+ All Categories
Home > Documents > MAE[501] Project

MAE[501] Project

Date post: 06-Apr-2018
Category:
Upload: anonymous-uohuag
View: 217 times
Download: 0 times
Share this document with a friend

of 37

Transcript
  • 8/3/2019 MAE[501] Project

    1/37

    [Project: FEAAPPLICATION IN

    BIOSTRUCTURES

    ]

    [MAE]

    [501]

    [INDEPENDENT STUDIES ][ 27thApril

    2011]

    By:

    MandeepSingh

  • 8/3/2019 MAE[501] Project

    2/37

    2|P a g e

    Contents1 Introduction................................................................................................................................... 3

    2

    Problemdefinition

    /Problem

    statement

    ......................................................................................

    9

    3 ResultsandDiscussions............................................................................................................... 10

    3.1 DICOMImages:................................................................................................................... 11

    3.2 MIMICS:............................................................................................................................... 12

    3.3 Meshsmoothening:............................................................................................................ 18

    3.4 AssigningMaterial:.............................................................................................................. 21

    4

    FiniteElement

    Analysis

    :..............................................................................................................

    22

    5 Conclusion.................................................................................................................................... 24

    6 Appendix...................................................................................................................................... 24

    6.1 SolidWorkscapabilitiesforBiostructures............................................................................ 24

    6.2 DATAPROCESSING............................................................................................................... 30

    7 References................................................................................................................................... 37

  • 8/3/2019 MAE[501] Project

    3/37

    3|P a g e

    1 Introduction

    Inthe lasttwodecades,there isconsiderablepopularitygainfortheapplicationof

    computational mechanics in understanding the complex biostructures. These

    techniques provide an efficient feature to simulate the complex structure for the

    biomedicalresearchinanethicalway.Thesetechniquesalsohelpinoptimizingand

    simulatingtheartificialbodyimplantsandsupportsinbetterdesign.

    Thisstudywillfocusonthetechniquesandexposureofthefiniteelementanalysisin

    the field for Orthopedics. There has been many advances in the study of

    understandingthe

    fracture

    of

    the

    bone.

    My

    study

    takes

    the

    motivation

    on

    how

    we

    can apply finite element methods to understand and contribute in the study of

    osteoporosis.Forthatpurposewewillstartourstudyfromthescratch,thatis,we

    will first understand the basic structure of the Bone. One of the prime reason of

    applying the mechanical knowledge to the bio field is to better understand the

    phenomenonofnaturedesign.Someoftheimportantfuctionsofboneare:

    Support

    Motion

    Protectionoforgans

    Nourishment

    SoundTransmission(e.g.themiddleear)

    Storageof

    minerals

    &

    chemicals

  • 8/3/2019 MAE[501] Project

    4/37

    4|P a g e

    Boneisbasicallyaconnectivetissuethatsupportsthebodyorgans.Ithavetheself

    inherentpropertyofrepair ,growandremodel. It ismainlycomprisedofminerals

    and protein. Minerals like calcium provide rigidity and at the same time proteins

    provideelasticityandstrengthtothestructure.

    Thedifferentshapesoftheboneare:

    LongBone:Femur

    ShortBone:Fingers

    Flatbone:Skull

    IrregularBone

    :Spine

    Generally the bone is has compact and rigid structure on the outer surface and

    spongy on the interior. This adaption has taken place to lower the weight of the

    boneandatthesametimeprovidestiffness.Theinnerportiononthebone,which

    isspongycontainsbloodvesselwhichcirculatestheessentialnutrientsandminerals.

    The compact bone is also called as cortical bone. The spongy bone is called

    Cancellousbone.

    Thecompactbonecontainsosteonsthatrunparallelacrossthelengthofthebones.

    Theosteonsarecomposedofconcentriccylindricalbonelaminatedovereachwhich

    form a structure like cable wire but these are rigid and provides strength to the

    structure.Thecentralpartofosteonhaveharversiancanal.

    These osteons forms a composite structure. The Periosteum forms the outer

    coveringofthebone,whichappearslikeawrappingbindingthebone.

    CollagenarethebasicstructuralelementforOsteonwhicharebasicallycomposed

    ofprotein.Theseproteinsaretwistedinthegroupofthreeformingahelicalspring

    likeshape.

  • 8/3/2019 MAE[501] Project

    5/37

    5|P a g e

    HierarchicalStructuresequenceforthecompactboneisgivenbelow:

    Apatite(mineralcrystals(200400Long)

    Collagenfibers

    ConcentricLamella(37m)

    Osteon

    Bundles

    CompactBone

  • 8/3/2019 MAE[501] Project

    6/37

    6|P a g e

    CompositionofBone: Osteocytes

    Osteoblasts

    Osteoclasts

    Boneisadynamictissuewherecontinuouschangestakesplaceforremodeling.Old

    cells,fracture,bodyadaptionduetoweight,exerciseandothermetabolicactivities

    always involve inchanges inbonetissue.Thisdevelopment inthebone isdoneby

    theabove

    listed

    cells

    i.e.,

    Osteocytes

    ,Osteoblasts

    &

    Osteoclasts

    .These

    cells

    are

    controlledbyhormonesandMacrophages(Greek:bigeaters,frommakros"large"+

    phagein "eat"). In the bone tissue system , Osteoblasts are the those cells which

    createscollagenandhydroxyapatite.Someoftheosteoblastsgetcloggedintotheir

    own matrix and referred as Osteocytes which are infact accounts as highest

    percentage of all cells in the bone tissue. Osteoblasts add calcium to our bones

    contrary to the osteoclasts which removes calcium from the bones when needed.

    The

    minerals

    and

    chemicals

    from

    and

    to

    these

    cells

    are

    transferred

    through

    the

    canals(HaversiansandVolkmanns).

    MechanicalBehaviorofSkeletonandMeasuringStraininBones:Nowasweknowthatbonehasthecompositestructurethatmeansitexhibitsallthe

    mechanicalpropertiesthatwestudyintheSolidmechanicsliketoughness,stiffness,

    rigidity,poissonsratioetc.

    Similarlyithavethestressstraincurveswhichreflectsitsmaterialproperties.Ifthe

    energysupplied to thebone isgreater than itcanabsorb , the bonewill fracture.

  • 8/3/2019 MAE[501] Project

    7/37

    7|P a g e

    TheMotherNaturehasdesignedthebonestructuresoastohaveagoodstrength

    whilemaintainingitscompactshape(lessweight).

    CorticalBoneisviscoelasticinnature. Itisquitestrongandstiffbutbecomesquite

    brittlewhen

    strain

    rate

    increases.

    Now we study some features and terminology about Gait analysis and the

    parameterthataffectsthegait.Theseanalysishelpsinunderstandingthekinematics

    andkineticsofthemotion.Withthesestudieswecancalculatetheforcesactingon

    the body. These forces are hence utilized to calculate the forces acting on the

    musclesandbonestocalculatethestressesinthetissues(bonesandmuscles).

    Forgait

    analysis

    following

    variables

    are

    important:

    1. Time

    2. Mass

    3. Force

    4. Centerofgravity

    5. Moments

    6. Linearandangularmotion

    Now to study the motions we defines anatomical planes to measure the motion

    parameters.

    Thebodyisdividedintothreeplanes:

    1. SagittalPlane

    2. CoronalPlane

    3. TransversePlane

  • 8/3/2019 MAE[501] Project

    8/37

    8|P a g e

    For studying the plane we use some motion definition as defined below. These

    termsarerelatestheplanetothebodymotion.

    Abduction : It is the motion which brings the body part away from the

    sagittalPlane

    Adduction:Itisthemotionwhichbringsthebodypartnearertothesagittal

    Planeorinotherwordsitistheoppositeofabduction

    Flexion : It is the movement in which the joint angle decreases. This

    movementgenerallyoccurinsagittalplane.

    Extension:It

    is

    the

    movement

    to

    increase

    the

    joint

    angle.

    Thefollowingmethodsareusedtounderstandthegaitmechanics:

    Sagittal

    plane

    Transverse

    Plane

    Coronal

    plane

  • 8/3/2019 MAE[501] Project

    9/37

    9|P a g e

    VisualGaitAnalysis:Thisanalysisrequiresconsiderableexperiencesincethe

    data is not recorded. This analysis is used to observe movements but not

    forces. Micromotion or fast motion cannot be studied through this type of

    analysis.

    Timing Gait Cycle : This type of analysis bifurcates the motion into small

    activities and duration of these submotions are studied under the time to

    analyzethemotion.

    Direct Motion Measurement Systems : This Analysis is carried out using

    electronicequipmentsuchassensors,videorecordingetcwhichhelpin

    Electrogoniometers

    Electromyography

    CombinedKinetic/KinematicSystems

    2 Problemdefinition/ProblemstatementIn this project we will be carrying out the study how to analyze the biological

    structureusingtheapplicationoffiniteelementmethods.Theprojectwillfocuson

    theconductingtheFEAbasedstudyofthefemurboneoveraload.Theprojectlife

    cycle starts from how to generate the model for the bone (femur), meshing the

    model, assigning the material property and finally applying the loads. The process

    looks simple but while transferring the scanned data (cloud points or mesh ) to a

    CAD software always includes data loss, hence we have to generate surfaces

    matching the profile of the structure. By this project we will incorporate the

    difficultiesoccurredwhileconductingsuchprojects.

  • 8/3/2019 MAE[501] Project

    10/37

    10|P a g e

    3 ResultsandDiscussions

    Applicationof

    Finite

    Element

    Analysis

    (FEA)

    is

    widely

    adopted

    to

    investigate

    the

    mechanicalbehaviorofthebonestructure(1).

    FortheFEAmodel,werequirethe3Dor2Dmodelwhereweapplytheboundary

    conditionsandloadingsforstudy.OneoftheMajorApplicationfortheFEAstudy

    has been found to the patients suffering with osteoporosis in which with the

    helpofmicroCTscanandimageprocessingthesafeloadbearingcapacityofthe

    bone

    can

    be

    monitored

    and

    can

    be

    advised

    to

    the

    patients.

    It

    is

    has

    been

    surveyedthat1/3rdofthewomenntheiroldagegetsaffectedbyosteoporosis.

    Thisdiseaseisconsideredequallyproneascancer.

    FortheFEAbasedstudyofanycomponent,someofthebasicrequirementare

    1. Model

    2. LoadingsandBoundaryconditions

    3. Boneproperties

    Image processing is widely used for developing the 3D images of the tissues.

    Various imaging devices like Xray, Computer aided Tomographic(CT) images,

    ultrasoundareusedextensively forthepurposeofmedicaldiagnosis(3).These

    devises are used for diagnosis, measurement (like size of tumor) etc. For our

    studyof the femurbone, the3Dmodel for the femurbone isgeneratedusing

    theCTscannedslices.Theexampleforsuchslicesisshowninthefigurebelow.

  • 8/3/2019 MAE[501] Project

    11/37

    11|P a g e

    Figure1(DicomImagesset)

    Now theseCT slices are placed overeach other using and using the softwares

    like RHINO, MIMICS we can generate the 3D model of the part we need for

    analysis.ThesesoftwaresareextensivelyusedfortheRapidPrototyping.

    3.1 DICOMImages:

    Digital Imaging and Communications in Medicine (DICOM) images are the

    standard format developed for maintaining a common platform for universal

    communication among medical imaging vendors and health care IT

    organizations. Earlier each manufacturer used proprietary image formats and

    communicationswhichmadetheprocesschaoticandfraughtwithdifficultyfor

    communicating(4) .Hence DICOM standard was adopted. Hence the CT, MR

    scanners generate the images in the form of DICOM. A DICOM data object

    consistsofanumberofattributeitemslikenameofthepatient,ID,imagepixel

  • 8/3/2019 MAE[501] Project

    12/37

    12|P a g e

    dataetc.whichmakesthedistinguishesevery imageandsothattheimagecan

    never be separated from this information by mistake. The National Electrical

    ManufacturersAssociation(NEMA)holdsthecopyrighttothisstandard.(5)

    3.2 MIMICS:This project utilized the mimics software to develop the 3D model for the

    geometry. This software is an image processing software which utilizes the CT

    scannedimagestodevelopa3Dmodel.

    Firststep isto importthe DICOM,jpeg,bmpsetofCTscanned files.Figure2.

    Shows

    the

    front

    ,

    top,

    and

    side

    view

    of

    the

    imported

    model.

    Figure2(imagesimportedtomimics)

    Nowwecanalsomanagethenumberofimageswewanttouseforgenerating

    the model. We can select and skip the images in between. Fig 3 show the CT

    imagesselectedforgeneratingthemodelandorganizingtheimages.

  • 8/3/2019 MAE[501] Project

    13/37

    13|P a g e

    Figure3(Managingtheimages)

    To process the images from these CT images, MIMICS use the gray value as a

    thresholdtoseparatethesofttissuefromthehardtissuei.e.,todistinguishthe

    thesofttissuesfromthehardones(basicallymusclesfromthebones).

    Grey value interpolation is a real 3D interpolation that takes into account the

    Partial Volume effect and therefore its more accurate. With the grey value

    interpolationmethodweassume that thebonedensitiesgivean indicationon

    theamountofbonewithinonepixel.Alledgesofthesurfacearedecidedbased

    onthegreyvalues.Alsotheplaceinbetweenthese2pixelsisbasedonthegrey

    valuesofthe2pixels.

    Theaimofdefiningathresholdistoholdthesegmentationobject(visualizedby

    a colored mask) which only contains those pixels of the image with a value

    higher than or equal to the threshold value. A low threshold value makes it

    possibletoselectthesofttissueofthescannedpatient.Withahighthreshold,

    onlytheverydensepartsascorticalbonesremainselected.Inthisproject,soas

  • 8/3/2019 MAE[501] Project

    14/37

    14|P a g e

    toanalyzethestructureoffemur,sowechosegrayvalue1364 2637tobethe

    threshold(seefigure4).

    Thethresholdlimitsoftheresultingmaskareupdatedaccordingtothevaluesof

    themasksAandBandtheoperationapplied.:

    1. Subtraction(Minus):

    Thresholdvalue=ThresholdvaluemaskA

    2. Intersection:

    lowerthreshold=max(lowmaskA,lowmaskB))

    higherthreshold=min(highmaskA,highmaskB))

    3. Union:

    lowerthreshold=min(lowmaskA,lowmaskB))

    higherthreshold=max(highmaskA,highmaskB))

    Figure4(ThresholdValue)

    Hencethreshold

    values

    help

    us

    to

    separate

    bone

    from

    the

    soft

    tissues.

    Afterthresholding,weuseregiongrowingtoformaclosedregionwiththesame

    threshold.

  • 8/3/2019 MAE[501] Project

    15/37

    15|P a g e

    Thenwecangeneratethe3Dmodelbyusingthe3Dcalculatingfunctionofthe

    softwareasshowninfigure5.

    Figure5(Calculatingthe3D)

    Hencethe3DisgeneratedfromtheCTscanasshowninthefigure6below.

    Figure6(3DGeneratedasshowninbottomright)

    Finallywegeta3Dmodelofthefemurforfurtheroperation.(Noticethatthe3D

    modelinthisstageisonlya3Dshellandthereisnodefinedvolumeormeshin

  • 8/3/2019 MAE[501] Project

    16/37

    16|P a g e

    it). By erasing and completing the patch work and editing the unwanted

    geometriesoneobtaintherequiredfemurbonemodelasshowninthefigure.

    Manytimethecontourofthebonescurruptduetothedatalossorerrorindata

    transmission.Hence the geometry obtained discontinuities. To correct the

    discontinuties,patchingofthecontoursiscarriedout.

    Figure7(Imageshowingthenoiseinthe3Dforwhichweneedtodopatchworktocorrectthegeometry)

    On the above image we can see the that the model has irregularity in the

    geometry.Actuallythegeometryiscalculatedusingthesliceswhichcontainthe

    polylinesrunningonthesurfaceboundary.Thesesurfaceboundarypolylinesare

    extrudedtoformthe3D.Thesepolylinescanbeeditedtoreformthegeometry

    tocorrecttheerror.

  • 8/3/2019 MAE[501] Project

    17/37

    17|P a g e

    Figure8(Thefigureshowingthepatchingprocesstocorrectthegeometryusingpolyline)

    Aftercorrectingthegeometryweobtainthefollowing(fig.8)geometrywiththe

    correctedprofileofthebone.

    Figure9(Correctedgeometry)

  • 8/3/2019 MAE[501] Project

    18/37

    18|P a g e

    Figure10

    (3DgeometryExtractedfromtheimages)

    Afterobtaining thegeometry(fig.10)we generate themesh.Most of the time

    duetoabruptchanges inthegeometry ,wedontobtainthequalitymeshand

    theelementssizeandshapearenotoptimal.Toenhancethequalityofmeshwe

    utilizetheremeshingtoolintheMIMICS.

    Aftergeneratingsurfacemeshesforthestructure,weneedtoimprovethemesh

    quality.Fortheelementsgeneratedautomaticallyarenotoptimalallthetime,

    especiallyintheconditionsthatthesurfaceshapechangesseverelyandthesize

    of the elements varies rapidly. In this project, the surface mesh generated is

    triangleelement,soweneedtoenhancethemeshqualityforthetrianglesinthe

    surface. To improve the shape of the triangle elements, we need to consider

    boththeshapeandthesizeoftheelements.

    3.3 Meshsmoothening:In mesh smoothening process , the interior nodes is moved keeping the

    topologicalordersame.Oneoftheefficientsmoothingmethod istheLaplacian

  • 8/3/2019 MAE[501] Project

    19/37

    19|P a g e

    algorithm. In this method the interior node is moved to the centroid of the

    polygon.Thisprocessisalsocalleddiffusion.

    The new position to smoothen the surface by changing the location internal

    nodesisgivenby

    WhereNisthenumberofneighbouringnodesofi.Themeshsmoothingprocess

    usuallyconsistsof35iterations.

    Figureshowsthechangeinthelocationofcenternodeforbettershape.

    Meshqualitycanalsobeenhancedbytwobasictechniques:

    1. NodeElimination

    2. DiagonalSwapping

  • 8/3/2019 MAE[501] Project

    20/37

    20|P a g e

    Figure11(source:www.mpiinf.mpg.de/~ag4gm/handouts)

    Thenewpositionofthe internalnodeforchangingthesharpabruptheights is

    givenby

    Where is the average to the vectors to the neighboring vertices Q , and P is the

    verticesofthecentroidraisedatheightL.

    Figure12

    Note

    that

    the

    smoothness

    does

    not

    reduce

    the

    number

    of

    elements

    in

    the

    mesh. L(P) , which is known as the Umbrella operator which depends on the

    numberofiterations isgivenby

    )( oldoldnew PPP L+

  • 8/3/2019 MAE[501] Project

    21/37

    21|P a g e

    Ifconverges,inthelimitwehave:

    Mimics uses this mesh smoothing feature which approximates the complex

    geometryandgivessmoothprofileoverforthemeshsurface.

    Figure13(Showingsmoothingofthemeshedsurface)

    There are many more options to modify the mesh and smoothen the mesh

    surfaceinMIMICS(notdisussedhere)

    3.4 AssigningMaterial:Inmimicswecanassignthematerialpropertiestothemodelbasedon itsgray

    values.Thisgrayvalue inthescandependsonthedensityofthematerial.The

    materialpropertiesofthebonesdependonthebonedensity.Inthisprojectwe

    utilizedtheexamplegivenintheMIMICStoassigntheboneproperties.

    = 13.4 +1017 grayvalue

    E=388.8+5925 [6]

    ( ) PQn

    PQn

    PLn

    i

    i

    n

    i

    i == == 11

    11

    ( ) 0)( =PLw

  • 8/3/2019 MAE[501] Project

    22/37

    22|P a g e

    Figure14(AssigningMaterialDensity)

    Wedividedthefemurinto10differentmaterialgotthemodelasshown inthe

    figureabove.

    4 FiniteElementAnalysis:In MIMICS , we have the interface of transferring the model to ANSYS

    workbench, in which we can import the volume mesh along with the defined

    material.ThisprojectutilizedthestaticstructuralanalysismoduleofANSYS.

    Inthisprojectasimplepressureloadof100Paisappliedoverthefemoralhead,

    withfixed

    support

    under

    the

    condyles.

  • 8/3/2019 MAE[501] Project

    23/37

    23|P a g e

    Figure15(LoadingandBoundaryconditions)

    We observed the maximum stress reaches the bone to be 1464.7Pa, and the

    maximumstrainunderthisstressis7.32233e9.Theresultsareshowedbelow

    Figure16(Results)

  • 8/3/2019 MAE[501] Project

    24/37

    24|P a g e

    5 Conclusion

    Bydoingthisproject,weunderstoodthe lifecycleofFEAbasedprojectsandthe

    difficultiesthatoccurswhileexecutingtheprojects. Imageprocessingoffersan

    ethical way of analyzing the biological structures. The project involves reading

    the CT scans, generating the 3D models, assigning the material properties,

    meshing and smoothing, and application of finite element analysis. We also

    studied the mesh surface enhancementprocess. Wecan see the tensilestress

    developedoverthelateralsideofthefemur.

    Inthisprojectthereareseverallimitationsthatneedtobeaddressedtomakeit

    closertopracticalapplication.Forexamplewetreatedtheboneasasolidmodel,

    whichishollowfrominside.Themodelandtheboundaryconditionschosenare

    too simple to be rigid fixed at the bottom. In reality the structure boundary

    conditions are much more complicated with many ligaments and tendons

    attachedtothebone.

    6 Appendix6.1 SolidWorkscapabilitiesforBiostructures

    Whilecarryingouttheabovestudy,wealsocametoknowaboutthefeaturesof

    SolidWorks.SolidWorksalsohavethecapabilityofreadingthecloudpointdata

    orthesurfacemeshwhichcanbeutilizedtogeneratethe3Dmodels.Whenever

    weexportthedataofthecloudpointorthesurfacemeshtothemodelingsolver

    like Solidworks , we face some data loss in the form of surface damage. This

    happensbecause

    of

    the

    complicated

    shape

    of

    the

    surface.

    In

    solid

    Works

    ,there

    areseveralfeaturestobuildupthesurfaceandcorrectthegeometry.

  • 8/3/2019 MAE[501] Project

    25/37

    25|P a g e

    Figure17(Patchfordevelopingthesurface) Figure18(Patchforgeneratingthesurface

    matchingtheprofile)

    SolidWorks also have the feature of finite element analysis. The geometries

    correctedin

    SolidWorks

    can

    also

    be

    exported

    to

    advance

    tools

    for

    FEA

    like

    ANSYS

    orAbaqus.WhenweimportthemeshdataorthecloudpointdatainSolidWorks

    wegetsharpedgysurfaceasshowninfigure19whichshowsthefemoralhead

    surface.

    Figure19(MeshoftheFemoralHead)

    Forgeneratingasolidstructurethroughthissurfacecloudpointdata,wedefine

    severalplanesperpendiculattotheaxisofthebonemodel.

  • 8/3/2019 MAE[501] Project

    26/37

    26|P a g e

    Thenthesurface intersectingtheplaneandthemeshcanbeusedtogenerate

    theprofileoftheoutersurface.This feature issimilartheslicesoftheCTscan

    used in the MIMICS software. The figure 20 below shows the planes and the

    profilesgenerated.Thisworkrequiresalotoftimesincetogetabetterprofile,

    considerableamountofplanesaregeneratedandequallythenumberofprofiles

    generatedoverthesurface.

    Figure20(Figureshowingplanesintowhichthebonemeshisdivided)

  • 8/3/2019 MAE[501] Project

    27/37

    27|P a g e

    Figure21(Polylinesforgeneratingthesurface)

    Thefigure21,aboveshowsthesurfaceprofilegeneratedusingtheintersection

    of the mesh cloud point data surface. Now these profiles are connected using

    theBoundaryfeatureoftheSolidworkswhichgeneratesurfaceconnectingthe

    profile.BelowFigure22,showsthesurfacegenerationovertheprofiles.

  • 8/3/2019 MAE[501] Project

    28/37

    28|P a g e

    Figure22(Surfacebeinggenerated)

    Figure23(Figureshowingsurfacebeinggenerated)

  • 8/3/2019 MAE[501] Project

    29/37

    29|P a g e

    Afterjoining all the surfaces we get the complete geometry of the bone as

    shownintheFig24below.

    Figure24(Completegeometrygeneratedinsolidworks)

    Figure25(Figureshowingthesectionofthebone)

  • 8/3/2019 MAE[501] Project

    30/37

    30|P a g e

    Note this geometry can be meshed in the SolidWorks as shown in the figure

    beloworitcanbeexportedtoANSYSforfurtheranalysis.

    Figure26(MeshedModelwithboundaryconditionapplied)

    6.2 DATAPROCESSINGSoftware AnyBody : This software is used for calculating the loadings on the

    musculoskeletonelements.Thissoftware isascriptbasedsoftwarewhichhave

    thecapabilitiestomodelthebonesandwellasmuscles. ItusestheCplatform

    and

    inbuilt

    graphics.

    Using

    the

    script

    commands

    we

    can

    generate

    the

    model

    that

    wewanttoanalyze.SomeoftheApplicationsofthissoftwareare

    1. Therapy/Medicalrehabilitation

    2. ErgonomicDesigninthefieldsofautomotives,sportsetc.

  • 8/3/2019 MAE[501] Project

    31/37

    31|P a g e

    3. Functionalperformancestudies

    4. Trainingtoolsforsurgeonswhencombinedwithvirtualenvironment

    Thissoftwarecontainsgaitanalysisasoneofitsexamplewhichcanbeutilizedto

    calculatetheloadingsondifferentpartsofthemusculoskeletan.Thescriptbased

    featuresmakesthissoftwarelittletedioustounderstand.

    Theinterfaceislookslikeasshowninthefigurebelow:

    Figure27(InterfacelookfortheSoftwareAnybody)

    Thereareinbuiltscripsformodellingthespecificbonesandmusclesthatmakes

    thegraphicworklittleeasier.TheinversedynamicanalysisinAnyBodyStudyisat

    the heart of what the AnyBody Modeling System does. An InverseDynamics

    operation is like the Kinematics operation, except it is augmented with

    calculationofforcesinthesystem,i.e.kineticordynamicanalysis.

  • 8/3/2019 MAE[501] Project

    32/37

    32|P a g e

    Inverse dynamics had the advantage that it allows for analysis of very

    complicated musculoskeletal systems comprising hundreds of muscles on

    desktopor

    laptop

    computers

    in

    afew

    seconds.

    Figure28(FiguretakenfromatutorialinAnybodyModelingSimulationsoftware)

    To understand the principal of inverse dynamics, consider the fig 28 shown

    above.

    Ifweknowthemagnitudeoftheexternalforce,andweknowthelengthofthe

    forearmandthe insertionpointofthebicepsmuscleontheforearm,then it is

    notdifficulttocomputethemuscleforcefromsimplemomentequilibriumabout

    theelbow.

    Further

    equilibrium

    equations

    can

    subsequently

    give

    us

    the

    reaction

    forcesintheelbowjoint.

    This isreallytheprincipleof inversedynamicsas ittakesplace intheAnyBody

    ModelingSystem.Thecomplication iswedonthavejustonemuscle.Henceto

    calculate the loadings on such complex structure AnyBody Modeling System

    comeshandy.

    HereExample

    of

    Gait

    Analysis

    was

    utilized

    to

    calculate

    the

    load

    on

    the

    hip

    joint

    (loadonthefemoralhead)duringstance.

  • 8/3/2019 MAE[501] Project

    33/37

    33|P a g e

    AnyBodyModelingSystemhasthecapabilitiestousecarryoutdataprocessing.

    It can read the raw C3D data which contains the raw data for the Gait using

    EMG.

    TheC3D

    specification

    expects

    physical

    measurements

    to

    be

    one

    of

    two

    types,

    either positional information (3D coordinates) or numeric data (analog

    information).

    Each 3D coordinate is stored as a raw X, Y, Z data samples with information

    about the sample accuracy (the average error or residual), and camera

    contribution(whichcameraswereusedtoproducethedata).

    Eachsample

    of

    numeric

    data

    can

    contain

    analog

    information

    from

    sources

    such

    asEMGandForcePlatesetc.andislinkedtothe3Dsamplessothatitiseasyto

    determinethecorrectnumericdatavaluesforany3Dsamplewithinthefile. If

    desired (forhighanalog ratesetc.)TheC3D formatcanstoremultiplenumeric

    samples per 3D coordinate sample. As a result many C3D files contain both

    analogand3Ddatalinkedframebyframewhichisabigimprovementoverthe

    OEM formats that store analog and video data separately. Storing related

    informationin

    asingle

    file

    gives

    agreater

    degree

    of

    confidence

    in

    the

    data

    and

    makesiteasiertoretrievetherelevantdata[7].

    Figure29

  • 8/3/2019 MAE[501] Project

    34/37

    34|P a g e

    The C3D data containing the motion data when processed through Anybody

    Modeling System, the skeleton gets equipped with markers that carry small

    coordinatesystemswithredandgreenarrows.

    Theseare

    the

    marker

    points

    defined

    on

    the

    human

    body,

    and

    the

    red

    and

    green

    arrowsdesignatedirections inwhichthemarkerposition is fixedversus freetobe

    optimized.Afreemarkerpositionisonethatisnotwellknownbytheclinician.

    TheC3D fileexamplecontainthemotiondataofabodyofweight62kg.Thegait

    skeletoncanbeseeninthefollowingfigure

    Figure30(FigureshowingtheskeletonmodelanalyzedcomputationallyforthegivenC3Ddataforgaitmotion)

    The green arrows designate directions in which we have the greatest uncertainty

    aboutwhetherthemarkerisplacedinthemodelasitwasintheexperiment.

  • 8/3/2019 MAE[501] Project

    35/37

    35|P a g e

    Thebottomrectangularslabsrepresentthepressureplatewhichwecalculateasa

    raw data. The center of pressure can be seen in the figure with blue line. Hence

    using the inverse dynamics tools we can calculate the loadings on different

    structuralelements.

    The following chart is obtained for the reaction on the hip joint. Due to the

    restrictionsofusingthisDemousage,wehavenotuseditintheproject.Theabove

    explanationisdescribedtomakeawareoftheinbuiltcapabilitiesofthissoftware.

    Figure31(PlotshowingthevaryingreactioninthehipJoint)

  • 8/3/2019 MAE[501] Project

    36/37

    36|P a g e

    Henceforconductingfiniteelementanalysis,theproject lifecycleforanybiostructurecan

    besummerizedasshowninfig32.

    Figure32(LifecycleoftheFEAProject)

  • 8/3/2019 MAE[501] Project

    37/37

    7 References1. CinziaZannoni,RaffaellaMantovani,MarcoViceconti,Materialpropertiesassignmentto

    finiteelementmodelsofbonestructures:anewmethod,Nov,1998.

    2. http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/hooke_orthotropic.cf

    m

    3. TinkuAcharya,AjoyK.Ray Imageprocessing:principlesandapplications,2005.

    4. http://www.mathworks.com/company/newsletters/digest/nov02/dicom.html

    5. http://medical.nema.org/

    6. W.R.Taylor,E.Roland,H.Ploeg,D.Hertig,R.Klabunde,M.D.Warner,M.C.Hobatho,L.

    Rakotomananab,S.E.CliftDeterminationoforthotropicboneelasticconstantsusingFEAand

    modalanalysis

    7. www.c3d.org

    8. EmilyJ.Rayfield,FiniteElementAnalysisandUnderstandingtheBiomechanicsand

    EvolutionofLivingandFossilOrganisms

    9. http://www.mathworks.com/company/newsletters/digest/nov02/dicom.html

    10.HengLiHuang,JuiTingHsu,LihJyhFuh,MingGeneTu,ChingChangKo,YenWenShen

    Bonestressandinterfacialslidinganalysisofimplantdesignsonanimmediatelyloaded

    maxillaryimplant:Anonlinearfiniteelementstudy

    11.ProfRogerLakeswebpage http://silver.neep.wisc.edu/~lakes/

    12.ProfHeidiLynnPloegwebpage http://www.engr.wisc.edu/groups/BM/

    13.RHuiskes,AsurveyofFiniteElementanalysisinOrthopedicBiomechanics:ThefirstDecade

    14.http://www.feppd.org/ICB

    Dent/campus/biomechanics_in_dentistry/ldv_data/mech/basic_bone.htm#remodeling

    15.http://www.dclunie.com/medicalimagefaq/html/part8.html

    16.W.R.Taylora,E.Rolandb,H.Ploegc,D.Hertigc,R.Klabundec,M.D.Warnera,M.C.

    Hobathod,L.RakotomananabandS.E.Clift,Determinationoforthotropicboneelastic

    constantsusingFEAandmodalanalysis,2002


Recommended