+ All Categories
Home > Documents > Lt.asif .. Lavta

Lt.asif .. Lavta

Date post: 03-Jun-2018
Category:
Upload: imran-ahmed
View: 227 times
Download: 0 times
Share this document with a friend

of 26

Transcript
  • 8/12/2019 Lt.asif .. Lavta

    1/26

    DETERMINANTS

  • 8/12/2019 Lt.asif .. Lavta

    2/26

    THE LAPLACE EXPANSION

    When we have a matrix with dimension larger than 2, we use theLaplace expansionin order to calculate its determinant. For that

    we need to introduce two new concepts:

  • 8/12/2019 Lt.asif .. Lavta

    3/26

    The minor determinant

    The minor determinant thatcorresponds to an element is given bydeleting the row and column of the

    element.

  • 8/12/2019 Lt.asif .. Lavta

    4/26

    The minor determinant

    The minor determinant thatcorresponds to an element is given bydeleting the row and column of the

    element.

    2 311

    1 4

    5 1 2

    3 2 3

    8 1 4

    The minor

    determinantcorresponding tothe 5 is 11.

  • 8/12/2019 Lt.asif .. Lavta

    5/26

    The minor determinant

    The minor determinant thatcorresponds to an element is given bydeleting the row and column of the

    element.

    1 22

    1 4

    The minor

    determinantcorresponding tothe -3 is 2.

    5 1 2

    3 2 3

    8 1 4

  • 8/12/2019 Lt.asif .. Lavta

    6/26

  • 8/12/2019 Lt.asif .. Lavta

    7/26

    Finding Inverses 3x3

    An algorithm can be followed to find theinverse of a 3x3 matrix, M.

    1. Find the matrix of minor determinants.2. Alter the signs of the minors which

    dont lie on the diagonals.

    3. Transpose

    4. Divide by det(M)

  • 8/12/2019 Lt.asif .. Lavta

    8/26

  • 8/12/2019 Lt.asif .. Lavta

    9/26

    LAPLACE EXPANSION METHOD

    To find the first row minors of A we work along row 1:

    2)7(1)3(331

    73

    11

    M

    2)7(2)3(4

    32

    7412

    M

    2)3(2)1(412

    3413

    M

    Example

    312

    734

    142

    A

  • 8/12/2019 Lt.asif .. Lavta

    10/26

    LAPLACE EXPANSION METHOD

    Cofactors: The cofactor Cijis equal to the corresponding minor, Mijwith a prescribed algebraic sign attached to it. If the sum of i (the

    number indicating the row) and j(the number indicating the column

    is even (e.g., 2,4,8) then the cofactor has the same sign as the

    minor. If the sum is odd(e.g, 3, 5) then the cofactor has the

    opposite sign:

    333231

    232221

    131211

    333231

    232221

    131211

    MMM

    MMM

    MMM

    CCC

    CCC

    CCC

  • 8/12/2019 Lt.asif .. Lavta

    11/26

    LAPLACE EXPANSION METHOD To calculate the determinant we simply multiply each element of

    the chosen row (or column) with its corresponding cofactor andsum the results:

    131312121111131312121111

    333231

    232221

    131211

    MaMaMaCaCaCaA

    aaa

    aaa

    aaa

    A

  • 8/12/2019 Lt.asif .. Lavta

    12/26

    THE INVERSE OF A MATRIX OF HIGHER

    DIMENSION

    The Laplace expansion introduced us to the concept ofminors and cofactors. We use these concepts in the

    calculation of the inverse of a matrix.

    Specifically,

    333231

    232221

    131211

    333231

    232221

    131211

    333231

    232221

    131211

    MMM

    MMM

    MMM

    CCC

    CCC

    CCC

    C

    aaa

    aaa

    aaa

    A

  • 8/12/2019 Lt.asif .. Lavta

    13/26

    THE INVERSE OF A MATRIX OF HIGHER

    DIMENSION

    The transpose of the cofactor matrix is called the adjoint matrix:

    adjA=C

    General case of inverse matrix calculation: Provided that the

    determinant of the matrix is non-zero, the inverse of any (nxn) matrix

    A can be found by multiplying its adjoint matrix by 1 divided by the

    determinant.

    Example: Find the inverse of

    703

    230

    114

    A

  • 8/12/2019 Lt.asif .. Lavta

    14/26

    Solution

    The inverse can be found as follows:

    ,

    703

    230

    114

    A ,2102170

    2311 C 6)60(

    73

    2012 C

    ,99003

    3013 C

    7)07(70

    1121

    C 3132873

    1422

    C

    ,3)30(03

    1423 C ,532

    23

    1131

    C

    8)08(20

    1432 C ,12

    30

    1433

    C,

    1285

    3317

    9621

    Cor

    TCadjA1239

    8316

    5721

    131312121111 CaCaCaA 099)9(1)6(1)21(4

    1239

    8316

    5721

    99

    11

    AHence

  • 8/12/2019 Lt.asif .. Lavta

    15/26

    More examples of matrix inversion

    231

    312

    541

    ,

    121

    231

    112

    BA

    Find where possible the inverse of:

  • 8/12/2019 Lt.asif .. Lavta

    16/26

    The Cramers rule

    Now that we know how to find the inverse of a matrix, we

    can solve a related system of equations in exactly the

    same way as in the 2X2 case, x=A-1b. But as we saw this

    is a very time and effort consuming process, involving the

    calculation and subsequent inversion of the co-factor

    matrix and evaluation of the determinant.

  • 8/12/2019 Lt.asif .. Lavta

    17/26

  • 8/12/2019 Lt.asif .. Lavta

    18/26

    The Cramers rule cntnd.

    According to the Cramers rule, the solution for (x1, x2and x3) is

    given by:

    33231

    22221

    11211

    3

    33331

    23221

    13111

    2

    33323

    23222

    13121

    1

    3

    3

    2

    2

    1

    1

    ,,

    ,,,

    baa

    baa

    baa

    A

    aba

    aba

    aba

    A

    aab

    aab

    aab

    A

    whereA

    Ax

    A

    Ax

    A

    Ax

  • 8/12/2019 Lt.asif .. Lavta

    19/26

    The Cramers rule

    Example: Solve by Cramers rule:

    Step 1:

    13572

    964

    932

    321

    321

    321

    xxx

    xxx

    xxx

    ,

    572

    614

    321

    A ,

    3

    2

    1

    xx

    x

    x

    139

    9

    b

    ,

    5713

    619

    329

    1 A

    ,

    5132

    694

    391

    2 A

    1372

    914

    921

    3 A

  • 8/12/2019 Lt.asif .. Lavta

    20/26

    Cramers Rule - 3 x 3

    Consider the 3-equation system below with

    variables x, yand z:

    a1xb

    1yc

    1zC

    1

    a2xb2y

    c2z

    C2

    a3xb

    3yc

    3zC

    3

  • 8/12/2019 Lt.asif .. Lavta

    21/26

    THE CRAMERS RULE

    Step 2: Calculate321 ,,, AAAA

    6372

    143

    52

    642

    57

    611

    572

    614

    321

    A

    315713

    193513

    69257

    619

    5713

    619

    329

    1 A

    63132

    943

    52

    649

    513

    691

    5132

    694

    391

    2

    A

    12672

    149

    132

    942

    137

    911

    1372

    914

    921

    3

    A

  • 8/12/2019 Lt.asif .. Lavta

    22/26

    THE CRAMERS RULE

    Step 3: Calculate x1, x2and x3

    263

    126,1

    63

    63,5

    63

    315 33

    2

    2

    1

    1

    A

    Ax

    A

    Ax

    A

    Ax

  • 8/12/2019 Lt.asif .. Lavta

    23/26

    Cramers Rule - 3 x 3

    The formulae for the values of x, yand zare shownbelow. Notice that all three have the samedenominator.

    x

    C1 b

    1 c

    1

    C2 b

    2 c

    2

    C3 b

    3 c

    3

    a1 b

    1 c

    1

    a2 b

    2 c

    2

    a3 b

    3 c

    3

    y

    a1 C

    1 c

    1

    a2 C

    2 c

    2

    a3 C

    3 c

    3

    a1 b

    1 c

    1

    a2 b

    2 c

    2

    a3 b

    3 c

    3

    z

    a1 b

    1 C

    1

    a2 b

    2 C

    2

    a3 b

    3 C

    3

    a1 b

    1 c

    1

    a2 b

    2 c

    2

    a3 b

    3 c

    3

  • 8/12/2019 Lt.asif .. Lavta

    24/26

    Cramers Rule

    Not all systems have a definite solution. If thedeterminant of the coefficient matrix is zero, a solutioncannot be found using Cramers Rule

    due to division by zero.

  • 8/12/2019 Lt.asif .. Lavta

    25/26

    Cramers Rule

    Example:Solve the system 3x- 2y+ z= 9

    x+ 2y- 2z= -5x+ y - 4z= -2

    x

    9 2 1

    5 2 2

    2 1 43 2 1

    1 2 2

    1 1 4

    2323

    1 y

    3 9 1

    1 5 2

    1 2 43 2 1

    1 2 2

    1 1 4

    6923

    3

  • 8/12/2019 Lt.asif .. Lavta

    26/26

    Cramers Rule

    Example, continued: 3x- 2y+ z= 9

    x+ 2y- 2z= -5

    x+ y- 4z= -2

    z

    3 2 9

    1 2 5

    1 1 2

    3 2 11 2 2

    1 1 4

    0

    23 0

    The solution is

    (1, -3, 0)


Recommended