+ All Categories
Home > Documents > LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007....

LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007....

Date post: 24-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
22
LISA Optics Model,Penn State,22 July,2002 GSFC JPL ESA LISA Optics in the U.S. Eugene Waluschka NASA/Goddard Space Flight Center Greenbelt, Maryland 20771
Transcript
Page 1: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

LISA Optics in the U.S.

Eugene Waluschka

NASA/Goddard Space Flight Center Greenbelt, Maryland 20771

Page 2: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Two major participants:

• JPL o Modeling wavefront quality (mid-to-high spatial

frequency) vs. telescope tilt. o Optical block bonding

• Goddard o Program office o Systems engineering

• Requirements definition • End-to-end modeling • Structural, Thermal, Optical (STOP) and self

gravity

Page 3: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Laser Interferometer Space Antenna

• Counts fringes (about a million/second) • Deduce a variable strain (within the band of

interest) between freely falling proof masses • Magnitude of strain is about 10-21 • About 10 picometers • Out of 5 million kilometers.

To accomplish this, the LISA experiment has: • Three spacecraft, • Two telescopes in each spacecraft, for a total of

six identical telescopes, • Each telescope tracks a distant spacecraft and

sends and receives light (at a slightly different angle),

• Collimated (quasi) monochromatic, light centered on 1.064 microns.

• Circularly polarized beam

Page 4: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Knowing the relative positions of optical elements is a good starting point.

HELIOCENTRIC COORDINATE

FRAME AND KEPLERIAN ORBITS

0k

1 ( )S t�

2 ( )S t�

3 ( )S t�

0j

0i0O

ecliptic

Page 5: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

A Keplerian orbit in the ecliptic is given by (from L&L Mechanics)

32

(cos )( )

( ) ( ) 1 sin ( sin )

0 0 sun

a exa

S t y a e where t eG M

ξξξ ξ ξ ξ

− = = − ⋅ = ⋅ − ⋅ ⋅

a is the major axis of the ellipse e is the eccentricity G is the universal constant of gravitation Msun is the mass of the sun

A complete passage round the ellipse corresponds to ξ increasing by 2π , so that when 0t = then 0ξ =and (0) ( ,0,0)S ae= − .

Page 6: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Three LISA like orbits are obtained by the following rotations and time translations:

1

2

3

( ) ( ) ( )

1( ) (120 ) ( ) ( )32( ) (240 ) ( ) ( )3

y

oz y

oz y

S t R S t

S t R R S t year

S t R R S t year

β

β

β

= ⋅

= ⋅ −

= ⋅ −

� �

� �

� �

( )Z

R γ and ( )Y

R β are rotation matrices about the

heliocentric z and y axes. If 0.948oβ = then

a roughly equilateral triangle leg length and angles varying about 1%

Page 7: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

Three Orbits

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Page 8: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

SPACECRAFT AND OPTICAL BENCH

1 ( )S t� � � ���

1O

Spacecraft

12O

13O

Page 9: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Page 10: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

GSFC�JPL�ESA

12O

detector

laser

proof mass

telescope

towardspacecraft 2

y

z

fold

LISA Optics M odel, Penn State, 22 July, 2002

Optical Block + Telescope = Optical Assembly

Page 11: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July 2002

GSFC�JPL�ESA

Far field intensity pattern

Page 12: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Far field phase variations “sensitivity analysis”

Page 13: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

POINT AHEAD

1S

2 12 1 12( ) ( )s sS t t S t t− ∆ − − ∆� �

2 12 1 12( ) ( )R RS t t S t t+ ∆ − + ∆� �

3 13 1 13( ) ( )s sS t t S t t− ∆ − − ∆� �

313

113

() (

)R

R

S t t S t t+ ∆ − + ∆

12 ( )tθ

23 ( )tΘ

Page 14: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Computing the point ahead positions

Light transit time about 16 seconds.

2 12 1 12 12

2 12 1 12 12

( ) ( )

( ) ( )

R R R

S S S

S t t S t t c t

S t t S t t c t

+ ∆ − + ∆ = ⋅∆

− ∆ − − ∆ = ⋅∆

� �

� �

Table 1: The positions of all three when transmitting and receiving light from the other spacecraft. Receive position of spacecraft Inertial frame Send position of spacecraft

2 12 1 12( ) ( )R RS t t S t t+ ∆ − + ∆� �

1S 2 12 1 12( ) ( )S SS t t S t t− ∆ − − ∆� �

3 13 1 13( ) ( )R RS t t S t t+ ∆ − + ∆� �

1S 3 13 1 13( ) ( )S SS t t S t t− ∆ − − ∆� �

1 21 2 21( ) ( )R RS t t S t t+ ∆ − + ∆� �

2S 1 21 2 21( ) ( )S SS t t S t t− ∆ − − ∆� �

3 23 2 23( ) ( )R RS t t S t t+ ∆ − + ∆� �

2S 3 23 2 23( ) ( )S SS t t S t t− ∆ − − ∆� �

1 31 3 31( ) ( )R RS t t S t t+ ∆ − + ∆� �

3S 1 31 3 31( ) ( )S SS t t S t t− ∆ − − ∆� �

2 32 3 32( ) ( )R RS t t S t t+ ∆ − + ∆� �

3S 2 32 3 32( ) ( )S SS t t S t t− ∆ − − ∆� �

Page 15: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

In a local inertial frame attached to a spacecraft the motion of a distant spacecraft.

Page 16: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Radial velocity of spacecraft

Page 17: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Angle between two telescopes

Page 18: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

DISTURBANCE REDUCTION SYSTEM

18 degrees of freedom SIMULINK™ DRS

• 6 degrees of freedom for spacecraft • 6 degrees of freedom for each proof mass

Page 19: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

FROM LASER TO DETECTOR

Light leaving laser

[ ]( , , , )( , , , ) ( , , , ) laseri t x y z tlaser laserE x y z t A x y z t e ω φ− +=

then by tracing a sufficient number of rays, we get the outgoing wavefront at the telescope aperture.

( , , , )( , , , ) ( , , , ) outgoing

i t x y z t

outgoing outgoingE x y z t A x y z t eω φ − + =

(6)

The (far) field at the aperture of the distant spacecraft is given by

12

2( ( , , , ) )

( )min 12

( , , , )( , , , )

outgoing

R

Si x y z t

outgoingi t tRinco g far

A

E x y z t eE x y z t t A e dA

S

πφλ

ω

− +

′− +∆′ ′ ′ +∆ = ∫∫

Page 20: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

At the detector

[ ( ) ( , , , )]

[ ( ) ( , , , )]

( , , , )( , , , )

( , , , )

slocal local

plocal local

i t t x y z tslocal

local i t t x y z tplocal

A x y z t eE x y z t

A x y z t e

ω ϕ

ω ϕ

− ⋅ +

− ⋅ +

⋅ = ⋅

[ ( ) ( , , , )]

[ ( ) ( , , , )]

( , , , )( , , , )

( , , , )

sfar far

pfar far

i t t x y z tsfar

far i t t x y z tpfar

A x y z t eE x y z t

A x y z t e

ω ϕ

ω ϕ

− ⋅ +

− ⋅ +

⋅ = ⋅

Jones vectors to remind us of the fact that the light really is polarized.

The intensity of the light at any point (x,y,z) on the detector:

2( , , , ) ( , , , ) ( , , , ) .local farI x y z t E x y z t E x y z t scattered light+ +

� ��

Page 21: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Signal extraction

Over the detector area

( ){ }2 2( ) ( ) ( ) 2 ( ) ( )cos ( ) ( ) ( )local far local far local far local farI t A t A t A t A t t t t tω ω φ φ+ + − + −�

Doppler beat note ( )local far

tω ω

( ) ( ) ( ) ( )local far noise signalt t t tφ φ φ φ− = +

( )noise tφ optical path noise from the sending laser to the receiving detector

( )signal tφ is the gravitational signal

Page 22: LISA optics and telescopes in the UScgwp.gravity.psu.edu/lisa/presentations/waluschka.pdf · 2007. 11. 14. · LISA Optics Model, Penn State, 22 July, 2002 GSFC JPL ESA Computing

LISA Optics M odel, Penn State, 22 July, 2002

GSFC�JPL�ESA

Conclusion

Goal of the optics model

guide us in the spacecraft and mission design

extend standard optical practice

“Perfect LISA” + telescope


Recommended