+ All Categories
Home > Documents > Low Energy Design Techniques for Data Converters · Low Energy Design Techniques for Data...

Low Energy Design Techniques for Data Converters · Low Energy Design Techniques for Data...

Date post: 13-Jun-2020
Category:
Upload: others
View: 6 times
Download: 0 times
Share this document with a friend
59
Low Energy Design Techniques for Data Converters Harijot Singh Bindra Researcher, Integrated Circuit Design University of Twente, Enschede, The Netherlands 1 email : [email protected]
Transcript

Low Energy Design Techniques for Data

Converters

Harijot Singh Bindra

Researcher, Integrated Circuit Design

University of Twente, Enschede, The Netherlands

1email : [email protected]

Overview

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

2

EIN

• Overall low energy (EIN+ EADC) consumption

SENSOR

3

Digital

O/P

EADC

ADC

CS

VADC

Motivation

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

4

Overview

vDD

Low Power (V2/ZOUT)

ZOUT ZIN

Δ𝐕𝐂𝐒

0

VPK

time

VIN

Low Noise (kT/CS)

(Large CS)

ZOUT > ZIN

SENSOR

5

Digital

O/P

EADC

ADC

CS

VADC

Motivation – Input Buffer

VIN,ADC ≈ 0

ZIN

VSENSOR

VIN,ADCZOUT

VIN,ADC =

ZIN

ZIN + ZOUTVSENSOR

ZOUT >> ZIN

Low power sensor cannot drive ADC input

6

Motivation – Input Buffer

SENSOR

BUFFER

Δ𝐕𝐂𝐒

0

VPK

time

VIN,BUFF

vDD

Buffer the input signal !!

vDD

vDD

7

Digital

O/P

EADC

ADC

CS

Motivation – Input Buffer

SENSOR

Class-A

BUFFER

IADC

IIN

IBIAS

ADCVIN,min = VGS

vDDvDD

0

VPK

time

vDD

VIN,BUFF

8

Digital

O/PADC

CS

Motivation – Input Buffer Requirement

Class-A buffer : low distortion, always “ON” output stage.

VIN,min > VGS. Rail-to-rail operation not feasible with single

supply.

VGS

SENSOR

Class-A

BUFFER

IADC

IIN

IBIAS

ADC

vDDvDD

0

VPK

time

vDD

VIN,BUFF

9

Digital

O/PADC

CS

Motivation – Input Buffer Requirement

VIN,max < VDD

IBIAS ≥ IIN,MAX and VIN,max < VDD - VDS

Power hungry and poor efficiency. PBUFF ≥ VPKIBIAS

VDS

Input capacitance (CIN) is 0.2pF (18x lower than CS)

Additional high supply voltages (≈ 3xVPK) required

VIN,pk = 0.9V

2.5V

VBIAS

To T/H

Krämer, JSSC 2015

CS

CIN

VIN

1.2V2.5V

10

Prior Art - Source Follower embedded in SAR

SENSOR

Class-A

BUFFER

IADC

ADC

vDD

0

VPK

time

VIN,BUFF

11

Digital

O/PADC

CS

Motivation – Input Buffer Requirement

IIN

VIN

vDD

IBIAS ≥ IIN,MAXvDD

• Walden FoM (incl. buffer), FoMW,buff = (PADC+PBUFF)/(fS·2ENOB)

• PBUFF FoMW,buff

SENSOR

Class-A

BUFFER

IADC

ADC

vDD

0

VPK

time

VIN,BUFF

12

Digital

O/PADC

CS

Motivation – Input Buffer Requirement

IIN

VIN

vDD

IBIAS ≥ IIN,MAXvDD

• Single VDD with near rail-to-rail signal swing.

• Minimize IBIAS (or IIN,MAX) low FoMW,buff.

• Minimize EIN.

EIN

Motivation

– Input Buffer Requirement

Reducing Input Drive Current (A-SSCC 2017)

Low power single supply buffered SAR ADC

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

13

Overview

14

Conventional• VINP sampled on CDAC+

• VINN sampled on CDAC-

• Peak Sampling current, IPK = VPK/RSH

CDAC+

CDAC-

VINP

VINN

S/H

VINN

VINP

DAC Voltages

VINN

VINP

VPK

VPK

0

0

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC+

time

ConversionReset

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC-

DAC Voltages

15

Track

Conventional

DAC Voltages

VINN

VINP

VPK

VPK

0

0

Track

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC+

time

ConversionReset

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC-

DAC Voltages

16

Conventional

DAC Voltages

VINN

VINP

VPK

VPK

0

0

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC+

time

ConversionReset

Δ𝐕𝐂𝐃𝐀𝐂+

CDAC-

DAC Voltages

17

Track

Track

Conventional

SENSOR

Class-A

BUFFER

IADC

ADC

vDD

18

Digital

O/PADC

CS

Reducing Δ𝐕𝐂𝐬 and Input Current

IIN

VIN

vDD

IBIAS ≥ IIN,MAXvDDΔ𝐕𝐂𝐒

0

VPK

time

VIN,BUFF

For Nyquist rate ADCs, Δ𝐕𝐂𝐬 ⩽ VPK

IIN,MAX = (N·CS·VPK/TTRACK) [N = 0.69(#Bits)]

SENSOR

Class-A

BUFFER

IADC

ADC

vDD

19

Digital

O/PADC

CS

Reducing Δ𝐕𝐂𝐬 and Input Current

IIN

VIN

vDD

IBIAS ≥ IIN,MAXvDD

• Linear Settling

• IIN,MAX = (N·CS·ΔVCs/TTRACK)

• IIN,MAX ΔVCS

Δ𝐕𝐂𝐒

0

VPK

time

VIN,BUFF

CLK

VINP

VINP

• Full-scale range of VINP divided in 3-parts

– Each sub-range of VINP sampled onto the respective CDAC

– Limits the ΔVCsto VPK/3 [ Bindra, ASSCC 2017 ]

20

Reducing Δ𝐕𝐂𝐬 and Input Current

21

Reducing Δ𝐕𝐂𝐬 and Input Current

CLK

VINP

22

Reducing Δ𝐕𝐂𝐬 and Input Current

CLK

VINP

23

Reducing Δ𝐕𝐂𝐬 and Input Current

CLK

VINP

VHALF

VDAC

VREF1

VREF2

CLK

CompCLK

CONTROL

LOGIC

S1 S1b

REGISTER

3:1 MUX

EN(Φ1)

B1<9:0>,

READY1

B<9:0>,READY

EN(Φ1)

EN(Φ2)EN(Φ3)

RPS_EN, SEL1,SEL2

DATA

EN_LATCH

CDAC1

CDAC2

CDAC3

RANGE PRE-SELECTION

(RPS) LOGIC BLOCK

SL1

SL2

DECODER

Φ1Φ2Φ3

VINPRMEAS

INPUT CURRENT

MEASUREMENT

AMPLIFIER

RPS_EN, SEL1,SEL2

Measurement - Input Sampling CurrentRPS_EN, SEL1,SEL2

On-chip Input Current

Measurement amplifier

RMEAS

CLK

VINP

B<9:0>, RDY 24

Single

Comparator

Die micrograph (65nm CMOS)

CDAC1 CDAC2 CDAC3

S/H1

Measurement

Amplifier

S/H2 S/H3

480µm

15

m

ADC

130µm

26

m

Ref. Voltage

Generation

Caps

Range Pre-

SelectComparator

• Area – 0.08 mm2

(including decaps)

• Measurement amplifier to

compare input sampling

current

• CDACs not selected act

as decap (connected to

single reference voltage)

25

fS = 2MS/s and fIN = 999.9375kHz

Beat frequency = fS/2 – fIN = 62.5 Hz

IIN = 𝚫𝐕𝐂𝐬/ (RMEAS + RSH)

RMEAS + RSH ≤ 1/[(N+1) ·C · 10· fS]

Time (ms)

Conventional

IIN(µA)

0

1023

0 87654321

120

-120

0

0 87654321

OUTPUT

CODE

Measurements- Input Sampling Current

26

Time (ms)

Conventional

IIN

(µA)

0

1023

0 87654321

120

-120

Proposed

IIN

(µA)0

120

-120

0

0 87654321

0 87654321

Range 2

Alternating between Range 1 and 3

OUTPUTCODE

Measurements- Input Sampling Current

27

Reduced ΔVCs reduces peak input sampling current.

IIN,PEAK

(µA)

Proposed

Conventional ÷2.4

28

Reducing Δ𝐕𝐂𝐬 and Input Current

fIN / fS

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC (CICC 2019)

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

29

Overview

• VINP sampled on CDAC+

• VINN sampled on CDAC-

CDAC+

CDAC-

VINP

VINN

+

+

-

-

VINP

VINN

VDAC+

VDAC-

30

Conventional Architecture

Complimentary input pair can handle rail-to-rail input.

Distortion due to signal dependent gm variation and offset

modulation.[ Huijsing, JSSC 1980 ]

Current

SummationVINP VINN

VINP

VINN

31

Conventional Architecture

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC (CICC 2019)

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

32

Overview

SWAP

SWAP LOGIC

CLK

Input CLK first turns ON the Front end comparator

SWAP

33

Architecture - Front End

[ Bindra, CICC 2019 ]

VBUFP

VBUFN

SWAP = 0

VBUFP

VBUFN

SWAP

CLK

VDD ≈ VPK

BUF+

BUF-

34

Architecture - Front End

VINP

VINN

BUF+

BUF-

VBUFP

VBUFN

SWAP = 0

VBUFP

VBUFN

SWAP

CLK

VDD ≈ VPK

BUF+

BUF-

35

Architecture - Front End

VINP

VINN

VBUFP

VBUFN

SWAP = 1

VBUFP

VBUFN

SWAP

CLK

VDD ≈ VPK

BUF+

BUF-

36

Architecture - Front End

VINP

VINN

VBUFP

VBUFN

VBUFP

VBUFN

VBUFP

VBUFN

SWP1

Single supply for Buffer

and ADC

VDD ≈ VPK

37

Architecture - Front End

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC (CICC 2019)

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

38

Overview

S1

S2SWP1

cv

VBUFN

VBUFP

39

B9 B8 B1

B9 B8 B1

Architecture - Buffers integrated with ADC

cv

• SWP1 turn “OFF” delayed

wrt S1 and S2 at the end of

tracking

• Prevents sampling of kT/C

noise at the buffer’s input

cv

cv

cv

SWAP = 0

cv

VBUFN

VBUFP

B9….B0

B9….B0

B9 B8 B1

B9 B8 B1

40

Architecture - Buffers integrated with ADC

cv

cv

cv

SWAP = 0

cv

Main comparator does full 10b SAR conversion

VBUFN

VBUFP

B9 B8 B1

B9 B8 B1

B9….B0

B9….B0

41

Architecture - Buffers integrated with ADC

cv

cv

cv

SWP2 ensures that comparator offset is

same for SWAP =0 and SWAP =1

SWAP = 1

VBUFN

VBUFP

B9 B8 B1

B9 B8 B1

B9….B0

B9….B0

42

Architecture - Buffers integrated with ADC

cv

cv

cv

SWAP = 1

SWP3 keeps SAR loop convergent

VBUFN

VBUFP

B9 B8 B1

B9 B8 B1

B9….B0

B9….B0

43

Architecture - Buffers integrated with ADC

cv

cv

c

vc

vB9-B0 SWAP

VBUFN

VBUFP

ФSWPФNOSWP

cv

B9 B8 B1

B9 B8 B1

cvB9….B0

cvB9….B0

44

Architecture - Buffers integrated with ADC

• MATLAB simulated RMS and maximum change in voltage at the buffer input

• Reduced by 2x compared to conventional sampling

• EIN = CIN ·Δ𝐕𝐁𝐔𝐅𝐏·VDD is also reduced by 2x

45

Change in voltage (VBUF and VCDAC)

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC (CICC 2019)

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

46

Overview

VOS : offset mismatch between BUF+ and BUF-

VOS

47

Architecture - Offset Correction

BOUT,OS : estimated by disabling SWAP and applying

VINP – VINN = 0.

VCM

VOS

48

Architecture - Offset Correction

BOUT,SWAP = BOUT - BOUT,OS

BOUT,NOSWAP = BOUT - BOUT,OS

VOS

49

Architecture - Offset Correction

Motivation

– Input Buffer Requirement

Reducing Input Drive Current

Low power single supply buffered SAR ADC

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

50

Overview

Area : 0.075mm2

(incl. decaps)

Power Consumption

ADC : 9µW

Buffers : 70µW each

51

Die micrograph (65nm CMOS)

SWAP_EN = ‘OFF’ VIN,diff = 2VP-P

52

Measurement Results - FFT

SWAP_EN = ‘ON’ VIN,diff = 2VP-P

53

Measurement Results - FFT

• fS = 4MS/s

• INL = 1.2LSB

• DNL = 0.5LSB

54

Measurement Results - INL/DNL

• Maximum jump is at mid-code due to non-segmented

DAC array

-0.4

-0.2

0

0.2

Y : -0.49

X : 511

460 500 540 580

55

Measurement Results - INL/DNL

• fS = 4MS/s

• SFDR > 64dB over Nyquist

range

• SNDR > 54dB over Nyquist

range

56

Measurement Results – SFDR/SNDR

Architecture This Work

Krämer

ISSCC

2015

Tseng

JSSC

2016Technology (nm) 65 40 28

Supply [V]ADC

1.21.2 1.1

Buffer 2.5 1.2

Diff. Input Signal (VPK-PK) 2 1.8 1.2

Maximum Sampling Rate (MS/s) 4 35 100

Power Consumption

(ADC+Buffer) in mW0.149 54.5 3.1

ENOB [bits] 8.7 12.1 7.2

FoMw (fJ/conversion) = (PADC+PBuffer)/2ENOB·fS 87 355 200

Area (in mm2)0.075

(incl. decap)

0.24

(incl. decap)

0.024

(Core only)

57

Table of Comparison

Motivation

– Input Buffer Requirement

– Prior Art

Architecture

– Proposed Solution

– Integration of Buffer with SAR ADC

– Offset Correction

Measurement Results

Conclusion

58

Overview

• Buffers and ADC operate at single supply voltage

(1.2V) while processing near rail-to-rail inputs.

• Swapping the inputs allow each of the input

buffer to handle one-half the full-scale range.

• State-of-the-art Walden FoM (ADC+Buffer) of

87fJ/conv-step.

59

Conclusion


Recommended