∫∣λ∣=r

f(λx)λn+1

Proof. For every x ∈ E, λ↦ λx is an holomorphic curve into E, then λ↦ f(λx) isan holomorphic curve into F by C.3.20. This curve verifies a Cauchy formula, asevery holomorphic curve in a reflexive space by C.3.6. The previous propositiongives us the final result.

Remark C.3.29. In fact, every power series which is converges weakly (wrt F ×)uniformly on bounded sets of E verifies the Cauchy formula. Proposition C.3.27can be adapted to these functions, as F × is point separating. These power seriesadmit weak derivatives, and they verify likewise the Cauchy formula above.

Corollary C.3.30. If U is an absolutely convex 0-neighbourhood, and r > 0 issuch that f(rU) ⊆ B with B an absolutely convex closed bounded set, then for allk we have fk(U) ⊆ B

rk.

Proof. Under the hypothesis, and because we are working with a weak integral,we have for all l ∈ F × l(fk(U)) ⊆ l(B)

rk. But B being closed and convex, we know

thanks to 2.2.2 that it means that fk(U) ⊆ Brk

.

Corollary C.3.31. If f ∈ S(E,F ), then the development of f as a sum over k ofk-monomials is unique.

Now we are going to explain two consequence of the Cauchy formula for powerseries. They are very simple and practical, as they link weak convergence andstrong convergence for power series.

90

Page 91: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proposition C.3.32. Consider fk, k ∈ N k-monomials from E to F . If ∑ l fkconverges pointwise on E for every l ∈ F ×, then ∑ fk converges pointwise on E

Proof. Let us fix x ∈ E, and λ ∈ C with ∣λ∣ > 1. ∑ l fk(λx) converges for everyl ∈ F ×, hence the set l(fk(λx)) is bounded in C. By 2.6, we know it means thatfk(λx) is bounded in F . Let us write B for the closure of this set, which is stillbounded by 2.7.Now consider U a 0-neighbourhood in E and µ such that B ⊆ µU . Let N be a

natural number such that ∣∞∑k=N

1λk

∣ < µ. Then we have∞∑k=N

fk(x) ⊆∞∑k=N

1λkB ⊆ U ,

thus ∑ fk(x) converges.

Proposition C.3.33. Consider fk, k ∈ N k-monomials from E to F . If ∑ l fkconverges towards l(f) uniformly on bounded subsets of E for every l ∈ F ×, and iff is bornological, then ∑ fk converges uniformly on bounded subsets of E.

Proof. Let us fix B0 a bounded set in E, and U a 0-neighbourhood in F . We want

to find N ∈ N such that (∞∑k=N

fk)(B0) ⊆ U . From C.3.29, we know that f = ∑ fkstill verifies a Cauchy formula. Thus, we have fk(B0) ⊆ f(2B0)

2kfor every k, hence

(∞∑k=N

fk)(B0) ⊆ (∞∑k=N

12k

) f(2B0). Since for some µ, f(2B0) ⊆ µU and∞∑k=N

12k→ 0,

we have our result.

During this proof, we proved :

Proposition C.3.34. If f = ∑ fk is a power series in S(E,F ), then the partial

sumsN

∑k=1

fk Mackey-converge towards f in S(E,F ) : there is B a bounded set in

S(E,F ) and a sequence of positive reals (λn) decreasing towards 0 such that :

∀N, (N

∑k=1

fk − f) ∈ λNB.

We still need another tool to work on our power series. The last propositionhelp us to go from weak convergence to strong convergence, the following willallow us to go from pointwise convergence to uniform convergence, under certainconditions.

Proposition C.3.35. Consider ∑kfk ∶ E → F a pointwise converging series of

bornological k-monomials. If the sum converges towards a bornological function,then the sum does converge uniformly on the bounded sets of E.

91

Page 92: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. Let us fix l ∈ F ×. For every x ∈ E, ∑ lfk(x) converges towards lf(x) wheref ∶ E → F is bornological. Consider B a bounded set. Then, according to C.3.18,the power series ∑ l fk(x) converges uniformly on EB (as it is a Banach space,see C.1.14), hence on B. We have proved that ∑

kfk converges weakly uniformly

on bounded sets. ByC.3.33, we know that it converges (strongly) uniformly onbounded subsets.

C.3.6 Quant is cartesian closed

Now before proving that reflexive spaces and power series between them are acartesian closed category, we should check that it is indeed a category.

Proposition C.3.36. The composition of two power series is a power series.

This proof is both an adaptation of what happens in formal power series (see[Hen88] chapter 1), and an adaptation of the fact that you can compose two abso-lutely convex power series in C, where they converge absolutely. We explain whathappens in the case of monomials in lctvs, and go back to the scalar case thanksto C.3.32.

Proof. Consider f = ∑ fk ∈ S(E,F ) and g = ∑ gn ∈ (F,G) two power series betweenreflexive spaces. Let us fix x ∈ E. By definition of g, we have gf(x) = ∑

ngn(f(x)).

Let us now fix n. But gn is a n-monomial from E to F , coming from a n-linearsymmetric application. Applied to any finite sum it gives :

gn(y1 + y2 + ⋅ ⋅ ⋅ + ym) = ∑j1+j2+...+jm=n

( n

j1, j2, . . . , jm)gn(yj11 , y

j22 , . . . y

jmm )

where ( nj1,j2,...,jm

) = n!j1!j2!...jm! . Now the function

x↦ gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm)

is a (m

∑k=1

k × jk) monomials. This is easy to see when in C when gn ∶ y ↦ yn

and fk ∶ x ↦ xk : then gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm) = (xj1xj2 . . . xjm)n. In ourtopological space, we use the remark C.3.10, saying that bornological n-monomialsand smooth n-homogeneous functions are the same thing. Here

x↦ gn(f1(x)j1 , f2(x)j2 , . . . fm(x)jm)

is clearly a (m

∑k=1k × jk)-homogeneous monomial, and it takes a smooth curve to a

smooth curve when so does gn and the fk. Let us write hn,m for

∑j1+j2+...+jm=n

j1,...jn∈N

gn(f1(x)j1 , f2(x)j2 , . . . , fm(x)jm)

92

Page 93: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

.

Can we write gn(f(x)) = limm→∞

hn,m(x) ? Yes, because g is bornological, we can

show as in C.3.34 : if

(m

∑k=1

fk − f) ∈ λmB

then

gn(m

∑k=1

fk(x)) − gn(f(x)) ∈ (λm)ng(B(x)).

Since g(B(x)) is bounded in F , for every neighbourhood of 0 in F, there is some

rank m for which gn(m

∑k=1fk(x))− gn(f(x)) will be included in this neighbourhood.

Note that all the monomials in gn(f(x)) are of degree n a multiple of n.So

g(f(x)) =∑n

∑j1+j2+...=n

( n

, j1, j2, . . .)gn(f1(x)j1 , f2(x)j2 , . . . , fm(x)jm , . . . ) =∑

n

limm→∞

hn,m(x).

If we can permute these sums, we would have

g(f(x)) =∑N

∑n≤N

∑j1+j2+...=n,

(∞∑k=1

k×jk)=N

( n

j1, j2, . . .)gn(f1(x)j1 , f2(x)j2 , ...).

and this would be a pointwise converging power series. Note that the monomialof degree N > 1 is a finite sum : we only collect terms from the gn(f(x)) for n ≤ N .

Now why can me make this sum in g(f(x)) commutes ? Let us fix x ∈ E, andl ∈ G. We proceed like in the proof of C.3.40. We want to permute

l(g(f(x))) =∑n

∑j1+j2+...=n

( n

j0, j1, j2, . . .)l(gn(f1(x)j0 , f2(x)j2 , . . . )).

But

∑n

∑j1+j2+...=n

( n

j1, j2, . . .)∣l(gn(f1(x)j1 , f2(x)j2 , . . . ))∣

does converge absolutely. Then according to Fubini theorem, we can permute thissum. It converges weakly, hence strongly by C.3.32.

Now g f is a pointwise converging series, and a bornological function becauseboth f and g are. According by C.3.35, g f converges uniformly on boundedsubsets of E, we have then g f ∈ S(E,G).

93

Page 94: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Let us denote Quant the category of reflexive spaces and power series betweenthem. Remember that we endow S(E,F ) with the topology of uniform conver-gence on bounded subsets of E. The first thing you want to do for cartesianclosedness is to prove that the space of non-linear function is still an object of ourcategory.

Proposition C.3.37. S(E,F ) is a locally convex topological vector set as soonas F is a reflexive lctvs.

Proof. A 0-neighbourhood in S(E,F ) contains some

UB,U = f ∣f(B) ⊆ U

where B is a bounded set in E and U is a 0-neighbourhood in F . Those setsare clearly convex when the 0-neighbourhood in F are. The sum of two such setsUB1,U1 and UB2,U2 contains UB1∩B2,U1+U2 , and U1 +U2 is a 0-neighbourhood when Fis a locally convex topological vector spaces, hence addition is continuous. Finally,multiplication by a scalar is continuous since every power series is bornological (seeC.3.4 and C.3.20).

Theorem C.3.38. The space S(E,F ) is reflexive when E and F are.

Proof. We proceed exactly like in the proof of the reflexivity of L(E,F ) (seeC.2.12). For S(E,F ) to be reflexive, we need

φ ∶ S(E,F )×× → (S(E,F ××))

l ↦ (x ∈ E ↦ (f ∈ F × ↦ l(f evx)))

to be injective. However, S(E,C)× ⊆ L(E,C)×, hence every z ∈ Ker(φ) can bewritten as the restriction of ∑

1≤i≤nfi evxi to S(E,F ). By definition of φ, l is going

to be zero exactly on these kind of maps. Then Ker(φ) = 0, φ is injective, andS(E,F ) is reflexive.

During this proof, we have shown :

Corollary C.3.39. Any form of (S(E,F ))× restricted to L(E,F ) can be writtenas ∑

1≤i≤nfi evxi with fi ∈ F × and xi ∈ E.

Theorem C.3.40. For reflexive spaces E, F , andG : S(E×F,G) ≃ S(E,S(F,G)).

Proof. We know thanks to C.3.24 and C.3.38 that the spaces considered are allreflexive. Let us first notice that if the spaces are equal, the topologies on theseare the same : synthetically, sending B1 ×B2 on a weak 0-neighbourhood U is thesame that sending B1 on a function which will send B2 on U . This gives us a

94

Page 95: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

homeomorphism, hence a bornological isomorphism, between the two spaces.We want to show that

φ ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

S(E × F,G)→ S(E,S(F,G))

∑ fk ↦⎛⎜⎜⎝x↦

⎛⎜⎜⎝y ↦∑

n∑m

(n +mn

)fn+m((x,0), ..., (x,0)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

,

m times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(0, y), ..., (0, y))

⎞⎟⎟⎠

⎞⎟⎟⎠

and

ψ ∶⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

S(E,S(F,G))→ S(E × F,G)

∑n

(fn ∶ x↦∑m

fn,x,m)↦ ((x, y)↦∑k

∑n+m=k

fn,x,m(y))

are well defined, that each one is inverse of one another, are that they are linearand bornological.A few lines of calculus easily show that φ and ψ are inverse of one another. Thedifficulty is in showing that their image is indeed made of power series. We willdo it on ψ, the proof for φ using the same tools and being easier.Here, we are going to go back to what happens in the scalar case, and use the Fu-bini theorem on absolutely converging sums to permute our sums. Then, we willreturn to our power series converging uniformly thanks to C.3.35. Consider indeeda function f ∈ S(E,S(F,G)). Then f can be written as ∑

n(fn ∶ x↦ ∑

mfn,x,m), each

fn being a bornological p-monomial from E to S(F,G), and each fn,x,m being abornological m-monomial from F to G. Let us fix l ∈ G×. We know that for ally ∈ F , θ = l evy is a bornological form on S(E,F ).

Moreover, because f is in particular a pointwise converging power series, hence

weakly converging, we know that ∑nθ (∑

mfn,x,m) = ∑

n∑ml fn,x,m(y) converges for

every x ∈ E. Let us fix x and y. Then for any λ ∈ C bigger in module than 1, wehave that ∑

n∑ml fn,λx,m(λy) converges. Hence, because we are in C, the double

sequence (lfn,λx,m(λy))n,m is bounded, and ∑n∑mlfn,x,m(y) converges absolutely.

Now is the time for Fubini theorem to intervene. Thanks to Fubbini the-orem, we know that in C we can permute absolutely converging double series.Then ∑

k∑

n+m=kl fn,x,m(y) converges and equals ∑

n∑ml fn,x,m(y). The function

(x, y)↦ ∑n+m=k

fn,x,m(y) is indeed a bornological k-monomial : you can prove it by

algebraic manipulations on monomials or use C.3.10. Hence ψ(f) a weakly point-wise converging power series. Thanks to C.3.32, we see that is converges pointwise

95

Page 96: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

strongly.

To see that ψ(f) converges uniformly on bounded subsets of E, we just have touse the fact that it is bornological : f is bornological thanks to C.3.14, and ψ(f)sends B1×B2 on f(B1)(B2). Now we can use the fact a pointwise converging powerseries which converges towards a bornological function converges uniformly onbounded subsets its codomain (see C.3.35). We conclude that ψ(f) ∈ S(E ×F,G).

Theorem C.3.41. Quant is a cartesian closed category.

Proof. The theorem follows direclty from the preceding proposition and fromC.3.38.

C.4 The exponential

We have our linear category and our non-linear one, we miss the adjunction be-tween the two. This adjunction results in a monad ! ∶ Lin → Lin, which modelizethe exponential constructor of Linear Logic. As the adjunction will be between aright adjoint from Quant to Lin, and the oblivion functor Lin → Quant as leftadjoint, we will right also ! ∶ Quant → Lin for our right adjoint. The exponentialhere differs from what happens in convenient spaces (see [BET10]), or completespaces (see section B), as we do not have to complete in some way our exponential.

Definition C.4.1. We write ! ∶ Quant → Lin for the functor sending a reflexivespace E on S(E,C)×, and a power series f ∈ S(E,F ) on :

!f ∶ S(E,C)× → S(F,C)×

φ↦ (g ∈ S(F,C)↦ φ(g f))

Remember that !E = S(E,C)× bears the topology of uniform convergence onbounded subsets of S(E,C). It is a lctvs, and clearly it is a reflexive space. Onecan note that this exponential, contrary to what happens in other models of LinearLogic, isn’t built on an enumerable accumulation procedure but is constructed assome space of continuations over the king of programs interesting us.

We want now to show the adjunction between Quant and Lin (see C.4.5). Forthis, we are going to need to work on δ, and show that it is a power series.

Proposition C.4.2. Let us write θn for the function x ∈ E ↦ (f = ∑ fk ∈S(E,C) ↦ fn(x)). Then for all x ∈ E, θn(x) ∈!E, and θn is a bornological n-monomial from E to !E.

96

Page 97: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. θn is well defined thanks to the uniqueness of the development of a powerseries. Besides, θn(x) is clearly linear and bornological, since bounded sets ofS(E,C) are equibounded.Now θn results from the n-linear symmetric bornological function (x1, ..xn)↦ (f ↦fn(x1, ..xn))). Again, this function is bornological by definition of the bornologyon !E. Thus, θn is a bornological n-monomial.

Proposition C.4.3. δ ∶ E →!E defined by δx ∶ f ↦ f(x) is in S(E, !E). That is,δ = ∑

kθk is a power series and converges uniformly on bounded sets of E.

Proof. For every f ∈ S(E,C), for every x ∈ E we have δx(f) = f(x) = ∑ fk(x) =∑ θk(x)(f). When we fix x, pointwise we have δx = ∑ θk(x). Do we have thisequality in !E ? That is to say, considering the topology of E, do we have uniformconvergence on every bounded sets of S(E,C) of ∑ θk(x). Indeed, thanks to theCauchy formula : consider B a bounded set of S(E,C), and b an absolutely convexclosed subset of E containing x. For every f ∈ S(E,C), f(x) ∈ B(2b), which isa bounded set in C : ∣f(x)∣ ≤ M or every f ∈ S(E,C). Then according to theCauchy formula (see C.3.28), for every k and f we have ∣fk(x)∣ ≤ M

2k. We have

∣∑ θk(B)∣ ≤ (∑k

12k

)M , and uniform convergence of this sum.

From this we can conclude that pointwise, we have δ = ∑ θk. We know that the θkare bornological k-monomials, let us just check that we have uniform convergenceon bounded subsets of E. Let us fix b a bounded subset of E, and UB,ε a 0-

neighbourhood in !E. We want to find N such that for all x ∈ b,∞∑k=N

θk(x) ∈ UB,ε,

i.e. N is such that for all x ∈ b, for all f ∈ B, ∣∞∑k=N

θk(x)(f)∣ = ∣∞∑k=N

fk(x)∣ < ε. But

is is again a result of the Cauchy formula. Consider b′ a closed absolutely convexbounded set of E containing b. Then B(2b′) is bounded in C : B(2b′) ⊆ [−M ;M]for some M > 0. Consider N such that ∑

k≥N12k

< εM . Then we have for all x ∈ b, for

all f ∈ B, for all k, ∣fk(x)∣ ≤ M2k

, and ∣∞∑k=N

fk(x)∣ ≤ ∣∞∑k=N

M2k

∣ < ε.

Lemma C.4.4. The series∑ θk is also what is called a Mackey convergent sequence: there is B a bounded set in L(E, !E) and a sequence of scalars (λn)n convergingtowards 0 such that

(n

∑k=1

θk − δ) ∈ λnB.

Proof. The proof is done exactly as above, using the Cauchy formula. Consider band B two bounded closed absolutely convex sets in E and S(E,C) respectively.Let us denote K for the absolutely convex closed closure of B(2b). Then, by the

97

Page 98: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Cauchy formula for power series, we have

n

∑k=1

θk(b)(B) − δ(b)(B) ⊆ (∑k>n

1

λk)K.

K being bounded, we have that for every b and B bounded in E and S(E,Crespectively,

n

∑k=1

θk(b)(B) − δ(b)(B)

∑k>n

1λk

is bounded in C. Hencen

∑k=1

θk(b) − δ(b)

∑k>n

1λk

is bounded in !E. Hence

B =

n

∑k=1

θk − δ

∑k>n

1λk

is a bounded set in L(E, !E), and we have our result.

Theorem C.4.5. For every reflexive space E and F , we have

S(E,F ) ≃ L(!E,F ).

This isomorphism comes from an adjunction between ! ∶ Quant → Lin and theoblivion functor U ∶ Lin→ Quant

Proof. Consider f ∈ S(E,F ). By C.3.39, we can know that every z ∈!E restrictedto E× is a sum of l evx, with l ∈ C× and x ∈ E. But C× = C, so z is a sum of λ.evx.Define f ∶!E → F by f(∑λievxi) = ∑λif(xi). f is clearly linear. In order to showthat it is bornological, consider B a bounded subset in !E. By definition of thetopology on S(E,C), B is a set of function sending every equibounded of S(E,C)on a bounded set. Now consider l ∈ F ×. Then l(f(B)) = Blf which is boundedas the image by B of a singleton. f(B) is scalarly bounded hence bounded by 2.6.

Now consider g ∈ L(!E,F ) and define g ∶ E → F by g(x) = g(evx) = g δ.g is not continuous in general, so despite its linearity we cannot conclude thatg(evx) = ∑ g(θk). Now is the time for using the lemma just above. Because g isbornological, we have for every n ∈ N :

g (n

∑k=1

θk − δ) =n

∑k=1

g θk − g δ ∈ λng (B).

98

Page 99: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Now we see thatn

∑k=1g θk Mackey converge towards g δ, and a few lines of imme-

diate calculus show that the convergence is uniform on bounded sets of E. Theng ∈ S(E,F ), and we have our result.

It is straightforward that ˆg = g,ˇf = f , that g ↦ g and f ↦ f are both linear

and bornological, and this induce an isomorphism which natural in E and F . Wehave our adjunction.

Note that during the first part of the last demonstration, we have strongly usedthe fact that every form in !E behave on L(E,C) as the restriction of a sum ofλevx, with λ ∈ C and x ∈ E. This is exactly what proposition C.3.39 says.

The natural transformations associated to this adjunction are :

• The counit d ∶ !E → E defined by the d(λevx) = λx and then extendedlinearly.

• The unit : ι ∶ E → !E, defined by ι(x) = δx.

For the comonad, ! comes then with d and the comultiplication ρ ∶ !E → !!Edefined on basis elements by ρ(λδx) = λδδx . This endows the category Lin witha symmetric monoidal comonad. The preceding theorem shows that Quant is ex-actly the co-Kleisli category Lin!.

This comonad induces a structure of bialgebra on every !E :

• ∆ ∶ !E → !E ⊗ !E is defined by ∆(λevx) = λevx ⊗ evx, then extended linearly.

• e ∶ !E → C is e(λevx) = λ, and then extended linearly .

• ∶ !E ⊗ !E → !E is (evx ⊗ evy) = evx+y.

• ν ∶ C→ !E is ν(1) = ev0.

All these morphisms are bornological linear maps. So as to have a model ofLinear Logic, we just miss the Seely isomorphism.

Proposition C.4.6. Clearly, we have 1 = C ≃!(⊺) =!0 as S(0,C) = C.

Theorem C.4.7. For every reflexive spaces E and F we have !E⊗!F ≃!(E × F ).

99

Page 100: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Proof. This comes from the cartesian closedness of Quant and the monoidal closed-ness of Lin. Indeed,

!(E × F ) = S(E × F,C)×

≃ S(E,S(F,C))×

≃ L(!E,L(!F,C))×

≃ L(!E⊗!F,C)×

= (!E⊗!F )××

≃!E⊗!F.

These intuitive equations may need a few justifications. The first line is just thedefinition of the exponential. Then, the second equality is possible because of thecartesian closedness of Quant. The third equality uses the adjunction we describedin C.4.5 : we have S(E,S(F,C))× ≃ L(!E,S(F,C))× and S(F,C) ≃ L(!F,C).The last isomorphism is bornological, then they have the same bounded sets, andthen L(!E,S(F,C)) and L(!E,L(!F,C)) are pointwise equal and have the samebounded sets. We have the bornological isomorphism justifying the third line.The fourth line comes from the monoidal closedness of Lin, the fifth is just thedefinition of the dual of a space, and the last line comes from the reflexivity of!E⊗!F .

This concludes our construction of our denotational model of Linear Logic.Note that this construction of the exponential is quite general. In fact, it is verysimilar to the construction done in complete spaces (see B) or in convenient spaces( see [BET10]). It would be interesting to know what is the computational meaningof these kind of exponentials. Is it a free exponential ?

Theorem C.4.8. The category Lin, equipped with the comonad !, is a model ofLinear Logic.

C.5 A differential structure

We could have shown that Quant was a differential category (see [BCS06]), butbecause it enjoys reflexivity, let us show that is is a model of Differential LinearLogic (see 1), as described in [Ehr11] section 4.

C.5.1 Prerequisites

According to [Ehr11], a model of Differential linear logic is a Seely category, en-riched over a unitary semi-ring k. To make it simple, let us say that k is a field, andthe fact that our category C is enriched over k means that each Hom-set C(E,F )

100

Page 101: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

must be a vector space over k, and that the composition and the monoidal law ⊗must be bilinear operations.

Let us recall the definition of a Seely category : a Seely category is a symmet-ric monoidal closed category (L,⊗,1) with binary product and a binary productdenoted & and ⊺, endowed with :

• a comonad (!, ρ, d).

• two natural isomorphism m2E,F ∶ !E⊗ !F → !(E&F ) and m0 ∶ 1→ ⊺ such that

(!,m) ∶ (L,&,⊺)→ (L,⊗,1) is a symmetric monoidal functor.

Moreover, we ask the following diagram to commute for all A,B ∈ L :

!E ⊗ !F !(E & F )m // !(E & F )

!!(E & F )

δ!(e&F )

!!(E & F )

!(!E & !F )

!<!π1,!π2>

!E ⊗ !F

!!E ⊗ !!F

δE⊗δF

!!E ⊗ !!F !(!E & !F )m //

In order to model DiLL, we only miss a deriving transformation, i.e somethingmodelizing the co-dereliction rule in DiLL. We need a natural transformation dE ∶E →!E, such that dE dE = IdE, and require a few commutation diagrams ensuringthat the rules of differential calculus are verified (chain rule, etc. ).

C.5.2 Quant as a model of DiLL

Of course, in our category, dE is going to come from the derivation of a functionin analysis. In fact, as we can see in Differential categories, dE is the basic toolto compute the ”differential” of the identity function IdE, which then allows tocompute the differential of every ”smooth” arrow in the category. We have

D[1!E] = (dE ⊗ 1!E ∶ E⊗!E ⊸!E

and if f ∶!E ⊸ F ,

D[f] ∶ f dE ∶ E⊗!E ⊸ F

.Consider then x ∈ E when E is a topological vector space, and remember that

you can define a differentiation on smooth (in the meaning of Kriegl and Michor)functions. As for every x and y, t ∈ R ↦ x + ty is smooth, so is t ↦ f(x + ty).

101

Page 102: lipn.univ-paris13.frkerjean/papers/rapportM2.pdfRapport de stage de M2 Les espaces vectoriels topologiques comme mod ele quantitatif de DiLL Sous la direction de Christine Tasson,

Then the derivative Dx[f](y) = limt→0

f(x)−f(x+ty)t exists, and it can be shown that D

verifies all the rule expected of a differentiation, as the chain rule, or the nullity ofthe differentiate of a constant function (see [KM97], 3.18).

Then limt→0

f(x)−f(x+ty)t = f((dE(y), δx). In particular f(dE(y)) = D0[f](y). As

coderx is an element of !E, that is a linear form on S(E,C), we havede(y) ∶ y ↦ (f ↦D0[f](y).This is the same codereliction that can be found in [BET10] and [Gir99]. Now

let us define dE properly. As power series are holomorphic, they are smooth (see[KM97], 7.4.8), and we can indeed define for every f ∈ S(E,C) the differential off .

Definition C.5.1. The co-dereliction is the category of reflexive space is :

dE

⎧⎪⎪⎪⎨⎪⎪⎪⎩

E →!E

y ↦ f ∈ S(E,C)↦ limx→0

f(ty) − f(0)t

According to C.3.27,we have dE(y) ∶ f ↦ f1(y) when f = ∑ fk. Now it is clearthat dE(y) is indeed a bornological linear form on S(E,C). Linearity is obvious,and when B is a bounded set of S(E,C), dE(y)(B) is also bounded by the Cauchyformula.

102


Recommended