+ All Categories
Home > Documents > LS DYNA Performance Benchmarks and Profiling _analysis.pdf · – The MPP version of LS-DYNA allows...

LS DYNA Performance Benchmarks and Profiling _analysis.pdf · – The MPP version of LS-DYNA allows...

Date post: 19-Oct-2020
Category:
Upload: others
View: 23 times
Download: 0 times
Share this document with a friend
29
LSDYNA Performance Benchmarks and Profiling January 2009
Transcript
  • LS‐DYNA Performance Benchmarks  and Profiling

    January 2009

  • 2

    Note

    • The following research was performed under the HPC Advisory Council activities

    – AMD, Dell, Mellanox

    – HPC Advisory Council Cluster Center

    • The participating members would like to thank LSTC for their support and guidelines

    • The participating members would like to thank Sharan Kalwani, HPC Automotive specialist, for his support and guidelines

    • For more info please refer to

    – www.mellanox.com, www.dell.com/hpc, www.amd.com

    http://www.mellanox.com/http://www.dell.com/hpchttp://www.amd.com/

  • 3

    LS-DYNA

    • LS-DYNA– A general purpose structural and fluid analysis simulation software

    package capable of simulating complex real world problems – Developed by the Livermore Software Technology Corporation (LSTC)

    • LS-DYNA used by– Automobile– Aerospace– Construction– Military– Manufacturing– Bioengineering

  • 4

    LS-DYNA

    • LS-DYNA SMP (Shared Memory Processing)– Optimize the power of multiple CPUs within single machine

    • LS-DYNA MPP (Massively Parallel Processing)– The MPP version of LS-DYNA allows to run LS-DYNA solver over

    High-performance computing cluster – Uses message passing (MPI) to obtain parallelism

    • Many companies are switching from SMP to MPP– For cost-effective scaling and performance

  • 5

    Objectives

    • The presented research was done to provide best practices

    – LS-DYNA performance benchmarking

    – Interconnect performance comparisons

    – Ways to increase LS-DYNA productivity

    – Understanding LS-DYNA communication pattern

    – MPI libraries comparisons

    – Power-aware consideration

  • 6

    Test Cluster Configuration

    • Dell™ PowerEdge™ SC 1435 24-node cluster

    • Quad-Core AMD Opteron™ Model 2358 processors (“Barcelona”)

    • Mellanox® InfiniBand ConnectX® DDR HCAs

    • Mellanox® InfiniBand DDR Switch

    • Memory: 16GB memory, DDR2 667MHz per node

    • OS: RHEL5U2, OFED 1.3 InfiniBand SW stack

    • MPI: HP MPI 2.2.7, Platform MPI 5.6.5

    • Application: LS-DYNA MPP971

    • Benchmark Workload

    – Three Vehicle Collision Test simulation

    – Neon-Refined Revised Crash Test simulation

  • 7

    Mellanox InfiniBand Solutions

    • Industry Standard– Hardware, software, cabling, management– Design for clustering and storage interconnect

    • Performance– 40Gb/s node-to-node– 120Gb/s switch-to-switch– 1us application latency– Most aggressive roadmap in the industry

    • Reliable with congestion management• Efficient

    – RDMA and Transport Offload– Kernel bypass– CPU focuses on application processing

    • Scalable for Petascale computing & beyond• End-to-end quality of service• Virtualization acceleration• I/O consolidation Including storage

    InfiniBand Delivers the Lowest Latency

    The InfiniBand Performance Gap is Increasing

    Fibre Channel

    Ethernet

    60Gb/s

    20Gb/s

    120Gb/s

    40Gb/s

    240Gb/s (12X)

    80Gb/s (4X)

  • 88 November5, 2007

    • Performance– Quad-Core

    • Enhanced CPU IPC• 4x 512K L2 cache• 2MB L3 Cache

    – Direct Connect Architecture• HyperTransport™ technology• Up to 24 GB/s

    – Floating Point• 128-bit FPU per core• 4 FLOPS/clk peak per core

    – Memory• 1GB Page Support• DDR-2 667 MHz

    • Scalability– 48-bit Physical Addressing

    • Compatibility– Same power/thermal envelopes as Second-Generation AMD Opteron™ processor

    PCI-E® Bridge

    PCI-E® Bridge

    I/O HubI/O Hub

    USBUSB

    PCIPCI

    PCI-E® Bridge

    PCI-E® Bridge

    8 GB/S

    8 GB/S

    Dual ChannelReg DDR2

    8 GB/S

    8 GB/S

    8 GB/S

    Quad-Core AMD Opteron™ Processor

  • 9

    Dell PowerEdge Servers helping Simplify IT

    • System Structure and Sizing Guidelines– 24-node cluster build with Dell PowerEdge™ SC 1435 Servers

    – Servers optimized for High Performance Computing environments

    – Building Block Foundations for best price/performance and performance/watt

    • Dell HPC Solutions– Scalable Architectures for High Performance and Productivity

    – Dell's comprehensive HPC services help manage the lifecycle requirements.

    – Integrated, Tested and Validated Architectures

    • Workload Modeling– Optimized System Size, Configuration and Workloads

    – Test-bed Benchmarks

    – ISV Applications Characterization

    – Best Practices & Usage Analysis

  • 10

    LS-DYNA Performance Results - Interconnect

    • InfiniBand high speed interconnect enables highest scalability – Performance gain with cluster size

    • Performance over GigE is not scaling – Slowdown occurs as number of processors increases beyond 16 nodes

    LS-DYNA - 3 Vehicle Collision

    010002000300040005000600070008000

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    InfiniBand GigE

    LS-DYNA - Neon Refined Revised

    0100200300400500600700

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    InfiniBand GigE

    Lower is better

  • 11

    LS-DYNA Performance Results - Interconnect

    • InfiniBand outperforms GigE by up to 132%– As node number increases, bigger advantage is expected

    LS-DYNA - 3 Vehicle Collision(InfiniBand vs GigE)

    0%20%40%60%80%

    100%120%

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )Number of Nodes

    Perfo

    rman

    ce A

    dvan

    tage

    LS-DYNA - Neon Refined Revised(InfiniBand vs GigE)

    0%20%40%60%80%

    100%120%140%

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of NodesPe

    rform

    ance

    Adv

    anta

    ge

  • 12

    LS-DYNA Performance Results – CPU Affinity

    • CPU affinity accelerates performance up to 10%• Saves up to 177 seconds per simulation

    LS-DYNA - 3 Vehicle Collision(CPU Affinity vs Non-Affinity)

    01000200030004000500060007000

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Ela

    psed

    tim

    e (S

    econ

    ds)

    CPU Affinity Without Affinity

    Lower is better

  • 13

    LS-DYNA Performance Results - Productivity

    • InfiniBand increases productivity by allowing multiple jobs to run simultaneously– Providing required productivity for virtual vehicle design

    • Three cases are presented– Single job over the entire systems (with CPU affinity)

    – Two jobs, each on a single CPU per server (job placement , CPU affinity)

    – Four jobs, each on two CPU cores per CPU per server (job placement , CPU affinity)

    • Four jobs per day increases productivity by 97% for Neon Refined Revised, 57% for 3 Car collision case• Increased number of parallel processes (jobs) increases the load on the interconnect

    – High speed and low latency interconnect solution is required for gaining high productivityLS-DYNA - Neon Refined Revised

    0100200300400500600700800900

    10004 (

    32 C

    ores

    )8 (

    64 C

    ores

    )12

    (96 C

    ores

    )16

    (128

    Cor

    es)

    20 (1

    60 C

    ores

    )24

    (192

    Cor

    es)

    Number of Nodes

    Jobs

    per

    Day

    1 Job 2 Parallel Jobs 4 Parallel Jobs

    LS-DYNA - 3 Vehicle Collision

    0102030405060708090

    4 (32

    Cor

    es)

    8 (64

    Cor

    es)

    12 (9

    6 Cor

    es)

    16 (1

    28 C

    ores

    )20

    (160

    Cor

    es)

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Jobs

    per

    Day

    1 Job 2 Parallel Jobs 4 Parallel Jobs

    Higher is better

  • 14

    LS-DYNA MPI Profiliing

    10000000

    100000000

    1E+09

    1E+10

    1E+11

    1E+12

    [0..64

    B][64

    ..256

    B][25

    6B..1

    KB]

    [1..4K

    B][4.

    .16KB

    ][16

    ..64K

    B][64

    ..256

    KB]

    [256K

    B..1M

    ][1.

    .4M]

    [4M..in

    finity

    ]

    Message Size

    Tota

    l Siz

    e (M

    B)

    4nodes 8nodes 12nodes 16nodes 20nodes 24nodes

    LS-DYNA Profiling – Data Transferred

    (3 Vehicle Collision)

    • Majority of data transfer is done via 256B-4KB message size

  • 15

    LS-DYNA Profiling – Message Distribution

    LS-DYNA MPI Profiliing

    1

    10

    100

    1000

    10000

    100000

    1000000

    10000000

    100000000

    1000000000

    [0..64

    B][64

    ..256

    B][25

    6B..1

    KB]

    [1..4K

    B][4.

    .16KB

    ][16

    ..64K

    B][64

    ..256

    KB]

    [256K

    B..1M

    ][1.

    .4M]

    [4M..in

    finity

    ]

    Message Size

    Num

    ber o

    f Mes

    sage

    s

    4nodes 8nodes 12nodes 16nodes 20nodes 24nodes

    (3 Vehicle Collision)

    • Majority of the messages are in the range of 2B-4KB– 2B-256B for synchronization, 256B-4KB for data communications

  • 16

    LS-DYNA MPI Profiliing

    0%

    10%

    20%

    30%

    40%

    50%

    60%

    70%

    [0..64] [65..256] [257..1024] [1025..4096] [4097..16384]

    Message Size

    % o

    f tot

    al m

    essa

    ges

    4nodes 8nodes 12nodes 16nodes 20nodes 24nodes

    LS-DYNA Profiling – Message Distribution

    (3 Vehicle Collision)

    • As number of nodes scales, percentage of small messages increases• percentage of 256-1KB messages is relatively consistent with cluster size

    – Actual number increases with cluster size,

  • 17

    LS-DYNA Profiling – MPI Collectives

    • Two key MPI collective functions in LS-DYNA– MPI_AllReduce– MPI_Bcast

    • Account for the majority of MPI communication overhead

    MPI Collectives

    0%10%20%30%40%50%60%70%

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96

    Cores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of Nodes

    % o

    f Tot

    al O

    verh

    ead

    (ms)

    MPI_AllReduce MPI_Bcast

  • 18

    MPI Collective Benchmarking

    MPI_Bcast

    0

    5

    10

    15

    20

    25

    30

    0 1 2 4 8 16 32 64 128 256 512

    Message Size

    Late

    ncy(

    usec

    )

    HP-MPI Platform MPI

    MPI_AllReduce

    0

    20

    40

    60

    80

    100

    120

    0 4 8 16 32 64 128 256 512

    Message Size

    Late

    ncy(

    usec

    )

    HP-MPI Platform MPI

    • MPI collective performance comparison – Two frequently called collection operations in LS-DYNA were benchmarked

    • MPI_Allreduce• MPI_Bcast

    – Platform MPI shows better latency for AllReduce operation

  • 19

    LS-DYNA with Different MPI Libraries

    • LS-DYNA performance Comparison– Each MPI library shows different benefits for latency and collectives– As such, HP-MPI and Platform MPI shows comparable performance

    LS-DYNA - 3 Vehicle Collision

    1000200030004000500060007000

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    Platform MPI HP-MPI

    LS-DYNA - Neon Refined Revised

    100150200250300350400450500550

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )

    16 (1

    28 C

    ores

    )

    18 (1

    44 C

    ores

    )

    20 (1

    60 C

    ores

    )

    22 (1

    76 C

    ores

    )

    24 (1

    92 C

    ores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    Platform MPI HP-MPI

    Lower is better

  • 20

    LS-DYNA Profiling Summary - Interconnect

    • LS-DYNA was profiled to determine networking dependency • Majority of data transferred between compute nodes

    – Done with 256B-4KB message size, data transferred increases with cluster size

    • Most used message sizes–

  • 21

    Test Cluster Configuration – System Upgrade

    • The following results were achieved after system upgrade (changes are in green)

    – Dell PowerEdge SC 1435 24-node cluster

    – Quad-Core AMD Opteron™ Model 2382 processors (“Shanghai”) (vs “Barcelona” in previous

    configuration)

    – Mellanox® InfiniBand ConnectX® DDR HCAs

    – Mellanox® InfiniBand DDR Switch

    – Memory: 16GB memory, DDR2 800MHz per node (vs 667MHz in previous configuration)

    – OS: RHEL5U2, OFED 1.3 InfiniBand SW stack

    – MPI: HP MPI 2.2.7, Platform MPI 5.6.5

    – Application: LS-DYNA MPP971

    – Benchmark Workload

    • Three-Car Crash Test simulation

    • Neon-Refined Revised Crash Test simulation

  • 22

    • Performance– Quad-Core

    • Enhanced CPU IPC• 4x 512K L2 cache• 6MB L3 Cache

    – Direct Connect Architecture• HyperTransport™ technology • Up to 24 GB/s peak per processor

    – Floating Point• 128-bit FPU per core• 4 FLOPS/clk peak per core

    – Integrated Memory Controller• Up to 12.8 GB/s• DDR2-800 MHz or DDR2-667 MHz

    • Scalability– 48-bit Physical Addressing

    • Compatibility– Same power/thermal envelopes as 2nd / 3rd generation AMD Opteron™ processor

    22 November5, 2007

    PCI-E® Bridge

    PCI-E® Bridge

    I/O HubI/O Hub

    USBUSB

    PCIPCI

    PCI-E® Bridge

    PCI-E® Bridge

    8 GB/S

    8 GB/S

    Dual ChannelReg DDR2

    8 GB/S

    8 GB/S

    8 GB/S

    Quad-Core AMD Opteron™ Processor

  • 23

    Performance Improvement

    • Upgraded AMD CPU and DDR-2 Memory • LS-DYNA run time decreased by more than 20%

    – Leveraging InfiniBand 20Gb/s for higher scalability

    LS-DYNA - 3 Vehicle Collision

    01000

    20003000

    40005000

    60007000

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )16

    (128

    Cor

    es)

    18 (1

    44 C

    ores

    )20

    (160

    Cor

    es)

    22 (1

    76 C

    ores

    )24

    (192

    Cor

    es)

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    Barcelona Shanghai

    LS-DYNA - Neon Refined Revised

    0

    100

    200

    300

    400

    500

    600

    4 (32

    Cor

    es)

    6 (48

    Cor

    es)

    8 (64

    Cor

    es)

    10 (8

    0 Cor

    es)

    12 (9

    6 Cor

    es)

    14 (1

    12 C

    ores

    )16

    (128

    Cor

    es)

    18 (1

    44 C

    ores

    )20

    (160

    Cor

    es)

    22 (1

    76 C

    ores

    )24

    (192

    Cor

    es)

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    Barcelona Shanghai

    Lower is better

  • 24

    Maximize LS-DYNA Productivity

    • Scalable latency of InfiniBand and latest Shanghai processor deliver scalable LS-DYNA performance

    LS-DYNA - 3 Vehicle Collision

    020

    406080

    100120

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96 C

    ores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of Nodes

    Jobs

    per

    Day

    1 Job 2 Parallel Jobs 4 Parallel Jobs 8 Parallel Jobs

    LS-DYNA - Neon Refined Revised

    0200400600800

    100012001400

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96 C

    ores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of NodesJo

    bs p

    er D

    ay

    1 Job 2 Parallel Jobs 4 Parallel Jobs 8 Parallel Jobs

    Higher is better

  • 25

    LS-DYNA with Shanghai Processors

    • “Shanghai” processors provides higher performance compared to “Barcelona’

    LS-DYNA - 3 Vehicle Collision(Shanghai vs Barcelona)

    0%5%

    10%15%20%25%30%

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96

    Cores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of Nodes

    % o

    f mor

    e jo

    bs p

    er d

    ay

    1 Job 2 Parallel Jobs 4 Parallel Jobs

  • 26

    LS-DYNA Performance Results - Interconnect

    • InfiniBand 20Gb/s vs 10GigE vs GigE• InfiniBand 20Gb/s (DDR) outperforms 10GigE and GigE in all test cases

    – Reducing run time by up to 60% versus 10GigE and 61% vs GigE• Performance loss shown beyond 16 nodes with 10GigE and GigE• InfiniBand 20Gb/s maintain scalability with cluster size

    LS-DYNA - Neon Refined Revised(HP-MPI)

    0

    100

    200

    300

    400

    500

    600

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96 C

    ores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    GigE 10GigE InfiniBand

    LS-DYNA - 3 Vehicle Collision(HP-MPI)

    0

    1000

    2000

    3000

    4000

    5000

    6000

    4 (32 C

    ores)

    8 (64 C

    ores)

    12 (96 C

    ores)

    16 (128

    Cores

    )

    20 (160

    Cores

    )

    24 (192

    Cores

    )

    Number of Nodes

    Elap

    sed

    time

    (Sec

    onds

    )

    GigE 10GigE InfiniBand

    Lower is better

  • 27

    Power Consumption(InfiniBand vs 10GigE vs GigE)

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    3 Vehicle Collision Neon Refined Revised

    Wh

    per J

    ob

    GigE 10GigE InfiniBand

    Power Consumption Comparison

    • InfiniBand also enables power efficient simulations– Reducing power/job by up to 62%!

    62%

    50%

    24-node comparison

  • 28

    Conclusions

    • LS-DYNA is widely used to simulate many real-world problems– Automotive crash-testing and finite-element simulations – Developed by Livermore Software Technology Corporation (LSTC)

    • LS-DYNA performance and productivity relies on– Scalable HPC systems and interconnect solutions– Low latency and high throughput interconnect technology– NUMA aware application for fast access to local memory– Reasonable job distribution can dramatically improve productivity

    • Increasing number of jobs per day while maintaining fast run time

    • Interconnect comparison shows– InfiniBand delivers superior performance and productivity in every cluster size– Scalability requires low latency and “zero” scalable latency– Lowest power consumption was achieved with InfiniBand

    • Saving in system power, cooling and real-estate

  • 2929

    Thank YouHPC Advisory [email protected]

    All trademarks are property of their respective owners. All information is provided “As-Is” without any kind of warranty. The HPC Advisory Council makes no representation to the accuracy and completeness of the information contained herein. HPC Advisory Council Mellanox undertakes no duty and assumes no obligation to update or correct any information presented herein

    LS-DYNA Performance Benchmarks and ProfilingNoteLS-DYNALS-DYNAObjectivesTest Cluster ConfigurationMellanox InfiniBand SolutionsQuad-Core AMD Opteron™ ProcessorDell PowerEdge Servers helping Simplify ITLS-DYNA Performance Results - Interconnect LS-DYNA Performance Results - Interconnect LS-DYNA Performance Results – CPU AffinityLS-DYNA Performance Results - Productivity LS-DYNA Profiling – Data TransferredLS-DYNA Profiling – Message DistributionLS-DYNA Profiling – Message DistributionLS-DYNA Profiling – MPI CollectivesMPI Collective BenchmarkingLS-DYNA with Different MPI LibrariesLS-DYNA Profiling Summary - InterconnectTest Cluster Configuration – System UpgradeQuad-Core AMD Opteron™ ProcessorPerformance ImprovementMaximize LS-DYNA ProductivityLS-DYNA with Shanghai ProcessorsLS-DYNA Performance Results - Interconnect Power Consumption ComparisonConclusionsSlide Number 29


Recommended