+ All Categories
Home > Documents > Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency...

Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency...

Date post: 24-Mar-2021
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
70
Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4 th Grid Science Winter School and Conference January 14, 2021
Transcript
Page 1: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Embracing Low Inertia for Power System Frequency ControlA Dynamic Droop Approach

Enrique Mallada

4th Grid Science Winter School and ConferenceJanuary 14, 2021

Page 2: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Acknowledgements

Yan Jiang Richard Pates Fernando PaganiniHancheng Min Petr VorobevEliza Cohn

Enrique Mallada JHUJan 14 2021 2

Page 3: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Dynamic Degradation

Jan 14 2021 Enrique Mallada JHU 3

In the United States:

[FERC, Nov. 16]

Page 4: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Dynamic Degradation

Jan 14 2021 Enrique Mallada JHU 3

In the United States:

[FERC, Nov. 16]

Page 5: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Inverter‐based Control

Challenges• Measurements with noise and delays• Stability + robustness (plug & play)• Lack of incentives

Jan 14 2021 Enrique Mallada JHU 4

Virtual Synchronous Generator

Controller

Telecom Analogy

Current approach: Use inverter‐based control to mimic generators response

Page 6: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Inverter‐based Control

Challenges• Measurements with noise and delays• Stability + robustness (plug & play)• Lack of incentives

Jan 14 2021 Enrique Mallada JHU 4

Virtual Synchronous Generator

Controller

Telecom Analogy

Current approach: Use inverter‐based control to mimic generators response

It works, but perhaps there is 

something better…

Page 7: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Inverter‐based Control

Challenges• Measurements with noise and delays• Stability + robustness (plug & play)• Lack of incentives

Jan 14 2021 Enrique Mallada JHU 4

Dynamic Droop Control (iDroop)

Our approach: Design and tune of controllers rooted on sound control principles

Dynamic Droop

Design Objectives:

• Exploit power electronics capabilities• Improve Dynamic Performance• Minimize control effort• Stability and Robustness

Page 8: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Merits and Trade‐offs of Inertia

Jan 14 2021 Enrique Mallada JHU 5

Page 9: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Merits and Trade‐offs of Inertia

Jan 14 2021 Enrique Mallada JHU 5

Page 10: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Merits and Trade‐offs of Inertia

Pros: Provides natural disturbance rejection Cons: Hard to regain steady‐state

Jan 14 2021 Enrique Mallada JHU 5

Page 11: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Merits and Trade‐offs of Low Inertia 

Cons: Susceptible to disturbances Pros: Regains steady‐sate faster

Jan 14 2021 Enrique Mallada JHU 6

Page 12: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

• Performance Specification

•Limits of Virtual Inertia and Droop Control 

•Dynamic Droop Control: iDroop

Roadmap to Low Inertia Frequency Control

Page 13: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

IEEE Transactions on Automatic Control, October 2020

arXiv preprint arXiv:1910.04954 (2019)

IEEE Transactions on Automatic Control, July 2020

Page 14: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

• Performance Specification

•Limits of Virtual Inertia and Droop Control 

•Dynamic Droop Control: iDroop

Roadmap to Low Inertia Frequency Control

Page 15: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Power System Performance

Depends on several factors: generators, network, disturbancegood performance metric must identify the source of the degradation!

Enrique Mallada JHUJan 14 2021 8

Page 16: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

Page 17: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Decomposition of Step Response

Jan 14 2021 Enrique Mallada JHU 9

Synchronization Error

Center of Inertia: Kundur ‘94

System Frequency

Page 18: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Center of Inertia: Kundur ‘94

System Frequency

Step Disturbance Performance

Jan 14 2021 Enrique Mallada JHU 10

RoCoF

Nadir

Nadir RoCoF

Deviation from Mean

Synchronization Cost

Steady‐state

Steady‐state

Page 19: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoF

Nadir

Steady‐state

Sync. Cost

System Freq. :

Sync. Error :

Page 20: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control Effort

Jan 14 2021 Enrique Mallada JHU 11

Inverter Power

Power Rating

Power Rating Max Energy

Injected Energy

Steady‐State Effort

Steady‐State Effort

Page 21: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoFSteady‐state

Sync. Cost

System Freq. :

Sync. Error :

Power Rating

Injected Energy:

Injected Power:

Steady‐State

Benchmark: Quantify control ability to eliminate overshoot in the Nadir

NadirMax Energy

Page 22: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

• Performance Specification

• Limits of Virtual Inertia and Droop Control 

• Controller Design: iDroop

Roadmap to Low Inertia Frequency Control

Page 23: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Power Network Model

Jan 14 2021 Enrique Mallada JHU 12

Laplacian Matrix

Step:                

[Bergen Hill ‘81]

Page 24: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Bus DynamicsGenerator: 

Jan 14 2021 Enrique Mallada JHU 13

Model: Swing Equations Turbine

inverter

generator

ci

+ ! i

power imbalance

frequency

gi

piBus Dynamics

+

+

xiinverter

power injection

ui − pe,i

Page 25: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Bus DynamicsGenerator: 

Jan 14 2021 Enrique Mallada JHU 13

Model: Swing Equations Turbine

inverter

generator

ci

+ ! i

power imbalance

frequency

gi

piBus Dynamics

+

+

xiinverter

power injection

ui − pe,i

Page 26: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Bus DynamicsInverter: 

Jan 14 2021 Enrique Mallada JHU 13

inverter

generator

ci

+ ! i

power imbalance

frequency

gi

piBus Dynamics

+

+

xiinverter

power injection

ui − pe,i

Droop Control and Virtual Inertia:

Closed-loop Bus Dynamics:

Page 27: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control of Low Inertia Pendulum

Cons: Susceptible to disturbances Pros: Regains steady‐sate faster

Jan 14 2021 Enrique Mallada JHU 14

Page 28: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control of Low Inertia Pendulum

Pros:Provides disturbance rejection

Cons: Hard to regain steady‐state  + excessive control effort

Jan 14 2021 Enrique Mallada JHU 14

Virtual Mass Control:

Page 29: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control of Low Inertia Pendulum

Jan 14 2021 Enrique Mallada JHU 14

Pros: Provides disturbance rejection, quickly restore steady‐state, with reasonable control effort.  

Virtual Friction Control:

Cons?None, at least for pendulum

Page 30: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoFSteady‐state

Sync. Cost

System Freq. :

Sync. Error :

Power Rating

Injected Energy:

Injected Power:

Steady‐State

Benchmark: Quantify control ability to eliminate overshoot in Nadir

NadirMax Energy

Page 31: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       be the machine relative inertia (                       ), and assume

Swing Equations + Turbine Virtual Inertia

Enrique Mallada JHUJan 14 2021 15

Page 32: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       the machine relative inertia (                       ), and assume

Swing Equations + Turbine Virtual Inertia

Page 33: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       be the machine relative inertia (                       ), and

F -12 V Tu u

Change of Vars.

F -12V

w w

Change of Vars.

[Paganini M ‘17 , Guo Low 18’]Enrique Mallada JHUJan 14 2021 15

Page 34: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       be the machine relative inertia (                       ), and 

System Frequency

Sync Error

[Paganini M ‘17 , Guo Low 18’]

Eigenvalues of:

Enrique Mallada JHUJan 14 2021 15

F -12 V Tu u

Change of Vars.

F -12V

w w

Change of Vars.

Page 35: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoFSteady‐state

Sync. Cost

System Freq. :

Sync. Error :

Power Rating

Injected Energy:

Injected Power:

Steady‐State

Benchmark: Quantify control ability to eliminate overshoot in Nadir

NadirMax Energy

Page 36: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

System Frequency w/ Virtual Inertia

Nadir Overshoot Elimination:

Jan 14 2021 Enrique Mallada JHU 16

requires 𝝂 𝟎 in low inertia systems (low 𝒎)

Virtual Inertia Droop ControlNo Control

System

 Freq.

Page 37: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoFSteady‐state

Sync. Cost

System Freq. :

Sync. Error :

Power Rating

Injected Energy:

Injected Power:

Steady‐State

Benchmark: Quantify control ability to eliminate overshoot in Nadir

NadirMax Energy

Page 38: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control Effort 

Jan 14 2021 Enrique Mallada JHU 17

System

 Freq.

Control Effo

rt

Virtual InertiaNo Control Droop Control

Page 39: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

• Performance Specification

•Limits of Virtual Inertia and Droop Control 

•Dynamic Droop Control: iDroop

Roadmap to Low Inertia Frequency Control

Page 40: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Pros: Provides disturbance rejection, quickly restore steady‐state, with reasonable control effort.  

Control of Low Inertia Pendulum

Jan 14 2021 Enrique Mallada JHU 18

Virtual Friction Control:

Cons? Large steady‐state effort in power systems

Page 41: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

iDroop: Dynamic Droop Control

Instead of Virtual Inertia:

Jan 14 2021 Enrique Mallada JHU 19

Virtual Inertia

Page 42: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

iDroop: Dynamic Droop Control

Instead of Virtual Inertia:

We use

Jan 14 2021 Enrique Mallada JHU 19

iDroop – Lead iDroop – Lag

Page 43: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Bus Dynamics /w iDroopInverter: 

iDroop Control:

inverter

generator

ci

+ ! i

power imbalance

frequency

gi

piBus Dynamics

+

+

xiinverter

power injection

ui − pe,i

Closed-loop Bus Dynamics w/ iDroop:

iDroop

Enrique Mallada JHUJan 14 2021 20

Page 44: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control of Low Inertia Pendulum

Jan 14 2021 Enrique Mallada JHU 21

Dynamic Friction Control:

Page 45: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Control of Low Inertia Pendulum

Jan 14 2021 Enrique Mallada JHU 21

Dynamic Friction ControlNo Control

Page 46: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Frequency Response Control Effort

Performance Specification

RoCoFSteady‐state

Sync. Cost

System Freq. :

Sync. Error :

Power Rating

Injected Energy:

Injected Power:

Steady‐State

Benchmark: Quantify control ability to eliminate overshoot in Nadir

NadirMax Energy

Page 47: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Overshoot Elimination w/ iDroop

Jan 14 2021 Enrique Mallada JHU 22

Whenever                                and 

System

 Freq.

Control Effo

rt

Virtual Inertia Droop Control iDroop

Page 48: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Overshoot Elimination w/ iDroop

Jan 14 2021 Enrique Mallada JHU 22

Whenever

first order step response

and

1ms + d

r − 1g

⌧s + 1

�s + δr − 1r

s + δ

- -1

ms + d

r − 1g

⌧s + 1

r − 1r + r − 1

g −r − 1

g

⌧s + 1

- -1

ms + d

r − 1r + r − 1

g

-

Page 49: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

System Frequency w/ iDroop

iDroop can reduce system frequency step‐response to a first order system ‐ no Nadir!

Nadir Cancellation

1ms + d

r − 1g

⌧s + 1

�s + δr − 1r

s + δ

- -

first order step response

1ms + d

r − 1g

⌧s + 1

r − 1r + r − 1

g −r − 1

g

⌧s + 1

- -1

ms + d

r − 1r + r − 1

g

-

Page 50: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance

Base Case: No Inverter Control

Example: Icelandic Power Grid• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

Jan 14 2021 Enrique Mallada JHU 23

Icelandic Grid

Page 51: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Example: Icelandic Power Grid• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)• Droop equally set for inverters in all cases• Virtual inertia tuned for critically damped response 𝝂 𝝂𝒎𝒊𝒏• iDroop tuned for Nadir elimination

Jan 14 2021 Enrique Mallada JHU 23

Icelandic Grid

Page 52: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Example: Icelandic Power Grid• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100 0 50 100

Icelandic Grid

iDroop Benefit Summary• Overshoot Elimination in Nadir• Noise Attenuation• Disturbance Rejection• Reduce Inter‐area Oscillations

Page 53: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Example: Icelandic Power Grid• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100 0 50 100

Icelandic Grid

Enrique Mallada JHUJan 14 2021 23

Page 54: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance ‐ Frequency

iDroop Tuning 

• Droop equally shared between gens. and inverters.• Virtual inertia tuned for critically damped response 𝝂 𝝂𝒎𝒊𝒏• iDroop tuned for Nadir elimination

Page 55: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance – Control EffortInertia parameters of iDroop and VI are set to achieve zero overshoot.

Zero Nadir Tuning 

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100 0 50 100

Page 56: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Parameter Uncertainty

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2-224

-222

-220

-218

-216

-214

-212

-210

Jan 14 2021 Enrique Mallada JHU 24

Page 57: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Other Benefits of iDroop

Benefits Summary• Overshoot Elimination in Nadir• Noise Attenuation• Disturbance Rejection• Reduce Inter‐area Oscillations

iDroop – Lead

Enrique Mallada JHUJan 14 2021 25

Page 58: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Thanks!Related Publications:• Paganini and M, “Global analysis of synchronization performance for power systems: bridging the theory‐practice gap,” IEEE TAC 2020

• Jiang, Pates, M, “Dynamic Droop Control for Low Inertia Power Systems,” IEEE TAC 2021• Jiang, Cohn, Vorobev, M “Dynamic Droop Approach for Storage‐based Frequency Control,” IEEE TPS,conditionally accepted (arXiv)

• Min, Paganini, M, “Accurate Reduced Order Models for Coherent Synchronous Generators,” L‐CSS 2020• Y. Jiang, E. Cohn, P. Vorobev, and E. M, ”Storage‐Based Frequency Shaping Control,” L‐CSS 2020

Enrique [email protected]

http://mallada.ece.jhu.eduHancheng Min Eliza Cohn

Enrique Mallada JHUJan 14 2021 26

Richard Pates Fernando PaganiniPetr VorobevYan Jiang

Page 59: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Backup Slides

Jan 14 2021 Enrique Mallada JHU 27

Page 60: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Power Engineering Metrics

Step Response  Nadir, RoCoF, Steady‐State

60.0 Hz

59.3 Hz UFLSSetting

RoCoF

Point C: Nadir

Point B

Point A

based on classical control theory…

Eigenvalue Analysis [Verghese ‘89]Dom. Eig, Damping Ratios, Part. Fact.

Domain specific, capture system degradationRelation with cause? Eigenvalue sensitivity? More than one ”dominant” eig.?+-

Enrique Mallada JHUJan 14 2021 28

Page 61: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

System Theoretic Metrics

‐norm:  ‐norm: 

Close form solutions, qualitative analysis, computational methodsRestrictive assumptions, not direct connection with RoCoF, Nadir, step disturbances+-

[Tegling… ’15, Poolla… ’15, Grunberg… ’16, Simpson‐Porco…‘16,Wu et al ’16, Adreasson ’17, Coletta ‘17… ]

Enrique Mallada JHUJan 14 2021 29

Page 62: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       the machine relative inertia (                       ), and assume

Jan 14 2021 Enrique Mallada JHU 30

Swing Equations + Turbine Virtual Inertia

Page 63: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       the machine relative inertia (                       ), and

Jan 14 2021 Enrique Mallada JHU 30

F -12 V T

F -12 V Tu u

wPwP

V TF12

w! w!

Change of Vars.

F -12V

w w

Change of Vars.

[Paganini M ‘17 , Guo Low 18’]

Page 64: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Modal Decomposition for Multi‐Rated Machines

Assumption: Let       the machine relative inertia (.                      ), and 

Jan 14 2021 Enrique Mallada JHU 30

pe,1

-u1

wP,1 w1

w! ,1

c0

p0

wP,k

uk

wk

w! ,k

-

pe,k

c0

p0

1s λk

wn

w! ,n

un

wP,n

-

pe,k

c0

p0

1s λn

1s 0

System Frequency

F -12 V T

F -12 V Tu u

wPwP

V TF12

w! w!

Change of Vars.

F -12V

w w

Change of Vars.

Sync Error

[Paganini M ‘17 , Guo Low 18’]

Eigenvalues of:

Page 65: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance

Base Case: No Inverter Control

Example: Icelandic Power Grid• Iceland power network: 189 buses, 35 generators, load 1.3GW (PSAT)

Jan 14 2021 Enrique Mallada JHU 31

Icelandic Grid

Page 66: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance ‐ Frequency

Jan 14 2021 Enrique Mallada JHU 32

iDroop Tuning 

• Droop equally shared between gens. and inverters.• Virtual inertia tuned for critically damped response 𝝂 𝝂𝒎𝒊𝒏• iDroop tuned for Nadir elimination

Page 67: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step Disturbance – Control EffortInertia parameters of iDroop and VI are set to achieve zero overshoot.

Jan 14 2021 Enrique Mallada JHU 33

Zero Nadir Tuning 

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100-0.02

-0.01

0

0.01

0.02

0 50 100-0.2

-0.1

0

0.1

0.2

0 50 100 0 50 100

Page 68: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Parameter Uncertainty

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2-224

-222

-220

-218

-216

-214

-212

-210

Jan 14 2021 Enrique Mallada JHU 34

Page 69: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step DisturbanceInertia parameters of iDroop and VI are set to achieve zero overshoot.

Jan 14 2021 Enrique Mallada JHU 35

Zero Nadir Tuning 

0 50 100-0.5

-0.4

-0.3

-0.2

-0.1

0

SW DC VI iDroop0

0.5

1

Page 70: Low Inertia for Power System Frequency Control · Embracing Low Inertia for Power System Frequency Control A Dynamic Droop Approach Enrique Mallada 4th Grid Science Winter School

Step DisturbanceInertia parameters of iDroop and VI are set to achieve zero overshoot.

Jan 14 2021 Enrique Mallada JHU 35

System Frequency Synchronization Cost


Recommended