+ All Categories
Home > Documents > Load Flow 02

Load Flow 02

Date post: 02-Jun-2018
Category:
Upload: sofwan-fathy-zainul-abidin
View: 237 times
Download: 1 times
Share this document with a friend

of 77

Transcript
  • 8/11/2019 Load Flow 02

    1/77

    LOAD FLOW ANALYSIS

    Newton-Raphson

    1

  • 8/11/2019 Load Flow 02

    2/77

    NEWTON-RAPHSON POWER FLOWSOLUTION

    N-R method is mathematically superior to theGauss-Seidel.

    Less prone to divergence with ill-conditionedproblems.

    For large system it is more efficient andpractical.

    2

  • 8/11/2019 Load Flow 02

    3/77

    3

    n

    i j jiji V Y I

    Expressing this equation in polar form gives

    )( jijn

    i j jiji V Y I

    Complex power at bus i is

    iiii I V jQ P *

    )(1

    jij j

    n

    jijiiii V Y V jQ P

    Current entering bus i is given by

  • 8/11/2019 Load Flow 02

    4/77

    4

    )(1

    jij j

    n

    jijiiii V Y V jQ P

    Separating real and imaginary parts

    )cos(1

    jiijij j

    n

    jii Y V V P

    )sin(1

    jiijij j

    n

    jii Y V V Q

    We have two equations for each load bus (P and Q)and one equation for each voltage controlled bus (P).

    2 equationsper loadbus

    1 equationper voltagecontrol bus

  • 8/11/2019 Load Flow 02

    5/77

    5

    )cos(1

    jiijij j

    n

    jii Y V V P )sin(

    1 jiijij j

    n

    jii Y V V Q

    Expanding these equations in Taylors series and neglecting all higherorder terms results in the following set of linear equations .

    )(

    )(2

    )(

    )(

    2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    )(2

    )(

    )(

    2

    k n

    k

    k n

    k

    n

    k n

    k n

    n

    k k n

    k n

    k n

    n

    k k

    n

    k n

    k n

    n

    k k n

    k n

    k n

    n

    k k

    k n

    k

    k n

    k

    V

    V

    V Q

    V Q

    V

    Q

    V

    Q

    V P

    V P

    V P

    V P

    QQ

    QQ

    P P

    P P

    Q

    Q P

    P

  • 8/11/2019 Load Flow 02

    6/77

  • 8/11/2019 Load Flow 02

    7/77

    7

    )(

    )(2

    )(

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    2

    )(

    )(2

    2

    )(2

    )(

    )(2

    )(

    )(2

    k n

    k

    k n

    k

    n

    k n

    k n

    n

    k k n

    k

    n

    k

    n

    n

    k k

    n

    k n

    k n

    n

    k k n

    k n

    k n

    n

    k k

    k n

    k

    k n

    k

    V

    V

    V Q

    V Q

    V Q

    V Q

    V P

    V P

    V P

    V P

    QQ

    QQ

    P P

    P P

    Q

    Q P

    P

    The Jacobian matrix gives the linearized relationship between smallchanges in voltage angle i(k) and voltage magnitude Vi(k) withthe small changes in real and reactive power P i(k) and Q i(k) .

    Elements of the Jacobian matrix are the partial derivatives

    of P and Q, evaluated at i(k)

    and Vi(k)

  • 8/11/2019 Load Flow 02

    8/77

    8

    Elements of the Jacobian matrix are the partial derivatives of the P iand Q i equations, evaluated at i(k) and voltage magnitude Vi(k) .

    )cos(1

    jiijij jn

    jii Y V V P

    )sin(1

    jiijij j

    n

    jii Y V V Q

    In short form

    V J J

    J J

    Q

    P

    43

    21

  • 8/11/2019 Load Flow 02

    9/77

    9

    V J J J J

    Q P

    43

    21

    For voltage-controlled buses the voltage magnitudes are known

    if m buses are voltage-

    controlled , m equationsinvolving Q and V andcorresponding columnsof the Jacobian matrixare eliminated

    n-1 real power constraints

    and n-1-m reactive powercontraints

    Jacobian matrix is of order(2n-2-m)(2n-2-m)

    J2 =(n-1)(n-1-m)J1= (n-1)(n-1)

    J3 =(n-1-m)(n-1) J4 =(n-1-m)(n-1-m)

  • 8/11/2019 Load Flow 02

    10/77

    10

    Diagonal and off-diagonal elements of J 1:

    )sin( jiijij jn

    i ji

    i

    i Y V V P

    i jY V V P

    jiijij ji j

    i )sin(

    )cos(1

    jiijij j

    n

    jii Y V V P

  • 8/11/2019 Load Flow 02

    11/77

    11

    Diagonal and off-diagonal elements of J 2:

    )cos(cos2 jiijijn

    i j jiiiii

    i

    i

    Y V Y V V P

    i jY V V

    P jiijiji

    j

    i )cos(

    )cos(1

    jiijij j

    n

    jii Y V V P

  • 8/11/2019 Load Flow 02

    12/77

    12

    Diagonal and off-diagonal elements of J 3:

    )cos( jiijij jn

    i ji

    i

    i Y V V Q

    i jY V V Q

    jiijij ji j

    i )cos(

    )sin(1

    jiijij j

    n

    jii Y V V Q

  • 8/11/2019 Load Flow 02

    13/77

    13

    Diagonal and off-diagonal elements of J 4:

    )sin(sin2 jiijijn

    i j jiiiii

    i

    i Y V Y V V Q

    i jY V V Q jiijiji

    j

    i )sin(

    )sin(1

    jiijij j

    n

    jii Y V V Q

  • 8/11/2019 Load Flow 02

    14/77

    14

    The terms Pi(k) and Q i(k) are the difference betweenthe scheduled and calculated values (power residuals)

    k ii

    k i P P P

    k ii

    k i QQQ

    The new estimates for bus voltages

    k i

    k i

    k i

    1

    k i

    k i

    k i V V V

    1

  • 8/11/2019 Load Flow 02

    15/77

    Procedure for power flow solution byN-R method

    For load buses: Pi and Q i are specified Set voltage magnitude and equal to slack bus values

    15

    0.1)0(iV 0.0)0(

    i

    Calculate P i(k), Q i(k) , Pi(k) and Q i(k) using the equations:

    k ii

    k i P P P )cos(

    1 jiijij j

    n

    jii Y V V P

    k ii

    k i QQQ )sin(

    1 jiijij j

    n

    jii Y V V Q

  • 8/11/2019 Load Flow 02

    16/77

    Procedure for power flow solution byN-R method

    For voltage-controlled buses: Calculate P i(k) and Pi(k) using

    16

    k ii

    k i P P P

    )cos(1

    jiijij j

    n

    jii Y V V P

  • 8/11/2019 Load Flow 02

    17/77

    17

    The Jacobian matrix (J 1, J2, J3 and J 4)

    )sin(1

    jiijij j

    n

    ji

    i

    i Y V V P

    i jY V V P

    jiijij ji j

    i )sin(

    J1

  • 8/11/2019 Load Flow 02

    18/77

    18

    The Jacobian matrix (J 1, J2, J3 and J 4)

    )sin(1

    jiijij j

    n

    ji

    i

    i Y V V P

    i jY V V P

    jiijij ji j

    i )sin(

    )cos(cos21

    jiijijij

    n

    j jiiiii

    i

    i Y V V Y V V P

    i jY V V P

    jiijiji j

    i )cos(

    J1

    J2

  • 8/11/2019 Load Flow 02

    19/77

    19

    Calculate the Jacobian matrix (J 3 and J 4)

    )sin(sin21

    jiijij

    n

    j jiiiii

    i

    i Y V Y V V Q

    i jY V V Q jiijiji

    j

    i )sin(

    )cos(1

    jiijij j

    n

    ji

    i

    i Y V V Q

    i jY V Q

    jiijiji j

    i )cos(

    J3

    J4

  • 8/11/2019 Load Flow 02

    20/77

    20

    V J J

    J J

    Q

    P

    43

    21

    Solve the linear simultaneous equation

    Compute new voltage magnitudes and phase angles

    k i

    k i

    k i

    1 k i

    k i

    k i V V V

    1

    Continue until the residuals P i(k) and Q i(k) are less than the

    specified accuracy

    )(

    )(

    k i

    k i

    Q

    P

    Q

    P

    J J

    J J V

    1

    43

    21

    )()(

    )()(

    k i

    schi

    k i

    k i

    schi

    k i

    QQQ

    P P P

  • 8/11/2019 Load Flow 02

    21/77

    Consider a three bus power system1

    2

    3

    200MW

    bus to bus Series Z (R+jX) (pu) Series Y (G-jB) (pu)

    1-2 0.02+j0.04 10-j20

    1-3 0.01+j0.03 10-j30

    2-3 0.0125+j0.025 16-j32

    Line data Base 100 MVA

    21

    400 MW

    250 MvarSlack busV1 = 1.05 0

    V3 = 1.04

  • 8/11/2019 Load Flow 02

    22/77

    12

    3

    200MW

    22

    400 MW

    250 MvarSlack bus

    V1 = 1.05 0

    V3 = 1.04

    10-j20

    10-j30 16-j32

    622632163010

    321652262010

    301020105020

    j j j

    j j j

    j j j

    Y bus Convert to polar

    4902.6723095.675651.11677709.354349.10862278.31

    5651.11677709.354349.6313777.585651.11636068.224349.10862278.315651.11636068.221986.6885165.53

    bu sY

    Ybus matrix

  • 8/11/2019 Load Flow 02

    23/77

    23

    1 2

    3

    200 MW

    400 MW

    250 MvarSlack busV1 = 1.05 0

    V3 = 1.04

    10-j20

    10-j30 16-j32

    )cos(1 jiijij j

    n

    jii Y V V P

    )cos( 2223

    122 j j j j

    j

    Y V V P

    )cos()cos(

    )cos(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V P

    For bus 2

  • 8/11/2019 Load Flow 02

    24/77

    24

    )cos(1

    jiijij j

    n

    jii Y V V P

    )cos( 3333

    133 j j j j

    j

    Y V V P

    )cos()cos(

    )cos(

    3333333323323223

    133131133

    Y V V Y V V

    Y V V P

    For bus 3

    1 2

    3

    200 MW

    400 MW

    250 MvarSlack busV1 = 1.05 0

    V3 = 1.04

    10-j20

    10-j30 16-j32

  • 8/11/2019 Load Flow 02

    25/77

  • 8/11/2019 Load Flow 02

    26/77

    26

    Determine elements of Jacobian matrix

    )cos()cos(

    )cos(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V P

    )cos(cos

    )cos(

    3223233222222

    2

    122121122

    Y V V Y V

    Y V V P

    )sin()sin( 32232332122121122

    2

    Y V V Y V V P

    )sin( 322323323

    2

    Y V V P

    )cos(cos2

    )cos(

    322323322222

    12212112

    2

    Y V Y V

    Y V V P

  • 8/11/2019 Load Flow 02

    27/77

    27

    Determine elements of Jacobian matrix

    )cos()cos(

    )cos(

    3333333323323223

    133121133

    Y V V Y V V

    Y V V P

    33332323323223133131133

    coscos

    )cos(

    Y V Y V V

    Y V V P

    )sin( 233232232

    3

    Y V V P

    )sin()sin( 23323223133131133

    3

    Y V V Y V V P

    )cos( 23323232

    3 Y V V P

  • 8/11/2019 Load Flow 02

    28/77

    28

    )sin()sin(

    )sin(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V Q

    )sin(sin

    )sin(

    3223233222222

    2

    122121122

    Y V V Y V

    Y V V Q

    )cos()cos( 32232332122121122

    2

    Y V V Y V V Q

    )cos( 322323323

    2

    Y V V Q

    )sin(sin2

    )sin(

    322323322222

    12212112

    2

    Y V Y V

    Y V V Q

  • 8/11/2019 Load Flow 02

    29/77

    1 2

    3200MW

    29

    400 MW

    250 MvarSlack busV1 = 1.05 0

    V3 = 1.04

    10-j20

    10-j30 16-j32

    5.20.4100

    2504002 j jS 0.2

    100200

    3 P

    0.102 V 0.002 0.003

    Initial values

  • 8/11/2019 Load Flow 02

    30/77

    1 2

    32.00

    30

    4 pu

    2.5 puSlack busV1 = 1.05 0 V3 = 1.04 0.102 V

    0.002 0.003

    4902.6723095.675651.11677709.354349.10862278.31

    5651.11677709.354349.6313777.585651.11636068.22

    4349.10862278.315651.11636068.221986.6885165.53

    bu sY

    14.1

    )cos(cos

    )cos(

    03

    0223233

    022222

    202

    10

    2212110

    20

    2

    Y V V Y V

    Y V V P

  • 8/11/2019 Load Flow 02

    31/77

    1 2

    3

    2.00

    31

    4 pu

    2.5 puSlack busV1 = 1.05 0 V3 = 1.04 0.102 V

    0.002 0.003

    14.102 P 8600.2)14.1(0.40220

    2 P P P

    5616.003 P 4384.1)5616.0(0.20

    330

    3 P P P

    28.202 Q 2200.0)28.2(5.2

    022

    02 QQQ

    V J J

    J J

    Q

    P

    43

    21

  • 8/11/2019 Load Flow 02

    32/77

    32

    Evaluating the Jacobian MatrixV J J

    J J

    Q

    P

    43

    21

    )sin()sin( 32232332122121122

    2

    Y V V Y V V P

    4902.6723095.675651.11677709.354349.10862278.31

    5651.11677709.354349.6313777.585651.11636068.22

    4349.10862278.315651.11636068.221986.6885165.53

    bu sY

    V1 = 1.05 0

    V3 = 1.04

    0.102 V

    0.00

    2

    0.00

    3

    1.0

    1.0528.54

    0

    2

    2

    P

  • 8/11/2019 Load Flow 02

    33/77

    33

    Evaluating the Jacobian MatrixV J J

    J J

    Q

    P

    43

    21

    28.33)sin( 322323323

    2

    Y V V P

    86.24

    )cos(cos2

    )cos(

    322323322222

    12212112

    2

    Y V Y V

    Y V V P

  • 8/11/2019 Load Flow 02

    34/77

    34

    Evaluating the Jacobian MatrixV J J

    J J

    Q

    P

    43

    21

    28.33)sin( 233232232

    3

    Y V V P

    04.66

    )sin()sin( 23323223133131133

    3

    Y V V Y V V P

    16)cos( 23323232

    3 Y V V P

  • 8/11/2019 Load Flow 02

    35/77

    35

    Evaluating the Jacobian MatrixV J J

    J J

    Q

    P

    43

    21

    14.27

    )cos()cos( 32232332122121122

    2

    Y V V Y V V Q

    04.66)cos( 322323323

    2

    Y V V Q

    72.49

    )sin(sin2

    )sin(

    322323322222

    12212112

    2

    Y V Y V

    Y V V Q

    JJJJP

  • 8/11/2019 Load Flow 02

    36/77

    36

    72.4964.1614.27

    64.1604.6628.33

    86.2428.3328.54

    43

    21

    J J

    J J

    28.542

    2

    P 28.33

    3

    2

    P 86.24

    2

    2

    V P

    28.332

    3

    P 04.66

    3

    3

    P 162

    3

    V P

    14.272

    2

    Q04.66

    3

    2

    Q 72.492

    2

    V Q

    ?43

    21

    J J

    J J V J J

    J J

    Q

    P

    43

    21

  • 8/11/2019 Load Flow 02

    37/77

    37

    V J J

    J J

    Q

    P

    43

    21

    Solve the linear simultaneous equation

    Compute new voltage magnitudes and phase angles

    k i

    k i

    k i

    1 k i

    k i

    k i V V V

    1

    Continue until the residuals P i(k) and Q i(k) are less than thespecified accuracy

    )(

    )(

    k i

    k i

    Q

    P

    Q

    P

    J J

    J J V

    1

    43

    21

    )()(

    )()(

    k i

    schi

    k i

    k i

    schi

    k i

    QQQ

    P P P

  • 8/11/2019 Load Flow 02

    38/77

    38

    V J J

    J J

    Q

    P

    43

    21

    02

    03

    02

    72.4964.1614.27

    64.1604.6628.33

    86.2428.3328.54

    22.0

    4384.1

    86.2

    V

  • 8/11/2019 Load Flow 02

    39/77

    39

    026548.0

    44221.0

    5934.2

    0

    2

    03

    02

    V

    The new bus voltages in the first iteration

    97345.0)026548.0(1

    44221.0)44221.0(0

    5934.2)5934.2(0

    12

    13

    12

    V

    k i

    k i

    k i

    1

    k i

    k

    i

    k

    i V V V 1

  • 8/11/2019 Load Flow 02

    40/77

    40

    For the second iteration

    12

    13

    12

    103589.48402838.17538577.28

    379086.15656383.65981642.32

    302567.21765618.31724675.51

    050914.0

    021715.0

    099218.0

    V

    001767.0

    05641.0

    10023.0

    02

    13

    12

    V

    The new bus voltages in the 2nd iteration

    971684.0)001767.0(97345.0

    49862.0)05641.0(44221.069363.2)10023.0(5934.2

    22

    23

    2

    2

    V

    h h d

  • 8/11/2019 Load Flow 02

    41/77

    41

    For the third iteration

    22

    23

    22

    954870.47396932.17548205.28

    351628.15597585.65933865.32

    1474477.21693866.31596701.51

    000143.0

    000038.0

    000216.0

    V

    0000044.0

    00013751.0

    00217724.0

    22

    23

    22

    V

    The new bus voltages in the 3rd iteration

    97168.0

    49876.06963.2

    32

    33

    3

    2

    V

  • 8/11/2019 Load Flow 02

    42/77

    42

    The solution is assumed to converge after 3 iterationswith a maximum power mismatched of 2.510 -4

    4988.004.1

    696.297168.0

    3

    2

    V

    V

    puQ

    pu P puQ

    4085.1

    1842.24617.1

    1

    1

    3

  • 8/11/2019 Load Flow 02

    43/77

    Exercise

    In a two bus system, bus 1 is a slack bus with V 1=1.0 0pu. A load of 100 MW and 50 Mvar is taken from bus 2.

    The line impedance is z 12 = 0.12+j0.16 pu on a base of100 MVA.

    Using Gauss-Seidel method determine V 2. Continueuntil converge. How many iteration?.

    Repeat using Newton-Raphson. Perform untilconvergence. How many iteration?

    Discuss/compare between the two solutions. Explain how S 1 and real and reactive power loss in the

    line can be calculated.

    43

  • 8/11/2019 Load Flow 02

    44/77

    Solution with N-R

    44

    V1=1.0 0

    12

    50 Mvar

    100 MW

    z12 = 0.12+j0.16

    y12 = 3-j4 y12 = ?

    Ybus = ?

    13.53587.1265

    87.126513.535busY

    V1 1 0 0

  • 8/11/2019 Load Flow 02

    45/77

    45

    V1=1.0 0

    1 2

    50 Mvar

    100 MWy12 = 3-j4

    Power flow equations in polar forms:

    )cos(1

    jiijij j

    n

    jii Y V V P

    )sin(1

    jiijij j

    n

    jii Y V V Q

    V1=1 0 0

  • 8/11/2019 Load Flow 02

    46/77

    46

    V1=1.0 0

    1 2

    50 Mvar

    100 MWy12 = 3-j4

    )cos(1

    jiijij j

    n

    jii Y V V P

    13.53587.1265

    87.126513.535busY

    )13.53cos(5)87.126cos(5

    )13.53cos(5)87.126cos(5

    )cos()cos(

    )cos(

    2

    21212

    221212

    2222222212212112

    2221

    22

    V V V

    V V V V

    Y V V Y V V

    Y V V P j j j jn

    j

    At bus 2

    V1=1 0 0

  • 8/11/2019 Load Flow 02

    47/77

    47

    V1=1.0 0

    1 2

    50 Mvar

    100 MWy12 = 3-j4

    )sin(1 jiijij j

    n

    jii Y V V Q

    )13.53sin(5)87.126sin(5

    )13.53cos(5)87.126sin(5

    )sin()sin(

    )sin(

    2

    21212

    221212

    2222222212212112

    2221

    22

    V V V

    V V V V

    Y V V Y V V

    Y V V Q j j j jn

    j

    13.53587.1265

    87.126513.535busY

    At bus 2

  • 8/11/2019 Load Flow 02

    48/77

    48

    Partial derivatives of P 2 w.r.t. 2 and V2

    )13.53cos(5)87.126cos(5 2

    212122 V V V P

    )87.126sin(5 12122

    2

    V V P

    )13.53cos(52)87.126cos(5 21212

    2 V V V P

  • 8/11/2019 Load Flow 02

    49/77

    49

    Partial derivatives Q 2 w.r.t. 2 and V2

    )13.53sin(5)87.126sin(5 2

    212122 V V V Q

    )87.126cos(5 12122

    2

    V V Q

    )13.53sin(10)87.126sin(5 21212

    2 V V V Q

  • 8/11/2019 Load Flow 02

    50/77

    50

    Expressed Load in p.u. 5.00.1100

    501002 j

    jS

    0.102 V 0.002 Slack bus voltage is V 1 = 1.0 0 pu.Initial estimates :

    033

    )13.53cos(510087.126cos511

    )13.53cos(5)87.126cos(5

    2

    2021

    021

    02

    02 V V V P

    100.10220

    2 P P P

    Initial values?

    P2 = ?; Q 2 =?

  • 8/11/2019 Load Flow 02

    51/77

    51

    Load 5.00.12 jS

    0.102 V 0.002 Slack bus voltage is V 1 = 1.0 0 pu.Initial estimates :

    044

    )13.53sin(510087.126sin511

    )13.53sin(5)87.126sin(5

    2

    20

    21

    0

    21

    0

    2

    0

    2 V V V Q

    5.0050.00

    22

    0

    2

    QQQ

  • 8/11/2019 Load Flow 02

    52/77

    52

    The elements of Jacobian matrix

    )87.126sin(5 12122

    2 V V P

    )13.53cos(52)87.126cos(5 21212

    2 V V V P

    4)87.126sin(5112

    201

    P J

    3)13.53cos(512)87.126cos(152

    22

    V P J

  • 8/11/2019 Load Flow 02

    53/77

    53

    )87.126cos(5 12122

    2

    V V Q

    )13.53sin(10)87.126sin(5 21212

    2 V V V Q

    3)87.126cos(5112

    203

    Q J

    4)13.53sin(110)87.126sin(152

    204 V

    Q J

  • 8/11/2019 Load Flow 02

    54/77

    54

    The set of linear equations in the first iteration becomes

    02

    02

    43

    34

    5.0

    0.1

    V

    02

    02

    1

    5.0

    0.1

    43

    34V

    Solution of the matrix gives:

    2.0

    10.00

    2

    02

    V

    8.0)2.0(1

    7296.510.0)10.0(01

    2

    12

    V

    radian

    16.012.0

    12.016.0

    43

    34 1

    F h d i i

  • 8/11/2019 Load Flow 02

    55/77

    55

    7875.092.17075.2

    )13.53cos(58.0)7296.5(87.126cos518.0

    )13.53cos(5)87.126cos(5

    2

    2121

    121

    12

    12 V V V P

    2125.0)7875.0(0.11221

    2 P P P

    For the second iteration

    3844.056.29444.2

    )13.53sin(58.0)7296.5(87.126sin518.0

    )13.53sin(5)87.126sin(5

    2

    2121

    121

    12

    12 V V V Q

    1156.0)3844.0(50.012212

    QQQ

  • 8/11/2019 Load Flow 02

    56/77

    56

    The set of linear equations in the 2nd iteration becomes

    12

    12

    7195.27075.24157.19444.2

    1156.02125.0

    V

    Solution of the matrix gives:

    0773.0

    0350.01

    2

    12

    V

    7227.0)0773.0(8.0

    135.0)0350.0(10.02

    2

    22

    V

    radian

    CONTINUE WITH THE 3RD ITERATION!Good Luck

  • 8/11/2019 Load Flow 02

    57/77

    Example of Exam Question

    a) In the Gauss Seidel method there is termcalled acceleration factor. Explainacceleration factor briefly.

    (5 marks)

    57

    E l f E Q i

  • 8/11/2019 Load Flow 02

    58/77

    Example of Exam Questionb) For the power system shown, the bus admittance matrix Y bus

    in per unit is given by:

    58

    5.45.15.15.031

    5.15.05.75.262316293

    j j j

    j j j j j j

    For each bus k ,specify the bustype, anddeterminewhich of thevariables V k , k ,P k and Q k are

    input data andwhich areunknowns

    (2 marks)

  • 8/11/2019 Load Flow 02

    59/77

    The mismatch

  • 8/11/2019 Load Flow 02

    60/77

    60

    equation invector-matrixform of the

    Newton-Raphsonpower flowmethod

    (3 marks)

    V J J J J

    Q P

    43

    21 General equation

    The mismatch

  • 8/11/2019 Load Flow 02

    61/77

    61

    equation invector-matrixform of the

    Newton-Raphsonpower flowmethod

    (3 marks)

    2

    3

    2

    2

    2

    3

    2

    2

    2

    2

    3

    3

    3

    2

    3

    2

    2

    3

    2

    2

    2

    2

    3

    2

    V

    V QQQV P P P V P P P

    Q P

    P

    E l f E Q ti

  • 8/11/2019 Load Flow 02

    62/77

    Example of Exam Question

    62

    5.45.15.15.0315.15.05.75.262

    316293

    j j j j j j

    j j jAssume an initial

    estimate of voltageV 2 = 1.0/0 and therotor angle 3 = 0 ,calculate the busreal and reactivepower mismatchesto be used in thefirst iteration of theNewton-Raphson

    power flowmethod.

    (9 marks)

  • 8/11/2019 Load Flow 02

    63/77

    63

    V J J

    J J

    Q

    P

    43

    21

    Solve the linear simultaneous equation

    Compute new voltage magnitudes and phase angles

    k i

    k i

    k i

    1 k i

    k i

    k i V V V

    1

    Continue until the residuals P i(k) and Q i(k) are less than thespecified accuracy

    )(

    )(

    k i

    k i

    Q

    P

    Q

    P

    J J

    J J V

    1

    43

    21

    )()(

    )()(

    k i

    schi

    k i

    k i

    schi

    k i

    QQQ

    P P P

    JJP

  • 8/11/2019 Load Flow 02

    64/77

    64

    V J J

    J J

    Q

    P

    43

    21

    2

    3

    2

    2

    2

    3

    2

    2

    2

    2

    3

    2

    2

    3

    3

    2

    3

    3

    2

    2

    2

    2

    3

    2

    V

    V QQQV P

    V P

    P P

    P P

    Q P

    P

  • 8/11/2019 Load Flow 02

    65/77

    65

    5.45.15.15.031

    5.15.05.75.262

    316293

    j j j

    j j j

    j j j

    Y bus

    565.717134.4435.1085811.1435.1081623.3

    435.1085811.1565.719057.7435.1083246.6435.1081623.3435.1083246.6565.714868.9

    busY

  • 8/11/2019 Load Flow 02

    66/77

    66

    )cos(1

    jiijij j

    n

    jii Y V V P

    )cos( 2223

    122 j j j j

    j

    Y V V P

    )cos()cos(

    )cos(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V P

    For bus 2

  • 8/11/2019 Load Flow 02

    67/77

    67

    )cos()cos(

    )cos(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V P

    565.717134.4435.1085811.1435.1081623.3

    435.1085811.1565.719057.7435.1083246.6

    435.1081623.3435.1083246.6565.714868.9

    bu sY

    )435.108cos(5811.1

    )565.71cos(9057.7)435.108cos(3246.6

    3232

    2212122

    V V

    V V V P

  • 8/11/2019 Load Flow 02

    68/77

    68

    )cos()cos(

    )cos(

    3333333323323223

    133131133

    Y V V Y V V

    Y V V P

    565.717134.4435.1085811.1435.1081623.3

    435.1085811.1565.719057.7435.1083246.6435.1081623.3435.1083246.6565.714868.9

    bu sY

    )565.71cos(7134.4

    )435.108cos(5811.1)435.108cos(1623.32

    3

    2313133

    V

    V V V V P

  • 8/11/2019 Load Flow 02

    69/77

    69

    )sin()sin(

    )sin(

    3223233222222222

    122121122

    Y V V Y V V

    Y V V Q

    565.717134.4435.1085811.1435.1081623.3

    435.1085811.1565.719057.7435.1083246.6435.1081623.3435.1083246.6565.714868.9

    bu sY

    )435.108sin(5811.1

    )565.71sin(9057.7)435.108sin(3246.6

    3232

    2212122

    V V

    V V V Q

  • 8/11/2019 Load Flow 02

    70/77

    70

    )435.108cos(5811.1

    )565.71cos(9057.7)435.108cos(3246.6

    3232

    2212122

    V V

    V V V P

    002.100.1

    005.1

    23

    22

    11

    V V

    V

    11.0)00435.108cos(5811.102.10.1

    )565.71cos(9057.71)00435.108cos(3246.605.10.1 202 P

  • 8/11/2019 Load Flow 02

    71/77

    71

    )565.71cos(7134.4)435.108cos(5811.1)435.108cos(1623.3

    23

    2313133

    V V V V V P

    002.100.1

    005.1

    23

    22

    11

    V V

    V

    02.0

    )565.71cos(7134.402.1

    )435.108cos(5811.1102.1)435.108cos(1623.305.102.1

    )565.71cos(7134.4

    )435.108cos(5811.1)435.108cos(1623.3

    2

    23

    0231313

    03

    V

    V V V V P

  • 8/11/2019 Load Flow 02

    72/77

    72

    )435.108sin(5811.1

    )565.71sin(9057.7)435.108sin(3246.6

    3232

    2212122

    V V

    V V V Q

    002.100.1

    005.1

    23

    22

    11

    V V

    V

    33.0

    )435.108sin(5811.102.10.1)565.71sin(9057.71)435.108sin(3246.605.10.1

    2

    2Q

  • 8/11/2019 Load Flow 02

    73/77

    73

    )()(

    )()(

    k i

    schi

    k i

    k i

    schi

    k i

    QQQ

    P P P

    67.0)33.0(0.1

    62.0)02.0(6.0

    39.1)11.0(5.1

    )0(22

    )0(2

    )0(22

    )0(3

    )0(22

    )0(2

    QQQ

    P P P

    P P P

    sch

    sch

    sch

    Additional questions

  • 8/11/2019 Load Flow 02

    74/77

    Additional questions

    74

    5.45.15.15.0315.15.05.75.262

    316293

    j j j j j j

    j j jAssume an initialestimate of voltageV 2 = 1.0/0 and therotor angle 3 = 0 ,calculate JacobianMatrix to be used inthe first iteration ofthe Newton-Raphson powerflow method.

    (9 marks)

    A four bus power system data is shown in Tables Q1a and Q1b. Form a busd itt t i Y d d t i th lt t th d f fi t

  • 8/11/2019 Load Flow 02

    75/77

    75

    admittance matrix, Y bus , and determine the voltages at the end of firstiteration using Gauss-Seidel method. The reactive power constraint ongenerator 2 is 0.2 Q 2 1.0. Use flat start estimates to start calculation.

    (16 marks)

    Lines Admittance (per unit)1 2 2 j8.01 3 1 j4.02 3 0.666 j2.6642 4 1 j4.03 - 4 2 j8.0

    Bus Generation Load Bus Voltage Remarks

    P Q P Q V 1 - - 0.2 0.1 1.06 0 Slack

    2 0.5 - - - 1.04 - PV

    3 - - 0.4 0.3 - - PQ

    4 - - 0.3 0.1 - - PQ

  • 8/11/2019 Load Flow 02

    76/77

    76

    12382410

    82664.14666.3664.2666.041

    41664.2666.0664.14666.382

    04182123

    j j j

    j j j j

    j j j j

    j j j

    Y bu s

    The admittance bus matrix

    Lines Admittance (per unit)1 2 2 j8.01 3 1 j4.0

    2 3 0.666 j2.6642 4 1 j4.03 - 4 2 j8.0

    Wh i h f B 2? Wh i k ?

  • 8/11/2019 Load Flow 02

    77/77

    Bus 2 is PV busKnown P and V2 Unknown Q 2 and 2

    1108.0

    424323222121*0

    20

    2 V Y V Y V Y V Y V Q

    What is the type of Bus 2? What is known?What is unknown?

    Write the equation for Q 2

    Whats next?

    The value of Q2 is less than the minimum specified

    Reactive power is fixed at 0.2 (lower limit)


Recommended