+ All Categories
Home > Documents > Listing - math.sjtu.edu.cn · 4Klaus Janich, Topology, p.162, Springer, 1984. 5 ... Topology may...

Listing - math.sjtu.edu.cn · 4Klaus Janich, Topology, p.162, Springer, 1984. 5 ... Topology may...

Date post: 04-Jun-2018
Category:
Upload: vudien
View: 215 times
Download: 0 times
Share this document with a friend
45
2006 ( 3 4 206 3 4 410) 1. K. Janich, Topology, Springer-Verlag, 1984; 2. M.A. Armstrong, Basic Topology, Springer-Verlag, 1983. 1. J.M. Lee, Introduction to Topological Manifolds, Springer, 2000; 2. J. R. Munkres, Topology, (Second Edition), China Machine Press, 2004; 3. J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry, Springer, 2003 4. M. Henle, A Combinatorial Introduction to Topol- ogy, W.H. Freeman and Company, 1979. I (2 ) 2/20 Gauss Johann Benedikt Listing 1847 topology http://www-history.mcs.st-and.ac.uk/Mathematicians/Listing.html Georg Friedrich Bernhard Riemann Listing Riemann Surface http://zyx.org/Riemann.html Cantor 1870 Fourier Furstenberg Euler Euler stereometry 1750 1751 Euler Descarts Euler 1895 Poincare ’(Analysis Situs) Poincare Euler Von Staut Euler Thursten charge discharge Euler Moore Lefschetz Steenrod Wilde Steendrod Euler Sylvester-Gallai Euler Gauss Bonnet 1
Transcript

2006

( 3 4 ! " 206 #!$ 3 4 ! " 410)

%&1. K. Janich, Topology, Springer-Verlag, 1984; 2. M.A. Armstrong,

Basic Topology, Springer-Verlag, 1983.')()%*&1. J.M. Lee, Introduction to Topological Manifolds, Springer, 2000; 2. J.

R. Munkres, Topology, (Second Edition), China Machine Press, 2004; 3. J. Matousek,

Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics

and Geometry, Springer, 2003 # 4. M. Henle, A Combinatorial Introduction to Topol-

ogy, W.H. Freeman and Company, 1979.

I +, (2-

).2/20 /

Gauss 012 Johann Benedikt Listing 3 1847 456789: topology ;<=>?http://www-history.mcs.st-and.ac.uk/Mathematicians/Listing.html

Georg Friedrich Bernhard Riemann @ Listing ACBC1EDGFHI0JKMLNOPRiemann Surface 0QRST ? http://zyx.org/Riemann.htmlUCV HCICXWY .[Z\ /]HI_^`HI . ^`abcda0efghi/j_kl HI .]mn!op qrst/

Cantor 3 1870 4e Fourier u \ 0vwxy P e UV HI0vw ?z p| 8 V 0~L;~0 Furstenberg 0t \ ?Euler 7b0 & Euler 8N stereometry

.1750 1751 /j Euler Descarts !K Euler ~ \ HI ?

1895 4 Poincare y¡ ‘ ¢£`¤ ’(Analysis Situs) ¥!¦§¨© Z WYHI0ª2 ? Poincare «:¬­®¯e Euler 7!b0 ?

Von Staut «:ef°e Euler 7b0 ?Thursten «: charge ± discharge ²³e Euler 7b0 ?UV HIi±±´WY .[Z\ /µHI¶· ±±´¸ · !¹º»¼½¾ .

Moore /!±±´¿ÀÁÂ . Lefschetz /Steenrod ÃÄ Wilde @ ¼½¾ F¿ÀÁÂ ? Steendrod «: Euler 7bÅÆ

Sylvester-Gallai ÇÈ ?Euler 7bc Gauss ± Bonnet 7bÉÊË &!ÌÍÎ Ïg0ÐÑÒÓÔ ÏÕg»0 ?

1

l HCI1TC 1992 HI1 ? "!$# x: P | 0% &H. Poincare: &'()*+,-. . /0 1 23As for me, all the various journeys, on which one by one I found myself engaged,

were leading me to Analysis situs (Position analysis). – H. Poincare

II 23456789: . 16- /.

2/22 /@8 V 7Sx;HI<"= #> V @? AB U @C U ¬ D U $E U @F

B@GH®F">@IH®JF V H® ?B@G K Ïe0K &K T< V Y0LB@G 8 V 0< nM ?N<¯ V !Ïe OP0LB U C U ¬ D U QR S <"= 0 T`U !¯ U !N< V Y X 0¯ VV !2 R I W P X Y Z8 V 0 X

5[0HI0\] ?^_` ~<a=b ` ~c 0d< aspect

& ` ~c ` ~CÏgC U fe | gh \ ` ~">@I ?iLjk @8 V y Nml 0md<K HI p Q 0md< aspect mn$O8 V op 8 V 7CSCqPX o p Ïr07Sqs k n$t< aspect uCÏrC0C7CS NlHI p Q?

> V 7S?A7S Kuratowski >@I7S V 7S U 7SA linguist would be shocked to learn that if a set is not closed this does not mean

that it is open, or again that ‘E is dense in E’ does not mean the same thing as ‘E is

dense in itself’. – J.E. LittlewordvÎRwxRyz

– @|~ Î z / : P / @0 / X z 3CAB P ~ Î z / C: P / U 0 / X z J P ~ Î z / : P / 0 / X z P

(2/27)HCIC HIG HIs \ HI Ó \ V 0 HI HI]HI <a=G0Nl# «:$ b 8 0 V Y o p U 7S @¡Nl <"=0HI p Q?

e (ultra-metric nonarchimedean metric) £¢¤ (phylogenetic tree) c2

phylogenetic combinatorics, Hensel x;0 p- ¢ \ p-adic analysis, p-adic physics.

m ÏH I p Q 0 R u ¯ (· | c

) \ c < <"=Ôc<D <L=Ï HI ?s ¤0HI<"= 0s ¤HI<"=N

<"= . <"= Hausdorff ~C / ?

3s ¤0HI<L= <L= b$E U >Ims k U . ε-N / N lJ3 HCI<a=b s k & The sequence lemma. e! CY s \ 7S0 <"=

:I" <"= / #«: sequence lemma Ó# S$ Ó h \ UU Nl 0CHCI .&% HI/ ' ¤ .&( h \ S$ h \ V Y0E U 3 h \ F ( h \ )$Z <"= * Í 08 V / ?

Our ambition is to be recognized as a place where science is driven by curiosity.

http://www.picb.ac.cn/mission.htm

(3/1) <a= =0+,-. . ε-δ !C f /!!O x 0 U! -CFO f(x)

0 U /´!HI<"= = 0+,-.+, = 001G+, .&23 P ε-δ i/«:HI<"=0d4 aspect

5 T+,~+,-.6 U -mZ U J6 U -mZ U 0-.

+, 1( 78@ s \ < U 0ms \ HIm< = F< p9: 0

< =!0;. )?=< <"= X

o p s \ 7S ( >? s ¤ < = ) =s k :@ U5 T k X ZNlA0-.0+,~ ?A o $ a0CB ` . ^$_ \ 1`¤ bEDm0ÐÓ & 1 F+, h \ 0E !G +!,C# 2 +!, h \ 6!HF V Y-FHF V Y# 2

·I <a=bJHF V YZD"> V? /j Peano <"=

Budapest Semesters in Mathematics(BSM)!K D 5LM0 \ 1 N T

=O ;P 3 BSM b9:0P Qm& Miklos Laczkovich, Conjecture

and Proof, The Mathematical Association of America, 2001.R 0 Chap. 14

Open and Closed Sets in R, The Cantor Set Chap 15. The Peano Curve k SÆ8 V q> V !+!,!-.;!S;Ks kT ©0!UVWX k u YZ![ s k ePXY 0!\ 6] ?qÌ Chap 15 bJ^C 0!_!4 2Peano Curve

Q YCtCs1 `babcbdbebfbgbhjijkbljmjnjejobpjg2 qbrbsbtbu Armstrong vbwbxbybzbb|~ qbrbbb Cantor bw f Cantor bb|~ lbmbbbbb

3

Peano ! R

n " Peano # $%&(')* +,- . /0 $%(1 # 2354 # 6 3(#73#89:;<

G. C. Lichtenberg: What is the good of drawing conclusions from experience? I

don’t deny we sometimes draw the right conclusions, but don’t we just as often draw

the wrong ones?

(3/6)

-.+, = >? : &5@A +, 35# 6BC )* 3 +, D E 35FGH 1A H IJKMLNOPQ -.+, RE 3 LST UVPQ -.+, REXWWZY[]\pasting ^`_a 3 Lb c E d eU P E f g h U P E 6ikjPEQ -.+, R E 3 codomain lm$%n opq r st u> >O +, 3 V +, 3vw 3 $%xy1$ % z

$%1-.+, |K~ P 1 32 1 2 v 34 1 4 +, 3e7 1 7 vk

Lawrence Narici, Partners: Functional Analysis and Topology, Topology Atlas

Invited Contributions, Vol. 6, 2001, available from: http://at.yorku.ca/t/a/i/c/

42.htm

$% ? 1 ? E$% 23 $% 2 #2 v n$% ? 1 2 ? l U $% 23 4

23~4 2$% 3 i 3 3~ 3Hilbert 3 Banach 3 Frechet 3~ j $%6 6Banach # l V # k l Banach u #F a& Banach -. 4 v ? l$ % vkw n

3 ¡¢ Un£ 4 $% vw 3¤¥ ¦§¨©ª«¬­ \ ®¯ °± S²³ ¡ G ^µ´¶·¸¹ª ° ?º » &¼ c½ 3¿¾ÀÁ3 ´¶ _ 3 s ° °Ã°Ä « 7

3 ðÅÆÇ 3 2005.ÈÉ 3〈〈 ÊËÌÍÎ 〉〉

ÌÍ 3 "ÏÐÑÒ Ó 3Ô " Õ Ö× KØÙ S Ê ËÚ 3Û lÜ ÝßÞkàáâ 3 " ãä æåçè 3~é ê ëeì Kîí ïeð ñ 3îòeó ôeõ ö ~÷ø 3îù ú 33 ûýüýþýÿZÿ pp. 35–36 ÿýÿ 2001

4

" @ 3 Ï 3 ø 3 L 3" ! 3 " " #%$ K& ' ( 3) * + 3, Ó.- @ / Á0213 34567 89 : 3 1<; => &@?BAC D S â & E "GF F g ú H 3 " I I g J K MLî â N O Ò PQ%RTSU £V 3 W 73YX 9Zk\[] R<^_ Z\[`] R<a(3/8)

$%1-.+, : l U b c de WW | f qg N +,hi j $ % 3 £ 4 6k k 6 Q jl $% \ weak-

star topology ^ 4 # $% g ) * +, hi j $ % 3 $% 3m $ % $% (product topology, topology of pointwise convergence) 'n So ,

-. /0 $% 3 p g n S o , j $% (g a » $ % q 6 Q<m $%r 1 ! $% )# $%1 $% zst (

| u ¶1 ; ¶vw ) x g # y yz | st~ §¨©ª« Chapter 3 New

Spaces from Old &John M. Lee, Introduction to Topological Manifolds, Springer, 2000.

(3/13)

-.+, FGH 1A H OP ¤ K z+, ' p l +,

z+, · O (V

)P +,l O (

V)P -., 6 O +e, F a 5

!6 & Banach ek6 - . 4 Ge, l O +, 3 lz+, Âz+,1 O + , 3 V + ,

x B Hausdorff ,lz+, \ Hausdorff # P lVP 3 -.+, P +l P 3 6 V # 6l 6 ^

z$% ' o ,-. / s $%zyTz+,yz$% p

x K v ° ¶ " v`

z+,1 # x \ J.R. Munkres, Topology, China Machine Press, The-

orem 22.1 ^4Klaus Janich, Topology, p.162, Springer, 1984.5 3/6 ÿ ¢¡¢£¢¤¢¥¢¦ Baire §¨©ª«¬

5

z+, DE z+ ,(3/15) x Å +, m 3 PE| z P 3 PE|Q73 z P | str ? & PE 1 PE +, | z P B$%1-.+, |

z \ z 23 z 3 z 73 Banach x g V # z 6 Banach

^z \ z+,X^ | st \ J. Lee, Introduction to Topological Manifolds,

pp. 56 – 58. ^ zÅ -.+ , v +* z - . +, z+, | st c² Y[ _ a(3/20)

z # 3 6& $% 2 GLU

Hausdorff XQ : 3

Xvw g

G

x g L X qQ F#2 k

¨ Q X a 3 ! 6 3#" ¨$&% I& 2 &'&( #e2 · S T #e2 3 17) " ¨ * b 2 ¦ Gabor Toth, Glimpses of Algebra and Geometry, (2nd Edition) Springer,

2002 « Chap. 10, Discrete Subgroups of Iso(R2)

v Michel Artin, Algebra,

Prentice Hall, 1991« Chap. 5 Symmetry." ¨ * b 2 g Fedorov · Polya and Niggli + , F 3 1-.G/&/&0 ù

Escher1 0 S23

x Escher

546 s7 Ð ° ù Coxeter 8 px°:9;3 Coxeter

<q ,= px :> ? : S² s@A # 6CB&Del&E&F q&G ¨&H#I (cone),CX = X × [0, 1]/X × 0

H I(suspension)

HS(X) = X × [0, 1]/X × 0/X × 1 = C(X)/X × 1 (S(Sn) = Sn+1)

HJKLJ b

Sn = Bn/Sn−1H MNO:PH

wedge sum (S1 ∨ S1 = 8), smash product

X ∧ Y = X × Y/X ∨ Y (Sm ∧ Sn = Sm+n,Q KR EFS:T L EFU:TCBDVEWX:Y EF 2 Z JK )[\] MH

Mapping cylinder, Mapping cone, ^ Q_`aH ^bcd (Mobiuse)`agf JKhi EFbcdjk MNl K H im Fbcdjk Klein n H Klein

nopq mr Mobiusets

uwvwx OyP#zw Rw|~~~~~( www zw Rw~~~~~ ) ww

Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002 Chapter 0.

Some Underlying Geometric Notions.

6

Spring and All – William Carlos Williams

Now the grass, tomorrow / the stiff curl of wildcarrot leaf / One by one objects

are defined – / It quickens: clarity, outline of leaf

But now the stark dignity of/ entrance – Still, the profound change / has come

upon them: rooted they / grip down and begin to awaken

III f 4 s(3/22)

n Z EF R v n Z O:P R HausdorffO:P ! Z " q#$%'&( Z " q*)# K+#$ L )# KR,- op./ ( 0123 )

45 678 q:T 78 q9:;<=>#$ 78 q S178 q R

Riemann # KTopology may have had its tentative beginnings in isolated thoughts of Descartes,

Leibniz, and Euler, but it was Riemann who brought the subject into the mainstream of

mathematics with his inaugural dissertation in Gottingen in 1851. His introduction of

the Riemann surface in that year showed the indispensable role of topology in questions

of analysis, and thus ensured the future cultivation of the subject by the mathematical

community, if only for the service of analysis. In fact, of course, Riemann surfaces

were quickly seen to be of interest in themselves, and were the source of two ideas of

profound significance in later topology – connectivity and covering spaces. – John C.

Stillwell, Classical Topology and Combinatorial Group Theory, Springer, 1980.?@ )# KABC > Dw[&\w] M .E GF >'HGI |& GF RGJ'KL >NMPO LQRSR O:P ; u >UT Q_V ;WX YZ[\]^_R`badc !feMobius

e(crosscap)=

LP 2 g f fF =

`badhfifjfkl : j h`manc !e To (cap)=L

S2 g F =`manhijk : j h` !e anp ih Q_

=` m e anp ih !eqr

=L Q K g F

crosscap+handle= 3 crosscaps

fs @ Ivo Nikolov and Alexandru I. Suciu, RECOGNIZING SURFACES, http:

//mystic.math.neu.edu/inikolov/Topology/

It’s interesting to attempt to understand/prove that relation ”intuitively” - what

it says is that attaching a crosscap to a torus is indistinguishable from attaching one to

a Klein bottle. The ”visual” proof of this: start with the 2-sphere, attach a handle to

get a torus and then replace a disk with a Moebius strip to end up with T 2#P 2. Now

7

slide one end of the handle along the surface until you reach the embedded Moebius

strip, at which point you slide the handle’s end once around the Moebius strip. At

the end of that motion, push the end of the tube back into the complement of the

strip. When you’ve finished, you discover that the handle is now attached ”the other

way” – there are really only two ways to attach a handle to an S2, one of them giving

a T 2 and the other a Klein bottle, and the presence of the imbedded Moebius strip

in this surface gives you a means of swapping between the two means of attachment.

And, once you managed this feat, you’ve shown [T 2#P 2] = [K2#P 2]. (If anyone

knows a proof that doesn’t come off sounding like mysticism, I’d *love* to see it :-)

http://www.math.niu.edu/~rusin/known-math/01_incoming/conn_sum Hf/ )f# K F `a Vq T 2F

P 2^ V R > S2 q R T 2#P 2 = P 2#P 2#P 2 q ^ V u R b

)# RK P = 〈S | W1, · · · ,Wn〉, S q !e > Wi q Sh q 2R! >#"$ e !% a ∈ S > a

fQ!'& Y L( ) a−1fQ

!& Y L( F q 2.

&f( ) f q x %+*,3 K-K. )# f0/12 332 John Lee, Introduction to Topological Manifolds, Springer, 2000 Proposition

6.4.sKR45 X (folding/unfolding, cutting/pasting)6 i x ] M R7 ,*3)#8 KR45 X 9 Y 5:K; F R<<ffK = > 6 i 45 X , 3 K#K = K#T, P#K = P#T

Terry Lawson > Topology

A Geometric Approach > Oxford University

Press, 2003 > The Classification of Surfaces+@? > RABCD&FEG >HIJKL M +

w John C. Stillwell, Classical Topology and Combinatorial Group Theory,

Springer, 1980!FN Chapter 1. Complex Analysis and Surface Topology.

? N68 O9 Y crosscap+handle= 3 crosscaps

RPQR HR ; John H. Conway "#pS Q 9 Y R jk 2*3 (Conway’s ZIP proof)—J American Mathematical Monthly 1999 TkU uV >> 78 I &WN RAppendix C: Jeffrey R. Weeks, The Shape of Space, (Second Edition) Marcel

Dekker, Inc. 2002.

)#pS R !e 2*38X WYZ R 6 W[\ N Ik W.T. Tutte,

Graph Theory, X.8 Combinatorial Surfaces, Addison-Wesley, 1984.

W N R] V^ 1969-1970 _ P ]'`abcde, _fW\ ^R !g8h R8

[ A.Gramain Y>V>G#8 e > \ e Y ^ > 1981+@? N 6 i

p R Morse /W 7 /#pS + ! W v V.I. Arnold q &8e^h h R E R N > & F. X 6 i]7 23 Abel

uv ( J R ./ f Galois /fW s > J & " Riemann R * V.B. Alekseev, Abel’s Theorem in Problems and

Solutions: Based on the lectures of Prof. V.I. Arnold, Kluwer Academic Publishers,

2004.! R \ f^A 6 R V > Konrad Polthier, Imaging maths -

Inside the Klein bottle, http://plus.maths.org/issue26/features/mathart/index-gifd.

html H I #3 X RfA > http://math.arizona.edu/~ura/013/bethard.steven/transform.html! "#$%& n> ' http://www.kleinbottle.com/

I remember first reading about topology as the study of doughnuts, Moebius

strips and the like, and then being in a way disappointed as an undergrad – although in

another way quite excited – when it seemed that what topologists *really* did was a lot

of ”diagram-chasing,” the algebraic technique widely used in homology and homotopy

theory. Once, however, as a grad student, I took a course in ”geometric topology”

by Tim Cochran, and was immensely pleased to find that *some* topologists really

did draw wild pictures of many-handled doughnuts and the like in 4 dimensions, and

prove things by sliding handles around. The nice thing about this book is that it is

readable by any undergraduate - it doesn’t assume or even mention the definition of

a topological space! - but covers some very nontrivial geometric topology. It is not a

substitute for the usual introductory course; instead, it concentrates on the study of

surfaces embedded or immersed in 3 and 4 dimensional space, and shows how much

there is to ponder about them. It is *packed* with pictures and is lots of fun to read.

http://math.ucr.edu/home/baez/week21.html

(3/27)(P = 〈S | W1, · · · ,Wn〉 q !fe K > ")* a ∈ S >

!a ) a−1

VY L !e

Wi

& > " q !e torus pair,

!a7

a−1 !e

Wi

& Y L m ( >" q !e cross pair6+!

P& Y L

cross pair > " q J .: + PR j q V −E +F.

. : )f j + 45 X f folding/unfolding, cutting/pastings J X >

6J. Conway ,.-./.0.1.2.3.4.5767879.:7; cross surface, 4 nP 2 :.; n-cross surface.

9

q J X +@6 i W G X J Xχ(M1#M2) = χ(M1) + χ(M2) − 2

)f# ffKR )f#pSf./ (Dehn and Heergaard 1907), Michael Henle, A Combinatorial Introduction to Topology

!N 7B

(f

) )f. : (Euler )f. : )

)f# pS R J Xχ(S2) = 2, χ(nT 2) = 2 − 2n, χ(nP 2) = 2 − n

"9f. ! )#> - . e Z> 78 6 i - .# R a ] >78 a )#pS R J X +. 6 R >@ R B http://www.unc.edu/~rowlett/math130/Notes-Jun9.pdf > .

X 6 i Euler characteristic 23 Q R q 7 X 6 i e RJ .: 7 23 JA W ./Heawood Map-coloring Conjecture ! Y Q d v" R .*:)#8 R >$#&% ‘ '( ’

R 2*3>@2 Arthur T. White, Graphs of Groups on Surfaces:

Interactions and Models, North-Holland, 2001.) q " R . :f) # f * ,+ sR .-/ YZ R0 2113R ‘ '( ’ 2 3.4 e$5R6798: > 2

Robin Thomas, An update on the Four-Color Theorem, Notices of AMS, Vol. 45, No.

7, 1998, http://www.ams.org/notices/199807/thomas.pdf

)f# pSf.f/ R !e;< 23P> 2 B. Mohar, C. Thomassen, Graphs on Sur-

faces, The Johns Hopkins University Press, 2001!N Chapter 3 Surfaces. =2 C.

Thomassen, The Jordan-Schonflies Theorem and the classification of surfaces, Amer.

Math. Monthly, 99 (1992), 116–130.

Graphs and surfaces form a natural link between discrete and continuous mathe-

matics. They enable us to understand both graphs and surfaces better. – B. Mohar,

C. Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, 2001.

A surface is a two-dimensional manifold. The classification of compact surfaces

was “known”, in some sense, by the end of the nineteenth century, Mobius and Jordan

offered proofs (for orientable surfaces in R3) in the 1860’s. Mobius’ paper is quite

interesting; in fact he used a Morse-theoretic approach similar to the one presented in

this chapter. The main interest in Jordan’s attempt is in showing that the work of an

outstanding mathematician can appear nonsensical a century later. – M.W. Hirsch,

Differential Topology, p. 188, Springer, 1976.

If you are interested in research work on surfaces done by Gauss, read Chapter

1 (“Invitation to Topology”) in “A Mathematical Gift, I”, Amer. Math. Soc., 2003.

10

– Koji Shiga, Toshikazu Sunada, A Mathematical Gift, III: The interplay between

topology, functions, geometry, and algebra, p. 25, Amer. Math. Soc., 20057. ! d e5 V.I. ArnoldR V > On teaching mathematics

+ g q e R<e ^ > J ? k R 1 V http://pauli.uni-muenster.de/ mun-

steg/arnold.html

The theorem of classification of surfaces is a top-class mathematical achievement,

comparable with the discovery of America or X-rays. This is a genuine discovery of

mathematical natural science and it is even difficult to say whether the fact itself is more

attributable to physics or to mathematics. In its significance for both the applications

and the development of correct Weltanschauung it by far surpasses such ”achievements”

of mathematics as the proof of Fermat’s last theorem or the proof of the fact that any

sufficiently large whole number can be represented as a sum of three prime numbers.

IV f 20 sf3/29

s .E X

# J l R p (separation);6 i

] Xf # ") !!" Y ,

Q#X k Y

R $]\ %] +

6 i ] 7 23 1.f &5R $' 4 8 % 2.

&& W R u

(connectivity relation)5: u

9; 3. A ⊆ B ⊆ A, A > 5 B

10

GL(n,R)J %( 11; R

R=R p)q( * f * s # * V 6 i u q 5: u +,] % ; - * V 6 i )q) 6 i * .E &CR ‘

’f f .fEf> 5: v ! g V R 5: v $ WR./&\ ? W R ./ R p)0 ` =) q x 12 >1 F !2$&] > x V >7 354565758595:<;>=@? 3@A@B@C@D5C@E@FHG5I@J@K@FML7/@N@O@P5Q@R@S@T@U5V@W@X@Y@Z8 [5\5] ;5L5^ ]5_ F 4 071 ]@_5`9 a@:@b@c@d@[@\@e@f FMg@h@D@i@j@R7; [@\ R@FMk 3@d Q@l@D@m f@n@[@\@`Mo@p@a@q@r@s@tvu@w@c@xy D5z5 t5u L5|5@~@@5@D@z@ t5u@`M3@c@5@@@5 FM@@5@@@Y@D ‘ [5\ + r5s5p55[5\

⇒ p55[5\ ’.10 @ 3>@@ 4 @ :@b@f@ D@@@ f FM@@ f FM@ 4 i@@v@Mv@ @¡@¢v£@¤@¥@v¦M§¨5©5ª5« 5¬511 v­v®v¯M°v±v¦v²´³ ª´« ¦´§´µv¶´¯H·´¸v¤ least upper bound property, ¹ Munkres, Topology,

Theorem 24.112 º5»5¼ «5½5¾ ±5¿

11

(closed topologist’s sine curve): Munkres, p. 381 !"#$&%‘

’'( ")*)GL(n,C)

+,

++,

⇒-.

/000)123 ) ! 4567 98:Borsuk-Ulam

607 ;80:Brouwer <=> 67?@A <B DC* σ-

E <FGHI #JKL)&AM NOP13"QRSTLUV W IX K < O&AM separation

σ-"

YQRZ[E\*#J]K < OAM GH^_F *UV A pessimist sees the difficulty in every opportunity; an optimist sees the opportu-

nity in every difficulty. - Sir Winston Churchill

The point of living and of being an optimist, is to be foolish enough to believe the

best is yet to come. - Peter Ustinov`a bcd“STef

”ghijklmnop Tqrst j

uv ow Dx jzy| 2z8| < #|~| |z||z|| rD o|z||?00080KtST Dkl 8 p _T ¡¢£ r–Francis Crick, ( ¤¥¦ §¨©ª ) «¬ ­ R –

i®¯° ±|²³ i´µ¶ %·¸

1994.¹4/3 º»8#J¼ 7

A1

s»½#J¼ 7A2 ¾ jy¿À )Á#ÂÃ| y *#Ä"Y ¾ÅÆ )ÇÈ»8#JD¼ 7

A2 ⇒ A1 ¾É )»½#J pÊ B p #J|ËÌ A1, A2

À )ÂÃ"Í2A1ÎL

A2

ÏÀÐ < #zJ D|É )Á ¾ R Ñ TÒÓÔ|J bzÕ|¶|( J (supremum

norm)¢Ö I Banach

)L# WHilbert space×Ø »8#J)²s3ÙÚÛÜ > s3ÙÝÞÚÛ 140ß0à1á Ñ0â0X "Y ° 8 <Iã £ àá8K)L A1

Ð ×åä2/27 æ0â <# ÅÆç )& Ï|À ¹éè º 15 ¾ < #JKLUV | )& |ê )

16

13 ëíìíîíïíðíñíòíóíôíõíöí÷ ¯ùø5¤íúíûíüíý5£íþíÿíû ö Cantor 5°íòíó ¨ ú û ö Baire íý ·5¯ ð ñ ò ó ¤ @@!"#$@Cantor 5°%&'()íÿ@¯ ¨*+ ï ¯M,-.@50/1!@¯3245-.67%0/1!5

14 8 ¤9:; A1 5<=?>

15 %5¬@ABCDEFGH16 IJ Lebesgue KLDEíýM ñN C([0, 1]) O «PQ5½5¾ R

[0,1] R µ5¶F Hilbert µ5¶ L2[0, 1]12

3Ù(sequentially compactness)»080#0J)3Ù ¹ "28K > 8 y 6 3Ù N ]

A1

2ÝÞ À 3ÙÝÞ > º»0½0#0J0*0-. cd ² Q b 8 ¢ ¿ ¯

‘T " n

’17 ¢4! s»½#JDT" # W#

Lindelof X ) 8 6$%¢

‘T " n

&' À M ¾ D ( X &' À M

f, g*0/

X2

Hausdorff)1

Y 0

! )f = g ⇔ f |D= g |D# W ) Ð T*]#J &' À M )&

18»½#J⇒# W ¾ # W ÅÆ )*»½#J ÔJ ° ]+,.-./

Weierstrass Approximation Theorem19à&á?@&

Ñ 00ÔJË Õ¶( J01 ) ¹23 8ÝÞ º *# W ) ¾A Ñ ÔJ) ( »½#J) 20

`p, 1 ≤ p <∞ ( # W ) 21 ¾ `2 ^ 3 ( Hilbert 45É )# WpÊ B p #J/6 pÊ B p »½#J 22# W )1å0ÇÈA1

23,# W )1 0À )# WÐ

(X,O) ( 80K 0)∞ /∈ X,

6%7 )(X ∪ ∞,O′), O′ = ∅ ∪ O ∪ ∞ : O ∈ O# W

+»8#JP <89 »½#J ÐD¢ )

There are several equivalent characterizations of compactness, and it is a matter

of taste which onw to choose as definition. Whatever we do the uninitiated reader

will feel somewhat bewildered, for he will not be able to discern the purpose of the

definition. This is not surprising, for it took a whole generation of mathematicians to

agree on the best approach. The consensus of present opinion is that it is best to focus

the attention on the different ways in which a given set can be covered by open sets. –

;: ;<;=BC5¦@²5¯ IJ Q5½@¾ ?> ï ‘ %;@5± ’ M ñíë <;=A5¦5²@17 úíû;A;B ;C;D ¤@§;E@°@±?F?G;H?I@°@±@¯M§?E%?@;F?G?H?J?@18 ;K;Líú5µ5¶;M?N ?O?PRQ ?S ú@H?K ;O?P 7KL?T Banach µ5¶ ¨ »;U;V5» % úW;X ¬5ZY;S;[;\ ¬@?K;]?^?_?`5¯ba IJ ?S?c@µ5¶ ‘ d;e5±5¿ ’ ¯Zf ë _;`5¢;gF;c@µ@¶5¯M¤ ú û;A J;h;i

19 ëíìíî 5¢;g « 5­;j;k ½5¾ µ5¶;K5¦5²;Líú;l;m Stone-Weierstrass Theorem ¯ ¹ B. Bollobas,

Linear Analysis: An Introductory Course, p. 95, Cambridge University Press, Second Edition, 1999.20 n;o;p M;E5¯ R K5¦5²;Líú5µ5¶;S;q;r ú?s; « I;t?uíú Banach µ5¶;T 8;v;w ;x «;y;z?% R K Weierstrass Approximation Theorem ;|;

21 ~;; ¯b;L ¨ ¯ p. 14 ¯b;; w;; ¯ 2001 22 ¨? I?t?u ú ?R A????Mµ@¶?T ??A ú?H?K %?@??????b???s;F;;; ;; :O

23 N *; A-. A2

13

Lars V. Ahlfors, Complex Analysis, (3rd Edition) p. 59, China Machine Press, 2004. Í ! #"$%&')()*)+),)-)./0124356789: ";<=> 24?)@A CBD!E )F (G)2IH)J)()K)HL MCNE4 (*,-O01P+24Q)R & ' S%)T)%)U)VWXYCZ[\] J^_` ab 2 c (d5e*fgh2ji(5kl gmh)2#nop(qr e sEatuvwxy A2az t 5 | K~b 2))*)f) ] 5 | K E (d C +7 F 2 A ] *f 9( ~2 m n * E J T 2 )) * ¡ 2£¢¤ %¥ 5¦ ¤ |§¨©ª«C * £¬­E®C 5 C * ¯° 25± ²³ 2 * f´5 ¤ | 2i µ 3 * 2jQ)5¦ µ 3 n *i !Ea·¶¸ *¹2aº7*» Ea e ¦ µ 3)) *)2½¼¦¾¿ÀeÁ ½Ã nH2½@¼¦7#ÄÅÆÇ ÈÉ K l ±nmH)2@)¼)¦) ]ÊËÌÍ 2 ÎÏÐÑÒÉE 7,o Óà ±ÔÕ 2@´7 Ì K Öµ 3 * !EØ××ÚÙÛÜ 2#Ý Þàßßµ 3 * á¶â 2äã)å Ý )æç 2

20062

http://www.nfcmag.com/ReadNews.asp?NewsID=4689E

y A)*)+ ¶è (éê "$ 2¸´ %ëì *+ E¸y A(íîïðñò § 2ó)ô)õ ;mö÷ 2a´ %";ø 'ùúàgh2aùêûgh2aü ýþÿ 2 þÿ 2 ÿ 2 § "ÿE H2 y A "à; 2 y A F " ; EÌ 5 "; ( E F Lé "à;øcEy A l ")$ ô vEì ô!"#$ 2% o E!

('&)(*+,-. 2

221/)E

It is hoped that this enterprise will make mathematics more widely used where

it is needed, and more accessible in fields in which it can be applied but where it has

not yet penetrated because of insufficient information. – Gian-Carlo Rota, Editor’s

Statement for Encyclopedia of Mathematics and its Applications.

(4/5)

Lindelofó ë

-0Ì1⇒Lindelof

Lindelof 23 ó ë 5 -0Ì1

23 ó ë 7 -0Ì1 ⇔Ì4

⇔Lindelof4656768 u)9: T1 , T2 (Hausdorff),T3(

6;= T1+T3)

2T4(6<

= T1+T4)

T1 => 3Ä ,? 5A@ ,T3

ó ëCBT4

ó ë =>DET2, T3, T4 F (GH I[T3 +A2 ⇒ T3+Lindelof⇒ T4

14

Hausdorff

ó ëC <Ì 23 ó ë < ó ë 23 ó ë (X, d)

OÀ( @ ,A,B,f(x) =

d(x,A)d(x,A)+d(x,B)

5 A§

0,

11E

(4/10)1 ô 2 ó ë457B1457 Þ145Þ4 E The Urysohn Lemma24

Janich L

The Urysohn Lemma

T4

ó ëm =>DEÌ e _ ! §" # !%$ 2 -n"# _ 2 5& ! _

2 ' 2)(* %+, 2 - À./01 step domain+2 #

e3452)6 estep domain

§ À _ 278 º9 .! _ 2 2 iJ:! 1 ;<=> ¦ 1E25

§ E L % Y 23 ó ë 2 X

? ó ë 2 ;< ? 2 X%

Y@A+2 5

Y X eA@ [ ó ëCB1v4Dà 1 ¯E L Ì

GFd ì J G LCH ªArzela-Ascoli

9u+I ¦ %KJ< ó ëL[,MN Ä , 2 MN ( Ì1,E

26

T4

ó ë# 7O>O>OP 7 9 u(Shrinking Lemma)

0T4

ó ëOQ 7O>O3O4O5U1, . . . , Uk

2 Ì ú %R 345V1, . . . , Vk

2)S ]Vi ⊆ Vi ⊆ Ui,∀i.

27 T4

ó ëm 7>>P 79uThe Urysohn Lemma

Lm7>TU 4 ê VW 79u

28

Munkres, Topology, § 36 7X>XTXU 4 ê Ì L YZ ~\[)3]_^ ó ëm[ ó ë 2a`bXcMunkres,

Topology, § 362 M

www.math.gatech.edu/~ghomi/LectureNotes/LectureNotes3G.

pdf

Why do we call the Urysohn lemma a “deep” theorem? Because its proof involves

a really original idea, which the previous proofs did not. Perhaps we can explain what

we mean this way: By and large, one would expect that if one went through this book

and deleted all the proofs we have given up to now and then handed the book to

24 dfefg 4/5 hfifjfkflfmfnfofprqrs25 tfufvfwfxfy irzrzrr| vrwr~rr r| vfwrrtrurrrxfrr i rrvrwrrrrrrrf vfwffffrrrfrrrxfrrr nrrr f¡r¢r£r¤frr n vfwr¥rf¦r nr§f¨ rr©ª step domain «f¬f­f®f¯fnfff°26 ±f²f³f´f±fµf¶ ·27 ¸¹º »¼½ n de¾¿ Henno Brandsma, The Shrinking Lemma, Topology Explained,

November 2003, Published by Topology Atlas, http://at.yorku.ca/p/a/c/a/22.htm; ¢u¸ Zorn

Lemma.28 rÀrrÁrÂrÃrÄrÅrÆrrÇrºru nrÈrÉrÊ rÀrÅrËrÌrÍrÎ n Bernstein Ï rrÐrÑrrÂrÃrÄrÅrÆrtruÒ fÃfÄfÅfÆf© ª rrvrwrr nrÏ rrÓrÔrÕrÖr× hri Bernstein Ï f n ºfØf¥fÙrÚrÛrÜ p ur ¾r¿ÝfÞfß áàãâ n fÀrärårærçrèférêr×

15

a bright student who had not studied topology, that student ought to be able to go

through the book and work out the proofs independently. (It would take a good deal of

time and effort, of course; and one would not expect the studnet to handle the trickier

examples.) But the Urysohn lemma is on a different level. It would take considerably

more originality than most of us possess to prove this lemma unless we were given

copious hints! – James R. Munkres, Topology, Second Edition, p. 207, China Machine

Press, 2004.

But maybe you’ll want to revise this opinion about the lemma after seeing the

proof. It is quite simple and may leave you with the feeling that “I could have thought

of it myself”. But isn’t this a bit of self-deception? Just try it before reading the

proof... – K. Janich, Topology, p. 111, Springer, 1984.

“The essence of mathematics is proving theorems– and so, that is what mathe-

maticians do: they prove theorems. But to tell the truth, what they really want to

prove once in their lifetime, is a Lemma, like the one by Fatou in analysis, the Lemma

of Gauss in number theory, or the Burnside–Frobenius Lemma in combinatorics.

Now what makes a mathematical statement a true Lemma? First, it should be

applicable to a wide variety of instances, even seemingly unrelated problems. Secondly,

the statement should, once you have seen it, be completely obvious. The reaction of the

reader might well be one of faint envy: Why haven’t I noticed this before? And thirdly,

on an esthetic level, the Lemma including the proof should be beautiful!” Martin

Aigner, Lattice Paths and Determinants, in: Computational Discrete Mathematics (H.

Alt, Ed.), LNCS 2122, pp. 1–12, 2001. !"#$%&(' )+*, -./0124356 #7 8849:<;=3>?2@ ' "#$%& ) A B!6 #C # ?2D3EF@GHIJ KLMNO PQR '

– STU(4/12)VW

The Urysohn LemmaPXYOZ

Urysohn [ H\]_^a`?YOZcbd A2 +

T3 ⇒Hilbert ef ghiPjkl\]A2 + T3 ⇒ 29Hilbert ef ghmi ⇒ 30

Pn+Pjkl

⇒31A2 + T3VW

The Urysohn LemmaYZ

Tietze Extension Theorem o Tietze Extension

29Urysohn prqrsrt304/3 u `2 vrw314/3 u vrw + vrxryrz ⇒ A2; 4/5 u xryrr| ⇒ r~ ⇒ T3

16

Theorem

32 1Hahn–Banach

\]\] W hiR !"#%$&'(l%)*,+ R

33IJ,-8./ W

– 012 13+4 n5\]6P!

(countably compactness):P!789:g89

P;!;⇔ < ; h>= 4 /@? @A@B@C@D E h@F o C@D@ ⇒

P;!; oLindelof+

CD⇒ Lindelof+

P!⇒

Lebesgue!CDjkhi789!

Lebesgue!

GH(totally bounded)

jkhmi IJK\LMN7O/?789:g89

CDjkhi⇒GHPjkhOi

⇒GHPjkhi

⇒Pn/QSRPjklhiUTVWGH

+ < 789! Lebesgue!

34 o ⇔

CD35/Q VW

Lebesgue!X$RY ZU jk hOi < j khOi[Z\!Z\

jkhi36jkhi] jkhi-

⇔37CD

HjkhOiU^] o;_U` 2/27agbjk! 12 1Hjk

jkhichidefd 0 GHe (complete)38/Q jkhiAdefd* < Z\g C !hH 39.i2jlkPQm3nop3-qrs Jtu o c@vLs wxyzk]|` .~6nzV 1[ 2001

632Janich, p. 11533 u ærçfèrérê 1991.34 ¡ s¢£¤¥¦§ ¨©ª Lebesgue «¬­® ¯ ¢°±² ¢£¤´³¶µ· ¸ ¹º »ª¼½¯ °±² ¢£¤¿¾À³ Lebesgue « ÁÂÃÄÅ¢£¤ »Æ £¤¿ÇÈÉÊ |ËÌ354/3 u A1+

ËÌ ⇒ ÍÎ ËÏ ÍÎ ËÌrx yr | ⇒ µ· ¸ +Lebesgue «ÐÑ36 µÒ xryrr| ¿Ó ©ÔÕÖ Baire ×rsrtÑ wØÙ ÚÛ ±ÜÝÞß àáÆ s tâãä ståæç Õ Baire ×rsrtÝè×ért rwØÙÚÛêë èìí Õry × wØ ÝîµÒ x yr |ïËÌ Hausdorffr| sðí¿ñ uòóôõ¿ö÷ ÙïøùÙúûüý pp. 46–47, þÿ Ùê º 1985.374/3: A1+

ËÌ ⇒ ÍÎ ËÌ384/12: ËÌrxryrr| ⇒ µ· ¸Ï Ü µÒ Lebesgue «ÐÑÇÈÅ Õ 4/12: vrxryrzrr| ȵ· ¸ + ¢£¤ Lebesgue « ⇒ ËÌ39 xryrr| ËÌÕ ÍÎ Ë

17

6 # m3-s3n.7s 6, QWT. 236. . . ]ss!s e D C# !" Witten

B #$ m%&!s ' W() *js B Jt.!s6,+- # s!s . Taubes /Y10 ]s5s23]4 =5 6789: 6 6 # !sf.;<=?> ][email protected] > ]sDE BF3$IJ3-s ´$s- IJ6

. . .PG5R YH0 k.IPQ sJ!s4cK

QX5.2sLMNxy! %& @6N:+BO sJ !89 !!4P89nRQ S %T UV W =jG]X6 9 'Y<Z[ @ s\]^ )_`6

. . .*g sm3-Us7a3bcd e efOgg "h )ijBklRmsnop6 (qrstu ij3v s wx

y6 L I 1nopz tu # s|K<;~~ ~ 8 #sJ~ z

c X 0 zN@ cizNT@ J # . . .

m r ; z¡ ? ¢£¤z¦¥J§~¨©¦ª «¬ ­~®¯J°±²³´µ ¦¶·¸¹ º»¼½¾¿À±Á ¦ÃÄ ~ÅÆÇÈÉ©¦ÊËÌÍ ©ÏÎÐ È© Mordell ÑÒRÓÕÔÖ×ØÙÚÛÜJÝÞ ©àßáâ Ôãäå ©àæ¹çèéê áìëîí±ïñðóòôJõ~±´ óö÷øùúûü « áýþÿ±© ÃÄ ÷ ´± × á ØÙéê áí±´© ¶ê ´µ± © !" á# $± . . . %&'()* ÇÈÉ©,+-±ýþ . ©0/1 234©65æ»7 8 9 à :; í <= >?4 ç@ ±AB© øùCD « :E ¾2 ~±GFH© ¶ áýþI úJK ±MLON . . . PQ ¬R S µ©UT P VWXY ±Z ´ [¾ \±]^ ¸_` ©¦ßaV û ©b\±]^[¾´ P 2 _` 4©B´ Pcd ¸ í±efghij©kl cm 2n´4©Uo Pc \±pqnô ¸ í à r ´s± 150 ù ©utvª nw´± à = ù © ßx Ä ª Zôo « ¸ í zy| ç@ ©~ Ò © http://www.zju.edu.cn/zdxw/jd/read_k.php?recid=16010

“ ÷ ¬G © à ± ©» ° ù è =á õ ç @ © á ç@¡÷ n S ± úû © ç @ õ ç@ 9 © à ±»á©2áí©í©á ¡¢ © £¤ ç@ ±¼¥§¦¨ ” – ©ª © à ±«¬­© © ª® © r ¯ °°± ©2004.

(4/17)² d ³ ´ µ§¶X · Y µ§¶ Y , ÷ f ∈ XY , ε > 0,

c ¸X± N µ§¶

C, ¹ºBC(f, ε) = g ∈ XY : supx∈C d(f(x), g(x)) < ε. XY

9 ±»=¼½¾ ³¿´18

(compact-convergence topology, topology of uniform convergence on compact sets)á

cW BC(f, ε), C»¼©¡± ® R =ű ³´ 40² d ³ ´µ ¶

X Y , ¢ C(X,Y ) X¾

Y± Û ,÷

C ⊆ X,O ⊆ Y ,I

S(C,O) = f : f ∈ C(X,Y ), f(C) ⊆ O.

C(X,Y )9 ±» Ô ³ ´ (compact-open topology)

á cW S(C,O) (CR

X »¼N µG¶ © OR

Y ~Ô N µG¶ )± ® R =ÅN ¬ ± ³ ´

YP · Y · © C(X,Y )

9 ±» Ô ³´ XY9 ±»=¼ ½ ¾ ³ ´

C(X,Y )

9 ±41; JÝ © P + Munkres

©Theorem 46.8.- üJÝ~· © C(X,Y )

9 » Ô ³´ µG¶X ! (∗), ÷

² =x ∈ X,

c¸x± ² ="q

U ,«#

x±$"qV ,l ô

V»¼©&%

V ⊆ V ⊆ U.42 $! (∗)¥$ üø ='±» ¼" q(¬) '±"q *$+ » W$, ù 2 ~± ¹ º.-- ¹ º ° ±/$02J ~© ýá =/$0±2J ¹º123 ß ö4 ¹ º Hausdorff

µG¶ 9 ·556 ¬ 7 ¹ º3 ÃÄ çè= ù HausdorffµG¶ R *+ »%89 ! (∗). òE : X × C(X,Y ) → Y , E(x, f) = f(x)

X : ! (∗), C(X,Y ) ; » Ô ³´ · © ò R <=>? ± δ@ 2Y X×Z = (Y X)Z43 ö ¥ ü ©A Z

RBC µG¶ ©YR ¤D µG¶ · © C(X × Z, Y )

C(Z, C(X,Y ))

¬ ¶W == ÷¡~ö P cEF R =G ±Î´ ÷¡¹H (Theorem of Exponential Correspondence) 1. ¹ º φ : C(X × Z, Y ) → C(Z, C(X,Y )), ∀f ∈ C(X × Z, Y ), z ∈ Z, x ∈ X,

Iφ(f)(z)(x) = f(x, z), I φ(f)(z) ∈ C(X,Y ), φ(f) ∈ C(Z, C(X,Y ))44.

2. J X KK K! (∗), ¹ º ψ : C(Z, C(X,Y )) → C(X×Z, Y ), ∀g ∈ C(Z, C(X,Y )),

ψ(g) = E (1 × g),k

∀x ∈ X, z ∈ Z, ψ(g)(x, z) = (g(z))(x).

3. LM φ ψ N RO X*+ »¼

Hausdorff · © φ, ψ P d ° C(X × Z, Y )

C(Z, C(X,Y ))¬

¶ ±RQS ¡ö áÿ± Exponential Law.= ùTUJÝV Proposition 2.103,

in: I.M. James, General Topology and Homotopy Theory, Springer, 1984.Wp : X → Y

R$X $©gR $$ $! (∗)

± µ ¶Z9$Y $© I p× g Z

40 []\_^a`abacadaegfghaigjgkglgmangogp41 qaracadaeafahaigjgs Y tauavawaxayaza|g~ggagwgxgga Y t iajap42 [as T3

nao]_ _ 4/10: T4 a aaaaa o ggaggg c g tggagggaaaaap43 aaa ba a¡adgng¢a£¥¤44 ba a¦a§a¨a©aª tube lemma, « Munkres, Topology, Lemma 26.8.

19

RKX K45: X K 46, ÷

² = µG¶W ,

² =KKh : Y ×Z →W,,

JÝ h%8

f = h (p × g) ß f

⇒ φ(f) : X → C(Z,W )

p : X → Y

R$X $© ö E ° φ(h) : Y → C(Z,W )$ Z :$

! (∗), ö E ° ψ(φ(h)) = h Q $ µG¶ ± è ­ W f ∈ C(X,Y )

g ∈ C(X,Y )

Q © kW

h ∈ C(X × [0, 1], Y ),l ô

h(x, 0) = f(x), h(x, 1) = g(x), I f, g

C(X,Y )± Q=

ùè ­ a ¬© J X*+ »¼

Hausdorff, C(X,Y )±RQ= ùè ­ ± N ¥RQ

One of the central aims of homotopy theory is the classification of continuous

functions. This is greatly facilitated if one has available either the homotopy lifting

property or the homotopy extension property. The homotopy lifting property is enjoyed

by fibrations, such as covering projections. The homotopy extension property is enjoyed

by cofibrations. – I.M. James, General Topology and Homotopy Theory, p. 2, Springer,

1984.

Rather than the arduous and systematic study of every new concept definable

with a graph, the main task for mathematician is to eliminate the often arbitrary and

cumbersome definitions, keeping only the “deep” mathematical problems. Of course,

the deep problems may well be elusive; indeed, there have been many definitions (from

Dieudonne, among others) of what a deep problem is. In graph theory, it should relate

to a variety of other combinatorial structures and must therefore be connected with

many difficult practical problems. Among these will be problems that classical algebra

is not able to solve completely or that computer scientist would not attack by himself.

– Claude Berge47, Foreword to the first edition of M.C. Golumbic, Algorithmic Graph

Theory and Perfect Graphs, Second Edition, Elsevier, 2004.

(4/19)

Riesz $H Ø h µG¶ ± 1 2Ỽ µG¶ 483 µ

¶ R *+ »%8 P h´ W 3» ¼ µ§¶ ±Tychonoff ¹H ¸ P¡¢ 49: 1. Alaoglu’s Theorem: Banach

45 d aba !" «$# Munkres, p. 186, Exercise 11.463/1547Claude Berge (1926–2002), %&'()a+*,- d./0$1 $2 l '$( s$34 5$%$67$89g+:g,- d;aiaj ($7$<# Topological Spaces : Including a Treatment of Multi-Valued Functions, Vector

Spaces and Convexity, Oliver and Boyd 1963 (republished by Dover Publications in 1997.)48 =ak> @?ABCg p. 21 @DE@FGHIJa 2001 K491. I.M. Singer, J.A. Thorpe %aMLNOPa iaj ( sQR ( mSTUVMW$X 8($YZHI$J V 1985 V

1.6 [$\ 2. Klaus Janich, Topology, Chapter X; 3. B. Bollobas, Linear Analysis: An Introductory

20

2. ! "$#%&'()*

3.'()*+, &-

A theorem that goes against intuition has its existence justified by this fact alone.

All right. An equally general, but perhaps more weighty point of view is that every

discipline must strive to clarify its own fundamental concepts. The concepts didn’t

come out and advertise themselves; it is the mathematician’s task to pick the most

convenient among several similar concepts; and the theorem of Tychonoff, for instance,

has been a decisive reason to give preference to the compactness concept defined via

open covers, over the concept of sequential compactness, which is not transferred to

infinite products. – Klaus Janich, Topology, Chapter X, §2 What Is It Good For.

Although many proofs in point-set topology sort of work by themselves, guided

by intuition and oiled by a cunning terminology and spacial intuition – the proof of the

Tychonoff theorem is not one of these. – Klaus Janich, Topology, p. 162.

Tychonoff ./01 2341. Henri Cartan 56 78 (filter)

9:;<>=Zorn’s Lemma ? 3@A78BCD AE78 (ultrafilter);

%FX&E78CGHC

X8%

C IJK%X \ C L AMN

2. L EO78OPQO 0OR TSOUVO L “ WX ⇔

YZ"$ [ \ “@ AE78BPQ ⇔

3. ] X A8^_FJMN`Oa XbcdBefg

ih 8icid"kj X&ia Ei7i8lPQ 50: m 2n3poiqrsD “

@ AiEi78BPQ⇒

”23" t :uvw xyz

4. ./ =|~8^_FJMN`a XbcdBefg h 8cd 51.

Filters were introduced by Henri Cartan (born july 8, 1904) in 1937 and sub-

sequently used by Bourbaki in their book Topologie Generale. An equivalent no-

tion called net was developed in 1922 by E. H. Moore and H. L. Smith. http:

//planetmath.org/encyclopedia/Filter.html

The universe is full of magical things, patiently waiting for our wits to grow

sharper. - Eden Philpotts

Course, pp. 118–119, Cambridge University Press, Second Edition, 1999; 4. =>V ?ABC V p. 96,

DEFGHIJ V 2001 K502. + 3. ⇒ Alexander “ ” “ ” “ ” V E V ¢¡¢£¢¤¢¥¦¢§¢¨¢©¢ªV¬«¢­®¢¯¢°¢±$V ²¢³ ¢´µ¢51 ¶·¸¹º¶·¸ »¢¼ W ¢½¾¢¿ V¬ÀÁ¢Â¢Ã Janich Ä W 167 ÅÆÇÈÉÊiË

21

(4/24) np ! 4 t : " ? 3

! " e D ! ( WX ), ? 3_F !

! " ? 3 ! B, h !"X,UV

(Y, d), F ⊆ Y X , # FrU'(

(EQ), $% a&x0 ∈ X,

a&ε > 0,

B x0

b'(U )* a& f ∈ F + a& x ∈ U

B\

d(f(x), f(x0)) < ε52.rU'( 0RI,- UV ./ A 5i1 4 1 ] F ⊆ C(X,Y ) iPiQii01 2 " j F

riUi'i(i2 ] F ⊆ Y X

rU'("$jF / 43576OrOUO'O(O 3 ] X

"F ⊆ Y X

riUi'i(i" jY X& .i/ i I PQ F

&i h89 gs " 53

Arzela-Ascoli 0i1 4 9i0 X,UiVin

(Y, d),j

F ⊆ C(X,Y ) PQ 43:5;GH; F

rU'("$Ga&x ∈ X,F

x|&

<=Fx = f(x) : f ∈ F

Y L >35 "? : ! 4A@ F

PQ>35 Cl(F ). F ⊆ C(X,Y ) ⇒ Cl(F ) ⊆

C(X,Y )54; B Cl(F )UV

⇒Cl(F )01 2 DC" Lemma 1 9 g Cl(F )

rUi'i(i"ED

FriUi'i( " 'i(

F ! " | < '( "GD

Cl(F )x

i"IHiUiVi

(Hausdorffn

) L i%iJ3%"LK Cl(F )x

3p"MAN5iCCl(Fx).DC

Cl(Fx)C%

Cl(F )x L >3%" ? "O ! 4@ F / ( Px PQ )

DY X L 43:5 Clpw(F ). 5

1 2 9 g Clpw(F )riUi'i(ikuQR 51 3

e ? 3 Clpw(F ) I Cl(F ) S Hi%iFri"NiG i "T "T= Tychonoff 0i1 KU Clpw(F ) =∏

x∈X Cl(Fx)

"VNCl(F )

"W vArzela-Ascoli type theorems, XYZ

Henno Brandsma, Compactness in Function Spaces: Arzela-Ascoli Type The-

orems, Topology Explained, November 2003, Published by Topology Atlas, http:

//at.yorku.ca/p/a/c/a/23.htm[A\ .i/ (

)n

XY&i i4 / ^] topology of pointwise con-

vergence, point-open topology _ "L`iii" compact-open topology"L;

YiUiVi

52 acbcdcecfcgcgchcicacb \ d­cacbÃcjck UEl¹cmcnEoVqp crcs ¹ctcncu rEs ¥cvco ‘ n ´ ’hcicacb 53 w Ç ucx Æ ·Ey¢¹EzEE| ÇEE~ dEEEnEu¢®EEEE L u EEEEE¢Æ ® ÆE¢ w¢ÃEnEE Æc d Yc544/10

22

n=A * PQ ] uniform topology _ 55"L;

YiUiVin

compact-convergence topology (

PQ ) &";X"

YUV"

Y X&

-b"$ PQ" PQ"TBC s AT 56.

h8 "Te R -b

[! Arzela-Ascoli 01 " Munkres"

p. 290, Theorem 47.1, p. 293,

Exercise 4.

John L. Kelley, General Topology, Springer, 1955.

(4/26) ! C ih!" hI ^s 1" ! u i"IH6 h! " e ( ih ⇒ ih ), "

compactly generated, σ-

h bcd 57 I cd!" AinAC " $% J&a bcdB h !"bcd " i I#$ C Lindelof+

@ x B A43%( ⇒ 58;SY "'& () e** 1 Hausdorff

C "+ ! C Hausdorff

C-,-. 59: Janich, p. 125, Lemma (1);

Munkres,

Theorem 41.1

& h8!01 (shrinking lemma)60 : Munkres, Lemma 41.6

HausdorffC ;GH;J&a bcd V/D0 1 61:

Munkres, Theorem 41.7

X324YZ .56 1 x 7 + Stone-Cech7 " Stone-Cech

7

Ramsey 1 A89R Bela Bollobas, Modern Graph Theory, Theorem

32, p. 207, World Publishing Corporation, 2003.

Partitions of unity are most often used in mathematics to “patch together” func-

tions that are defined locally so as to obtain a function that is defined globally. – J.R.

Munkres, Topology, p. 259, Second Edition, China Machine Press, 2004.

First, you shouldn’t get the impression we’re always in the “local situation” just

because we have a chart before. ... Secondly: The construction of global objects

55Munkres, p. 266564/1757 hci ;: 6= < o ;: Ë58 = y?> ¥ u ´ K1 , K2, K3, · · · @ ¯ °?A?B V n u A;B J1 , J2, · · · , C?D Ki ⊆ Ji,E j > i + 2

Ji ∩ Jj = ∅.

59 F;G;H 4/5 I;J;K ´ Hausdorff ¯°Ã;L;M¯° \ ·cyON¢¸ OP n ´¢60 Q;R;SVUT;V ;W;X V 1.5.1 VUY;Z;[;\;]V 2005 ^ ·cy;_;`cf 4/10 T4

¯° Æ ;:;:;a µ61 b 4/10

;:;c;d ;e;f |;gOh ÆOi ¸ Ë23

starting from local data is certainly the main objective of partitions of unity. But they

can also be used to break up existing global objects into local ones and thus make

computations practicable. ... Thirdly and finally, let us mention that partitions of

unity don’t exist just for the sake of functions and sections in vector bundles, but fulfil

many other subtler ends. K. Janich, Topology, pp. 122 – 123.

V ] 2 ^_(5/8)[

(4/17):

s 0R " s COr . 62;

sr 6 -

b$'O( 7 $ s A7U>' 7 ; 0OR (O OHausdorff

"Os AU' ? sr "

Loop space Ω(X,x0): i V (S1, ∗),

(X,x0)i'i( ^ π1(X,x0):

Ω(X,x0)/ '^ L MN D loop space'

f ' g, f ′ ' g′ ⇒ f f ′ ' g g′ s$s ? 3sr .s Cs W Poincare C ?I 3-

s+ ! ? sD 3- " 3 ! 1, 2,

#" % =#$ I $ %&* g ; 3 ! 4

n ≥ 5

i" #" % '(Fields )#* (Freedman, Smale); +#, Poincare ##- Clay .#/ #0#1 82345 16 789:;<=>7 Perelman ?@ 1AB"C #D#E#FHG#=IJ ./ V C DEKLMG=DENOPNQR 6TS#UVW#X#YZG#=#I#J[\]^#_`aG=bc 6edf [QaL#MG=ghi 6ej Eulerkl = 6 mnop Cqr 6 Csrt LMubvwx#y#z| ]^_`NG=bcX~N 6 IJN C 6 l

63 6 C st m6 _ N t¡ 6 ¢£¤¥./ F ¦ § ¨m6©ª¤« K¬ SU NG=ghiwOne of the main ideas of algebraic topology is to consider two spaces to be equiva-

lent if they have ‘the same shape’ in a sense that is much broader than homeomorphism.

– Allen Hatcher, Algebraic Topology, Cambridge University Press, 2002.­#® 6°¯#±²³´µ?¶·¸ ¹ºN»¬¼½¾h¿NÀÁw­à ¯#±|?Ķ#Å#Æ#Ç ÀÁÀÁ Y → X

##N#|ÄN‘##È#É

’, £#Ê#Ë#¥#Ì#Í È#ÉwÎÏ» ¯± ÁÐÎ ÑÒ ( ÓÔÕÖ [­×ØÙ )Cs ¡ÚÛÜÝÞßà ¥ G

62 áeâeãeäeåeæeçeèêéêëeìêí63M.J. îeïeðeîeñóòeôeõêñóöê÷êøêùeñ pp. 1-2, úeûeüeýeþeÿeñ 1990.

24

=N~Ðw– C.T.C. Wall, ( » )

IJ>N]^»p. 68, t o » 1988._ ¥ G#I#J n z » Cst N l ¥ ­N ÓÔ G V ¾ N#Q#R o s ghNQwTÏ»T_ s N! "#[$%~ÐÁ I#J NÞ&'N)(*N¹×+!,w

– -./- »1023» GIJ» t o » p. 10.

45 F ¿h !4 ¿h !5 F6¿h !4 6¿h 5 64

ρ§ ¢ X

K7#P#|AN#¿#h # ⇒ρ 4#¢ X

KAN89###½ § s:

4;<¸) s N>= § ¬ F?A@!B>C¿AD>E § ¬ X§ ¬ FHGJIJF X

¬¼¿h § 7KB¹ < FgMLJ6¿h § ¹ < N¬ Allen Hatcher, Algebraic Topology, Chapter 0, Exercise 6,

Cambridge University Press, 2002.ONQP o nSRUT X V Y sS »USSVSWX#K ¹ Y X = Z1, Z2, · · · , Zn =

Y , Z«![!\ Zi

§Zi+1

6¿h !5 » [!\ Zi+1

§Zi

6¿h !5 Y ­!]!L^K»H_ § Á`a!bdcf§ ¢ X

KYN st »e X V Y f [ f

Ngh

Mf

N6#¿#h #!5 »1i >jk Allen Hatcher, Algebraic Topology, Chapter

0, Cambridge University Press, 2002; l k John M. Lee, Introduction to Topological

Manifolds, Proposition 7.30, Springer, 2000. st N¹ µ y P Klaus Janich, Topology, p. 64, Examples 2, 3, 4.y3_W ¥ ¥ smash product

N ÓÔ Sm∧Sn = Sm+n.

GL(n,R) 4 O(n,R) smnH. Cartan

to »pW t »dq!!Q 4!r!s Q» Õ!t!u!vw!xo » 1988. y 7[z|» J.P. Serre, ~4 +Ü r z!!|» L. Schwarz,q rs q f

uv v WF#XßF#» Zv ¹ vv)f$¹×Ý Õ ]!H]!à pon > £!H !R © Lw – G. Choquet,

G. +» “qQ 4rs Q ”

¹“ n \ ”

¯ Õ ¹ ¡¢£»|¤¥É¦!§»T[¨ ¢©ª v«¬ g­®)¯°#»²±#gI|¦!³´ o>µ »1¦_ v!l É ¶ Y o¥·¸!v _ ¸¹uvº»½¼¾»1± o X Ç ]׿À »1ÁÂ Ç ¹×¦Ã!Ä!ÅÁ»Â¦ÆÇ±Ü ¹#º v ¹ µ!uv!¸¹ uÈ!"É ­×ËÊUÌ!ÍÎ!Ï »ÑÐ)Ò v) Ê ¾_ Ï » v)uÓÔÊ iÍÕ v Ï 7À!Ö×!¹ µ u v !»ÙØÚ!Û)Ü v É ­¹Ý× # Ç ¹¡»Ùb!Þß­!¨°Ü )à» _¾_ á lâv!ã É gW» ­64 äæåæçæèæéæê ñìëîíæïîð èîñîòæåîóîôõ

25

¹W BÄ»²VW vA uÈ"» uv d u ¸¹ »Â_! ¯ _ uv 4 º»»Á É ¹ » _ v ¦g» ¯¢Ó ¦! m!n !ÉÑF!£» ¯ n W! T Ü#» ¯ #` d »æ f # « Ée¹Ü Men of Mathematics v! »|Ú ¢"# ¼ n !$!¡ d% !&Ð v ! ' Ç() ¹Ü*

Microbe Hunters + ,¤ & ± »ÑØ| ¢!¸p &-¼ m ¹! $¡BÄ» uv ± ¹×.¹×/X Ç ¸ ¹ Y 01!&-Ç3254^É)B_#­ µ6 v uv ± ÃÄ7aW»98: « ³´ ×; É n Ç ­ TÜ#»=< « ­ µ!uv Ó!¬ »ÙÚ>?@g!W Ç » Ú5AB fCD ¶ ÉFE µuv G uv#Ó!¬ º!»Ç)ÝHI»GJKLM» !$J ! » Z JG uv#Ó¬NÇ ÓOÇÉFPQRSJ4 vTU RFPQVWRFXY v3Z\[] R2004.

A friend of mine had cited a professor saying something like ”topology is like

psychology in trying to understand intrinsic properties of beings, and algebra is like

sociology in trying to understand the structure of their interactions with each other”.

Hey, I just realized this makes algebraic topology social psychology... Arkadas Ozakin

(5/10)^3_5` Ð( avbcdef )

... the student skit at Christmas contained a plaintive line: ”Give us Master’s

exams that our faculty can pass, or give us a faculty that can pass our Master’s exams.”

Paul Halmos, I want to be a Mathematician, (Washington 1985).

When one is truly interested in a specific question, there is usually very little in the

existing literature which is relevant. This means you are on your own. – M. Raussen,

C. Skau, I hope we shall continue–Interview with Jean-Pierre Serre, Nieuw Archief

voor Wiskunde, 5 (2004), 38 – 41. Available from: http://www.math.leidenuniv.

nl/~naw/serie5/deel05/mrt2004/pdf/raussen.pdfÊhgR5ijklmnoR\pqrsÉ\ituR\vwR\xyz _ R\qrR5|~F r T35 Y tuR35R | R¡¢£ ¤ – ¥3¦ R¨§ª©«­¬ª®i¯°± J²³´µ¶·¸Rº¹»¼½¾¿ÀmlÁÂÃÄÅÆÇqÈÉRºÊ²ËÌ·ÅRÎÍÏÐÑÒÅÓÔÕÉRÎmÖ×ײ ` Í ` Z5Ø Å ~ . . .ÙÚpÛÜ ` qÝÞÕÉRàßáÞâãÍäåÝæÅÕÉR

‘q cçèéêë R¾ìíïîíïðÅ3ñ5òR9óôõöÅ3ñ5ò÷øÉ éùú ÅûR9üü3ý5jþÿ

` µ Ån5qÉRïw ÕÆn ~

. . . ´µ` ÅÕÉR

26

×ײp RïÍä _ ÑÒÅ ~. . .

mÖq ç nÏÐ mlÅ 5q\RÕ 5ÆnRÚmÖml5· c! Å " ²Õ#$Å ~&% – '()± _+* Â+,+-+. ¸0/+ ` µ ½ ¾01 î0 a Ê Ý æ02 Å Ü

`0304 ÷*5 6789 m·: ~;%– <=> ? @AB 0CEDF <=>G õlÅIHKJ

http://zhou63.ahut.edu.cn/study/graduateEducation.htm± ¾LMmlÂNm ^OPQRS 4 T ÅU 3 TVWX ~

O Ô ¼YZ[Õ¾\]^_j`aý5jb 4cd Å ef ú ÅghijU kqlmno ~qp ÂÃÄ ¯rÅ 9 mà 8 ² 9 sZtuv c Ôwml Xx noÅ

9 m 5 y ¼YZ²¾\]zj`a ~ | ²ml~t1µ y Fmî G ·d Å\þÿ ~

tÚ ú ·Å V tltÔ ~ Åml Ã8 ²

ÑÒ Ø Å ~ [ ú ²îmÖUÅz²üÅ ~ [·ÛÂÅÑÒK¸ÂÅ 9 ¾ÂÅÑÒà 8 ÕÑÒE5Å ~&%

– http://news.tsinghua.edu.cn/new/news.php?id=7593

Topology is as much a mode of thought as it is a body of information, and mastery

of the mode of thought cannot be really well developed by passive reading alone. This

remark applies to most mathematics, but it seems to us to apply especially strongly to

the learning of topology. – T.W. Gamelin, R.E. Greene, Introduction to Topology, p.

viii, CBS College Publishing, 1983.

VII ¡¢£¤¥¦§¨ª© 10 «¬®­© 5/15 ­¯nN±°³²µ´

πn(X,x0) = [(Sn, ∗), (X,x0)] = [(In/∂In, ∗), (X,x0)] = [(In, ∂In), (X,x0)]

πn(X,x0)»¼²´¶ ·° ²´· é [²¸N° ²¹Åf úº» Â, Ø ³¼½

n ≥ 2, ¾ πn(X,x0)j

Abel´ ~

j¿ÀÁX, Â π1(X,x0)

j èà ´ ¾Ä XÁ

65~ Á

ŠƸ º ÁÇ°5ÂjÈÅ¿ÀÉÊË° ²ÍÌ· ‘Â

’ÅÁÇÃ 8 ~

Sn, n ≥ 2,Á

(Janich, p. 152): Î ¸ÁÏ2÷ÐÑ ÒÓ2EÔËÕ ÀÆ ÂÖ× ÙØÂ × ÅÚ²ÛNÜĶÝ

n ≥ 2,RnÅÞÆ¿ÀÉÊ° ²

ÊÈÅÆÂÉÈ Å¿À ¾½¾ß · à++áÁÈ p; âã¿#Õ ÀÉÊË° ² ÂN ÚÈpÅÕÞÀ¶FÊäåÈ

pÅÜÄ

Sn°

65 æèçÙéÙêÙëÙìÙíÙîÙïÙðÙñÙòôóÙõÙöÙ÷ÙøÙùÙúüûÙýÙþ ÿÙì ò üõÙöÙ÷ÙøüùÙúûÙýÙò íüîÙç ò !üÿ" #$ " % ö ù & % íüîüþ27

Rn.

(dunce hat)Á Armstrong, Exercises 5.27, 5.28j¿ÀÁ

X,  π1(X,x0), π2(X,x0), . . . , πk(X,x0) èà ´ ¾ Xw

Ä k-Á ~

Poincare ØÂNÁËÕ Ë°

S3~

Functoriality of homotopy groups: V.A. Vassiliev, Introduction to Topology, pp.

17– 19, AMS, 2001. 66 ´J5Å ´In topology we frequently consider a pair of topological spaces (X,A) rather than

a single space X. Passing from single spaces to pairs of spaces as objects of study

was a great breakthrough in algebraic topology in the past. – Hajime Sato, Algebraic

Topology: An Intuitive Approach, American Mathematical Society, 1999.

Topology forms a branch of geometry emphasizing connectedness as the most fun-

damental aspect of a geometrical object. In topology, therefore, one ignores virtually

all geometrical traits other than connectedness, such as any form of change in a geo-

metrical object that strentching or shrinking might cause. ... If a geometrical object is

connected then we investigate to what degree it is connected. – Hajime Sato, Algebraic

Topology: An Intuitive Approach, American Mathematical Society, 1999.

(5/17) Ý x (total space),ö

(base space)÷ Æ Ø Â+N ! ² è0Ã Å+

¶ ² Ý è+Ã Å

ÆÛZ ·! èÃ"#$%%%%&%' )( * 9ö & Ô x Å Øô+,

1 "*

x .-%/%021 " !34 2^%5Ó¶ x 061 "%78 Û2^9%:;</061>=@?¿ÀÁA½B wC DE ¶ Â /061EÁ= ¾ ÉF

" ÛBG ½

Ø5HIJ6KÕL>M5HJNKÕLOM PB

Grassmann manifold Gk(Rn), oriented Grassmann manifold G+

k (Rn)

G1(Rn) = RP n−1, G+

1 (Rn) = Sn−1, G+k (Rn) = G+

n−k(Rn)

G+k (Rn)

&Gk(R

n) "PB

66V.A. Vassiliev, QSRSTSU ÿSVSWSXSYSZS[S\S] Vassiliev invariants, ^S_ 1994 ` ]SaSbScScSdSeSfSgShiSjSkSlTopology of discriminants and their complements ]SmSnSoSh iSprqrsut ]rnrvrw Introduction

to Topology xryrzr s28

S1< " k-

B z → zk

R<

S1 " x→ eix5 8

" %J 1 " A !"#$%J%& "'(

" )*+5A=-,/.0C124356-0C)*A78

9 " 0%C:;%A<==+5A7> "?@ A%AIB %"CED 5JI*5

H ?@FGBHJ67: Given a covering space p : X → X, a homotopy ft : Y → X,

and a map f0 : Y → X lifting f0, then there exists a unique homotopy ft : Y → X of

f0 that lifts ft.BHJI>=J061Y K #L&061>=JMNO<O444J4BHJPQR

1..J=TS

∀y ∈ Y, Fy = F |y×I U +5P Fy, VWXY #QR.Z 8 Fy [ Y %73\]P F : Y → X ?^ =J_`a4b4QcR F dd 0C ?^G

2. efK y ∈ Y.Nhg

(4/17)QiRhjfP =

(5/10) kflfminho # k P tube lemma. F ?^ = I =8 940C4#p4q 8 9 W A tube lemma, rst %=u)*

yPvw

Oy, W A 0 = t0 < t1 < t2 < · · · < tn = 1, xyz Ii ⊇ [ti, ti+1], \ X| *F (Oy × Ii) ~ P

p4q 8 =43F (Oy × Ii)

< ~e 5CD P

99#B( ?^ ).

3..

F |Oy×t0 = f0|Oy p1 ?4^ 68,F (Oy × I0) ~4 f0(y)P CD #5H y

z = )* yPvw

Uy,1 ⊆ Oy, \ f0(Uy,1) F (Oy × I0) ~ f0(y)P+%5 CD

G 4+5A= t F |Uy,1×I0 = q0 F |Uy,1×I0 ,I

q0#

F (Oy × I0)< ~ F (y, t0)P CD PB 96JZ4R

F |Uy,1×I0 ?^G4..

F |Uy,1×t1 ?^ = F (Uy,1 × I1) ~ F (y, t1)P CD #5H yz = )

671. K. Janich. Topology, p. 135, Lifting of Homotopies; 2. Allen Hatcher, Algebraic Topology,

Prop. 1.30, Cambridge University Press, 2002; 3. Yu. Borisovich, N. Bliznyakov, Ya. Izrailevich, T.

Fomenko, Introduction to Topology, p. 221, MIR Publishers, Moscow, 1985; 4. M.J. Greenberg, J.R.

Harper, e pp. 18–19, 1999; 5. V.A. Vassiliev, Introduction to Topology, p.

31, AMS, 2001. 6. I.M. Singer, J.A. Thorpe, ( ¡¢ ) rf£¤¥rf¦¨§¨©¨ª¨ p. 71, «¬­ f®¯ 1985. Singer £ Thorpe ]°±² Y ³´ ¶µ·¸¹º»µ· s ¢¨¼½¨¾¿¨ÀÁ¨ÂÃ¨Ä ]¨Å ½ÆÇÈÉÊ Q¨Ë¨Ì £ Greenberg Í Harper ]°¦Îrm ´ – ¾ m ËÌ ÅÏÐ¨Ñ s Vassiliev ]°_Ò [ÓÔÕÖ×rZro¨Ø l¨Ù ±² Y º»ÚÛµ·ÜÝ ÙÞ¨ßà Y [ – Qá Ïâãåäæ Vassiliev çè º»éÚ¨Û¨µ¨·¨ê¨ë¨ì Ǩí¨î¨Ç¨È \¨ï¨ð Þ¨ñ¨òéó Ó m¨ôéõ ] néö¨÷¨øéù¨ú áéû¨« ýü f0]¨µ¨þ¨ê¨ÿ¨ï¨Ø¨·

Ì ð ¾ ]rm ö¨÷¨øù s68p1  Y × I

ÞY ]

29

*yPvw

Uy,2 ⊆ Uy,1, \ F (Uy,2 × t1) F (Oy × I1) ~ F (y, t1)P+ CD

G +A= t F |Uy,2×I1 = q1 F |Uy,2×I1 ,I

q1#

F (Uy,1 × I1)< ~ F (y, t1)P CD PB 96JZ4R

F |Uy,2×I1 ?^G5.B ~ = r4s < y

P4v4wUy,1 ⊇ Uy,2 ⊇ · · · ⊇ Uy,n, \4S e i U

F |Uy,i×Ii−1

# ?^ 9 G

6. Jrs F* Uy,n × I ~?^ ZR F dd 0 ?^G

W S1 EEP k- P 7 ~ MPQR * vP '

~ m 4 ‘ B

’P C 4m t !"$# O%&'( )

W# ‘IB

’P C I+* G, "J (The Monodromy Theorem): - α, β ./ # α, β

P U B%&P 0 α, βJ1BEH2342

α, βJ1BEH G5/6879 J1BHPP U B%&P: U B+;4& G 9<=P>?@BBA# 9 G

(5/22)CED @ j>?@F 7GH path-lifting behavior, I 3i. path-lifting behav-

ior7 J

Characteristic group of a covering space, Janich, p. 142

Liftability Criterion, Janich, pp. 142 – 144: Let π : (Y, y0) → (X,x0) be a covering

map, Z a path-connected and locally path-connected space, and f : (Z, z0) → (X,x0)

a continuous map. There is a lifting f : (Z, z0) → (Y, y0) of f (which is unique)

if and only if f∗ maps the fundamental group π1(Z, z0) into the characteristic group

G(Y, y0) ⊆ π1(X,x0) of the covering. 69.E 9<=P>?@BKA# 9 =rst L 0 R+>?@F MNP 4S O 4 P@B+AP4 70,3 7 `P ) PQR

– VW Z m >?@F STUVW D

71J PB+XYV>4&B+X46

4"Z$%J 5[ @P

P+P ]\ #L 0 P^42_ U O0 ?@J P 7 O]] ?/@

]`J U V`>]&]P BaX`2`3`4`2cb s P 5`[ @

69 ÚéÛéµé·éê + dfe ]fgfhfi ( dfe ]fjfkéÓfl ]fm ) nfo f ]fjfkéÓfl ]fm + ÓéÔéÕéÖé× Z⇒“ ÕÖ ò ” ]qp תúº»ÚÛ¨µ¨· ⇒“ ÕÖ ò ” µþ ¸sr á l ÕÖ

70Janich, p. 14371Massey _ t ] Algebraic Topology: An Introduction m°r\st Liftability Criterion u l Theorem

5.1,Å j éîfvfw [ s This theorem is a beautiful illustration of the general strategy of algebraic

topology: A purely topological question (the existence of a continuous map satisfying certain conditions)

is reduced to a purely algebraic question. In most cases in algebraic topology where such a reduction

can be effected, the details are much more complicated than in Theorem 5.1.

30

Q ~ Y Y ′PV>&B+X

Y XP 8 9 S]

Y ′ XP 8 9P G$ 5[ @P4 P4)4*P - X

?@ 0 ]4 ?4@ 340 ?@ 72, 0 S>?@P e @ )4* W 4# 5[ @P X

P J G5[ @#:;@P

4

J ?@ P

4 # U

6D U )*PP W 4P

)*PTPQR http:

//www.uoregon.edu/~koch/math432/Universal_Cover.pdfJ SB+ ~ B&4P

45[ @

7 O4*BBO!`>]&]0` 4 ?]@JJ~ P 7 O]] ?]@

] BaX2`3`42 5[ @ \ #

CJ >?@4P @

The first stage of a theorem is generally made up of wishes, as they present them-

selves naturally when we get sufficiently acquainted with some matter. Theorems then

follow when we try to prove the desired assertions, analyze the difficulties we find, and

seek to remedy them by using extra assumptions, which we try to make as weak as

possible. – Janich, p. 145.

(5/24)"Z" \ 5

"Z @ )# #

(Y, y0)/(X,x0)

P EBKX@6 bE. \ *

J~ 3B+X N(G(Y, y0))/G(Y, y0),N(G(Y, y0) $% G(Y, y0)

*CJ >?@IP&'4" @ Munkres, Topology, Second Edition, Lemma 81.1,

Theorem 81.2"Z @P)(*Q]4)+4, '

4 *4# |π1(X,x0)|/|G(Y, y0)|,

"Z @P(*,-

*

-JE?@ 30 ?@G %

"Z @* ~). \ 0

#&'

(normal covering)73

?@ 0 ?@ 30 ?@JE~ P

J V>&B+X/ " Y>?@ @ " P Galois

S ?@ 0 ?@ 30 ?@

JE~ P

J B+X/ " Y>?@ @ / " P Galois

S V U ?@ 0 4 ?@ 30 ?@

J X ~ P

JB

XP

UJ

P+J

( 0 )

J P>?@Q U

J P

"Z @+ J P>?@ (Armstrong,

5.13):

%@G* ?@

J X ~ BE \

72 1º»32µ· ÀÁ ñ è ë¨ì Ç5436 ]8789¨ê s73 ¾3:3; gshsi ¨í8<3= ¦¨Î i ]3>8? w i¨úA@¨£ 4863B8C8D8E

31

3fSEEf& x ∈ X,)f*fvfw

U , \ U∩gU = ∅,∀g ∈ G\1, 0 π1(X/G) = G.74 J L(n,m)P`>`?`@]#

Zn: John M. Lee, Introduction to Topological

Manifolds, Example 12.13

π1(S1) = Z; π1(S

n) = 1, n ≥ 2 (5/15, Janich, p. 152)

π1(RP1) = Z;75 π1(RP

n) = Z2, n ≥ 2

- n ≥ 2. )f*f Sn S1PEVfSf&fP ?^

9(ZEQERf fP

Borsuk-

Ulam

).Sn, n ≥ 2 :PVS& 94P4& G Sn, n ≥ 2 :P ?^

9 7 O4S& BB& G

RP 3 )4W @ Y X]54# SO376: SO3

I OY

~ X OX& !

θ, 0 ≤ θ ≤ π, " S πP "# P

θX.

OX

!πY

−OX !

πS SO3 #$ O% SO3

~'&'(')'* O' "'+ ,'-./ +0J %1 "2 23U4 + "'+ O' 15'* O +678'9 , + 4 --'./:;

J<=>?@ + :A-./:;BCD 2E+FG BC%

SO3 H S1 ×S2 I$KJ'L'MN S2,'O'A'P'P'QR +ST UV 77: Green-

berg, Harper, Exercises 6.13, 6.14WXYArmstrong, 4.4, 5.3 Z[\]+^_

We wish to obtain some information about the various possible covering spaces

of a given space X. As we shall see, we can gain much insight into this problem by

considering homomorphisms and automorphisms of covering spaces of X. This proce-

dure is in accordance with the following semi-mystical principle which seems to help

guide much present-day mathematical research: Whenever we wish to gain information

about a certain class of mathematical objects, it is usually helpful to consider also the

appropriate class of admissible maps and automorphisms of these objects. – William

S. Massey, Algebraic Topology: An Introducion, p. 158, Sixth printing, Springer, 1984.

Covering spaces were studied, in fact, before the introduction of the fundamental

group. Poincare introduced universal covering spaces in 1883 to prove a theorem about

analytic functions. ... Covering spaces provided the first example of the power of the

fundamental group in classifying topological spaces. – Fred H. Croom, Basic Concepts

of Algebraic Topology, Undergraduate Texts in Mathematics, Springer, 1978.

(5/29)

74X ` X/G acbcdcecfcgchcdjilkjmjfjgjncojaqpsrjtcuje G.75RP 1 = S1

76Armstrong, p. 77.77 vcwcxcyczc hcdc|cc~cc wc accccci Sn ccclc acccccckcc n eccc

32

+ ) + BIC ) M.J. Greenberg, J.R. Harper, D pp. 25–

26, L D 1999; http://www.uoregon.edu/~koch/math432/Solution_

6.pdf, pp. 9 –11 ( D ) # U L !" H +# A A$% %'&(http://www.uoregon.edu/~koch/math432/Solution_6.pdf, )*+ SO(3)

+# A ),-.0/ 123 BIC + BC045D76 ]+ B C845 John Lee, Example 12.20,

Example 12.21.9 ] H FG;:]+;# A <= 9 ] D=<>@?;A ]+<# A ;<B=<:] CD0EJohn M. Lee, Introduction to Topological Manifolds, Corollary 12.18, Springer,

2000.$3 B C + 4FGH + DJI'- KLMNO'+PQ E Jesper

Michael Møller, Classification of covering maps, available at http://www.math.ku.dk/

~moller/f03/algtop/notes/covering.pdf

VI RSTUVWXY[Z 12 \]_^`a +bc ,def )gh Homology i@j Richard Owen (1848) introduced the term homology to refer to structural similar-

ities among organisms.– Evolution Makes Sense of Homologies, http://www.zoology.

ubc.ca/~bio336/Bio336/Lectures/Lecture5/Overheads.html

...homologies are similarities seen in the biological world that are best explained as

being due to common descent.... http://www.natcenscied.org/icons/icon3homology.

html

k+l8mnopq)i@rs 1 4tuv a k homology +wxbyzkl8mn+|~ 1

Homology 4 j~k 4 (agreeing) rsj homologos=“homo”+“logos”.

Poincare >i@j 1General topology studies simple properties of complicated spaces; geometric topol-

ogy studies complicated properties of simple spaces (manifolds, polyhedra) . – A sem-

inar announcement posted in Moscow University in 1950s

If we go over from a topological space to the simplex numbers and incidences

of a simplicial complex homeomorphic to that space, we don’t have yet any topolog-

ical invariants, but we can be sure that all topological invariants can in principle be

calculated from these data, because they are enough to recover the original space up

33

to homeomorphism. This observation is so to speak the starting point of algebraic

topology, and for decades all efforts were canalized in this direction indicated by it.

What eventually came out was, expressed in today’s terminology, the first significant

algebraic topological functor, namely simplicial homology. – Janich, p. 92.

The investigation of simplicial complexes led to the development of homology

theory, and homology theory itself can be used in the algebraization of attaching maps.

The homological properties of attaching maps (as I must say somewhat vaguely, since

getting into homology in more detail would lead us too far afield) can be expressed by

means of certain “incidence numbers”. Such numbers do not contain full information

about the attaching maps any more, nor do they allow us to recover fully the topology of

the complex. But they are enough to determine the homology of the complex. Janich,

p. 103.

“Simplicifying assumptions” make life easier for the mathematician, but when can

they be made? In algebraic topology a compromise often has to be worked out: The

spaces must be special enough to allow certain methods to work and certain theorems to

apply, but at the same time they must be general enough to include certain important

examples of applications. Considering CW-complexes (or spaces homotopy equivalent

to them) is often a good compromise of this sort, and this is another reason to be

acquainted with the notion of a CW-complex. – Klaus Janich, Topology, pp. 104 - 105.

Computing homology with simplicial chains is like computing integrals∫ b

af(x)dx

with approximating Riemann sums. – A. Dold, Lectures in Algebraic Topology, 1972,

p. 119.

Simplicial complexes or triangulations (first introduced by Poincare) provide an el-

egant, rigorous and convenient tool for studying topological invariants by combinatorial

methods. The algebraic topology itself evolved from studying triangulations of topo-

logical spaces. With the appearance of cellular (or CW) complexes algebraic topology

gradually replaced the combinatorial ones in topology. However, simplicial complexes

have always played a significant role in PL topology, discrete and combinatorial geom-

etry. The convex geometry provides an important class of sphere triangulations which

are the boundary complexes of simplicial polytopes. The emergence of computers re-

sulted in regaining the interest to “combinatorial topology”, since simplicial complexes

provide the most effective way to translate topological structures into machine lan-

guage. So, it seems to be the proper time for topologists to make use of remarkable

achievements in discrete and combinatorial geometry of the last decades, which we

34

started to review in the previous chapter. — Victor M. Buchstaber, Taras E. Panov,

Torus Actions and Their Applications in Topology and Combinatorics, p. 21, American

Mathematical Society, 2002.

A polyhedron is a topological space which admits a triangulation by a simplicial

complex. Thus we start with a study of the category of simplicial complexes. A sim-

plicial complex consists of an abstract scheme of vertices and simplexes (each simplex

being a finite set of vertices). Associated to such a simplicial complex is a topological

space built by piecing together convex cells with identifications prescribed by the ab-

stract scheme. Since the topological properties of these spaces are determined by the

abstract scheme, the study of simplicial complexes and polyhedra is often called com-

binatorial topology. – Edwin H. Spanier, Algebraic Topology, p. 107, Springer-Verlag,

1966.

(5/31), 4 @ ? 1 78

, @, A Z@ D Z@LM 56 ∂ =

0 ∂0 0 · · · 0

0 0 ∂1 · · · 0...

......

. . ....

0 0 0 · · · ∂n

0 0 0 · · · 0

∂2 =

0 0 ∂0∂1 0 · · · 0

0 0 ∂1∂2 · · · 0. . .

. . .. . .

...

0 0 ∂n−1∂n

0 0

0

= 0

6l D;? ! D 6 ! H l0m Ker(∂)/Im(∂) =

⊕iHi

Ker(exp(∂) − I)/Im(exp(∂) − I) =⊕

iHi79???

k "l8m # k + 1 $N78 %'&'( ∅ )c'*'+','-'.ca0/'1ji3204ca0506jr07'809jajr0:cu wj0; e'<0=jr0:ju79 > '? '@'A'B ajDCjje0E0/'?0Fji3G'H0F0I0J0K'L0Mja0+0,'-0.jjj

35

@

, " A ND@

, BC= f4BCD x =] 1'D = - $ % @ q U 1 >i D D a * l0mJ 1

l8m! R " ! Df#$%!& FlJ! R f )'K D 9 D f#$ K 9 & Fr() D l8m+*lJ, %-. D ,/ uv D ,/01Intuitively the “i-th homotopy group” describes the “i-dimensional round holes”

and the “i-th homology group” reveals the number of “i-dimensional rooms” in a geo-

metrical object. – Hajime Sato, Algebraic Topology: An Intuitive Approach, American

Mathematical Society, 1999.

The homology groups of a topological space are among the most complicated

constructions in all mathematics. To appreciate this, let us review the steps of the con-

struction. (1) Given a topological space, we must first divide the space into polygons,

edges, and vertices identified in some way – in a word, we must view the topological

space as a complex. (This is the geometric step of the construction.) (2) Given a

complex, we extract the incidence coefficients with which we define the chain groups

and the boundary operator. (This is the combinatorial step of the construction.) (3)

Finally, we isolate the subgroups of cycles and boundaries and define the homology

groups. (This is the algebraic step of the construction.) ... Thus a given topological

space has only one set of homology groups, and these groups are independent of the

manner in which the topological space is viewed as a complex. It follows that, whatever

information the homology groups contain, this information is of a purely topological

nature unaffected by the geometric, combinatorial, and algebraic steps of the construc-

tion. ... With invariance, we can be confident that the information carried by the

homology groups concerns the topological space alone, even though we have no idea

yet exactly what that information is! – Michael Henle, A Combinatorial Introduction

to Topology, pp. 153-154.

, & F D !& F H ! lJN;l0m l , lm 32 simplicial category h category of graded abelian groups 4 1BC , 4D 5 4D76 S & F,89 Df4'BIC lm =: ;< 4=> , l8m N f4BC? C 6 S & F@A8,l8m ? C l DCB DlJ & F@Al8

36

l 80f4BC % l8m 0 H $ Smith 81:

WA> l8 &(In homotopy theory it is clear at the outset that homeomorphic spaces have iso-

morphic homotopy groups, but the computation of these groups is, in general, inordi-

nately difficult. The situation is reversed in homology theory. Although the topological

invariance of the simplicial homology groups is quite a deep theorem, the computation

of these groups for a given space is accomplished by an almost mechanical procedure.

Clearly, this latter state of affairs possesses distinct advantages over the former in that

the difficult part of the theory (the proof of topological invariance) need only be done

once. In addition, the simplicial homology groups are all finitely generated and Abelian,

so their structure is rather easily discerned. Of course, the price we must pay for these

advantages is the rather severelly restricted class of spaces to which the theory applies,

that is, polyhedra. Although there are more general homology theories that embrace

a wider class of spaces (e.g., Cech homology theory and singular homology theory),

they will not concern us here. – Gregory L. Naber, Topological methods in Euclidean

spaces, p. 111, Cambridge University Press, 1980.

(6/5)( ) , l8m space→complex→oriented complex→groups of

chains →homology groupsR "l8m H 64 "l8m +N "l0m (

C D O )

With hindsight, one can say that homology theory bagan with the Desartes-Euler

polyhedron formula. It took a further step with Riemann’s definition of the connec-

tivity of a surface, and the generalization to higher-dimensional connectivities by Betti

1871. All these results have to do with the computation of numerical invariants of a

manifold by means of decomposition into “cells”; the computations involve only the

numbers of cells and the incidence relations between them, and it is shown that certain

numbers are independent of the particular cellular subdivision chosen.

However, these results remained isolated until they were forged into a theory of ho-

mology by Poincare 1895. Poincare felt that many barnches of mathematics were

80 "!811.J.R. Munkres, ( #%$%&%' ) (j%)%*%+%,%-/.%0ji21 wjx i §11, 3%4%.%509%6%7ji 1991. 2. 8%9: ilr':c~ci21 wcx i §5, ;+'967ci 2002.

37

clamouring for such a theory, but his immediate objective were to generalize a duality

relation observed by Betti, and to give a completely general version of the Euler for-

mula. The Betti numbers, as they have been called since Poincare introduced the term,

generalize the notion of connectivity number (genus) for an orientable surface. If n is

the maximum number of closed cuts which can be made in a surface without separating

it, then such a maximal system of curves a1, · · · , an constitutes a basis in the sense that

for any other curve p some “sum” of a1. · · · , an bounds a piece of surface in combi-

nation with p. The latter property of n, made precise, is meaningful for manifolds M

of possibly higher dimension than 2, and it serves to define the one-dimensional Betti

number B1. One immediately generalizes to the k-dimensional Betti number Bk when

curves are replaced by suitable k-dimensional submanifolds of M. Betti had observed

that B1 = B2 when the dimension m of M was 3. ...... Torsion is present when an

element a does not form a boundary taken once, but does when taken more than once.

An example is the curve a in the projective plane P which generates π1(P). Then a2 is

the boundary of a disc, though a itself does not separate P. Poincare justified the term

“torsion” by showing that (m−1)-dimensional torsion is present only in an m-manifold

which is nonorientable, and hence twisted onto itself in some sense.82 – John Stillwill,

Classical Topology and Combinatorial Group Theory, Springer, 1980. l8m 9 l0m N R m (acyclic): l8m % : Betti Euler-Poincare 83;Euler % lq U (pseudomanifold)84f 8 n " n "l8m ! q f 0 n "

n "l8m : 85# ! lm % ; q U 1 ?;A ]; f ; N f Betti 86 A ] 45 % q U9 ] Sn l8m 87

Sn Sm lo B o n = m

"l ( l )45 % q U 88

82 (c ! "+ # abel uca $ %cci'&'/ci'& (cuci'&'Ccca*) +j', -*. / 0j21 % 3 4*5 a7698j83 : ; 0 > ce'Ccja*<cuji>= zc*?*@ (j,*Ajj*8 B0+j ilr 2/2084Fred H. Croom, Basic Concepts of Algebraic Topology, p.3085Fred H. Croom, Basic Concepts of Algebraic Topology, p.3686 2c C w D E E D r0:cu87Sn @ /ca n D F G .ciIH Hn(Sn) = Z; Sn a J Kcr':cu E Bn+1 a w L iIMce K N 2jrja

n D O P88Rn − p E Sn−1 r Q R

38

Brouwer No Retraction Theorem:89 q `2 Bn+1 h Sn ' & 90

Brouwer Fixed Point Theorem: Bn+1, n ≥ −1,: r 6 & q 1

: r f ;< 4 "m 1Every finite hereditary set system can be regarded as an abstract simplicial com-

plex, and it specifies a topological space (the polyhedron of a geometric realization)

up to homeomorphism. Simplicial maps of simplicial complexes yield continuous maps

of the corresponding spaces. ... Conversely, if a topological space admits a triangu-

lation, it can be described purely combinatorially by an abstract simplicial complex.

(This description is not unique.) ... A continuous map, even between triangulated

spaces, generally cannot be described by a simplicial map. On the other hand, there

are theorems stating that under suitable conditions, a continuous map is homotopic to

a simplicial mao between sufficiently fine triangulations of the considered spaces, and

it can be approximated by such simplicial maps with any prescribed precision;... J.

Matousek, Using the Borsuk-Ulam Theorem, pp. 15–16, Springer, 2003.

(6/7)9 ] & & Ml8m 4 deg(fg) = deg(f) deg(g)

l & l & M 91

Sn , 4 , & & M; + n- , %e & M 92

` 9 & ! !" 1. #$ % SO(n+ 1) 6 72&' () * ,+ & 93; 2. - .&%

−1.94/0 010102 035467@A 98 : ;< : . =0>?;@0A /BCD E .GF : f ,' HI

f J;< : .K = 95. LM : N + K DO89 PRQRSRT Stokes URVRWRXRYRZR[R\R]R^ T. W. Gamelin, R. E. Greene, Introduction to Topology,

pp. 168–169, CBS College Publishing, 1983.90 _a`abac f, d H(x, t) = f((1− t)x) WaX Sn eafagahaiajakalahai YamRnRoqpa[ Sn jarasat manu owvax0y91 za Y Hopf Classification Theorem |aa~aaaaay92n- RRY n- mRRR Z, Z Z YRmR f f(1) RRURwRmRRRRRRRRXaaa PaQ R ZR[R\R] J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological

Methods in Combinatorics and Geometry, p. 43 Springer, 2003.93 manaY haia a¡a¢ mRYamRRRmR943/20:Sn £ Sn−1 e YR¤R¥R¦ (suspension). §R¨R©RªR«R¬R­ iR R¡ YRRRmRow ¢® YmaaamaaYao Sn Ya¯a¥a°a±a

95 ²a³a´ Q a¶µ hRi f · g, ¸a ²a³ x ` f(x) + g(x) 6= 0, d f j g mana39

6 1 L Poincare Brouwer .. / Sn

B 112.H 3 467 n 96

2: D N

(−1)n+1.

SnB F : D"! E"$#%&"$'( /)B

+ K M08+* :+ . : D! E0> F L-,$M'+( /) .+./ 0+1 . J23. Borsuk-Ulam

.45 *678 97

1. 9 Sn−1 : Sn−1.+; ;0<0E :+ D<=> 9 Bn : Sn−1

.0H+ :+98:/)B ; ;<E : . : 99; ?@ :: >A => : + K

M?@ : 2.DBC 9 Sn : Sn−1

.; ;<E : g: DEF,9 Bn : Sn. BG/

) . +-H π, π(x1, · · · , xn) = (x1, · · · ,√

1 − x21 − · · · − x2

n). E :+ gπ : Bn → Sn−1 I C

Sn−1B N; ;<E : J 1 JK

3. 9 Sn : Rn. J;< : ALM .H : N ;;<E : :

2.O (PQ

4. (Borsuk-Ulam Theorem) ;0@0A H+ : f : Sn → Rn, B+C

x ∈ Sn, RSf(x) = f(−x) 100: ; g(x) = f(x) − f(−x) T$ 3

5. (Lyusternik-Schnirel’man Theorem) U F1, · · · , Fn+1 SnB

n+ 1 VXW-Y+Z∪n+1

i=1 Fi = Sn, E B+C i, R S Fi ∩−Fi 6= ∅: Sn ,++[+8+\]^\]`_ab[8c 6 d. x ∈ Fi *6M d(x, Fi) = 0. de f(x) = (d(x, F1), · · · , d(x, Fn)). L 4, Af: x, f(x) = f(−x).

Zf(x) g h 6 2 $E x ∈ Fn+1 ∩ −Fn+1;

Zf(x)

.ii

V h 6 jE x ∈ Fi ∩ −Fi.

5⇒2: Sn−1 Akl n+ 1 V Dm ;<E . WYgno Z BC 9 Sn : Sn−1

.; ;<E : g, E p WY C g q .rs J 5 tuv2⇒1: Sn Akwx Ny V Bn z| .~ Sn−1 x Bn

B :Z I+ C Sn−1 ; ;0<0E : EAk F, Sn : Sn−1

.+; ;<E :

(6/12)

Kneser KG2n+k,n: EY ( [2n+k]n

), AB ~ A ∩B = ∅

965/2497J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics

and Geometry, Springer, 2003.98 6/5, Brouwer No Retraction Theorem99 Za[ 6/14 WaX

1003/29, 5/24

40

Kneser

Kneser KG2n+k,n

. E+ χ(KG2n+k,n) k+ 2. KneserC

1955 . χ(KG2n+k,n) ≤ k + 2.

L. Lovasz (1948 – ) M 1978 + `b χ(KG2n+k,n) ≥ k + 2,

9 Kneser O Kneser-Lovasz

+ +R S 9 x . V 101.C S Lovasz !" k" I. Barany 102

C## $&%' b V( O)*+ *! gR,- N Lyusternik-Schnirel’man Theorem*

Gale Lemma. Harvey Mudd College !./0 Joshua E. GreeneC

2002 'Lyusternik-Schnirel’man Theorem ! 5 O 721,L ` V34R Gale

Lemma ! U F1, · · · , Ft Sn

Bt V5+Y+ Ft+1 , · · · , Fn+1 Sn

Bn+ 1− t VXW-Y+ Z

∪n+1i=1 Fi = Sn, E B+C i, R S Fi∩−Fi 6= ∅ 103:

/6 d+e t = n+1 !7+7 104; U ε 89+c: \X] Sn !5+n+o F1, · · · , Fn+1 ! Lebesgue 0><; I VE x1, · · · , xm,

R S ∪mi=1B(xi,

ε2) = Sn; = Gi = ∪j: B(xj ,ε)⊆Fi

B(xj,ε2), E Gj ⊆ Fj , G1, · · · , Gn+1 F

x Sn !XW-n+o0>?>"; G1, · · · , Gn+1 Lyusternik-Schnirel’man Theorem k@x

Joshua E. Greene ; Kneser ! 105

A number of important results in combinatorics, discrete geometry, and theoretical

computer science have been proved by surprising applications of algebraic topology.

Lovasz’s striking proof of Kneser’s conjecture from 1978 is among the first and most

important examples, dealing with a problem about finite sets with no apparent relation

to topology. – J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological

Methods in Combinatorics and Geometry, Preface, Springer, 2003.

Algebraic topology provides measures for global qualitative features of geometric

and combinatorial objects that are stable under deformations, and relatively insensitive

to local details. This makes topology into a useful tool for understanding qualitative

geometric and combinatorial questions.

Considerable momentum has developed in recent years towards applications of alge-

braic topology in various contexts related to data analysis, object recognition, discrete

and computational geometry, combinatorics, algorithms, and distributed computing. –

http://www.msri.org/calendar/programs/ProgramInfo/243/show_program

101 A<B<C 2005 European Prize in Combinatorics D<E<F DMITRY FEICHTNER-KOZLOV G<H<Ia«J<K a<L Y<M<NR^ http://www.inf.ethz.ch/personal/dkozlov/publ.html102 O<P<Q<R<S<T Fa·VU L<W 30 X<Y<Za« P <[<\ QVR<]VT X V^<_ T XV`Va<bVcRYVdVea103 f<g £ Greene h<iaY Lyusternik-Schnirel’man Theorem Y P<j<k<l 104 ²a³<m<n <o s Y t U , Uo = x ∈ Sn : d(x,U) < 1 − diam(U)

2 ⊇ U <p t<q m<n <o s

105http://math.sjtu.edu.cn/teacher/wuyk/lovasz.pdf41

In the past several years, a number of researchers have successfully applied tech-

niques from Algebraic and Combinatorial Topology to solve a number of long-standing

open problems in the theory of distributed and concurrent computing. – http://www.

cs.brown.edu/people/faculty/mph.html

The key difficulty in reasoning about asynchronous systems is the ”exponential

blowup” in the number of possible executions resulting from different interleavings

of processors’ actions. The important breakthrough in the research of Godel prize

winners Herlihy and Shavit and Saks and Zaharouglou, was the use of tools from

algebraic topology, a young branch of modern mathematics, as a tool for reason-

ing about the multitudes of possible executions in a comprehensible way. The au-

thors were able to show a surprising result: that being ”asynchronously computable”

is equivalent to having a collection of executions that, when viewed as a high di-

mensional geometric object, do not have holes. If holes exist, it follows from the

Herlihy-Shavit theorem that the given task is not computable asynchronously. The

characterization has had a profound impact on the field of distributed computing

and has yielded the first impossibility results for several of its longest-standing open

problems, including the famous Renaming and Set Agreement problems. – http:

//research.sun.com/spotlight/2004-05-10.godel.html

(6/14) * ' h % f(−x) = −f(x)*

f(−x) = f(x)

! f . ; 5 : ) F f f(−x) = −f(x), J AL"M

; E ' f(−x) = f(x).

q ) ! c $' ! c ' Q+2! #"%$& 7! "%'( *)+ ,- 9 . /0 1+2! ; 2 ! ) 3 ! c 106: 4 Sn w

x y V Bn z Sn−1 x M N Ak56 X Sn ! - 789 h R S: V+ : ! Si ; N+Z<78= !1+ U f V ; 2! $&>?++ A+k@ ) g 9 h ABk" BC t+T $&C 7D ; 2 $& f ! $E&>E? F+GEH+U f3JI!K N $E& q ) Q+ 0

106J. Matousek, Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics

and Geometry, pp. 43–44, Springer, 2003. Matousek fMLMNMOMPMQ fSRST c Y Z [MUSV ^ S.

Lefschetz, Introduction to Topology, Princeton, 1949. f P a Za[WUWVaa\YXYZ Armstrong Y T Y S[ 42

deg(f) +++ d+e+2 . a. ( ∂,f# J a# ,

x+a#(x) = 0 +++ x = y+a#(y) 107. U Si = A+i +A−

i , ∂A+i = ∂A−

i = Si−1 =

A+i−1 +A−

i−1. f#(A+i ) = X+

i , f#(A−i ) = X−

i ./ f#(Sn) = X+

n +X−n 6= 0 A

( C QE+2 . ). D E (I+a#)X+n = X+

n +X−n = 0, 9 X+

n = (I+a#)dn, BC dn ∈ Cn,

∂(X+n ) = ∂((I + a#)dn). (1)

HU dk ∈ Ck R S∂(X+

k ) = ∂((I + a#)dk), (2)

dk−1 ∈ Ck−1 R S

∂(X+k−1) = ∂((I + a#)dk−1). (3)

D (I + a#)(X+k−1) = Xk−1 = ∂(X+

k ); L Eq. (2), S : (I + a#)(X+k−1) =

∂((I+a#)dk) = (I+a#)(∂(dk)); - X+

k−1 +∂(dk) ∈ Ker(I+a#) = Im(I+a#),

9 Eq. (3) DQ BC d0 ∈ C0, R S

∂(X+0 ) = ∂((I + a#)d0). (4)

∂(X+

0 ) = ∅ 6= 0 = ∂((I + a#)d0),S : JK

- ! 789 h * tT $&>? w ' ! c ' A U H ′N \] H !^\] f : (H,H ′) → (H,H ′) f f ! H/H ′ D 3 jE tr(f) = tr(f |H′) + tr(f).

Hopf Trace Theorem108: ( : Hq = Zq/Bq, Bq−1 = Cq/Zq. fq : (Bq, Zq) →

(Bq, Zq)*

fq : (Cq, Zq) → (Cq, Zq)h %R A "4g S 8^t

" ( q L!" * Lefschetz Λf ; #+* ! Lefschetz $++[%& 109; Sn D 3

f

Λf = 1 + (−1)n deg(f)

Lefschetz + ! 2 110:89 A 9 h \ ] D Lefschetz + !' 3 + ! 2() 2Y t# +* . ! 89 A 9 h \] + ! 2,-

'( ) D ; " `H + ! 2$( ) D r " `H + ! 2107I +a# ./0 2×2 12 /34 156798:;< 34 1=1 /> 7 q (I +a#)2 = 0, 8 Im(I +a#) =

Ker(I + a#).108 ?A@AB 7DCAE JAF LAGAH 7 pp. 241 – 242, IAJAK LALAMAN 7 1997. OAPAQARASATAUAOAPAVAWA7DX

rank YZ trace [\109Euler-Poincare Formula110Lefschetz ]^_`abc`dAeAfgAhA1AiAjAklA7m\WXAnAoApAqrAeAfAgAsAt

43

!"#$%&&'&&&()&*&+,&-.&/&0&&1

– 2345(6879:;<=>1@?A6@BC6@DE6@;<F=G:1@G " H6JI6JBK9LM6ONPQ%.+RSTU6OVW,X;<YZ 1\[^]^5^_`abcdefgih

In Cambridge, we teach you everything

from nothing j 1lkmn &o&p6qcd&srQ5&(F*t&.6qNuv9wx&yzsr5(|15(&"&6~ &>&:6G h

we teach nothing from everything j 6;<=>&N,&&;&<&&>&&1[65&(&&>C&&-&&&1– 234

(6/19) "6" ¡¢&£¤¥¦§¨©ª«

¬ 6q­®¯°±²&6³´&µ¶·¸&¡¢¹º&»(¼¶&,¾½l¿ ¬À &ÁÂYZ 6N»(Ã,&Ä&Å&&ÆÇ&È&É&&&Ê&Ë

//[Ìo ÍÎ'Ï&Ð &"&«Ñ

6o Í ,&&É& Ï &"&«&Ñ&&– ÒÓÔ 6ÕÖR ( × ) Ø ¡&¢ÙÚÛÜÝÞßàá6YvsPâ&ã6

2004.

(6/21)äTU(®Qå

205, 207)

In June, as many as a dozen species may burst their buds on a single day. No man

can heed all of these anniversaries; no man can ignore all of them. – Aldo Leopoldæç Ø Òè ßÃ&&¹&&é&êë®ìîíðï&ñðð.&ò//Ã&&¹&G&&.&ó&ô&yðõ&öð÷ð­

//5&§

øvù%úû&ü&(&Ãð// ýþÿ "s5&o&« //

5[­ë// ¬ ¥

//5oü%5&&

//5&y%

//5[// [ // ) // Òè //

[ .Â!&´"#&$%

//5&( [&&'('&+ ÿ ') //

5&§&ø&v&ù&%*&ü&&9+,

// ýþÿ "sQ5o&« //5[­s

// ¬

¥ //5oü%&5&&

//5ðy%

//5[

// [// &) //

Òè //5[­

// ¬

¥ //5oü%5

//5y-%

//./

01//./01

// ) //ö2ü­3

//5[­ë

// ¬ ¥ //5Gü%4&5&&

//5&y%

//567//5891

// ) // Òè //

[ y:-;Q-ò$%

//

44

]&& Ò&è + ð6 +îÂð1 Let life be beautiful like summer

flowers and death like autumn leaves. – (Tagore), (Stray Birds)

Ò 6 X&5&3&6'´ &1 // Q60&(&,&&;

<66 1 Stray birds of summer come to my window to

sing and fly away.// And yellow leaves of autumn, which have no songs, flutter and fall

there with a sign. – (Tagore), (Stray Birds)5( Ô +&È !"#6$! &6&%'&1 Ô 6&((#)ö6 5(Ã*+ 1Like the meeting of the seagulls and the waves we meet and come

near. The seagulls fly off, the waves roll away and we depart. – 6

45


Recommended