+ All Categories
Home > Documents > MACROELEMENTS: N, K, Ca, Mg, P, S • MICRONUTRIENTS (trace ...

MACROELEMENTS: N, K, Ca, Mg, P, S • MICRONUTRIENTS (trace ...

Date post: 18-Dec-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
25
1 ? MACROELEMENTS: N, K, Ca, Mg, P, S MICRONUTRIENTS (trace elements): Cl, B, Fe, Mn, Zn, Cu, Mo FACULTATIVE ELEMENTS: Si, Na, Co
Transcript

1

?

• MACROELEMENTS: N, K, Ca, Mg, P, S

• MICRONUTRIENTS (trace elements): Cl, B, Fe, Mn, Zn, Cu, Mo

• FACULTATIVE ELEMENTS: Si, Na, Co

2

NITROGEN

- In atmosphere 79% (volume)

- 5-18 kg/ha from atmosphere in pedospherep p

- 10-40 kg/ha free living nitrogen bacteria (e.g. Azotobacter chroococcum)

- Per annum leaching from ecological soil profile up to 100 kg/ha

- 100-400 kg/ha simbiontic bacteria (e.g. Rhizobium leguminosarum)

3

Geochemical Atlas of Europehttp://weppi.gtk.fi/publ/foregsatlas/

4

Bowman, W.D., C.C. Cleveland, L. Halada, J. Hreško, and J.S. Baron. 2008. Negative impact of nitrogen deposition on soil buffering capacity. Nature Geoscience 1: 767-770

Emission trends of acidifying pollutants (EEA member countries)

http://www.eea.europa.eu/data-and-maps/indicators/emissions-of-acidifying-substances-version-2/assessment-4

5

Zea maysSorghum bicolor

Cicer arietinum

With respect to their affinity towards nitrogen we recognize

NITROPHYLOUS plants NITROPHOBOUS plants

Calluna vulgaris, Trifolium arvense, Mercurialis annua, Urtica urens,

INDIFFERENT plants

g , ,Teucrium chamaedrys, Erophila verna

, ,Epilobium angustifolium, Bidens tripartitus

Ranunculus repens, Taraxacum officinale, Tussilago farfara, Equisetum arvense, Phragmites communis

6

Class: STELLARIETEA MEDIAEOrder: CHENOPODIETALIA ALBIAlliance: DIPLOTAXIDIONAssociation: Hibisco-Sorghetum halepensis

WEED AND RUDERAL VEGETATION

Sorghum halepense, Hibiscus trionum, Helminthia echioides, Solanum nigrum, Heliotropium europaeum, Mercurialis annua, Diplotaxis tenuifoliaPapaver rhoeas, Centaurea cyanus, Matricaria chamomilla

7

Class: ARTEMISIETEAOrder: ARTEMISIETALIAAlliance: ARCTION-LAPPAEAssociation: Tanaceto-Artemisietum

WEED AND RUDERAL VEGETATION

Artemisia vulgaris, Tanacetum vulgare, Conium maculatum, Arctium lappa, Arctium minus, Chelidonium majus, Picris hieracioides, Melandrium album, Carduus acanthoides, Melilotus albus, Urtica urens

Class: PLANTAGINETEA MAJORISOrder: PLANTAGINETALIA MAJORISAlliance: POLYGONION AVICULARISAssociation: Lolio-Plantaginetum majoris

WEED AND RUDERAL VEGETATION

Plantago major, Polygonum aviculare, Cynodon dactylon, Lolium perenne, Poa annua, Bellis perennis

8

Assoc. Sambucetum ebuli

Chenopodium album

Assoc. Tanaceto-ArtemisietumPolygonum aviculare Datura stramonium

9

Soil reaction (pH)

OH

HpH < 7 > 1 < 1 pH > 7

OH

= 1 pH = 7

ACTIVE acidity

POTENTIAL acidity

Pärtel, M., 2002. Local plant diversity patterns and evolutionary history at the regional scale. Ecology 83, pp. 2361–2366

10

11

Plants with respect to soil reaction

ACIDOPHYLOUS. ALCALIPHYLOUS

Ajuga pyramidalis, Calluna vulgaris, Erica herbacea, Helleborus niger ssp.

NEUTROPHYLOUS.

j g py , g ,Drosera rotundifolia, Lycopodium clavatum

, g pmacranthus, Staphyllea pinnata, Festuca alpina, Medicago sativa, Tussilago farfara

Trifolium pratense, Phleum pratense, medicago falcata, Carum carvi, Aegopodium podagraria, Dactylis glomerata

CALCIPHYLOUS CALCIPHOBOUS

Staphyllea pinnata, Sesleria kalnikensis, Satureia montana, Dryas octopetala

Arnica montana, Calluna vulgaris, Vaccinium myrtillus, Castanea sativa

Elektric conductivity – Siemens S/m (mS/cm)

1 S = (Mho)

Sea water – 4,4 S/m (-2,7 MPa)Irrigation water < 0,2 S/m (-0,04 MPa)

Ohm

1

Soil with conductivity > 0,4 S/m – saline soils

Increased salinity – double stress:dehidrationionic

Adaptation to increased salinity includes:1. Adaptation reactions to restore ion homeostasis2. Adaptation of osmotic potential (OSMOLYTES: glicerol, polyol, prolin, QACs i

TSCs)3. Induction of protective proteins – osmotins, LEA proteins

12

http://eusoils.jrc.ec.europa.eu/library/themes/Salinization/Methodology.html

The information on salinity and alkalinity, available directly or through pedotransfer rules in the ESDB, is described in detail by Baruth et al. (2006). In the WRB (World Reference Base) soil names that give information about salinity are Solonchaks, "salic" soils, or "petrosalic" soils.

Three Classes of salinity are proposed:l EC 4 dS/ (d iSi t )low: ECse < 4 dS/m (deciSiemens per metre)medium: 4 < ECse < 15 dS/mhigh: ECse > 15 dS/m

with EC: electrical conductivity of the soil saturation extract from the root zone.

In the WRB, soils having alkaline characteristics are Solonetz, "natric" soils, or "sodic" soils. Three classes of alkalinity are proposed for further analysis:

low: ESP < 6%

http://eusoils.jrc.ec.europa.eu/library/themes/Salinization/

low: ESP 6%medium: 6 < ESP < 15%high: ESP > 15%

with ESP, exchangeable sodium percentage.

Aug

13

14

3 m.asl

4 m.asl

307 μS

237 μS 142 μS

Impact of sea spray on salinity of soil(conductivity measurements)

1 m.asl

2 m.asl

3010 S

2950 μS

3010 μS

Tolerance towards increased salinity

HALOPHYTEs GLYCOPHYTEs

fam Chenopodiaceaefam. Chenopodiaceae(Atriplex sp., Chenopodium sp., Salicornia sp., Salsola sp., Suaeda sp.

Limonium sp. (fam. Plumbaginaceae)

Tamarix sp. (fam. Tamaricaceae)

15

Reaction of plants to salt stress

AVOIDANCE ELIMINATION DILUTION COMPARTMENTATION

halophytes halophytes halophytes halophytes

Interruption of transport

- In the root- In shoots

Excretion via the shoot surface

- Via salt glands and bladder hairs- Desalting via shedding of plant parts (leaves)

Salt succulence

- re-translocation in the phloem

Salt deposition

- In the vacuole- In the apoplast- osmolytes in the cytoplaam- protective

t iproteins

glicophytes

16

Vegetation of sea coastSea sprayed rocky shore

Class: CRITHMO - LIMONIETEAOrder: CRITHMO-LIMONIETALIAAlliance: CRITHMO-LIMONIONAssociation: Plantagini-Limonietum cancellati

(= Plantagini-Staticetum cancellatae)

Limonium cancellatum Plantago holosteum var scopulorumLimonium cancellatum, Plantago holosteum var. scopulorum, Senecio fluminensis, Chaenorrhinum aschersoniiCrithmum maritimum, Silene sedoides, Elymus elongatus, Reichardia picroides.

Vegetation of sea coastMuddy shore influenced by tides

Class: ARTHROCNEMETEA (SALICORNIETEA)Order: ARTHROCNEMETALIA (SALICORNIETALIA)Alliance: ARTHROCNEMION FRUTICOSI

(SALICORNION FRUTICOSI)Association: Arthrocnemetum fruticosi (= S. fruticosi)

Salicornietum europaeaeLimonio-Artemisietum coerulescentis

Arthrocnemum fruticosum Salicornia europaea HalimioneArthrocnemum fruticosum, Salicornia europaea, Halimione portulacoides, Inula critmoides, Triglochin bulbosum, Salsola soda, Spergula marina, Lepturus incurvatus

17

Vegetation of sea coastMarshlands influenced by tides

Class: JUNCETEA MARITIMIOrder JUNCETALIA MARITIMIAlliance: JUNCION MARITIMIAssociation: Juncetum maritimo-acuti

Juncus acutus Aster tripoliumJuncus acutus, Aster tripolium, Polypogon monspeliensis, Juncus maritimus, Carex extensa, Samolus valerandi, Sonchus maritimus, Agropyron litorale, Juncus gerardi, Inula crithmoides

18

Class: AMMOPHILETEAOrder: AMMOPHILETALIAAlliance: AMMOPHILIONAssociation: Echinophoro – Elymetum farcti

(=Agropyretum maritimum)

Vegetation of sand dunes by the sea

Pancratium maritimum L. - CR

19

Cyperus capitatus

Pancratium maritimum - CR

Eryngium maritimum

Calystegia soldanella - CR

• MACROELEMENTS: N, K, Ca, Mg, P, S

• MICRONUTRIENTS (trace elements): Cl, B, Fe, Mn, Zn, Cu, Mo

• FACULTATIVE ELEMENTS: Si, Na, Co

20

Heavy metals (> 5 g/cm3)

Ag, As, Au, Bi, Cd, Co, Cu, Cr, Fe, Hg, Mn, Mo, Ni, No, Pb, Pt, Sb, Sn, Ti, Tl, U, V, Zn, Zr

micronutrient(mg/kg)

deficiency Adequatesupply

toxicity

Mn < 20 20 – 250 > 500

Fe < 50 50 – 250 > 500

Zn < 20 20 – 150 > 400

Cu < 5 5 - 20 > 40

Cd in tobacco

21

Cd in rice

PHYTOREMEDIATION

http://www.intechopen.com/books/environmental-risk-assessment-of-soil-contamination/phytoremediation-of-soils-contaminated-with-metals-and-metalloids-at-mining-areas-potential-of-nativ

22

Phytodegradation (Phytotransformation): organic contaminants are degraded (metabolized) or mineralized inside plant cells by specific enzymes that include nitroreductases (degradation of nitroaromatic compounds), dehalogenases (degradation of chlorinated solvents and pesticides) and laccases (degradation of anilines).

Phytostabilization (Phytoimmobilization): contaminants, organic or inorganic, are incorporated into the lignin of the cell wall of roots cells or into humus. Metals are precipitated as insoluble forms by direct action of root exudates and subsequently trapped in the soil matrix. The main objective is to avoid mobilization of contaminants and limit their diffusion in the soil.

Phytovolatilization: this technique relies on the ability of some plants to absorb and volatilize certain metals/metalloids Some element ions of the groups IIB VA and VIA of the periodic table (specifically Hg Se andmetals/metalloids. Some element ions of the groups IIB, VA and VIA of the periodic table (specifically Hg, Se and As) are absorbed by the roots, converted into non-toxic forms, and then released into the atmosphere. This technique can also be used for organic compounds.

Phytoextraction (Phytoaccumulation, Phytoabsorption or Phytosequestration): this involves the absorption of contaminants by roots followed by translocation and accumulation in the aerial parts. It is mainly applied to metals (Cd, Ni, Cu, Zn, Pb) but can also be used for other elements (Se, As) and organic compounds. This technique preferentially uses hyperaccumulator plants, that have the ability to store high concentrations of specific metals in their aerial parts (0.01% to 1% dry weight, depending on the metal).

Phytofiltration: this uses plants to absorb, concentrate and/or precipitate contaminants, particularly heavy metals di i l f di h h h i h b d Thor radioactive elements, from an aqueous medium through their root system or other submerged organs. The

plants are kept in a hydroponic system, whereby the effluents pass and are “filtered” by the roots (Rhizofiltration), or other organs that absorb and concentrate contaminants .

Rhizodegradation (Phytostimulation): growing roots promote the proliferation of degrading rhizosphere microorganisms which utilize exudates and metabolites of plants as a source of carbon and energy. In addition, plants may exude biodegrading enzymes themselves. The application of phytostimulation is limited to organic contaminants [

23

element Knownhyperacumulators

species (e.g.) mg/g t/ha year

Ni 300 Berkheya coddii 17 18

Co 26 Haumaniastrum robertii 10,2 4

Cu 24 Haumaniastrum katangense 0,83 5

Se 19 Astragalus pattersoni 6 5

Zn 16 Thlaspi calaminare 10 4

Mn 11 Macadamia neurophylla 55 30

Ta 1 Iberis intermedia 0,3 8

Cd 1 Thlaspi caerulescens 3 4

Rodriguez L. Rincon J. Asencio I. Rodriguez-Castellanos L. Capability of selected crop plants for shoot mercury accumulation from polluted soils: Phytoremediation perspectives. International Journal of Phytoremediation. 9(1-3):1-13, 2007.

Ampiah-Bonney RJ. Tyson JF. Lanza GR. Phytoextraction of arsenic from soil by Leersia orywides. International Journal of Phytoremediation. 9(1-3):31-40, 2007.

Dong J. Wu FB. Huang RG. Zang GP. A chromium-tolerant plant growing in Cr-contaminated land. International Journal of Phytoremediation. 9(1-3):167-179, 2007.

Marshall AT. Haverkamp RG. Davies CE. Parsons JG. Gardea-Torresdey JL. van Agterveld D. Accumulation of gold nanoparticles in Brassicajuncea. International Journal of Phytoremediation. 9(1-3):197-206, 2007.

Yu XZ. Trapp S. Zhou PH. Chen L. Effect of temperature on the uptake and metabolism of cyanide by weeping willows. International Journal f Ph t di ti 9(1 3) 243 255 2007

http://www.tandf.co.uk/journals/titles/15226514.asp

of Phytoremediation. 9(1-3):243-255, 2007.

24

Padmavathiamma, P.K., Li, L.Y., 2007: Phytoremediation Technology: Hyper-accumulation Metals in Plants. Water, Air & Soil Pollution 184(1-4): 105-126.

25

Estimates of Phytoremediation Costs Versus Costs of Established Technologies

ContaminantPhytoremediation

Costs Estimated Cost using Other Technologies

Source

Metals $80 per cubic yard $250 per cubic yard Black (1995)Metals $80 per cubic yard $250 per cubic yard Black (1995)

Site contaminated with petroleum hydrocarbons (site size not disclosed)

$70,000 $850,000 Jipson (1996)

10 acres lead contaminated land

$500,000 $12 million Plummer (1997)

Radionuclides in surface water

$2 to $6 per thousand gallons treated

none listed Richman (1997)

1 hectare to a 15 cm $2,500 to $15,000 none listed Cunningham et al. depth (various contaminants)

(1996)

White tea green tea “oolong” black tea


Recommended