+ All Categories
Home > Documents > M. R. Latif 1 , I. Csarnovics 1,2 , T. Nichol 1 , S. Kökényesi 2 , A. Csik, 3 M. Mitkova 1

M. R. Latif 1 , I. Csarnovics 1,2 , T. Nichol 1 , S. Kökényesi 2 , A. Csik, 3 M. Mitkova 1

Date post: 21-Mar-2016
Category:
Upload: drew
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Photolithography Free Ge-Se Based Memristive Arrays Material Characterization and Devices Testing. M. R. Latif 1 , I. Csarnovics 1,2 , T. Nichol 1 , S. Kökényesi 2 , A. Csik, 3 M. Mitkova 1 1.Department of Electrical and Computer Engineering Boise State University, Boise, ID - USA - PowerPoint PPT Presentation
Popular Tags:
1
M. R. Latif 1 , I. Csarnovics 1,2 , T. Nichol 1 , S. Kökényesi 2 , A. Csik, 3 M. Mitkova 1 1. Department of Electrical and Computer Engineering Boise State University, Boise, ID - USA 2.Department of Experimental Physics, University of Debrecen, Debrecen - Hungary 3.Institute of Nuclear Research (ATOMKI), Debrecen - Hungary Photolithography Free Ge-Se Based Memristive Arrays Material Characterization and Devices Testing Acknowledgment: This work was supported by the IMI-NFG under NSF Grant # DMR 0844014, TAMOP 4.2.2./B-10/1-2010-0024 and TAMOP 4.2.2.A- 11/2/KONV-2012-0032 projects, which are co-financed by the European Union and European Social Fund. The financial support of the Czech I. Motivation II. Experimental Details III. EDS Mapping EDS mapping of the data provides evidence of compositional distribution of different elements in the array stack. IV. Film Characterization - AFM RMS value of surface roughness in 25µm 2 area of cells # 1, 10 and 20 in the array. The result shows that the SNMP method is suitable for via formation. Quality of the surface depends upon the films’ structure. Sample Cell No. RMS Surface Roughness in the ChG film after ion bombardment by AFM Ge 20 Se 80 1 21.7 10 4.52 20 2.31 Ge 30 Se 70 1 5.15 10 7.21 20 8.67 Ge 40 Se 60 1 1.97 10 1.78 20 1.89 VI. Electrical Testing The IV curves for cells # 20 in the arrays are presented in the following figures. It is obvious that ChG surface with higher roughness results in a poorer device performance. Devices threshold voltages (V th ) and the resistance plots are shown below: The array allows individual device addressing. Devices show six orders of magnitude difference between the low resistive state (LRS) and high resistive state (HRS). V th of Ge 30 Se 70 and Ge 40 Se 60 shows excellent repeatability. Increase in Ge concentration results in improvement of the devices’ performance which is attributed to the formation of Ge-Ge bonds. Devices performance depends on the film roughness which results in voids occurrence that obstructs bridge formation. The devices showed good endurance at over 10 3 cycles. 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -10n 0 10n 20n 30n 40n 50n 60n C u rren t (A ) V o ltag e (V ) C ell20 100 C ycles 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -10n 0 10n 20n 30n 40n 50n 60n C u rren t (A ) V o ltag e (V ) C ell20 100 C ycles 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 -10n 0 10n 20n 30n 40n 50n 60n C u rren t (A ) V o ltag e (V ) 100 C ycles C ell20 Ge 20 Se 80 Device Ge 30 Se 70 Device Ge 40 Se 60 Device 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Vth HRS LRS 100 C ycles/C ell Threshold Voltage (V) 10k 100k 1M 10M 100M 1G 10G 100G 1T R esistance ( ) C ell1 C ell8 C ell16 C ell20 0.2 0.4 0.6 0.8 1.0 1.2 Vth HRS LRS 100 C ycles/C ell Threshold Voltage (V) C ell1 C ell4 C ell8 C ell12 C ell16 C ell20 10k 100k 1M 10M 100M 1G 10G 100G 1T R esistance ( ) -0.2 0.0 0.2 0.4 0.6 0.8 1.0 C ell20 C ell16 C ell12 C ell8 C ell4 C ell1 Vth HRS LRS 100 C ycles/C ell Threshold Voltage (V) 1k 10k 100k 1M 10M 100M 1G 10G 100G R esistance ( ) Ge 20 Se 80 Device Ge 30 Se 70 Device Ge 40 Se 60 Device VII. Conclusion V. Raman Spectroscopy Analysis A memristive array with devices build by Ge-Se thin films and Ag bridging the two device electrodes is demonstrated. SNMP method for array formation shows excellent yield with stable ON/OFF ratio. The individual devices demonstrate reliable performance. Additional improvement in the cells can be achieved by formation of smoother layers within the vias and filling them homogeneously with thick Ag films. SNMS Setup Profilometer Image Profilometer Scan SNMS Measurement 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0 2 6 0 T m e [ s ] G e 4 0 S e 6 0 W S # 6 s p u t e r n g 8 0 0 n m d e e p c r a e ( s p u t m e 2 7 5 s e c ) File:DT06379.SAD D ate:2/25/2013 1:59:37 P M Si[29] Ge Se W [186] D T 06379.S AD 0 20 40 60 80 100 120140 160 220 200 180 260 240 Tim e [s] Intensity [cps] 10 0 10 1 10 4 10 5 10 2 10 3 Success already achieved at the single cell level suggests that conductive bridge memristor is well positioned for ultra high performance memory, neuromorphic computing and logic applications. A high density conductive bridge memristor arrays on thin films metal/insulator/metal (MIM) stack is demonstrated in this work. ChG ChG Ag ChG ChG Ag 1µm 150nm 150nm 20nm -30nm 20nm -30nm 20nm -30nm Ag W electrode 100nm 1µm 150nm Si <100> SiO 2 100nm ChG V ias filled w ith A g ChG Ag ChG ES S e-S e ES O u tsid e V ia C o u n ts (a rb .) In sid e V ia CS ETH C o u n ts (a rb .) O u tsid e V ia In sid e V ia 150 200 250 300 350 400 W avenum b er (cm -1 ) C o u n ts (a rb .) In sid e V ia O u tsid e V ia Ge 24.8 ± 0.51 Se 75.2 ± 0.51 Ge 30.7 ± 0.15 Se 69.3 ± 0.15 Ge 38.8 ± 0.14 Se 61.2 ± 0.14 Ge 25.6 ± 0.061 Se 74.4 ± 0.061 Ge 31.2 ± 0.037 Se 68.8 ± 0.037 Ge 39.9 ± 0.19 Se 60.1 ± 0.19 Source com position : Ge 20 Se 80 Ge 30 Se 70 Ge 40 Se 60 Ge 30 Se 70 V irg in Ge 30 Se 70 V ia 0.0 0.5 14 21 ETH ES/C S C o u n ts (a rb .) Ge 40 Se 60 V irg in Ge 40 Se 60 V ia 0.32 0.40 ETH ES /C S C o u n ts (a r Ge 40 Se 60 Ge 30 Se 70 V irg in V ia A re a s (a rb .) A re a s (a rb .) A re a s (a rb .) CS ES S e-S e Ge 20 Se 80 Ge 30 Se 70 Ge 40 Se 60 Areas (Arb.) Areas (Arb.) Areas (Arb.) Virgin Via Counts (Arb.) Counts (Arb.) Counts (Arb.) Counts (Arb.) Counts (Arb.) Ge 40 Se 60 Ge 30 Se 70 Ge 20 Se 80
Transcript
Page 1: M. R. Latif 1 , I. Csarnovics 1,2 , T. Nichol 1 , S. Kökényesi 2 , A. Csik, 3   M. Mitkova 1

M. R. Latif1, I. Csarnovics1,2, T. Nichol1, S. Kökényesi2, A. Csik,3 M. Mitkova1 1. Department of Electrical and Computer Engineering Boise State University, Boise, ID - USA

2.Department of Experimental Physics, University of Debrecen, Debrecen - Hungary3.Institute of Nuclear Research (ATOMKI), Debrecen - Hungary

Photolithography Free Ge-Se Based Memristive Arrays Material Characterization and Devices Testing

Acknowledgment: This work was supported by the IMI-NFG under NSF Grant # DMR 0844014, TAMOP 4.2.2./B-10/1-2010-0024 and TAMOP 4.2.2.A-11/2/KONV-2012-0032 projects, which are co-financed by the European Union and European Social Fund. The financial support of the Czech Science Foundation (under the project No. P106/11/0506) is also acknowledged.

I. Motivation

II. Experimental Details

III. EDS Mapping EDS mapping of the data provides evidence of compositional distribution of different elements in the array stack.

IV. Film Characterization - AFM

RMS value of surface roughness in 25µm2 area of cells # 1, 10 and 20 in the array.

The result shows that the SNMP method is suitable for via formation. Quality of the surface depends upon the films’ structure.

SampleCell No.

RMS Surface Roughness in the ChG film after ion bombardment by AFM

Ge20Se80

1 21.710 4.5220 2.31

Ge30Se70

1 5.1510 7.2120 8.67

Ge40Se60

1 1.9710 1.7820 1.89

VI. Electrical Testing The IV curves for cells # 20 in the arrays are presented in the following

figures. It is obvious that ChG surface with higher roughness results in a poorer device performance.

Devices threshold voltages (Vth) and the resistance plots are shown below:

The array allows individual device addressing. Devices show six orders of magnitude difference between the low

resistive state (LRS) and high resistive state (HRS). Vth of Ge30Se70 and Ge40Se60 shows excellent repeatability. Increase in Ge concentration results in improvement of the devices’

performance which is attributed to the formation of Ge-Ge bonds. Devices performance depends on the film roughness which results in

voids occurrence that obstructs bridge formation. The devices showed good endurance at over 103 cycles.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-10n

0

10n

20n

30n

40n

50n

60n

Cur

rent

(A)

Voltage (V)

Cell 20 100 Cycles

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-10n

0

10n

20n

30n

40n

50n

60n

Cur

rent

(A)

Voltage (V)

Cell 20 100 Cycles

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4-10n

0

10n

20n

30n

40n

50n

60n

Cur

rent

(A)

Voltage (V)

100 CyclesCell 20

Ge20Se80 Device Ge30Se70 Device Ge40Se60 Device

0.00.20.40.60.81.01.21.4

Vth HRS LRS

100 Cycles/Cell

Thre

shol

d Vo

ltage

(V)

10k100k1M10M100M1G10G100G1T

Resistance

()

Cell 1 Cell 8 Cell 16 Cell 200.2

0.4

0.6

0.8

1.0

1.2

Vth HRS LRS

100 Cycles/Cell

Thre

shol

d Vo

ltage

(V)

Cell 1 Cell 4 Cell 8 Cell 12 Cell 16 Cell 20 10k100k1M10M100M1G10G100G1T

Resistance

()

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

Cell 20Cell 16Cell 12Cell 8Cell 4Cell 1

Vth HRS LRS

100 Cycles/Cell

Thre

shol

d Vo

ltage

(V)

1k10k100k1M10M100M1G10G100G

Resistance

()

Ge20Se80 Device Ge30Se70 Device Ge40Se60 Device

VII. Conclusion

V. Raman Spectroscopy Analysis

A memristive array with devices build by Ge-Se thin films and Ag bridging the two device electrodes is demonstrated.

SNMP method for array formation shows excellent yield with stable ON/OFF ratio.

The individual devices demonstrate reliable performance. Additional improvement in the cells can be achieved by formation of

smoother layers within the vias and filling them homogeneously with thick Ag films.

SNMS Setup Profilometer Image Profilometer Scan SNMS Measurement

100

101

102

103

104

105

Inte

nsity [cps]

0 20 40 60 80 100 120 140 160 180 200 220 240 260Time [s]

Ge40Se60/W//Si - #6, sputtering 800 nm deep crater (sput. time: 275 sec)

File: DT06379.SADDate: 2/25/2013 1:59:37 PM

Si [29]GeSeW [186]

DT06379.SAD

0 20 40 60 80 100 120140 160 220200180 260240Time [s]

Inte

nsit

y [

cp

s]

100

101

104

105

102

103

Success already achieved at the single cell level suggests that conductive bridge memristor is well positioned for ultra high performance memory, neuromorphic computing and logic applications.

A high density conductive bridge memristor arrays on thin films metal/insulator/metal (MIM) stack is demonstrated in this work.

ChG ChG Ag ChG ChG Ag1µm 150nm 150nm

20nm - 30nm 20nm - 30nm 20nm - 30nm

Ag

W electrode 100nm1µm150nm

Si <100> SiO2 100nm

ChG

Vias filled with Ag

ChGAg

ChG

ESSe-SeES

Outside Via

Coun

ts (a

rb.)

Inside Via

CS

ETH

Coun

ts (a

rb.)

Outside Via

Inside Via

150 200 250 300 350 400 Wavenumber (cm-1)

Coun

ts (a

rb.)

Inside Via

Outside Via

Ge24.8 ± 0.51 Se75.2 ± 0.51

Ge30.7 ± 0.15 Se69.3 ± 0.15

Ge38.8 ± 0.14 Se61.2 ± 0.14

Ge25.6 ± 0.061 Se74.4 ± 0.061

Ge31.2 ± 0.037 Se68.8 ± 0.037

Ge39.9 ± 0.19 Se60.1 ± 0.19

Sour

ce co

mpos

ition:

Ge20

Se80

Ge30

Se70

Ge40

Se60

Ge30Se70 Virgin Ge30Se70 Via0.0

0.5

14

21

ETH ES/CS

Coun

ts (a

rb.)

Ge40Se60 Virgin Ge40Se60 Via

0.32

0.40

ETH ES/CS

Coun

ts (a

rb.)

Ge40Se60

Ge30Se70

Virgin Via

Area

s (a

rb.)

Area

s (a

rb.)

Area

s (a

rb.)

CS ES Se-Se

Ge20Se80

Ge30Se70

Ge40Se60

Area

s (Ar

b.)

Area

s (Ar

b.)

Area

s (Ar

b.)

Virgin Via

Coun

ts (A

rb.)

Coun

ts (A

rb.)

Coun

ts (A

rb.)

Coun

ts (A

rb.)

Coun

ts (A

rb.)

Ge40

Se60

Ge30

Se70

Ge20

Se80

Recommended