+ All Categories
Home > Documents > LNG Cyrogenic Heat Exchanger Design Report

LNG Cyrogenic Heat Exchanger Design Report

Date post: 12-Oct-2015
Category:
Upload: nacentdesign
View: 38 times
Download: 1 times
Share this document with a friend
Description:
An analysis of material selection when designing liquefied natural gas heat ex changers

of 21

Transcript
  • i

    ME492MATERIALSINENGINEERINGDESIGN

    April5,2012

    MaterialsandProcess

    SelectionforaCryogenic

    HeatExchanger

    GROUP#4DawsonJamesJeffreyPowellJamesStevensonDerekVisvanathan

  • i

    ExecutiveSummary

    Thereisanincreasingdemandfornaturalgasasitisthecleanestburningofallfossilfuels.

    Whenpipelinescannotbeusedtotransportthenaturalgasitisliquefied(liquefaction

    temperature163)asithasagreatlyreducedvolume,makingtruckandnavaltransportation

    morefeasible.Inordertoachievethelowtemperaturesrequiredtoliquefythenaturalgasa

    cryogenicheatexchangermustbeused.Thisreportoutlinestheselectionprocedureforthe

    type,materialandprocessesrequiredtofabricateacryogenicheatexchanger.

    Aspiralinshellheatexchangerutilizesthintubesfilledwithcoolantwoundontheinsideofa

    cylindricalshell.Thisdesignmaximizestheamountofsurfaceareabetweenthetubingandthe

    naturalgasallowingforahighheatflowfromthegastothecoolant.Thetubesrequireless

    advancedprocessestofabricatethanfinsandthespiralshellheatexchangerrequires

    significantlylessmaintenancethanaplateandfinexchanger.Heatexchangersusedforthis

    purposearequitelargewithlengthsupto500manddiametersof5m.

    Wroughtaluminum2026wasfoundtobethebestmaterialforthetubinginsidetheheat

    exchanger.Aluminumalloyshaveahighthermalconductivityresultinginthedesiredheatflow

    inthecoolant.Aluminumisalsolessexpensivethannickelalloysandwillnothaveadverse

    reactionswiththenaturalgaswhichwasaproblemwithcopperandbrass.Alongwiththe

    thermalconductivityandcost,aluminumwillbeabletowithstandthepressuresinsidetheheat

    exchangerpassingallobjectives.

    Tomaximizeheattransferthinwalledtubingwillbeused.Therearemanyprocessesthatare

    abletocreatethethinwalledtubingbutwiredrawingwasfoundtobethebestoption.Wire

    drawingcancreatesmallcrosssectionalareasrequiredforthethinwalltubingandis

    compatiblewiththeselectedaluminumalloys.Wiredrawingcanalsoyieldtighttolerances.

    Anotherprocessthatissuitableisrollforming.Withsimilarspecificationsaswiredrawingitwill

    alsoperformtherequiredfunction.Wiredrawinghaslowertoolingandcapitalcoststhanroll

    formingandisthereforethemostidealprocess.

  • ii

    TableofContentsExecutiveSummary........................................................................................................................................i

    ReasonsandProcessofLiquefyingNaturalGas...........................................................................................1

    IntroductionandDesignStatement..............................................................................................................1

    DesignConstraintsandSelectionCriteria.....................................................................................................2

    Function:...............................................................................................................................................2

    Constraints:..........................................................................................................................................2

    Objectives:............................................................................................................................................2

    FreeVariables:......................................................................................................................................2

    MaterialIndices:...................................................................................................................................2

    Conceptualdesigns.......................................................................................................................................4

    MaterialSelectionforHeatExchangerTubes...............................................................................................5

    Limits:.......................................................................................................................................................5

    MaterialSelectionSummary....................................................................................................................6

    ProcessSelectionforHeatExchangerTubes................................................................................................8

    JustificationforMaterialsandProcesses.....................................................................................................9

    CostEstimation...........................................................................................................................................11

    FinalDesignandMaterials..........................................................................................................................11

    SummaryandConclusion...........................................................................................................................12

    Bibliography................................................................................................................................................13

    Appendix.....................................................................................................................................................14

    MaximizeHeatFlowPerUnitArea:........................................................................................................14

    MaximizeHeatFlowPerUnitMass:.......................................................................................................15

    MaximizeHeatFlowPerUnitCost:........................................................................................................16

    Costestimationresults...........................................................................................................................18

  • 1

    ReasonsandProcessofLiquefyingNaturalGas

    Naturalgasconsumptionisincreasingduetothedemandforcleanerenergyproduction.Inmanycases

    pipelinesarenotavailabletosupplythenaturalgasdirectlyfromtheextractionplant.Initsnatural

    gaseousstate,naturalgastakesupalargeamountofvolumewhichmakestransportationvery

    expensive.Inordertodecreasetheshippingvolume,naturalgascanbeliquefiedwhichreducesits

    volumetoapproximately1/600thofitssize.Themaindifficultyinliquefyingnaturalgasisits

    classificationasacryogenicfluid,meaningitcondensesatbelow150C.

    Anotherreasonforliquefyingnaturalgasisthattheprocessremovesimpuritieswhichmeanonceit

    reachesitsdestinationitonlyneedstoberegasifiedpriortodistribution.Liquidnaturalgasisalsonon

    toxicandnoncorrosivehowever;itisexplosivewhenputincontactwithwater.Oncenaturalgasis

    extracted,itfirstgoesthroughseveralcleaningprocesses.AnycondensatesareremovedalongwithCO2

    mercury&H2S.Thenaturalgasalsogoesthroughadehydrationstagetoremoveanytraceamountsof

    water.Thegasthengoesthroughseveralcoolingstageswithairfinheatexchangersandcompressors

    untilitreachesthefinalcryogenicheatexchanger.Thecryogenicheatexchangerusesanotherliquefied

    gas,typicallyliquidnitrogenoroxygenintheliquefactionprocess.Finally,theliquidnaturalgasisput

    intocryogenicseacarriersorcryogenicroadtankersandshippedtothefinaldestination.

    IntroductionandDesignStatement

    Thematerialsandprocessselectionwillbedeterminedforacryogenicheatexchangerusedinthe

    liquefactionofnaturalgas.Theprocessofliquefyingnaturalgasrequiresatemperaturebelow163

    degreesCelsiusandinthisprocesstheothertraceelementspresentinthenaturalgasareseparatedout

    leavingpureliquidmethane.Thisprocessoccursatambientpressureonthenaturalgassidebutthe

    refrigerantthattravelsthroughtheheatexchangermaynotoperateatthispressuredependingonthe

    typeofprocessutilized.Thereforethestressduetopressuredifferencemustbeconsideredalongwith

    thethermalconductivityofthetubingmaterial.Therearetwotypesofheatexchangersusedinthis

    application,oneisacoiledtubeheatexchangerandtheotherisfinandplateheatexchangertheyare

    commonlymanufacturedusingaluminumandtitaniumalloys,thisreportwillinvestigatetheoptimum

    materialforthistypeofheatexchanger.Theoptimumprocessformanufacturingwillalsobe

    determined.

  • 2

    DesignConstraintsandSelectionCriteria

    Function: Cryogenic heat exchanger used to cool natural gas to its saturation temperature (-163C) at

    which point it will liquefy and become liquefied natural gas (LNG).

    Constraints:

    Withstandthepressuredifferencebetweenworkingfluids, Operateattemperaturebelowto163 Moderateductilitysotubingcanbebent Doesnotcorrodeduetoworkingfluidsorbyproducts(suchasH2S) Haveexcellentlowtemperature(cryogenic)durability

    Objectives:

    Maximizetheheattransfer/flowperarea, Minimizecost,

    FreeVariables:

    Wallthicknessoftubing, Materialchoice

    MaterialIndices:

    Themethodofheattransferthroughthetubingwillbeconductionwhichisgivenby:

    Where: istheheatflux( ),

    isthethermalconductivity( ),

    isthetemperaturedifferencebetweentheworkingfluids(,and

    isthetubewallthickness().

    Heatflow,,isgivenby:

    Where: istheheatflow(),and

  • 3

    isthesurfaceareaofthetubing() 2.

    Substitutingtheheatfluxfromconductionyieldsthefollowing:

    Wallthicknessisaremainingfreevariablewhichrelatesthepressuredifferencesbetweentheworking

    fluids.

    Where: isthematerialsyieldstrength(),

    istheradiusofthetube(),

    isthepressuredifferencebetweentheworkingfluids(),and

    isthewallthickness.

    Finallybysubstitutingthicknessamaterialindexbasedonbothyieldstrengthandthermalconductivity

    canbeattained.

    Inordertheminimizecosttheheatflowperunitmassisused(/).

    2

    /

    2

    /

    2

  • 4

    / 2

    /

    2

    Oncethisindexisderivedmultiplyingmassbycostwillresultintheindexforcost.

    Conceptualdesigns

    Thereareseveraltypesofheat

    exchangersthatareeffectivefor

    theliquefactionofnaturalgas.

    Eachexchangerwillusethe

    coolantliquidmethaneinorder

    tobringthenaturalgastoits

    saturationtemperaturethrough

    theuseofatypicalvapour

    compressionrefrigerationcycle.

    Oneofthesimplestheat

    exchangerisashellandtubeheatexchangerwheremanysmalltubesareranthroughareservoirof

    coolant.Thesmalltubesallowformaximumsurfaceareatobeincontactwiththecoolantallowingfor

    thehighestheatflowfromnaturalgastothecoolant.Themajorityofheatexchangersarecounterflow

    inwhichtheworkingfluidsarepumpedinoppositedirections.Sotheinletsideofthenaturalgaswillbe

    theoutletsideofthecoolantandviceversa.Multipletubepassescanbeusedtoincreasetheamountof

    surfaceareaandheattransferthatoccurs.Amodificationoftheshellandtubeheatexchangeristhe

    Figure1 Shellandtubeheatexchanger

  • 5

    spiralwoundheatexchanger.Inthiscasethenaturalgasisintheshellarea(AAshellstream)while

    coolantrunsthroughthetubestreams.Thisconfigurationhasaveryhightubesurfaceareabutisfar

    morecomplexthanatypicalshellandtubeheatexchanger.Plateandfinheatexchangerscanhave

    highersurfaceareaforheattransfer.Theyarealsoabletowithstandhighpressures.Platesare

    sandwichedtogetherwithsmallfinsinbetweentofurtherincreasethesurfacearea.Thistypeofheat

    exchangerismoredifficulttomanufacturethanthosethatutilizetubing.Inadditiontomanufacturing

    complicationstheincreasedsurfaceareamakesthefluidpathwaysverysmall.Thiscanleadtoan

    increaseincloggingdependingontheworkingfluidsbeingused.

    MaterialSelectionforHeatExchangerTubes

    WhiledeterminingthematerialsneededforthetubesintheLNGcryogenticheatexchangerthreeobjectiveswereconsidered:

    MaximizeHeatFlowperUnitArea MaximizeHeatFlowperUnitMass MaximizeHeatFlowperUnitCost

    Limits:Elongation:>20%Strain

    MaximumServiceTemperature:

  • 6

    ThermalConductororInsulator:GoodConductor

    TolerancetoCryogenicTemperatures:Excellent

    MaterialSelectionSummaryUsinglevel2CESEduPackwiththelimitsstatedabove,thefollowingaretheninematerialsthat

    passthelimitstage:

    AgehardeningwroughtAlalloys Brass Bronze Commerciallypurelead Copper Leadalloys Nickel Nickelbasedsuperalloys NonagehardeningwroughtAlalloys

    Thetopfivematerialsusinglevel2foreachobjectiveare:

    MaximizeHeatFlowperUnitArea:

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    MaximizeHeatFlowperUnitMass:

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    MaximizeHeatFlowperUnitCost:

    AgehardeningwroughtAlalloys NonagehardeningwroughtAlalloys Brass Bronze

  • 7

    Copper Breakingdowneachalloyusinglevel3CESEduPackallowedforamoreaccuratematerial

    selectionforeachofthestatedobjectives.Copper,brass,andbronzewererejectedfromthe

    materialselectionprocessastheyhaveanadversereactionwithH2Swhichisabyproductof

    theliquefactionprocess.Thefollowingarethetoptenmaterialsinorderofperformanceindex

    forAluminumandNickelalloys:

    MaximizeHeatFlowperUnitArea(seeFigure2):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) Aluminum,6082,wrought,T4 4) Nickel,DuranickelAlloy301,annealed&aged 5) NickelCoCralloy,UDIMET700,bar 6) Nickel,PermanickelAlloy300,annealed7) NickelFeCralloy,UDIMET630,bar 8) NickelCoCralloy,AEREX350,coldworked,aged9) 45Ni3MoFesoftmagneticalloy10) Nickel,commercialpurity,grade200,soft(annealed)

    MaximizeHeatFlowperUnitMass(seeFigure4):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) NickelFeCralloy,UDIMET630,bar 4) NickelCoCralloy,AEREX350,coldworked,aged 5) Nickel,DuranickelAlloy301,annealed&aged 6) NickelCoCralloy,UDIMET700,bar 7) NickelCoCralloy,EP741NP 8) Aluminum,6082,wrought,T4 9) NickelFeCralloy,D979,bar 10) 45Ni3MoFesoftmagneticalloy

    MaximizeHeatFlowperUnitCost(seeFigure6):

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T4 3) Aluminum,6082,wrought,T4 4) Aluminum,S520.0:LM10TB,cast 5) Aluminum,5154,wrought,O

  • 8

    6) Aluminum,6060,wrought,T4 7) Aluminum,2024,wrought,T0 8) Aluminum,5251,wrought,O 9) Aluminum,commercialpurity,1080,wrought,O 10) 45Ni3MoFesoftmagneticalloy

    Materialsthatmeeteachofthethreedesignobjectivesare:

    1) Aluminum,2026,wrought,T3511 2) Aluminum,2024,wrought,T43) Aluminum,6082,wrought,T44) 45Ni3MoFesoftmagneticalloy

    ProcessSelectionforHeatExchangerTubes

    Thefieldofavailableprocesseswasfirstnarrowedusingthetreeselectiontouseonly

    processescompatiblewithaluminum.Usinglimitselectionthelistwasnarrowedtoinclude

    onlyprimaryshapingprocesses,circularprismaticobjectsandcontinuousmethods.Finallydue

    tothethinwallthicknessrequired,processeswhichcouldntprovideathicknessoflessthan1

    mmwereremoved.Thefinalfiveprocesseswerethenrankedaccordingtotherangeof

    thicknessavailablebelow1mm.

    Thetopfiveprocessesforshapingthetubesare:

    1. Wiredrawing

    2. Rollforming

    3. Shapedrawing

    4. Coldshaperolling

    5. Powderextrusion

    Wiredrawingconsistsofpullingasolidcylindricalblankthroughahardeneddieinorderto

    reduceitscrosssectionalarea.Tubedrawingisasubsetofwiredrawingwherethecylindrical

    blankhasahollowcenterandamandrelisplacedinsidetokeeptheinteriordiameteratthe

    valuethatisrequired.Thisprocessallowsforawallthicknessdownto0.1mmandatolerance

    of0.010.04mm.Rollformingconsistsoffeedingacontinuoussheetofmetalthroughrollers

    inordertocreatetheshape.Fortheheatexchangertubes,anadditionalweldingprocess

  • 9

    wouldhavetobedoneinordertosealtheseambetweenthesections.Shapedrawingissimilar

    towireortubedrawingwhereacontinuousblankispulledthroughadietocreatethefinal

    geometry.Thedifferenceisthatamandrelisnotusedtocreatethedesiredwallthickness

    whichlimitstheminimumwallthickness.Coldshaperollingissimilartorollformingexceptthe

    processisdoneatroomtemperatureandproducesbettersurfacefinish.Thedownsidetocold

    shaperollingisthehigherstressesinvolvedwhichdontallowforasectionthicknesslessthan1

    mm.finally,powderextrusionusesheatedloosemetalpowdereitherformedintoabilletor

    placeddirectlyintoachamber.Thematerialisthenpressedthroughadiewhichformsitinto

    therequiredshape.Powderextrusionhasthesameproblemascoldshaperollingwherethe

    sectionthicknessmustbegreaterthan1mm.

    JustificationforMaterialsandProcesses

    Inordertodetermineappropriatematerialsforthecryogenicheatexchangertubes,objectives

    andconstraintshadtobedefined.Themainconstraintsassociatedwiththeheatexchanger

    tubematerialare:

    MinimumElongationof20%Strain MaximumServiceTemperatureLessThan163C GoodThermalConductor ExcellentTolerancetoCryogenicTemperatures

    Additionally,objectivesweredeterminedtoincorporateperformanceindiceswithourmaterial

    selections.Sincetheheatexchangertubesmainpurposeistotransferheatfromonefluidto

    another,thermalconductivityisamajoraspectwiththismaterialselection.Therefore

    consideringmass,area,andcostwiththermalconductivity;threeobjectiveswereconsidered:

    MaximizeHeatFlowperUnitArea MaximizeHeatFlowperUnitMass MaximizeHeatFlowperUnitCost

    Usinglevel2CESEduPack2011withthelimitsandobjectivesstatedabove,thetopfive

    materialsdeterminedwerefoundtobe:

  • 10

    AgehardeningwroughtAlalloys Brass Copper Nickel NonagehardeningwroughtAlalloys

    Duetohighcorrosionrateswithhydrogensulphide,whichisabyproductofnaturalgas,

    copperandbrasswereeliminatedfromourselection.Withcopperandcopperalloysremoved

    fromourselectionlist,alevel3CESEduPackanalysisofthetopmaterialswasconducted

    incorporatingthethreeperformanceindicesstatedearlier.Thisproducedthetopthree

    materialswhichallperformedwellineachobjective.Therefore,thetopthreeoverallmaterials

    fortheheatexchangertubes,inorderofperformanceindex,are:

    5) Aluminum,2026,wrought,T3511

    6) Aluminum,2024,wrought,T4

    7) Aluminum,6082,wrought,T4

    Wiredrawingwaschosenforitswiderrangeofavailablecrosssectionalareas.Thisprocessisalso

    simplerthanrollforming,whichmakesitlessexpensive.Wiredrawingalsoconsistsofoneprocess

    doneinstepsunlikerollformingwhichwouldrequireanextraweldingstep.Wiredrawingallowsa

    rangeofcrosssectionalareasof.01to10mmwithanexcellenttolerancerangeof0.01to0.04mm.

    Theprocessisalsocontinuouswhichallowsfortheproductionofverylongtubes,thisisidealdue

    toatypicalheatexchangerbeing500minlength.

    Figure3Wiredrawingprocess

  • 11

    CostEstimation

    Thetotalamountoftubingwasbasedonanaverageweightof91000kg.Thecomparisonof

    potentialmaterialscanbeseeninTable1oftheappendix.Fromthetableitcanbeseenthat

    Aluminum6082isthecheapest,withacostperunitweightof$1.258/kgwhichbringsthetotal

    costofthematerialto$243,780.Thiscostdoesnotincludethecontainmentvesselandthe

    weldedmountingstructure.

    Forthechosenmaterialmorefactorswereconsideredsuchasthermalconductivityand

    aluminum,2026,wrought,T3511waschosen.Outofthetwoavailableprocesses,onlythe

    capitalcostandthetoolingcostcouldbeconsidered.Thecheapestprocessturnedouttobe

    wiredrawingasseeninTable2withacombinedcostof$104,720.Thetotalcostoftheheat

    exchangertubingincludingmaterialandprocesscameto$360,430.

    FinalDesignandMaterials

    Astherearesignificantbyproductscreatedintheliquefactionofnaturalgastheplateandfin

    heatexchangerwasrejectedbecausethesmallpathwaysmaybecomecloggedduring

    operation.Itwasdecidedthataspiralwoundheatexchangerwouldbettersuitedforthis

    application.Thisheatexchangerhasmuchhighersurfaceareaoftubingresultinginhigherheat

    flowfromthenaturalgastothecoolantwhencomparedwithamoreconventionaltubeinshell

    exchanger.Also,thermalexpansionandcontractioncanoccurinaspiraltubeheatexchanger

    withoutbreaking.Thetubingforthisheatexchangerwillbemadeoutofthefollowing

    aluminumalloys(inorderfrommosttoleastdesirable):

    1) Aluminum,2026,wrought,T3511

    2) Aluminum,2024,wrought,T4

    3) Aluminum,6082,wrought,T4

    Aluminumhasahighthermalconductivityallowingformaximumheattransferthroughoutthe

    heatexchanger.Aluminumalloyswillnotreactwithanyofthecoolants,naturalgasorby

    productsfromtheliquefactionsothereisnoriskofcorrosion.Aluminumisalsoreadily

    availableandinexpensivematerialthatiswidelyusedinheatexchangersandother

  • 12

    mechanism.Thereisanaddedadvantagebecausealuminumcanbebenttocreatecomplex

    pipingnetworkswithoutbreakingandiscompatiblewiththeprocessselected,wiredrawing.

    Aluminumhasloweryieldstrengththannickelalloysbutthe2000seriesaluminumalloyswill

    besufficientforthisfunction.Typicallytheheatexchangersusedtoliquefynaturalgasare5m

    indiameterandrangebetween200mand500mlong.Usingaluminumwillkeepweightand

    costdownwhilethespiralheatexchangerwillreducethemaintenancerequiredwhich,

    consideringitssize,isvital.

    SummaryandConclusion

    Themostdesirablematerialswereallagehardenedaluminumalloyswhicharelowincost,

    havehighyieldstrengthandhighthermalconductivity.Thesematerialsweresimilartothose

    currentlyusedinthesetypesofnaturalgasheatexchangerswhichtypicallyusealuminum.

    Othermaterials,suchascopper,wouldbeattractivehadtheynothavehadadversereactions

    withbyproductsofthereaction.Aluminumisalsoductilesoitcanbebentintothespiral

    shapesonceithasbeenmanufacturedintothinwalledtubes.Perhapsthemostimportant

    constraintthataluminummetwasitslowminimumoperatingtemperature(below200C).

    Afterpassingallconstraintsaluminumscoredhighinallthreeofthematerialindices:heatflow

    perunitarea,heatflowperunitmassandheatflowperunitcost.

    Wiredrawingistheprocessthatbestfitstherequirementsformakingsmallthinwalledtubes

    whilestillhavinglowcostswhencomparedtoothermethods.Asanaddedbenefittherewillbe

    noadditionalprocessesrequiredotherthanthefinalassembly.Afterresearchingcurrent

    materialsandprocesswefoundthatthemethodsandmaterialsselectedforthecryogenicheat

    exchangeraresimilartowhatiscurrentlyused.

  • 13

    Bibliography

    AirProducts.(2008,February).RetrievedMarch23,2012,from

    http://www.airproducts.com/~/media/Files/PDF/industries/energylngbrochure0408.ashx

    Ashby,M.F.(2011).MaterialsSelectioninMechanicalDesign4thEd.Burlington:Butterworth

    Heinemann.

    TheLindeGroup.(2008,December09).GryogenicHeatExchangersforLNGPlants.Retrieved

    March23,2012,from

    http://www.hts.org.uk/downloads/Linde_LNG_HEX_09Dec2008_Extract.pdf

  • 14

    Appendix

    MaximizeHeatFlowPerUnitArea:MaterialIndices: Slope=1

    Figure4Level2CESEduPack2011Materials

    Figure5Level3CESEduPack2011Al,NiAlloys

  • 15

    MaximizeHeatFlowPerUnitMass:

    MaterialIndices:

    Slope=1

    Figure6Level2CESEduPackMaximizeHeatFlowperUnitMass

    Figure7Level3CESEduPack2011Al,NiAlloys

  • 16

    MaximizeHeatFlowPerUnitCost:

    MaterialIndices:

    Slope=1

    Figure8Level2CESEduPackMaximizeHeatFlowperUnitCost

    Figure9Level3CESEduPack2011Al,NiAlloys

  • 17

    Figure10Level3CESEduPackProcessrankofsectionthicknes

  • 18

    Costestimationresults

    Table1Materialcost

    Material UnitCost($/kg) Avg.TubingWeight

    (kg)

    TotalCost

    ($)

    Aluminum,2026,wrought,

    T3511

    2.81 91,000 255,710

    Aluminum,2024,wrought,T4 2.85 91,000 259,350

    Aluminum,6082,wrought,T4 2.58 91,000 234,780

    Table2Processcost

    Process CapitalCost

    ($)

    ToolingCost

    ($)

    TotalCost($)

    WireDrawing 95,200 9,520 104,720

    RollForming 667,000 19,000 686,000


Recommended