+ All Categories
Home > Documents > Loss of all plastid ndh genes in Gnetales and conifers ... · The loss of ndh genes from the pt...

Loss of all plastid ndh genes in Gnetales and conifers ... · The loss of ndh genes from the pt...

Date post: 23-Oct-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
15
Curr Genet (2009) 55:323–337 DOI 10.1007/s00294-009-0249-7 123 RESEARCH ARTICLE Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary signiWcance for the seed plant phylogeny Thomas Werner Anthony Braukmann · Maria Kuzmina · Sana StefanoviT Received: 13 March 2009 / Revised: 22 April 2009 / Accepted: 27 April 2009 / Published online: 18 May 2009 © Springer-Verlag 2009 Abstract The exact phylogenetic position of Gnetales, a small, highly modiWed group of gymnosperms with an accelerated rate of molecular evolution, is one of the most challenging issues for seed plant systematics. Recent results from entire plastid genome (ptDNA) sequencing revealed the absence of the entire suite of plastid ndh genes in sev- eral species of Gnetales and the pine family (Pinaceae) potentially highlighting a major structural feature linking these two groups—concerted loss of all plastid genes for the NADH dehydrogenase complex. However, the precise extent of ndh gene loss in gymnosperms has not been sur- veyed. Using a slot-blot hybridization method, we probed all 11 ndh genes in 162 species from 70 of 85 gymnosperm genera. We Wnd that all ndh genes are absent across Gnetales and Pinaceae, but not in any other group of gym- nosperms. This feature represents either a major synapo- morphy for a clade consisting of these two lineages or, less likely, a convergent loss. Our survey substantially extends previous inferences based on more limited sampling and, if the former evolutionary interpretation is correct, it provides additional support for the contentious “gnepine” hypothe- sis, which places Gnetales as sister to Pinaceae. Keywords Gnetales · Conifers · ndh genes · Phylogeny · Seed plants · Slot-blot hybridization Introduction Arguably the most vexing outstanding question for the seed plant phylogeny remains the placement of Gnetales, a small group of gymnosperms currently circumscribed in three genera (Ephedra, Gnetum, and Welwitschia), despite inten- sive cladistic investigations over past two decades. Multiple permutations for the relationship of Gnetales to other extant lineages of spermatophytes (otherwise comprising Ginkgo, cycads, Pinaceae, cupressophyte conifers and Xowering plants) have been proposed by diVerent studies, using diVerent types of data and/or diVerent analytical methods (reviewed by Magallón and Sanderson 2002; Soltis et al. 2002; Burleigh and Mathews 2004, 2007a; Mathews 2009). However, because of their repeated recovery across many studies, six particular hypotheses on the placement of Gne- tales stand out as the most frequently invoked ones (Fig. 1). A series of early cladistic analyses based on morphological data and including relevant fossil taxa suggested the place- ment of Gnetales close to angiosperms (Crane 1985; Doyle and Donoghue 1986; Loconte and Stevenson 1990; Nixon et al. 1994), in accordance with the “anthophyte” hypothe- sis (Wettstein 1907). Later, some molecular studies recov- ered the same results, albeit only with weak support (StefanoviT et al. 1998; Rydin et al. 2002). However, most early analyses of molecular data resulted in so-called “gne- tales-sister” hypotheses, featuring Gnetales either sister to the rest of gymnosperms (“gnetales-sister I”; Hasebe et al. Communicated by R. Bock. Electronic supplementary material The online version of this article (doi:10.1007/s00294-009-0249-7) contains supplementary material, which is available to authorized users. T. W. A. Braukmann (&) · M. Kuzmina · S. StefanoviT Department of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N, Mississauga, ON L5L 1C6, Canada e-mail: [email protected] Present Address: M. Kuzmina Biodiversity Institute of Ontario, University of Guelph, 579 Gordon St., Guelph, ON N1G 2W1, Canada
Transcript
  • Curr Genet (2009) 55:323–337

    DOI 10.1007/s00294-009-0249-7

    RESEARCH ARTICLE

    Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary signiWcance for the seed plant phylogeny

    Thomas Werner Anthony Braukmann · Maria Kuzmina · Sana StefanoviT

    Received: 13 March 2009 / Revised: 22 April 2009 / Accepted: 27 April 2009 / Published online: 18 May 2009© Springer-Verlag 2009

    Abstract The exact phylogenetic position of Gnetales, asmall, highly modiWed group of gymnosperms with anaccelerated rate of molecular evolution, is one of the mostchallenging issues for seed plant systematics. Recent resultsfrom entire plastid genome (ptDNA) sequencing revealedthe absence of the entire suite of plastid ndh genes in sev-eral species of Gnetales and the pine family (Pinaceae)potentially highlighting a major structural feature linkingthese two groups—concerted loss of all plastid genes forthe NADH dehydrogenase complex. However, the preciseextent of ndh gene loss in gymnosperms has not been sur-veyed. Using a slot-blot hybridization method, we probedall 11 ndh genes in 162 species from 70 of 85 gymnospermgenera. We Wnd that all ndh genes are absent acrossGnetales and Pinaceae, but not in any other group of gym-nosperms. This feature represents either a major synapo-morphy for a clade consisting of these two lineages or, lesslikely, a convergent loss. Our survey substantially extendsprevious inferences based on more limited sampling and, ifthe former evolutionary interpretation is correct, it provides

    additional support for the contentious “gnepine” hypothe-sis, which places Gnetales as sister to Pinaceae.

    Keywords Gnetales · Conifers · ndh genes · Phylogeny · Seed plants · Slot-blot hybridization

    Introduction

    Arguably the most vexing outstanding question for the seedplant phylogeny remains the placement of Gnetales, a smallgroup of gymnosperms currently circumscribed in threegenera (Ephedra, Gnetum, and Welwitschia), despite inten-sive cladistic investigations over past two decades. Multiplepermutations for the relationship of Gnetales to other extantlineages of spermatophytes (otherwise comprising Ginkgo,cycads, Pinaceae, cupressophyte conifers and Xoweringplants) have been proposed by diVerent studies, usingdiVerent types of data and/or diVerent analytical methods(reviewed by Magallón and Sanderson 2002; Soltis et al.2002; Burleigh and Mathews 2004, 2007a; Mathews 2009).However, because of their repeated recovery across manystudies, six particular hypotheses on the placement of Gne-tales stand out as the most frequently invoked ones (Fig. 1).A series of early cladistic analyses based on morphologicaldata and including relevant fossil taxa suggested the place-ment of Gnetales close to angiosperms (Crane 1985; Doyleand Donoghue 1986; Loconte and Stevenson 1990; Nixonet al. 1994), in accordance with the “anthophyte” hypothe-sis (Wettstein 1907). Later, some molecular studies recov-ered the same results, albeit only with weak support(StefanoviT et al. 1998; Rydin et al. 2002). However, mostearly analyses of molecular data resulted in so-called “gne-tales-sister” hypotheses, featuring Gnetales either sister tothe rest of gymnosperms (“gnetales-sister I”; Hasebe et al.

    Communicated by R. Bock.

    Electronic supplementary material The online version of this article (doi:10.1007/s00294-009-0249-7) contains supplementary material, which is available to authorized users.

    T. W. A. Braukmann (&) · M. Kuzmina · S. StefanoviTDepartment of Biology, University of Toronto Mississauga, 3359 Mississauga Rd. N, Mississauga, ON L5L 1C6, Canadae-mail: [email protected]

    Present Address:M. KuzminaBiodiversity Institute of Ontario, University of Guelph, 579 Gordon St., Guelph, ON N1G 2W1, Canada

    123

    http://dx.doi.org/10.1007/s00294-009-0249-7

  • 324 Curr Genet (2009) 55:323–337

    1992; Goremykin et al. 1996; Samigullin et al. 1999;Frolich and Parker 2000; Mathews and Donoghue 2000) orsister to the rest of seed plants, including angiosperms(“gnetales-sister II”; Hamby and Zimmer 1992; Albertet al. 1994; Rai et al. 2003, 2008). Subsequent analyses,based mainly on sequences from multiple genes andgenomes, suggested a “gnetifer” hypothesis, in which Gne-tales are found as sister to all conifers (Chaw et al. 1997,2000). But one of the most surprising results of molecularplant systematics placed Gnetales within conifers, as sisterto Pinaceae, in what became known as the “gnepine”hypothesis (Bowe et al. 2000; Chaw et al. 2000; Gugerliet al. 2001; Qiu et al. 2007). More recently, another hypoth-esis rendering conifers paraphyletic has gained somemomentum. According to the “gnecup” hypothesis, Gne-tales are also placed within conifers, but as sister tocupressophytes, not Pinaceae (see Nickrent et al. 2000;Rydin and Källersjö 2002; Doyle 2006; Chumley et al.2008).

    One major cause of ambiguity for spermatophyte phy-logeny inference can be attributed to the ambiguous root-ing. While these six competing hypotheses seemsigniWcantly diVerent from one another when polarizedwith outgroups (i.e., rooted; Fig. 1a), they fall into only twocategories, each with an identical underlying unrooted tree(Fig. 1b). For example, it becomes apparent that there areno topological diVerences among the Wrst three major phy-logenetic hypotheses (anthophyte and gnetales-sister, I andII; Fig. 1a, 1–3) when the other land plant outgroups (repre-sented by grey arrows in Fig. 1) are pruned oV and theremainder is taken as an unrooted tree. Similarly, the only

    diVerence between the remaining three alternative scenar-ios within seed plants (gnetifer, gnepine, and gnecuphypotheses; Fig. 1a, 4–6), is the placement of the root forthe clade comprising conifers and Gnetales. Besides rootingissues, another important source of ambiguity is due to thesubstantial sequence divergence among living lineages ofseed plants and their nearest outgroups (ferns and lyco-pods). In seed plants, this is particularly evident in longbranches leading to angiosperms, Gnetales, and Pinaceae asseen in most molecular trees, regardless of whether derivedfrom plastid, nuclear, or mitochondrial sequences (Chawet al. 1997, 2000; Bowe et al. 2000; Rydin et al. 2002; Gra-ham and Iles 2009). In conjunction, these two phenomenafrequently lead to the strongly supported yet spurious treerooting due to long-branch attraction or related artifacts(Felsenstein 1983; Hendy and Penny 1989). Further com-plicating the issue, diVerent methods of analyses and diVer-ent optimality criteria frequently support alternativetopologies, even though based on the same sequences(Bowe et al. 2000; Rydin et al. 2002; Burleigh andMathews 2004, 2007b). Surprisingly, the removal of mostrapidly evolving sequences or sites was shown to have littleto no eVect on the inferences on higher-order seed plantrelationships (Burleigh and Mathews 2004; Rai et al. 2008),raising the question of the limits of nucleotide data(Mathews 2009).

    Molecular evidence is not limited only to primarysequence data. Additional sources of molecular data rele-vant for the number of open questions of seed plant phylog-eny can be sought from so-called “rare genomic markers”(e.g., Raubeson and Jansen 1992; Rokas and Holland 2000;

    Fig. 1 Correspondence between competing rooted and unrooted seedplant phylogenetic hypotheses. a Six most prominent rooted hypothe-ses of relationships among major lineages of seed plants. Arrows indi-cate alternative root placements as in b, 1–6 Parsimony reconstructionsof gene losses for the ndh gene suite are mapped (oval) under theassumption of irreversibility. b Unrooted trees showing that the

    underlying topologies for each of the two major sets of hypotheses areidentical when their respective outgroups, the other land plants (1–3)or other seed plants (4–6) are excluded. Note that these two unrootedtrees are incompatible. Taxon abbreviations: ANG angiosperms, CUPcupressophytes, CYC cycads, GIN Ginkgo, GNE Gnetales, GYM¡gymnosperms minus Gnetales, PIN Pinaceae

    123

  • Curr Genet (2009) 55:323–337 325

    Moreira and Philippe 2000; Gugerli et al. 2001). In thisregard, the plastid (pt) genome seems to be particularlypromising. In seed plants, this genome is highly conservedin size, structure, content, and synteny (Palmer 1991;Downie et al. 1991; Clegg et al. 1994). Because of theirrelatively infrequent evolutionary occurrence, any majorstructural mutation in the pt genome, such as inversions,gene/intron losses, and contractions/expansions of theinverted repeat (IR), are often considered to be more reli-able phylogenetic markers compared to sequences (e.g.,Downie et al. 1991; Downie and Palmer 1992; Raubesonand Jansen 1992; Doyle et al. 1995; Doyle et al. 1996;Bailey et al. 1997; Graham and Olmstead 2000a; Plunkettand Downie 2000; Jansen et al. 2007; but see McPhersonet al. 2004; Palmer et al. 2004 for cautionary views).

    The loss of ndh genes from the pt genome of some seedplant represents one such potentially informative structuralchange. The ndh genes encode subunits of the plastidNAD(P)H-dehydrogenase (Ndh) complex, a homologue ofmitochondrial complex I (Shinozaki et al. 1986). In plas-tids, the Ndh complex seems to be primarily involved withtransfer of electrons from stromal reductants to a plastoqui-none pool, a process commonly known as “chlororespira-tion” (Bennoun 2002; Peltier and Cournac 2002). Inaddition, involvement of this complex in photooxidativestress reduction in high light intensity, regulation of photo-synthesis by modulating the activity of cyclic electron Xowaround photosystem I, and/or leaf senescence regulationhave also been suggested (Casano et al. 2001; Bukhov andCarpentier 2004; Zapata et al. 2005; Diaz et al. 2007;Tallon and Quiles 2007; Romeau et al. 2007; Endo et al.2008).

    While the precise role of the Ndh complex is still uncer-tain, the ndh genes are known to be widespread in the auto-trophic seed plants and remain highly conserved over largeevolutionary distances, indicating the presence of strongselection pressure for their retention. Results of entire (orextensive) pt genome sequencing from a number of individ-ual studies indicate that the complete suite of ndh genes ispresent in Ginkgo (Leebens-Mack et al. 2005; Jansen et al.2007) and selected representatives of cycads (Wu et al.2007) and cupressophytes (Hirao et al. 2008) as well as in»60 species of diverse angiosperms (summarized mostrecently by Jansen et al. 2007). As suggested by Bungard(2004), the loss of ndh genes in Xowering plants seems tobe conWned only to parasitic plant lineages (dePamphilisand Palmer 1990; Olmstead et al. 2001; StefanoviT andOlmstead 2005; Funk et al. 2007; McNeal et al. 2007). Thislink with heterotrophy is further supported by the loss ofndh genes in a non-photosynthetic liverwort (Wickett et al.2008) and a green but potentially mycotrophic orchid(Chang et al. 2006). The absence of functional ndh genesfrom the pt genomes of fully autotrophic seed plants is

    presently reported only from Gnetales (Wu et al. 2007,2009; McCoy et al. 2008) and several genera of Pinaceae(Wakasugi et al. 1994; Cronn et al. 2008; Rai et al. 2008;Wu et al. 2009). If inferred to have happened concurrently,this loss could represent a strong synapomorphy for Gne-tales and Pinaceae (Chaw et al. 2000; Burleigh andMathews 2004; Wu et al. 2007). Despite the potential ofthis rare structural genomic character to bear signiWcantlyon the seed plant relationships and help choose amongalternative phylogenetic hypotheses, the full extent of pres-ence or absence of ndh genes among living gymnosperms isunknown.

    In the present study, we gathered data using a compre-hensive slot-blot hybridization survey of the complete suiteof plastid ndh genes with a dense sampling of gymno-sperms, the most extensive data matrix applied to this issueto date, in order to: (1) ascertain the extent and distributionof ndh gene losses across gymnosperms; and (2) assess theutility of these losses as phylogenetic markers for seedplant phylogeny.

    Materials and methods

    Taxon sampling

    In total, 70 of the 85 genera and 162 of the »1,070 speciesof extant gymnosperms were sampled in this study(Table 1), corresponding to 82% of their generic- and 15%of their species-richness, respectively. Our samplingencompasses all four major lineages of living gymno-sperms; however, the percentage of diversity coveragediVers among these groups (compare with Table 1). Ginkgobiloba is the sole living representative of Ginkgoales. Coni-fers, including both Pinaceae and cupressophytes, are rep-resented by a total of 131 species (out of 680; 20%),grouped into 59 genera (out of 70; 85%), from all sevencurrently recognized families. The species-richness ofcycads is represented to a signiWcantly lesser degree, by 14out of 305 species (5%), but our sampling covers 64% ofgenera (7 out of 11). Finally, 16 species of Gnetales aresampled in total (out of the 92 species; 17%), including allthree recognized genera/families. Representatives of fourgenera of autotrophic angiosperms (Table 1), the lastremaining lineage of extant seed plants, were also includedin our surveys as positive controls.

    DNA extraction and hybridization

    Total genomic DNA was isolated using the modiWed 2£CTAB method (Doyle and Doyle 1987). Fresh leaf materialwas used where available, but approximately two-thirds ofthe samples were either from silica-gel dried tissue or

    123

  • 326 Curr Genet (2009) 55:323–337

    Tab

    le1

    See

    d pl

    ant t

    axa

    surv

    eyed

    for

    the

    pres

    ence

    /abs

    ence

    of

    plas

    tid n

    dh(A

    -K)

    gene

    s

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Gin

    kgoa

    les

    [1/1

    ; 100

    %]

    Gin

    kgo

    bilo

    ba L

    .Q

    IU-9

    4015

    (IN

    D)

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Cyc

    adal

    es [

    7/11

    ;»64

    %]

    Cyc

    as m

    edia

    R. B

    r.N

    o vo

    uche

    r++

    ++++

    ++++

    ++++

    ++++

    ++++

    +++

    ++++

    Cyc

    as r

    evol

    uta

    Thu

    nb.

    QIU

    -940

    51 (

    IND

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Cyc

    as ta

    iwan

    iana

    Car

    ruth

    .SS

    -05-

    53 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++

    +++

    Dio

    on s

    pinu

    losu

    m D

    yer

    ex E

    ichl

    .SS

    -03-

    72 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++

    +++

    Enc

    epha

    lart

    os a

    lten

    stei

    nii L

    ehm

    .SS

    -05-

    57 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++

    +++

    Enc

    epha

    lart

    os b

    arte

    ri C

    arru

    th. e

    x M

    iq.

    SS-0

    5-11

    8 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    +++

    ++

    ++

    Enc

    epha

    lart

    os fe

    rox

    Ber

    tol.

    f.SS

    -05-

    116

    (TR

    TE

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Enc

    epha

    lart

    os lo

    ngif

    oliu

    s L

    ehm

    .Q

    IU-9

    5127

    (IN

    D)

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Mac

    roza

    mia

    com

    mun

    is L

    .A.S

    . Joh

    nson

    SS-0

    5-11

    9 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Cer

    atoz

    amia

    mex

    ican

    a B

    rong

    n.Q

    IU-9

    4009

    (IN

    D)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Stan

    geri

    a er

    iopu

    s (K

    unze

    ) B

    aill.

    QIU

    -940

    78 (

    IND

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Zam

    ia X

    orid

    ana

    A.D

    C.

    QIU

    -950

    35 (

    IND

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Zam

    ia fu

    rfur

    acea

    Ait

    .SS

    -05-

    56 (

    TR

    TE

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Zam

    ia p

    umil

    a L

    .SS

    -05-

    58 (

    TR

    TE

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Gne

    tale

    s [3

    /3; 1

    00%

    ]

    Eph

    edra

    ant

    isyp

    hili

    tica

    Ber

    land

    ex

    C.A

    . Mey

    .Q

    IU-9

    4004

    (IN

    D)

    ++

    ¡¡

    ¡+

    ¡¡

    ¡¡

    ¡E

    phed

    ra v

    irid

    is C

    ovill

    eSS

    -05-

    21 (

    TR

    TE

    ¡+

    ¡¡

    ¡+

    ¡¡

    Eph

    edra

    tria

    ndra

    Tul

    .SS

    -05-

    100

    (TR

    TE

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡+

    Eph

    edra

    sax

    atil

    is (

    Sta

    pf)

    Roy

    le e

    x Fl

    orin

    SS-0

    5-18

    8 (T

    RT

    E)

    ¡+

    ¡¡

    ¡¡

    ¡¡

    ¡¡

    ¡E

    phed

    ra m

    onos

    perm

    a J.

    G. G

    mel

    . ex

    C.A

    . Mey

    .SS

    -05-

    35 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ¡+

    ¡+

    Eph

    edra

    sin

    ica

    Stap

    fSS

    -05-

    112

    (TR

    TE

    )+

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡+

    ¡¡

    Eph

    edra

    dis

    tach

    ya L

    .SS

    -05-

    25 (

    TR

    TE

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡+

    ¡¡

    Eph

    edra

    cam

    pylo

    poda

    C.A

    . Mey

    .SS

    -05-

    60 (

    TR

    TE

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡¡

    Eph

    edra

    frag

    ilis

    Fre

    sen.

    SS-0

    5-61

    (T

    RT

    E)

    ++

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡¡

    ¡E

    phed

    ra m

    inut

    a Fl

    orin

    SS-0

    5-18

    1 (T

    RT

    E)

    ¡¡

    ¡¡

    ¡¡

    ¡¡

    ¡¡

    ¡E

    phed

    ra p

    roce

    ra C

    .A. M

    ey.

    SS-0

    5-34

    (T

    RT

    E)

    ¡+

    ¡¡

    ¡¡

    ¡¡

    ¡¡

    ¡G

    netu

    m g

    nem

    on L

    .Q

    IU-9

    4005

    (IN

    D)

    ++

    ¡+

    ¡+

    ¡¡

    ¡¡

    ¡G

    netu

    m le

    ybol

    dii T

    ul.

    QIU

    -940

    17 (

    IND

    )+

    ++

    ¡¡

    ¡¡

    ++

    ¡+

    ¡¡

    Gne

    tum

    sp.

    SS-0

    4-11

    9 (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡¡

    ¡G

    netu

    m u

    la B

    rong

    n.SS

    -06-

    214

    (TR

    TE

    )+

    ¡+

    ¡¡

    ¡+

    ¡¡

    123

  • Curr Genet (2009) 55:323–337 327

    Tab

    le1

    cont

    inue

    d

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Wel

    wits

    chia

    mir

    abili

    s H

    ook.

    f.

    SS-0

    5-20

    (T

    RT

    E)

    ++

    ¡¡

    ++

    ¡+

    ¡¡

    ¡

    Pina

    ceae

    [10

    /11;

    »91

    %]

    Abi

    es b

    alsa

    mea

    (L

    .) M

    ill.

    SS-0

    5-20

    8 (T

    RT

    E)

    ++

    ¡¡

    ¡¡

    ¡+

    ¡¡

    +

    Abi

    es c

    onco

    lor

    (Gor

    don

    & G

    lend

    .) H

    ildeb

    r.SS

    -05-

    157

    (TR

    TE

    )+

    ++

    ¡+

    ¡¡

    ++

    ¡¡

    ¡+

    Abi

    es W

    rma

    Sieb

    old

    & Z

    ucc.

    QIU

    -962

    69 (

    IND

    )+

    ++

    ¡+

    ¡¡

    ++

    ¡¡

    ¡¡

    Abi

    es h

    omol

    epis

    Sie

    bold

    & Z

    ucc.

    QIU

    -962

    24 (

    IND

    )+

    ++

    ¡?

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡+

    Abi

    es k

    orea

    na E

    .H. W

    ilson

    SS-0

    5-39

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡¡

    +

    Abi

    es la

    sioc

    arpa

    (H

    ook.

    ) N

    utt.

    SS-0

    5-15

    8 (T

    RT

    E)

    ++

    ¡+

    ¡+

    ¡¡

    +

    Ket

    elee

    ria

    davi

    dian

    a B

    eiss

    n.Q

    IU-9

    6248

    (IN

    D)

    ++

    ¡¡

    ¡¡

    ¡¡

    ¡K

    etel

    eeri

    a sp

    .SS

    -06-

    224

    (TR

    TE

    )+

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡¡

    Tsu

    ga c

    anad

    ensi

    s C

    arri

    ère

    QIU

    -940

    77 (

    IND

    )+

    ++

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pse

    udol

    arix

    am

    abil

    is R

    ehde

    rSS

    -06-

    206

    (TR

    TE

    )+

    ++

    ¡+

    ¡¡

    ++

    ¡¡

    ¡+

    Pse

    udot

    suga

    men

    zies

    ii (M

    irb.

    ) Fr

    anco

    SS-0

    3-10

    8 (T

    RT

    E)

    ++

    ¡¡

    ¡¡

    ¡¡

    ¡¡

    +

    Lar

    ix d

    ecid

    ua M

    ull.

    QIU

    -962

    42 (

    IND

    )+

    ++

    ¡+

    ¡¡

    ¡¡

    ++

    ¡¡

    ¡++

    Lar

    ix la

    rcin

    a (D

    u R

    oi)

    K. K

    och

    SS-0

    5-37

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡¡

    ++

    Pic

    ea a

    bies

    (L

    .) H

    . Kar

    st.

    SS-0

    3-99

    (T

    RT

    E)

    ++

    ¡¡

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea e

    xcel

    sa L

    ink.

    SS-0

    3-10

    5 (T

    RT

    E)

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea g

    lehn

    ii M

    ast.

    SS-0

    5-15

    5 (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea e

    ngel

    man

    nii P

    arry

    ex

    Eng

    elm

    .SS

    -05-

    210

    (TR

    TE

    )+

    ++

    ¡+

    ++

    ¡¡

    ¡++

    Pic

    ea g

    lauc

    a (M

    oenc

    h) V

    oss

    SS-0

    5-20

    9 (T

    RT

    E)

    ++

    ++

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea p

    unge

    ns E

    ngel

    m.

    SS-0

    3-10

    6 (T

    RT

    E)

    ++

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea m

    aria

    na B

    ritto

    n St

    erns

    & P

    ogge

    nb.

    SS-0

    5-15

    6 (T

    RT

    E)

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Pic

    ea o

    mor

    ika

    (Pan

    biT)

    Pur

    k.SS

    -03-

    96 (

    TR

    TE

    )+

    ++

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pic

    ea o

    rien

    tali

    s (L

    .) L

    ink

    SS-0

    3-10

    0 (T

    RT

    E)

    ++

    ¡¡

    ++

    ¡+

    ¡+

    ¡¡

    ++

    Cat

    haya

    arg

    yrop

    hyll

    a C

    hun

    & K

    uang

    SS-0

    6-23

    3 (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡¡

    ¡¡

    ¡P

    inus

    ari

    stat

    a E

    ngel

    m.

    SS-0

    5-40

    (T

    RT

    E)

    ++

    ¡¡

    ¡¡

    ¡+

    ¡¡

    +

    Pin

    us q

    uadr

    ifol

    ia P

    arry

    ex

    Parl

    .SS

    -06-

    222

    (TR

    TE

    )+

    ¡+

    ¡¡

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us c

    embr

    a L

    .SS

    -05-

    104

    (TR

    TE

    )+

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡++

    Pin

    us p

    arviX

    ora

    Sieb

    . & Z

    ucc.

    SS-0

    5-42

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pin

    us s

    trob

    us L

    .SS

    -05-

    36 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us w

    alli

    chia

    na A

    .B. J

    acks

    .SS

    -03-

    97 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us c

    anar

    iens

    is C

    . Sm

    .SS

    -05-

    64 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us h

    eldr

    eich

    ii C

    hris

    tSS

    -03-

    98 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ++

    ¡¡

    ¡+

    Pin

    us k

    esiy

    a R

    oyle

    ex

    Gor

    don

    SS-0

    6-22

    3 (T

    RT

    E)

    ++

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡

    123

  • 328 Curr Genet (2009) 55:323–337

    Tab

    le1

    cont

    inue

    d

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Pin

    us n

    igra

    J.F

    . Arn

    old

    SS-0

    3-10

    7 (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pin

    us p

    inas

    ter

    Aito

    nSS

    -05-

    65 (

    TR

    TE

    )+

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us p

    inea

    L.

    SS-0

    5-63

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pin

    us r

    esin

    osa

    Aito

    nSS

    -05-

    164

    (TR

    TE

    )+

    ¡+

    ¡¡

    ++

    ¡¡

    ¡++

    Pin

    us c

    onto

    rta

    Dou

    glas

    ex

    Lou

    don

    SS-0

    5-20

    5 (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pin

    us c

    oulte

    ri D

    . Don

    SS-0

    5-28

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    ++

    Pin

    us r

    adia

    ta D

    . Don

    SS-0

    5-99

    (T

    RT

    E)

    ++

    ¡¡

    ¡+

    ¡+

    ¡¡

    +

    Ced

    rus

    atla

    ntic

    a M

    anet

    tiSS

    -03-

    101

    (TR

    TE

    ++

    ¡+

    ¡¡

    ¡¡

    ¡+

    ¡¡

    ¡¡

    Ced

    rus

    deod

    ara

    (Rox

    b. e

    x L

    ambe

    rt)

    G. D

    onQ

    IU-9

    6265

    (IN

    D)

    ¡+

    ¡+

    ¡¡

    ¡¡

    ¡

    Ara

    ucar

    iace

    ae [

    3/3;

    100

    %]

    Aga

    this

    sp.

    SS-0

    5-66

    (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Aga

    this

    rob

    usta

    (F.

    Mue

    ll.)

    F.M

    . Bai

    ley

    SS-0

    6-18

    0 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Ara

    ucar

    ia a

    rauc

    ana

    K. K

    och

    SS-0

    5-11

    7 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Ara

    ucar

    ia b

    idw

    illi

    i Hoo

    k.SS

    -05-

    67 (

    TR

    TE

    )++

    ++¡

    +++

    ++++

    +++

    ++++

    +++

    +++

    Ara

    ucar

    ia c

    unni

    ngha

    mii

    Aito

    n ex

    D. D

    onSS

    -05-

    106

    (TR

    TE

    )++

    ++¡

    +++

    ++++

    +++

    ++++

    +?

    +++

    Ara

    ucar

    ia h

    eter

    ophy

    lla

    (Sal

    isb.

    ) Fr

    anco

    QIU

    -962

    20 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Ara

    ucar

    ia r

    ulei

    F. M

    uell.

    SS-0

    5-10

    1 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ?++

    ++

    Ara

    ucar

    ia s

    p.SS

    -05-

    21 (

    TR

    TE

    )++

    ++¡

    +++

    ++++

    ++++

    ++++

    ++?

    ++++

    Wol

    lem

    ia n

    obil

    is W

    .G. J

    ones

    K.D

    . Hil

    l & J

    .M.A

    llen

    SS-0

    5-17

    6 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Podo

    carp

    acea

    e [1

    4/19

    ;»74

    %]

    Phy

    lloc

    ladu

    s al

    pinu

    s H

    ook.

    f.

    SS-0

    6-23

    1 (T

    RT

    E)

    ++++

    ?+

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Phy

    lloc

    ladu

    s as

    plen

    ifol

    ius

    (Lab

    ill.)

    Hoo

    k.f.

    SS-0

    6-19

    9 (T

    RT

    E)

    ++++

    ??

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Hal

    ocar

    pus

    bidw

    illii

    (Hoo

    k. f

    . ex

    T. K

    irk)

    Qui

    nnSS

    -06-

    201

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Lag

    aros

    trob

    os c

    olen

    soi (

    Hoo

    k.)

    Qui

    nnSS

    -06-

    187

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Pru

    mno

    pity

    s an

    dina

    (P

    oepp

    . ex

    End

    l.) d

    e L

    aub.

    SS-0

    6-18

    8 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Sund

    acar

    pus

    amar

    a (B

    lum

    e) C

    ·N. P

    age

    SS-0

    6-17

    7 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Saxe

    goth

    ea c

    onsp

    icua

    Lin

    dl.

    QIU

    -962

    43 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    Mic

    rost

    robo

    s W

    tzge

    rald

    ii (

    F.M

    uell

    .)

    J.G

    arde

    n &

    L.A

    .S. J

    ohns

    onSS

    -06-

    232

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Acm

    opyl

    e pa

    nche

    ri P

    ilg.

    SS-0

    6-18

    2 (T

    RT

    E)

    ++++

    ??

    ++++

    ++++

    ++++

    ++?

    +?

    ++

    Dac

    ryca

    rpus

    dac

    rydi

    oide

    s (A

    .Ric

    h.)

    de L

    aub.

    SS-0

    6-18

    6 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++?

    ++++

    +++

    ++

    Dac

    rydi

    um c

    upre

    ssin

    um S

    ol. e

    x L

    amb.

    SS-0

    5-12

    0 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Fal

    cati

    foli

    um s

    p.SS

    -06-

    179

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Pod

    ocar

    pus

    cori

    aceu

    s R

    ich.

    & A

    . Ric

    h.SS

    -05-

    111

    (TR

    TE

    )++

    ++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    123

  • Curr Genet (2009) 55:323–337 329

    Tab

    le1

    cont

    inue

    d

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Pod

    ocar

    pus

    cost

    alis

    C. P

    resl

    QIU

    -961

    49 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Pod

    ocar

    pus

    elat

    us E

    ndl.

    SS-0

    5-10

    7 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Pod

    ocar

    pus

    falc

    atus

    (T

    hunb

    .) M

    irb.

    SS-0

    5-11

    4 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Pod

    ocar

    pus

    fasc

    icul

    us d

    e L

    aub.

    QIU

    -961

    48 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    Pod

    ocar

    pus

    gray

    ae d

    e L

    aub.

    SS-0

    6-20

    4 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Pod

    ocar

    pus

    lati

    foli

    us R

    . Br.

    SS-0

    5-17

    9 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    ++

    ++

    Pod

    ocar

    pus

    mac

    roph

    yllu

    s (T

    hunb

    .) D

    . Don

    QIU

    -950

    06 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Pod

    ocar

    pus

    niva

    lis

    Hoo

    k.SS

    -05-

    103

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Pod

    ocar

    pus

    sp.

    SS-0

    3-39

    (T

    RT

    E)

    ++++

    ¡¡

    ++++

    ++++

    ++++

    ++++

    ¡+

    ++

    Pod

    ocar

    pus

    tota

    ra G

    . Ben

    n. e

    x D

    . Don

    SS-0

    5-17

    8 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Nag

    eia

    nagi

    Bri

    tton

    & P

    . Wils

    onQ

    IU-9

    6146

    (IN

    D)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Afr

    ocar

    pus

    grac

    ilio

    r (P

    ilg.)

    C·N

    . Pag

    eSS

    -03-

    55 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    Ret

    roph

    yllu

    m c

    ompt

    onii

    (B

    uchh

    .) C

    ·N. P

    age

    SS-0

    6-18

    1 (T

    RT

    E)

    ++++

    ??

    ++++

    ++++

    ??

    ++?

    ++?

    ++

    Ret

    roph

    yllu

    m m

    inor

    (C

    arri

    ère)

    C·N

    . Pag

    eSS

    -06-

    178

    (TR

    TE

    )++

    ++?

    ?++

    ++++

    ++?

    ?++

    ?+

    ?++

    Tax

    acea

    e [3

    /5; 6

    0%]

    Am

    ento

    taxu

    s fo

    rmas

    ana

    H.L

    . Li

    SS-0

    6-21

    1 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Tax

    us b

    acca

    ta L

    .SS

    -05-

    109

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Tax

    us c

    anad

    ensi

    s M

    arsh

    all

    SS-0

    5-41

    (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Tax

    us c

    uspi

    data

    Sie

    b. &

    Zuc

    c.SS

    -05-

    38 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    Tax

    us £

    med

    ia R

    ahde

    rQ

    IU-9

    6218

    (IN

    D)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Tor

    reya

    cal

    ifor

    nica

    Tor

    r.SS

    -05-

    121

    (TR

    TE

    )++

    +++

    +++

    ++++

    +++

    ++++

    +++

    ++++

    Tor

    reya

    nuc

    ifer

    a S

    ieb.

    & Z

    ucc.

    SS-0

    5-18

    0 (T

    RT

    E)

    ++++

    ¡¡

    ++++

    +++

    ++++

    ++++

    ++

    Tor

    reya

    taxi

    folia

    Arn

    .Q

    IU-9

    6251

    (IN

    D)

    ++++

    +++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Cep

    halo

    taxa

    ceae

    [1/

    1; 1

    00%

    ]

    Cep

    halo

    taxu

    s ha

    rrin

    gton

    ia K

    . Koc

    hSS

    -03-

    102

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    Cep

    halo

    taxu

    s fo

    rtun

    ei H

    ook.

    SS-0

    6-22

    1 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    +++

    ++

    Scia

    dopi

    tyac

    eae

    [1/1

    ; 100

    %]

    Scia

    dopi

    tys

    vert

    icill

    ata

    Sieb

    . & Z

    ucc.

    QIU

    -960

    87 (

    IND

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Cup

    ress

    acea

    e s.

    l. [2

    7/30

    ; 90%

    ]

    Cun

    ning

    ham

    ia la

    nceo

    lata

    Hoo

    k.Q

    IU-9

    6254

    (IN

    D)

    ++++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Tai

    wan

    ia X

    ousi

    ana

    Gau

    ssen

    QIU

    -962

    66 (

    IND

    )++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Ath

    rota

    xis

    sp.

    SS-0

    6-23

    0 (T

    RT

    E)

    ++++

    ?+

    ++++

    ++?

    ++++

    ++++

    ++++

    ++

    Sequ

    oia

    sem

    perv

    iren

    s E

    ndl.

    QIU

    -960

    91 (

    IND

    )++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    ++++

    Sequ

    oiad

    endr

    on g

    igan

    teum

    (Lin

    dl.)

    J. B

    uchh

    olz

    QIU

    -960

    89 (

    IND

    )++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    123

  • 330 Curr Genet (2009) 55:323–337

    Tab

    le1

    cont

    inue

    d

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Cry

    ptom

    eria

    japo

    nica

    D. D

    onQ

    IU-9

    6267

    (IN

    D)

    ++++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Gly

    ptos

    trob

    us p

    ensi

    lis

    (lin

    eatu

    s) K

    . Koc

    hQ

    IU-9

    6264

    (IN

    D)

    ++++

    +++

    ?++

    ++++

    ++++

    ++++

    ?++

    ++

    Tax

    odiu

    m d

    isti

    chum

    H·B

    . & K

    .SS

    -05-

    113

    (TR

    TE

    )++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    ++++

    Aus

    troc

    edru

    s ch

    ilen

    sis

    (D.D

    on) F

    lori

    n &

    Bou

    telje

    SS-0

    6-19

    0 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Lib

    oced

    rus

    plum

    osa

    Dru

    ceSS

    -06-

    196

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Pil

    gero

    dend

    ron

    uvif

    erum

    Flo

    rin

    SS-0

    6-20

    2 (T

    RT

    E)

    ++++

    ++

    ??

    ?++

    ?++

    ++++

    ?++

    ++

    Act

    inos

    trob

    us a

    rena

    rius

    C.A

    . Gar

    dner

    SS-0

    6-22

    6 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    +++

    ++

    Cal

    litri

    s dr

    umm

    ondi

    i (Pa

    rl.)

    F. M

    uell

    .Q

    IU-9

    6250

    (IN

    D)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Dis

    elm

    a ar

    cher

    i Hoo

    k. f

    .SS

    -06-

    203

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    Fit

    zroy

    a cu

    pres

    soid

    es I

    .M. J

    ohns

    t.SS

    -06-

    200

    (TR

    TE

    )++

    ++¡

    +++

    ++++

    ++++

    ?++

    ++++

    ++++

    Thu

    ja o

    ccid

    enta

    lis L

    .Q

    IU-9

    6223

    (IN

    D)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Thu

    ja o

    rien

    tali

    s L

    .SS

    -05-

    69 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Thu

    ja p

    lica

    ta D

    onn

    ex D

    . Don

    SS-0

    5-21

    1 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Thu

    jops

    is d

    olab

    rata

    Sie

    bold

    & Z

    ucc.

    QIU

    -962

    46 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Fok

    ieni

    a ho

    dgin

    sii A

    . Hen

    ry &

    H·H

    . Tho

    mas

    SS-0

    6-19

    8 (T

    RT

    E)

    ++++

    ¡¡

    ++++

    ++++

    +++

    +++

    ++

    ++

    Cha

    mae

    cypa

    ris

    obtu

    sa S

    iebo

    ld &

    Zuc

    c.SS

    -05-

    187

    (TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Cha

    mae

    cypa

    ris

    pisi

    fera

    (S

    iebo

    ld &

    Zuc

    c.)

    End

    l.SS

    -05-

    161

    (TR

    TE

    )++

    +++

    +?

    ++++

    ++++

    ?++

    ++++

    ++++

    Cha

    mae

    cypa

    ris

    thyo

    ides

    (L

    .)

    Bri

    tton

    Ster

    ns &

    Pog

    genb

    .SS

    -05-

    74 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Tet

    racl

    inis

    art

    icul

    ata

    Mas

    t.SS

    -05-

    72 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Cal

    oced

    rus

    decu

    rren

    s (T

    orr.

    ) Fl

    orin

    QIU

    -962

    45 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Mic

    robi

    ota

    decu

    ssat

    a K

    om.

    QIU

    -962

    52 (

    IND

    )++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    ++++

    Pla

    tycl

    adus

    ori

    enta

    lis

    (L.)

    Fra

    nco

    SS-0

    6-19

    2 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Cup

    ress

    us s

    empe

    rvir

    ens

    L.

    SS-0

    5-12

    2 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Cup

    ress

    us c

    ashm

    eria

    na R

    oyle

    ex

    Car

    rier

    eSS

    -06-

    01 (

    TR

    TE

    )++

    ++?

    +++

    ++++

    ++++

    ?++

    ++?

    ++++

    Cup

    ress

    us d

    upre

    zian

    a A

    . Cam

    usSS

    -05-

    70 (

    TR

    TE

    )++

    +++

    +++

    ++++

    ++++

    ?++

    ++?

    ++++

    Juni

    peru

    s ch

    inen

    sis

    L.

    SS-0

    5-18

    3 (T

    RT

    E)

    ++++

    ¡+

    ++++

    ++++

    ++++

    ++++

    ?++

    ++

    Juni

    peru

    s co

    mm

    unis

    L.

    SS-0

    5-83

    (T

    RT

    E)

    ++++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Juni

    peru

    s ho

    rizo

    ntal

    is M

    oenc

    hSS

    -05-

    160

    (TR

    TE

    )++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    ++++

    Juni

    peru

    s in

    dica

    Ber

    tol.

    QIU

    -962

    70 (

    IND

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Juni

    peru

    s pr

    ocum

    bens

    Sie

    bold

    SS-0

    5-15

    9 (T

    RT

    E)

    ++++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Juni

    peru

    s sa

    bina

    L.

    SS-0

    5-16

    3 (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    Juni

    peru

    s sc

    opul

    orum

    Sar

    g.SS

    -05-

    162

    (TR

    TE

    )++

    +++

    ++++

    ++++

    ++++

    +++

    ++++

    ++++

    Juni

    peru

    s vi

    rgin

    iana

    L.

    SS-0

    5-84

    (T

    RT

    E)

    ++++

    +++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    123

  • Curr Genet (2009) 55:323–337 331

    herbarium specimens. Quality of DNA varied signiWcantly,from high molecular weight to considerably degraded(from some herbarium material). Because of the poor qual-ity of a number of samples, frequently accompanied also bylimited quantity, the standard restriction endonucleasedigestion followed by electrophoretic separation approachto Southern hybridization (Sambrook et al. 1989) could notbe used. Instead, the slot-blot hybridization method wasused, as described in detail by Doyle et al. (1995).

    In brief, a slot-blot apparatus (Bio-Rad) was used tomake seven sets of pseudoreplicate Wlter-blots, followingthe manufacturer’s protocol. Approximately 500–800 ng oftotal DNA (per sample and per set) was bound to Immobi-lon-Ny + nylon membrane (Millipore). DNAs from severalspecies with sequenced pt genomes (e.g., Nicotiana, Aco-rus, Amborella, Ginkgo, or Welwitschia) were included oneach membrane as positive or negative controls. Mem-branes were prehybridized and hybridized at 60°C–62°C in5£ standard saline citrate (SSC), 0.1% SDS, 50 mM Tris(pH 8.0), 10 mM EDTA, 2£ Denhardt’s solution, and 5%dextran sulfate. After hybridization, Wlters were washedtwice for 30–45 min in 0.5% SDS and 2£ SSC at thehybridization temperature. Probes were labeled with 32Pusing random oligonucleotide primers (Invitrogen). Autora-diography was carried out using intensifying screens at¡80°C for 18–48 h. Filters were stripped of probe betweenhybridizations by boiling twice for 5–10 min in 0.1% SSC.The absence of carryover signal from previous hybridiza-tions was assured by an overexposure (3–5 days) prior tonew rounds of hybridization.

    Hybridization probes for all 11 plastid-encoded ndhgenes and small plastid ribosomal subunit (16S rDNA; usedas a control probe) were derived from tobacco via polymer-ase chain reaction (PCR). Primer names and sequences areprovided in Supplementary Table 1. A total of 17 probeswere constructed and their relative positions are indicatedin Supplementary Fig. 1. For the two ndh genes, usuallyinterrupted by introns (ndhA and ndhB), two probes wereused, each covering one exon. Two additional longer ndhgenes (ndhD and ndhH) were surveyed with two probes sit-uated at the 5�- and 3�-ends, respectively. In addition, toestimate the unspeciWc background hybridization levels, aninitial negative hybridization control was performed underthe same stringency conditions (see above) and the sameamount of 32P, but without probe added.

    Results

    Interpretation of slot-blots

    The slot-blot data ranged from no diminution to completeabsence of signal and were for the most part readilyT

    able

    1co

    ntin

    ued

    Num

    bers

    in s

    quar

    e pa

    rent

    hese

    s fo

    llow

    ing

    taxa

    abo

    ve g

    ener

    ic ra

    nk in

    dica

    te n

    umbe

    r of

    gen

    era

    sam

    pled

    out

    of

    the

    tota

    l num

    ber

    of g

    ener

    a in

    that

    taxo

    n an

    d th

    e ap

    prox

    imat

    e pe

    rcen

    tage

    of c

    over

    age.

    With

    inm

    ajor

    gro

    ups

    of s

    eed

    plan

    ts, s

    peci

    es a

    re a

    rran

    ged

    acco

    rdin

    g to

    the

    ir p

    resu

    mpt

    ive

    phyl

    ogen

    etic

    rel

    atio

    nshi

    ps (

    see

    text

    for

    det

    ails

    ). B

    ased

    on

    slot

    -blo

    t re

    sults

    , a

    “++

    ” sy

    mbo

    l in

    dica

    tes

    pres

    ence

    of

    full

    hybr

    idiz

    atio

    n, “

    +”

    dim

    inis

    hed

    hybr

    idiz

    atio

    n, “

    –” a

    bsen

    ce o

    f hy

    brid

    izat

    ion

    sign

    al in

    com

    pari

    son

    to p

    ositi

    ve c

    ontr

    ols,

    and

    “?”

    una

    ble

    to s

    core

    . Sel

    ecte

    d sl

    ot-b

    lot h

    ybri

    diza

    tion

    resu

    lts f

    or r

    epre

    sent

    ativ

    esfr

    om a

    ll m

    ajor

    gro

    ups

    (spe

    cies

    indi

    cate

    d in

    bol

    dfac

    e) a

    re s

    how

    n in

    Fig

    .1. A

    bbre

    viat

    ions

    of

    herb

    aria

    fol

    low

    Ind

    ex H

    erba

    rior

    um

    Tax

    onV

    ouch

    ernd

    hAnd

    hBnd

    hCnd

    hDnd

    hEnd

    hFnd

    hGnd

    hHnd

    hInd

    hJnd

    hK

    exon

    1ex

    on 2

    exon

    1ex

    on 2

    5� e

    nd3�

    end

    5� e

    nd3�

    end

    Xan

    thoc

    ypar

    is n

    ootk

    aten

    sis

    (D. D

    on)

    Farj

    on

    & D

    .K. H

    arde

    rQ

    IU-9

    4088

    (IN

    D)

    ++++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    ++

    Cal

    litr

    opsi

    s ar

    izon

    ica

    (gla

    bra)

    (G

    reen

    e) D

    .P. L

    ittle

    QIU

    -962

    54 (

    IND

    )++

    +++

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Cal

    litr

    opsi

    s ba

    keri

    (Je

    ps.)

    D.P

    . Lit

    tle

    SS-0

    5-73

    (T

    RT

    E)

    ++++

    ++

    ++++

    ++++

    +++

    ++++

    +++

    ++

    Cal

    litr

    opsi

    s sa

    rgen

    tii (

    Jeps

    .) D

    .P. L

    ittl

    eSS

    -05-

    190

    (TR

    TE

    )++

    ++¡

    +++

    ++++

    ++++

    +++

    ++++

    ++++

    Ang

    iosp

    erm

    s

    Am

    bore

    lla tr

    icho

    poda

    Bai

    ll.N

    o vo

    uche

    r++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Vic

    tori

    a sp

    .N

    o vo

    uche

    r++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Aco

    rus

    gram

    ineu

    s So

    land

    .SS

    -03-

    70 (

    TR

    TE

    )++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    Gly

    cine

    max

    (L

    .) M

    err.

    No

    vouc

    her

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++++

    ++

    123

  • 332 Curr Genet (2009) 55:323–337

    interpretable. The presence or absence of ndh genes wasdetermined by eye, by comparison of hybridization signalto the corresponding 16S probe, which is used as a controlto establish the presence of signiWcant amounts of ptDNAon the blots. For each blot set and probe combination, thestrength of signal was estimated by comparison with anumber of positive and negative controls; namely, the spe-cies known to contain functional ndh genes (e.g., Ginkgo,Amborella, Acorus, etc.) or to lack these genes (e.g., Wel-witschia, Pinus spp., etc.), based on previously availableentire ptDNA sequence data.

    Representative hybridization results, arranged phyloge-netically, are shown in Fig. 2, and the scores for all surveyedspecies and probes are summarized in Table 1. For everyprobe, the relative presence or absence of signal was scoredfor each taxon as showing either full (++), diminished (+),or absent (¡) hybridization in comparison to their respective16S positive controls (Table 1). Full hybridization strengthis assumed to indicate that the gene is present and func-tional. For genes that have two probes (i.e., two exons or5�- and 3�-end) full hybridization to both probes is requiredto indicate that the gene is functional. Diminished signals,where hybridization is weaker than the control but there isdeWnite signal presence, can be interpreted in two diVerentways. It can indicate that the gene is divergent with respectto tobacco but still present and functional or that the gene ispresent but pseudogenized (i.e., rendered nonfunctional).Absence was scored if no detectable hybridization to theprobe was observed. Under our experimental conditions,plants in which a gene has been transferred to the nucleuswould fail to produce a detectable hybridization signal whencompared to a plant that retains the gene in its plastidgenome, due to signiWcant reduction in copy number and anincrease in nucleotide substitution rates (Wolfe et al. 1987).Hence, the absence of signal implies either outright loss ofgenes or their functional transfer to the nucleus. Given thegenerally conservative substitution rates of ptDNA, it is lesslikely that the absence of signal represents a highly diver-gent yet functional gene. Lastly, in certain cases we wereunable to determine the presence or absence of signal andwe scored these taxa as unknown (“?”; see Table 1). Theseambiguities are due to insuYcient amounts or poor qualityof ptDNA for a given pseudoreplicate.

    Altogether, these assumptions on the presence orabsence of genes can lead to potential underestimates oroverestimates of gene losses. For example, signals thatappear present could potentially represent relatively recentpseudogenized genes while signiWcantly diminished signalsmight be due to divergent but functional genes. Neverthe-less, despite these caveats, a hybridization approachremains a cost eVective and eYcient method for surveyingnumerous and diverse samples (Doyle et al. 1995; Adamset al. 2002).

    Distribution of ndh gene losses

    As expected, the full hybridization signal was observed forall taxa used as positive controls. Based on results fromwhole pt genome sequencing, the entire ndh gene suite isknown to be present in autotrophic angiosperms, indicatingthat its presence is the shared ancestral condition for thisgroup of plants (Jansen et al. 2007). The presence of all 11ndh genes is conWrmed here across the representatives cho-sen to span the basal nodes of Xowering plant diversity(Fig. 2; Table 1). Also, for Ginkgo, the hybridization to allprobes derived from the ndh genes was similar in strengthto the control DNA (Fig. 2; Table 1). This was expected aswell, given the known presence of these genes based onextensive sequencing of its pt genome (Leebens-Mack et al.2005; Jansen et al. 2007). In addition, the relative strengthof the hybridization of tobacco-derived probes to Ginkgoillustrates the conserved nature of the ndh genes acrosslarge phylogenetic distances, including the angiosperm-gymnosperm divergence (>325 Mya; Judd et al. 2002;Palmer et al. 2004).

    As a group, cycads strongly hybridized to seven of 11ndh genes. For a few taxa (Table 1), the signal was dimin-ished with probes for ndhB (both exons), ndhH 3, ndhI, andndhJ. Although some of the hybridizations are weaker thanthe positive controls, they do not necessarily indicate lossof function of these ndh genes but rather that these genesare divergent to some degree in these taxa. The presence offunctional ndh genes in cycads is expected given that theyare found as open reading frames (ORFs) in the sequencedptDNA of Cycas taitungensis (Wu et al. 2007).

    In contrast to the previous lineages, the evidence for lossof ndh genes from pt genomes is widespread in Gnetalesand Pinaceae. In Gnetales, there was no signiWcant hybrid-ization signal for most of the probes (Fig. 2; Table 1). Forsome taxa weak signal was present for ndhA (both exons),ndhC, and ndhH 5�-end. This pattern indicates that the lossof the ndh genes is common to all Gnetales (Fig. 2), inaccordance with the results of entire ptDNA sequencesfrom a small number of select representatives of this group(McCoy et al. 2008; Wu et al. 2009). Similarly, there was agenerally weak to absent hybridization signal observed formost probes across Pinaceae. In particular, ndhI and ndhJare absent from all surveyed taxa. Substantially diminishedsignal was common for probes derived from ndhA (bothexons), ndhD, ndhE, ndhH, and ndhI genes. However,ndhB (most notably, the 5� end), ndhC, and ndhK appearedpresent in many (but not all) taxa. Given what is knownfrom the entire plastid genome sequences of several Pinusspp. (Wakasugi et al. 1994; Cronn et al. 2008), Picea sitch-ensis (Cronn et al. 2008), and Keteleeria davidiana (Wuet al. 2009) species, it can be deduced that the presence ofweak to moderate hybridization signal observed for these

    123

  • Curr Genet (2009) 55:323–337 333

    Fig

    .2A

    utor

    adio

    grap

    hs s

    how

    ing

    slot

    -blo

    t hy

    brid

    izat

    ion

    resu

    lts o

    f pr

    obes

    der

    ived

    fro

    m n

    dh(A

    -K)

    gene

    s fo

    r 31

    sel

    ecte

    d sp

    ecie

    s re

    pres

    entin

    g se

    ed p

    lant

    (ou

    t of

    166

    sur

    veye

    d; c

    ompa

    re w

    ithT

    able

    1) p

    rese

    nted

    in a

    phy

    loge

    netic

    con

    text

    . Sm

    all p

    last

    id r

    ibos

    omal

    sub

    unit

    (16

    S r

    DN

    A)

    was

    use

    d as

    pos

    itive

    con

    trol

    (sh

    own

    here

    is o

    ne r

    epre

    sent

    ativ

    e ou

    t of

    seve

    n W

    lter-

    sets

    ). T

    he to

    polo

    gysh

    own

    is a

    com

    posi

    te tr

    ee d

    epic

    ting

    cur

    rent

    und

    erst

    andi

    ng o

    f re

    latio

    nshi

    ps d

    eriv

    ed f

    rom

    sev

    eral

    pub

    lishe

    d ph

    ylog

    enet

    ic a

    naly

    ses

    (see

    text

    for

    ref

    eren

    ces)

    . Not

    e th

    at th

    e ab

    senc

    e or

    nea

    r ab

    senc

    eof

    hyb

    ridi

    zatio

    n fo

    r th

    e nd

    h pr

    obes

    is r

    estr

    icte

    d on

    ly to

    the

    surv

    eyed

    mem

    bers

    of

    Gne

    tale

    s an

    d P

    inac

    eae.

    Tax

    on a

    bbre

    viat

    ions

    are

    the

    sam

    e as

    in F

    ig.1

    123

  • 334 Curr Genet (2009) 55:323–337

    ndh genes (Fig. 2; Table 1) corresponds to pseudogenes.Compared to Pinaceae, Gnetales appear to have fewer rem-nants of ndh genes (Fig. 2; Table 1), which is expected,given the highly elevated rates of molecular evolutionobserved in Gnetales plastids generally (Rydin et al. 2002;Burleigh and Mathews 2007a; McCoy et al. 2008).

    Unlike Gnetales and Pinaceae, the general trend acrosscupressophytes was a strong hybridization to almost all ndhprobes, indicating that the entire suite of ndh genes is pres-ent and conserved within this group (Fig. 2; Table 1). Thisis fully in agreement with the only published entirelysequenced ptDNA from cupressophytes, Cryptomeriajaponica (Cupressaceae s. lat.; Hirao et al. 2008). However,some members of Araucariaceae, Podocarpaceae, Taxa-ceae, and Cephalotaxaceae hybridized weakly to ndhB (oneor both exons) and ndhI, while Cupressaceae s. lat. exhibitdiminished hybridization signal to ndhG but not ndhI (seeTable 1). In these cases, diminished signal is most likelydue to the elevated sequence divergence of ndh genes, asevidenced by the presence of ndhB and ndhF ORFs in fewrepresentative species from these families that are currentlysequenced (Rai et al. 2008).

    Discussion

    Implications of ndh losses for spermatophyte relationships

    The ndh genes comprise about one-tenth of the »120 genesretained in plastids of most photosynthetic seed plants.Based on numerous entirely sequenced pt genomes ofangiosperms (see Jansen et al. 2007 for the most recentsummary) as well as a limited number of gymnosperms(Wakasugi et al. 1994; Wu et al. 2007, 2009; Cronn et al.2008; McCoy et al. 2008; Hirao et al. 2008), it appearedthat the loss of the ndh genes was restricted to Gnetales(McCoy et al. 2008; Wu et al. 2009) and Pinaceae(Wakasugi et al. 1994; Cronn et al. 2008; Wu et al. 2009).The results of our survey extend the previous inferences ofthe ndh gene absence to be common to all of Gnetales andPinaceae, but not to other gymnosperms (nor to autotrophicangiosperms). While the losses of ndh genes from the plas-tids is rare in autotrophic plants, their absence has beenobserved repeatedly in heterotrophic angiosperms(Olmstead et al. 2001; StefanoviT and Olmstead 2005).Extrapolating from those cases, it seems that the ndh genesare generally lost as a suite (Bungard 2004; Krause 2008).Hence, from a phylogenetic point of view, the entire suiteshould be considered as a single loss (StefanoviT andOlmstead 2005) and not as 11 independent losses.

    Given the extent and distribution of presence andabsence of the ndh genes among spermatophytes, the mostparsimonious solution suggests that the loss of these genes

    is a synapomorphy for Gnetales and Pinaceae, a sharedderived character inherited from their common ancestor(Fig. 1) supporting the gnepine hypothesis. Each of the Wvealternatives for the Gnetales relationships with the otherseed plants (i.e., anthophyte, gnetales-sister, gnetifer, andgnecup hypthotheses) would require a minimum of twoindependent losses of ndh genes, one in Gnetales and one inPinaceae (Fig. 1). While the possibility that ndh genes werelost more than once in gymnosperms cannot be positivelyexcluded, the low frequency of loss of these genes, and inparticular the near-absence of loss among autotrophic seedplants, argues against such a scenario.

    Additional lines of evidence supporting the gnepinehypothesis are provided by a couple of other plastid struc-tural characters, each with putatively the same phylogeneticdistribution among seed plants as that observed for the lossof ndh genes. First, an expansion of the inverted repeat (IR)that includes the duplication of trnI-CAU and a partialduplication of the psbA gene region situated at the end ofthe large single copy (LSC) is found in several sequencedmembers of Gnetales and Pinaceae but is not known fromany other land plant (Wu et al. 2007, 2009; McCoy et al.2008; Hirao et al. 2008). Second, both Gnetales and Pina-ceae appear to share a common loss of rps16, to the exclu-sion of other gymnosperms and basal angiosperms lineagesfrom which the presence of this gene is ascertained (Waka-sugi et al. 1994; Wu et al. 2007, 2009; Jansen et al. 2007;McCoy et al. 2008). However, contrary to the above exam-ples, one particular structural genomic marker does not sup-port the gnepine phylogeny. The loss (or a signiWcantreduction) of the IR is reported from both cupressophytesand Pinaceae, but not from Gnetales (Raubeson and Jansen1992; Wu et al. 2007, 2009; McCoy et al. 2008; Hirao et al.2008). This ptDNA feature favors the phylogenetic inter-pretation according to which the loss of the ndh genesoccurred independently in Gnetales and Pinaceae.

    Future directions

    Although the preponderance of genomic structural changescurrently supports the gnepine hypothesis, caution is stillwarranted because most of these features have only beenobserved in a subset of exemplar taxa. Hence, their full dis-tribution across seed plants and their evolutionary signiW-cance remains poorly understood. To determine theirrelative importance, all of these underexamined markersrequire further in-depth surveys across a broader taxonsample, as was done here for the ndh genes. In particular,additional ptDNA sequences are needed from the represen-tatives of Araucariaceae and Podocarpaceae, to help trian-gulate the ancestral conditions for many of these potentiallyphylogenetically important characters in cupressophytes. Itwould also be valuable to survey for ndh genes in Parasit-

    123

  • Curr Genet (2009) 55:323–337 335

    axus usta (Podocarpaceae), the only known mycohetero-trophic conifer (Feild and Brodribb 2005). We predict thefunctional absence of all ndh genes in this highly derivedpodocarp species (Sinclair et al. 2002), which would repre-sent an independent loss of the Ndh complex in conifers,related to its shift to a fully heterotrophic nutritional mode.

    Acknowledgments For providing generous access to their live plantcollections, the authors are grateful to directors/managers of the fol-lowing institutions: Humboldt State University (Acrata, CA) green-house, Indiana University (Bloomington, IN) greenhouse, Universityof Alberta (Edmonton, AB) greenhouse, University of Toronto (Toron-to, ON) greenhouse, University of Washington (Seattle, WA) green-house and Arboretum, University of Guelph Arboretum (Guelph, ON),Devonian Botanic Garden (Devon, AB), Jardin botanique de Montréal(Montréal, QC), University of Belgrade Arboretum (Belgrade, Serbia),Vienna Botanical Garden (Vienna, Austria), and Carleton University(Ottawa, ON) greenhouse. We also thank curators/directors of ALTA,IND, and TRT for supplying plant material. Special thanks are due toSean Graham and two anonymous reviewers for their valuable sugges-tions that improved the earlier versions of the manuscript. Financialsupport from the Natural Sciences and Engineering Research Councilof Canada, Canada Foundation for Innovation and Ontario ResearchFunds to S. StefanoviT is gratefully acknowledged.

    References

    Adams KL, Qiu YL, Stoutemyer M, Palmer JD (2002) Punctuated evo-lution of mitochondrial gene content: high and variable rates ofmitochondrial gene loss and transfer to the nucleus during angio-sperm evolution. Proc Natl Acad Sci 99:9905–9912

    Albert VA, Backlund A, Bremer K, Chase MW, Manhardt JR, MishlerBD, Nixon KC (1994) Functional constraints and rbcL evidencefor land plant phylogeny. Ann Mo Bot Gard 81:534–567

    Bailey CD, Doyle JJ, Kajita T, Nemoto T, Ohashi H (1997) The chlo-roplast rpl2 intron and ORF184 as phylogenetic markers in the le-gume tribe Desmodieae. Syst Bot 22:133–138

    Bennoun P (2002) The present model for cholororespiration. Photo-synthesis Res 73:273–277

    Bowe LM, Coat G, dePamphilis CW (2000) Phylogeny of seed plantsbased on all three genomic compartments: extant gymnospermsare monophyletic and Gnetales’ closest relatives are conifers.Proc Natl Acad Sci 97:4092–4097

    Bukhov N, Carpentier R (2004) Alternative photosystem I-driver elec-tron transport routes: mechanisms and functions. PhotosynthesisRes 82:17–33

    Bungard RA (2004) Photosynthetic evolution in parasitic plants: in-sight from the cholorplast genome. Bioassays 26:235–247

    Burleigh JG, Mathews S (2004) Phylogenetic signal in nucleotide datafrom seed plants: implications for resolving the seed plant tree oflife. Am J Bot 91:235–237

    Burleigh JG, Mathews S (2007a) Assessing among-locus variation inthe inference of seed plant phylogeny. Int J Plant Sci 168(2):111–124

    Burleigh JG, Mathews S (2007b) Assessing systematic error in theinference of seed plant phylogeny. Int J Plant Sci 168(2):125–135

    Casano LM, Martín M, Sabater B (2001) Hydrogen peroxide mediatesthe induction of chloroplastic Ndh complex under photooxidativestress in barley. Plant Physiol 125:1450–1458

    Chang C-C, Lin H-C, Lin I-P, T-Y Chow, Chen H-H, Chen W-H, ChengC-H, Lin C-Y, Liu S-M, Chang C-C, Chaw S-M (2006) Thechloroplast genome of Phalaenopsis aphrodite (Orchidaceae):

    comparative analysis of evolutionary rate with that of grasses andits phylogenetic implications. Mol Biol Evol 23:279–291

    Chaw S-M, Aharkikh A, Sung H-M, Lau T-C, Li W-H (1997) Molec-ular phylogeny of extant gymnosperms and seed plant evolution:analysis of nuclear 18S rRNA squences. Mol Biol Evol 14:56–68

    Chaw S-M, Parkinson CL, Cheng Y, Vincent TM, Palmer JD (2000)Seed plant phylogeny inferred from all three plant genomes:monophyly of extant gymnosperms and origin of Gnetales fromconifers. Proc Natl Acad Sci 97:4086–4091

    Chumley TW, McCoy SKR, Raubeson LA (2008) Gne-deep: explor-ing Gnetalean aYnities in seed plant phylogeny with 83 plastidgenes. Botany 2008: Joint Annual Meeting of Canadian BotanicalAssociation, American Fern Society, American Society of PlantTaxonomists, and the Botanical Society of America, Vancouver,BC, Canada [http://2008.botanyconference.org/engine/search/in-dex.php?func=detail&aid=770]

    Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patternsof chloroplast DNA evolution. Proc Natl Acad Sci 91:6795–6801

    Crane PR (1985) Phylogenetic analysis of seed plants and the origin ofangiosperms. Ann Mo Bot Gard 72:716–793

    Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T (2008)Multiplex sequencing of plant chloroplast genomes using Solexasequencing-by-synthesis technology. Nucleic Acids Res36(19):e122

    dePamphilis CW, Palmer JD (1990) Loss of photosynthetic and chlo-rorespiratory genes from the plastid genome of a parasitic Xower-ing plant. Nature 348 (22):337–339

    Diaz M, de Haro V, Munoz R, Quiles MJ (2007) Chlororespiration isinvolved in the adaptation of Brassica plants to heat and high lightintensity. Plant Cell Environ 30:1578–1585

    Downie SR, Palmer JD (1992) Use of chloroplast DNA rearrange-ments in reconstructing plant phylogeny. In: Soltis PS, Soltis DE,Doyle JA (eds) Molecular systematics of plants. Chapman &Hall, New York, pp 14–35

    Downie SR, Olmstead RG, Zurawski G, Soltis DE, Soltis PS, WatsonJC, Palmer JD (1991) Six independent losses of the chloroplastDNA rpl2 intron in dicotyledons: molecular and phylogeneticimplications. Evolution 45:1245–1259

    Doyle JA (2006) Seed ferns and the origin of angiosperms. J TorreyBot Soc 133:169–209

    Doyle JA, Donoghue MJ (1986) Seed plant phylogeny and the originof angiosperms: an experimental cladistic approach. Bot Rev52:321–431

    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for smallquantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Doyle JJ, Doyle JL, Palmer JD (1995) Multiple independent losses oftwo genes and one intron from legume chloroplast genomes. MolPhylogenet Evol 5:429–438

    Doyle JJ, Doyle JL, Ballenger JA, Palmer JD (1996) The distributionand phylogenetic signiWcance of a 50-kb chloroplast DNA inver-sion in the Xowering plant family Leguminosae. Syst Bot 20:272–294

    Endo T, Ishida S, Ishikawa N, Sato F (2008) Chloroplastic NAD(P)Hdehydrogenase complex and cyclic electron transport around pho-tosystem I. Mol Cells 25:158–162

    Feild TS, Brodribb TJ (2005) A unique mode of parasitism in the coni-fer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Envi-ron 28:1316–1325

    Felsenstein J (1983) Parsimony in systematics: biological and statisti-cal issues. Annu Rev Ecol Syst 14:313–333

    Frolich MW, Parker DS (2000) The mostly male theory of Xower evo-lutionary origins: from genes to fossils. Syst Bot 25(2):155–170

    Funk HT, Berg S, Krupinska K, Maier UG, Krause K (2007) CompleteDNA sequences of the plastid genomes of two parasitic Xoweringplant species, Cuscuta reXexa and Cuscuta gronovii. BMC PlantBiol 7:45

    123

    http://2008.botanyconference.org/engine/search/index.php?func=detail&aid=770http://2008.botanyconference.org/engine/search/index.php?func=detail&aid=770

  • 336 Curr Genet (2009) 55:323–337

    Goremykin V, Bobrova V, Pahnke J, Troitsky A, Antonov A, MartinW (1996) Noncoding sequences from the slowly evolving chloro-plast inverted repeat in addition to rbcL data do not supportgnetalean aYnities of angiosperms. Mol Biol Evol 13:383–396

    Graham SW, Iles WJD (2009) DiVerent gymnosperm outgroups have(mostly) congruent signal regarding the root of Xowering plantphylogeny. Am J Bot 96:216–227

    Graham SW, Olmstead RG (2000a) Evolutionary signiWcance of anunusual chloroplast DNA inversion found in two basal angio-sperm lineages. Curr Genet 37:183–188

    Graham SW, Olmstead RG (2000b) Utility of 17 chloroplast genes forinferring the phylogeny of the basal angiosperms. Am J Bot87:1712–1730

    Gugerli F, Sperisen C, Buchler U, Brunner L, Brodbeck S, Palmer JD,Qiu YL (2001) The evolutionary split of Pinaceae from otherconifers: evidence from an intron loss and a multigene phylogeny.Mol Phylogen Evol 21:167–175

    Hamby RK, Zimmer EA (1992) Ribosomal RNA as a phylogenetictool. In: Soltis PE, Soltis DE, Doyle JJ (eds) Molecular systemat-ics of plants. Chapman & Hall, London, pp 50–91

    Hasebe M, Kofugi R, Ito M, Kato M, Iwatsuki K, Ueda K (1992)Phylogeny of gymnosperms inferred from rbcL gene sequence.J Plant Res 105:673–679

    Hendy MD, Penny D (1989) A framework for the quantitative study ofevolutionary trees. Syst Zool 38:296–309

    Hirao T, Watanabe A, Kurita M, Kondo T (2008) Complete nucleotidesequence of the Cryptomeria japonica D. Don. chloroplastgenome and comparative chloroplast genomics: diversiWedgenomic structure of coniferous species. BMC Plant Biol 8:70

    Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW,Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC,Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, KuehlJV, Boore JL (2007) Analysis of 81 genes from 64 plastidgenomes resolves relationships in angiosperms and identiWesgenome-scale evolutionary patterns. Proc Natl Acad Sci104:19369–19374

    Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ(2002) Plant systematics: a phylogenetic approach, 2nd edn. Sina-uer Associates, Sunderland, p 576

    Krause K (2008) From chloroplasts to “cryptic” plastids: evolution ofplastid genomes in parasitic plants. Curr Genet 54:111–121

    Leebens-Mack J, Raubeson LA, Cui LY, Kuehl JV, Fourcade MH,Chumley TW, Boore JL, Jansen RK, dePamphilis CW (2005)Identifying the basal angiosperm node in chloroplast genomephylogenies: sampling one’s way out of the Felsenstein zone. MolBiol Evol 22:1948–1963

    Loconte H, Stevenson DW (1990) Cladistics of the Spermatophyta.Brittonia 42:197–211

    Magallón S, Sanderson MJ (2002) Relationships among seed plants in-ferred from highly conserved genes: sorting conXicting phyloge-netic signals among ancient lineages. Am J Bot 89:1991–2006

    Mathews S (2009) Phylogenetic relationships among seed plants:persistent questions and the limits of molecular data. Am J Bot96(1):228–236

    Mathews S, Donoghue MJ (2000) Basal angiosperm phylogenyinferred from duplicate phytochromes A and C. Int J Plant Sci161:S41–S55

    McCoy SR, Kuehl JV, Boore JL, Raubeson LA (2008) The completeplastid genome sequence of Welwitschia mirabilis: an unusuallycompact plastome with accelerated divergence rates. BMC EvolBiol 8:130

    McNeal JR, Kuehl JV, Boore JL, dePamphilis CW (2007) Completeplastid genome sequences suggest strong selection for retention ofphotosynthetic genes in the parasitic plant genus Cuscuta. BMCPlant Biol 7:57

    McPherson MA, Fay ME, Chase MW, Graham SW (2004) Parallelloss of a slowly evolving intron from two closely related familiesin asparagales. Syst Bot 29:296–307

    Moreira D, Philippe H (2000) Molecular phylogeny: pitfalls and pro-gress. Int Microbiol 3:9–16

    Nickrent DL, Parkinson CL, Palmer JD, DuV RJ (2000) Multigenephylogeny of land plants with special reference to bryophytes andthe earliest land plants. Mol Biol Evol 17:1885–1895

    Nixon KC, Crepet WL, Stevenson D, Friis EM (1994) A reevaluationof seed plant phylogeny. Ann Mo Bot Gard 81:484–533

    Olmstead RG, Sweere JA (1994) Combining data in phylogenetic sys-tematics: an empirical approach using three molecular data sets inthe Solanaceae. Syst Biol 43:467–481

    Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ,Reeves PA (2001) Disintegration of the Scrophulariaceae. Am JBot 88:348–361

    Palmer JD (1991) Plastid chromosomes: structure and evolution. In:Bogarad L, Vasil IK (eds) Cell culture and somatic cell geneticsof plants 7A. Academic, San Diego, pp 6–53

    Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an over-view and some points of view. Am J Bot 91:1437–1445

    Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol53:523–550

    Plunkett GM, Downie SR (2000) Expansion and contraction of thechloroplast inverted repeat in Apiaceae subfamily Apioideae.Syst Bot 25:648–667

    Qiu Y-L, Li L, Wang B, Chen Z, Dombrovska O, Lee J, Kent L, Li R,Jobson RW, Hendry TA, Taylor DW, Testa CM, Ambros M(2007) A nonXowering land plant phylogeny inferred from nucle-otide sequences of seven chloroplast, mitochondrial, and nucleargenes. Int J Plant Sci 168:691–708

    Rai HS, O‘Brien HE, Reeves PA, Olmstead RG, Graham SW (2003)Inference of higher-order relationships in the cycads from a largechloroplast data set. Mol Phylogen Evol 29:350–359

    Rai HS, Reeves PA, Peakall R, Olmstead RG, Graham SW (2008)Inference of higher-order conifer relationships from a multi-locusplastid data set. Botany 86:658–669

    Raubeson LA, Jansen RK (1992) A rare chloroplast DNA structuralmutation is shared by all conifers. Biochem Syst Ecol 20:17–24

    Rokas A, Holland PWH (2000) Rare genomic changes as a tool forphylogenetics. Trends Ecol Evol 15:454–459

    Romeau D, Peltier G, Cournac L (2007) Chlororespiration and cyclicelectron Xow around PS I during photosynthesis and plant stressresponse. Plant Cell Environ 104:1–1051

    Rydin C, Källersjö M (2002) Taxon sampling and seed plant phylog-eny. Cladistics 18:485–513

    Rydin C, Källersjö M, Friis EM (2002) Seed plant relationships and thesystematic position of Gnetales based on nuclear and chloroplastDNA: conXicting data, rooting problems, and the monophyly ofconifers. Int J Plant Sci 163:197–214

    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: alaboratory manual. Cold Spring Harbor Laboratory Press, ColdSpring Harbor

    Samigullin TK, Martin WF, Troitsky AV, Antonov AS (1999) Molec-ular data from the chlorplast rpoC1 gene suggest a deep anddistinct dichotomy of contemporary spermatophytes into twomonophyla: gymnosperms (including Gnetalaes) and angio-sperms. J Mol Evol 49:310–315

    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N, Matsu-bayashi T, Zaita N, Chunwongse J, Obokata J, Yamaguchishino-zaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H,Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kato A,Tohdoh N, Shimada H, Sugiura M (1986) The complete nucleo-tide sequence of the tobacco chloroplast genome: its gene organi-zation and expression. EMBO J 5:2043–2049

    123

  • Curr Genet (2009) 55:323–337 337

    Sinclair WT, Mill RR, Gardner MF, Woltz P, JaVré T, Preston J, Hol-lingsworth ML, Ponge A, Möller M (2002) Evolutionary relation-ships of the New Caledonian heterotrophic conifer, Parasitaxususta (Podocarpaceae), inferred from chloroplast trnL-F intron/spacer and nuclear rDNA ITS2 sequences. Plant Syst Evol233:79–104

    Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG (2002)Rate heterogeneity among lineages of tracheophytes: integrationof molecular and fossil data and evidence for molecular livingfossils. Proc Natl Acad Sci 99:4430–4435

    StefanoviT S, Olmstead RG (2005) Down the slippery slope: plastidgenome evolution in Convolvulaceae. J Mol Evol 61:292–305

    StefanoviT S, Jager M, Deutsch J, Broutin J, Masselot M (1998)Phylogenetic relationships of conifers inferred from partial 28SrRNA gene sequences. Am J Bot 85:688–697

    Tallon C, Quiles MJ (2007) Acclimation to heat and high light inten-sity during the development of oat leaves increases the NADHDH complex and PTOX levels in chloroplasts. Plant Sci 173:438–445

    Wakasugi T, Tsudzuki J, Ito S, Nakashima K, Tsudzuki T, Sugiura M(1994) Loss of all ndh genes as determined by sequencing the en-tire chloroplast genome of the black pine Pinus thunbergii. ProcNatl Acad Sci 91:9794–9798

    Wettstein RR (1907) Handbuch der Systematischen Botanik. FranzDeuticke, Leipzig

    Wickett NJZY, Hansen SK, Roper JM, Kuehl JV, Plock SA, Wolf PG,dePamphilis CW, Boore JL, GoYnet B (2008) Functional genelosses occur with minimal size reduction in the plastid genome ofthe parasitic liverwort Aneura mirabilis. Mol Biol Evol25(2):393–411

    Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitutionvary greatly among plant mitochondrial, chloroplast, and nuclearDNAs. Proc Natl Acad Sci USA 84:9054–9058

    Wu C-S, Wang Y-N, Liu S-M, Chaw S-M (2007) Chloroplast genome(cpDNA) of Cycas taitungensis and 56 cp protein-coding genes ofGnetum parvifolium: insights into cpDNA evolution and phylog-eny of extant seed plants. Mol Biol Evol 24:1366–1379

    Wu C-S, Lai Y-T, Lin C-P, Wang Y-N, Chaw S-M (2009) Evolutionof reduced and compact chloroplast genomes (cpDNAs) in gneto-phytes: selection towards a lower cost strategy. Mol PhylogenEvol (in press)

    Zapata JM, Guéra A, Esteban-Carrasco A, Martín M, Sabater JM(2005) Chloroplasts regulate leaf senescence: delayed senescencein transgenic ndhF-defective tobacco. Cell Death DiVer 12:1277–1284

    123

    Loss of all plastid ndh genes in Gnetales and conifers: extent and evolutionary signiWcance for the seed plant phylogenyAbstractIntroductionMaterials and methodsTaxon samplingDNA extraction and hybridization

    ResultsInterpretation of slot-blotsDistribution of ndh gene losses

    DiscussionImplications of ndh losses for spermatophyte relationshipsFuture directions

    References

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 150 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 600 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.50000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects false /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org?) /PDFXTrapped /False

    /Description >>> setdistillerparams> setpagedevice


Recommended