+ All Categories
Home > Documents > Lundstrom SISC_11.30.11v2

Lundstrom SISC_11.30.11v2

Date post: 10-Feb-2017
Category:
Upload: phamnguyet
View: 245 times
Download: 5 times
Share this document with a friend
64
IEEE Semiconductor Interface Specialists Conference Tutorial, Nov. 30th, 2011 Understanding the Nanoscale MOSFET Mark Lundstrom 1 Electrical and Computer Engineering and Network for Computational Nanotechnology Birck Nanotechnology Center Purdue University, West Lafayette, Indiana USA
Transcript

IEEE Semiconductor Interface Specialists Conference Tutorial, Nov. 30th, 2011

Understanding the

Nanoscale MOSFET

Mark Lundstrom

1

Electrical and Computer Engineering and

Network for Computational Nanotechnology Birck Nanotechnology Center

Purdue University, West Lafayette, Indiana USA

2

nanoscale MOSFETs

source drain

SiO

2

silicon

channel ~ 32 nm

gate oxide EOT ~ 1.1 nm

gate electrode

S G D

Lundstrom: SISC 2011

3

Moore’s Law: 2011

Lundstrom: SISC 2011

http://en.wikipedia.org/wiki/Moore's_law

4

Moore’s Law: 2011

transistors per cpu chip

Lundstrom: SISC 2011

5

Moore’s Law: 2010

Lundstrom: SISC 2011

~2000

1980s

? 2010

6

objectives

1)  Present a simple, physical picture of the nanoscale MOSFET (to complement, not supplement simulations).

2)  Discuss ballistic limits, velocity saturation, and quantum limits in nanotransistors.

3)  Compare to experimental results for Si and III-V FETs.

4)  Discuss scattering in nano-MOSFETs.

5)  Consider ultimate limits.

Lundstrom: SISC 2011

7

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10 nm 8) Summary

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 United States License. http://creativecommons.org/licenses/by-nc-sa/3.0/us/

8

MOSFET IV characteristic

VGS

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

S

D

G

circuit symbol

VDS

VGS

IDS

gate-voltage controlled resistor

Lundstrom: SISC 2011

gate-voltage controlled

current source on-current

9

MOSFET IV: low VDS

VG>VT VD 0

ID =WQi x( )υx (x)

ID =W Cox VGS −VT( )µeffE x

Qi x( ) ≈ −Cox VGS −VT( )

ID = WL

µeffCox VGS −VT( )VDS

VGS

gate-voltage controlled resistor

Lundstrom: SISC 2011

E x = VDS

L

L

10

MOSFET IV: “pinch-off” at high VDS

VG VD 0

Qi x( ) = −Cox VGS −VT −V (x)( )

V x( ) = VGS −VT( )

Qi x( ) ≈ 0

Lundstrom: SISC 2011

11

MOSFET IV: high VDS

VG VD 0

ID =W Cox VGS −VT( )µeffE x (0)

ID = WL

µeffCox VGS −VT( )22

E x (0) ≈

VGS −VTL

Qi x( ) = −Cox VGS −VT −V (x)( )�

V x( ) = VGS −VT( )

VGS

gate-voltage controlled

current source

ID =W Qi x( )υ x (x) =W Qi 0( )υ x (0)

Lundstrom: SISC 2011

12

velocity saturation

electric field V/cm --->

velo

city

cm

/s --

->

107

104

υ = µE�

υ = υ sat

VDSL

≈ 1.0V30nm

≈ 3×105 V/cm

105

Lundstrom: SISC 2011

13

MOSFET IV: velocity saturation

VG VD 0

ID =WQi x( )υx (x)

ID =W Cox VGS −VT( )υ satID =WCoxυsat VGS −VT( )

E x >> 104

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

Lundstrom: SISC 2011

µm( )

Velo

city

(cm

/s)

14

carrier transport nanoscale MOSFETs

υSAT

Lundstrom: SISC 2011

D. Frank, S. Laux, and M. Fischetti, Int. Electron Dev. Mtg., Dec., 1992.

µm( )

EC

quasi-ballistic

15

how transistors work

2007 N-MOSFET

electron energy vs. position

VDS = 0.05 VVGS

EC

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

VDS = 1.0 V

VGS

electron energy vs. position

EC

E.O. Johnson, “The IGFET: A Bipolar Transistor in Disguise,” RCA Review, 1973

Lundstrom: SISC 2011

16

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10 nm 8) Summary

17

MOS electrostatics: low drain voltage

Lundstrom: SISC 2011

x

E

EF

EC

VG

Qi ψ S( )C/cm2

low gate voltage

high gate voltage

n0 = NC eEF −EC( ) kBTL /cm3

EC = EC 0( ) − qψ s

18

inversion charge vs. gate voltage

Lundstrom: SISC 2011

VG

Qi

Qi ≈ −CG VGS −VT( )

VTthreshold voltage

CG = Cox ||CS

≤ Cox

Cox =εoxtox

F cm2

19

MOS electrostatics: high drain voltage

Lundstrom: SISC 2011

E TOP

EC

EF1 EF1 - qVD

E C (x)

x

top-of-the-barrier should be strongly controlled by the gate voltage

Qinv 0( ) ≈ −CG VGS −VT( )

20

2D MOS electrostatics

Lundstrom: SISC 2011

ψ SCDBCSB

CGB

EC x( )CD

EC

x

CΣ = CGB + CSB + CDB + CD

ψ S 0( ) = CGB

VG +CDB

VD

VG

VS VD

0

21

geometric scaling length (double gate example)

Lundstrom: SISC 2011

TOX = 1nm

Off-state: VG = 0V, VD = 1V, Ioff = 0.1µA/µm (by H. Pal, Purdue)

Λ

Require L > Λ

22

nonplanar MOSFETs

Lundstrom: SISC 2011

See also: “Integrated Nanoelectronics of the Future,” Robert Chau, Brian Doyle, Suman Datta, Jack Kavalieros, and Kevin Zhang, Nature Materials, Vol. 6, 2007

“Transistors go Vertical,” IEEE Spectrum, Nov. 2007.

MOSFETs are barrier controlled devices

EC x( )

x

E

3) Additional increases in VDS drop near the drain and have a small effect on ID

A. Khakifirooz, O. M. Nayfeh, D. A. Antoniadis, IEEE TED, 56, pp. 1674-1680, 2009.

2) region under strong\

control of gate Qi 0( ) ≈ −CG VG −VT( )1) “Well-tempered MOSFET”

M. Lundstrom, IEEE EDL, 18, 361, 1997. 23

24

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10 nm 8) Summary

25

Landauer approach

Lundstrom: SISC 2011

W --> B. J. van Wees, et al. Phys. Rev. Lett. 60, 848–851,1988.

G =2q2

hT EF( )M EF( )

26

molecular electronics

Lundstrom: SISC 2011

The Birth of Molecular Electronics, Scientific American, September 2001.

27

current flows when the Fermi-levels are different

D(E)

τ 2

EF1 EF2

τ1f1 E( ) = 11+ e E−EF1( ) kBTL

f2 E( ) = 11+ e E−EF 2( ) kBTL

gate

I = 2qh

T E( )M E( ) f1 − f2( )dE∫

Lundstrom: SISC 2011

28

“top of the barrier model” en

ergy

position

contact 1 contact 2

“device”

LDOS

U = EC − qψ S

EF1

EF2

ε1 x( )EC x( )

Lundstrom: SISC 2011

29

ballistic MOSFET: linear region

VDS

IDS VGS =VDD

Lundstrom: SISC 2011

near-equilibrium f1 ≈ f2IDS = GCHVDS

30

linear region with MB statistics

Lundstrom: SISC 2011

GCH = 2q2

hT E( )M 2D E( ) − ∂f0

∂E⎛⎝⎜

⎞⎠⎟ dE

EC

∫ M2D E( ) = gVW

2m* E − EC( )π

T E( ) = 1

nS = N2DeEF −EC( ) kBTL

= gVm*

π2⎛⎝⎜

⎞⎠⎟e EF −EC( ) kBTL

GCH =WnSυT

2kBTL q

GCH =WCoxυT

2kBT qVGS −VT( )

nS ≈ Cox VGS −VT( ) (MOS electrostatics)

f0 E( ) = 1 1+ e E−EF kBTL( )( )

υT = 2kBTL πm* = υx+

Boltzmann statistics: −∂f0 ∂E = f0 kBTL

f0 = eEF −E( ) kBTL

31

ballistic MOSFET: linear region

VDS

ID VGS =VDD

Lundstrom: SISC 2011

near-equilibrium f1 ≈ f2IDS = GCHVDS

IDS = GCHVDS

ID =WCoxυT

2kBT qVGS −VT( )VDS

32

relation to conventional expression

Lundstrom: SISC 2011

IDS =WCoxυT

2kBTL qVGS −VT( )VDS

ballistic MOSFET conventional MOSFET

IDS =WLCoxµn VGS −VT( )VDS

IDS =WLCox

υT L2kBTL q

VGS −VT( )VDS

Dn =υTλ02

µn =Dn

kBTL q( )

IDS =WLCoxµB VGS −VT( )VDS

µB ≡υT L

2 kBTL q

µn → µB

33

ballistic MOSFET: on-current

VDS

IDVGS =VDD

Lundstrom: SISC 2011

f1 >> f2

IDS =2qh

T E( )M E( ) f1 − f2( )dE∫ → IDS =2qh

T E( )M E( ) f1 dE∫

34

saturated region with MB statistics

Lundstrom: SISC 2011

IDS =2q2

hT E( )M 2D E( ) f1 E( )dE

EC

M2D E( ) = gVW

2m* E − EC( )π

T E( ) = 1

Boltzmann statistics: f0 ≈ e− EC −EF( ) kBTL

nS =N2D

2e EF −EC( ) kBTL

= gVm*

2π2⎛⎝⎜

⎞⎠⎟e EF −EC( ) kBTL

IDS =WqnSυT

υT = 2kBTL πm* = υx+

IDS =WCoxυT VGS −VT( ) ✔

35

under low VDS

x

E

EF1 EF2

I +I + = nS

+υT

Lundstrom: SISC 2011

I −I − = nS

−υT

I + I − nS+ nS

nS = nS+ + nS

nS+ nS

− ≈ nS2

nS ≈Cox

qVGS −VT( )

36

under high VDS

x

E

EF1

EF2

I +

Lundstrom: SISC 2011

I + = nS+υT I − = nS

−υT

I − ≈ 0 nS− ≈ 0

nS = nS+ + nS

− ≈ nS+

nS ≈Cox

qVGS −VT( )

37

velocity vs. VDS

x

E

EF1

EF2

I + I −

υ =IDqnS

=I + − I −( )nS

I + = nS+υT I − = nS

−υT

nS = nS+ + nS

nS−

nS+ = e−qVDS kBTL

υ = υT

1− e−qVDS kBT( )1+ e−qVDS kBT( )

38

velocity vs. VDS

x

E

EF1

EF2

I + I −

υ ∝VDS

υ →υT

Velocity saturates in a ballistic MOSFET but at the top of the barrier, where E-field = 0.

Lundstrom: SISC 2011

υ

VDS

39

velocity saturation in a ballistic MOSFET

VDS = 1.0 V

VGS

(Courtesy, Shuji Ikeda, ATDF, Dec. 2007)

2007 N-MOSFET velocity

saturation

υ = υsat ≈ 1.0 ×107 cm/s

Lundstrom: SISC 2011

υ = υT ≈1.2 ×107 cm/s

40

aside: relation to conventional expression

Lundstrom: SISC 2011

ION =WCoxυT VGS −VT( )

ballistic MOSFET conventional MOSFET

IDS =WCoxυsat VGS −VT( )

υsat →υT

41

the ballistic IV (Boltzmann statistics)

VG −VT( )1

K. Natori, JAP, 76, 4879, 1994.

IDS (on) =W υTCox VGS −VT( )

IDS = GCHVDS =W CoxυT

2kBTL q( ) VGS −VT( )VDS

VDS

ID

ballistic channel resistance

ballistic on-current

Lundstrom: SISC 2011

42

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10 nm 8) Summary

43

comparison with experiment: Silicon

A. Majumdar, Z. B. Ren, S. J. Koester, and W. Haensch, "Undoped-Body Extremely Thin SOI MOSFETs With Back Gates," IEEE Transactions on Electron Devices, 56, pp. 2270-2276, 2009.

Device characterization and simulation: Himadri Pal and Yang Liu, Purdue, 2010.

LG = 40 nm

ION Iballistic ≈ 0.6

IDlin Iballistic ≈ 0.2

•  Si MOSFETs deliver > one-half of the ballistic on-current. (Similar for the past 15 years.)

•  MOSFETs operate closer to the ballistic limit under high VDS.

44

Jesus del Alamo group (MIT)

Lundstrom: SISC 2011

45

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10nm 8) Summary

46

transmission and carrier scattering

T =λ0

λ0 + L

0 < T <1

R = 1− T

1

L

X X X

λ0 is the mean-free-path for backscattering

IDS → TIDS ?Lundstrom: SISC 2011

?

ID = T WCox VGS −VT( ) υT

2kBTL q( )⎛

⎝⎜⎞

⎠⎟VDS

47

the quasi-ballistic MOSFET

VDS

IDS

→ Tlin ≈ 0.2

Lundstrom: SISC 2011

48

on current and transmission

Lundstrom: SISC 2011

ION =T2 − T

⎛⎝⎜

⎞⎠⎟IBALL+

EF1 EF2

ID = TI +I +1− T( ) I +Qi 0( ) = I + + 1−T( ) I +WυT

Qi 0( ) = IBALL+

WυT

I + =IBALL+

2 − T( )

ID =WυTT2 − T

⎛⎝⎜

⎞⎠⎟Cox VGS −VT( )

ID = T WCox VGS −VT( ) υT

2kBTL q( )⎛

⎝⎜⎞

⎠⎟VDS

49

the quasi-ballistic MOSFET

VDS

IDS→ Tsat ≈ 0.7

→ Tlin ≈ 0.2

Tsat > Tlin why?

Lundstrom: SISC 2011

50

scattering under high VDS

x

E

EF1

EF2

Tsat =λ0

λ0 +

<< L

Tlin =λ0

λ0 + L

L→

Tsat > Tlin

Lundstrom: SISC 2011

51

connection to traditional model (low VDS)

ID =WLµnCox VGS −VT( )VDS

ID =W

L + λ0µnCox VGS −VT( )VDS

ID = T WCox VGS −VT( ) υT

2kBTL q( )⎛

⎝⎜⎞

⎠⎟VDS

Lundstrom: SISC 2011

T =λ0

λ0 + L

ID = WLµappCox VGS −VT( )VDS

1 µapp = 1 µn +1 µB

52

connection to traditional model (high VDS)

how do we interpret this result?

ID =WCox VGS −VT( )υTT2 − T

⎛⎝⎜

⎞⎠⎟

ID =W1υT

+1

Dn ( )⎡

⎣⎢

⎦⎥

−1

Cox VGS −VT( )

ID =WCoxυsat VGS −VT( )

Lundstrom: SISC 2011

T =λ0

λ0 +

53

the MOSFET as a BJT

ID =W υ(0) Cox VGS −VT( )

EC x( )x

E

1υ(0)

=1υT

+1

Dn

‘bottleneck’ “collector”

“base”

Lundstrom: SISC 2011

54

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10 nm 8) Summary

55

limits to barrier control: quantum tunneling

from M. Luisier, ETH Zurich / Purdue

4) 3)

2) 1)

Lundstrom: SISC 2011

56

ultimate limits

Lundstrom: SISC 2011

V. V. Zhirnov, R.K. Cavin III, J.A. Hutchby, and G.I. Bourianoff, “Limits to Binary Logic Switch Scaling—A Gedanken Model,” Proc. IEEE, 91, 1934, 2003.

ES min = ln(2) kBT

Lmin ≈ 2mES min

τmin ≈ ES min

Limits

ΔpΔx = ( )

ΔEΔt = ( )

E(eV)

57

32 nm technology

ES min = ln(2) kBT

Lmin ≈ 2mEmin =1.5nm(300K)

τmin ≈ ES min = 0.04 ps (300K)

Limits

nmax (at 100W/cm2) =1.5 B/cm2

32 nm node (ITRS 2009 ed.)

ES ≈ 2,500 × ES min

L ≈ 15 × Lmin

τ ≈ 17 × τmin

n≈ 1.1 B/cm2

(minimum size transistor – no parasitics)

58

Moore’s Law?

“Moore’s Law is about lowering cost per function….progress continues at a breathtaking pace, but transistor scaling is approaching limit. When that limit is reached, things must change, but that does not mean that Moore’s Law has to end.”

Lundstrom: SISC 2011

59

outline

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10nm 8) Summary

60

physics of nanoscale MOSFETs

VDS

ID

1) Transistor-like I-V characteristics are a result of electrostatics.

2) The channel resistance has a lower limit - no matter how high the mobility or how short the channel.

3) The on-current is controlled by the ballistic injection velocity - not the high-field, bulk saturation velocity.

4) Channel velocity saturates near the source, not at the drain end.

Lundstrom: SISC 2011

61

limits of scaling

Lundstrom: SISC 2011

What happens below 10 nm?

62

for more information

Lundstrom: SISC 2011

1) “Physics of Nanoscale MOSFETs,” a series of eight lectures on the subject presented at the 2008 NCN@Purdue Summer School by Mark Lundstrom, 2008.

http://nanohub.org/resources/5306

2) “Electronic Transport in Semiconductors,” Lectures 1-8, by Mark Lundstrom, 2011. http://nanohub.org/resources/11872

4) “Lessons from Nanoscience,” http://nanohub.org/topics/LessonsfromNanoscience

3) “Electronics from the Bottom Up” http://nanohub.org/topics/ElectronicsFromTheBottomUp

nanoHUB-U

63 Lundstrom: SISC 2011

http://nanoHUB.org/u

64

Thank you!

Lundstrom: SISC 2011

1) Introduction 2) Traditional Approach 3) MOS electrostatics 4) The ballistic MOSFET 5) Comparison to experiments 6) Scattering in nano-MOSFETs 7) MOSFETs below 10nm 8) Summary


Recommended