+ All Categories
Home > Documents > Magnetic barriers in graphene -...

Magnetic barriers in graphene -...

Date post: 03-Oct-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
27
Magnetic barriers in graphene Reinhold Egger Institut für Theoretische Physik Universität Düsseldorf A. De Martino, L. Dell’Anna DFG SFB Transregio 12
Transcript
Page 1: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barriers in

graphene

Reinhold EggerInstitut für Theoretische Physik

Universität DüsseldorfA. De Martino, L. Dell’AnnaDFG SFB Transregio 12

Page 2: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Overview

� Introduction to graphene

� Dirac-Weyl equation� Effects of disorder and interactions

� Klein paradoxon

� Inhomogeneous magnetic fields

� (integer) Quantum Hall Effect

� Magnetic barrier

� Magnetic quantum dot

not discussed in this talk: superconductivity in graphene, bi- ormultilayer, phonon effects etc.

Ref.: De Martino, Dell‘Anna & Egger, PRL 98, 066802 (2007)

Page 3: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene

� Graphene monolayers: prepared by

mechanical exfoliation in 2004 & by epitaxial

growth in 2005 (but different properties!)

Novoselov et al., Science 2004, Nature 2005,

Zhang et al. Nature 2005, Berger et al., Science 2006

� „Parent system“ of many carbon-based

materials (nanotubes, fullerene, graphite)

� Tremendous research activity at present

review article: Geim & Novoselov, Nat. Mat. 6, 183 (2007)

Page 4: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene

� Monolayer graphene sheets (linear

dimension of order 1mm) have been

fabricated

� on top of non-crystalline substrates

� suspended membrane

� in liquid suspension

� Technologically interesting: high mobility

(comparable to good Si MOSFET), even at

room temperature

Page 5: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene: a new 2DEG

� 2DEG represents surface state: possibility to probe by STM/AFM/STS techniques

� Electron-phonon coupling: spontaneous„crumpling“ of suspended monolayer reflectsinstability of 2D membrane Meyer et al., Nature 2007

� Electronic transport� „Half-integer“ Quantum Hall effect

� „Universal conductivity“ (undoped limit)

� Perfect (Klein) tunneling through barriers

� Aspects related to Dirac fermion physics

Page 6: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Graphene: Tight binding description

Basis contains two

atoms; nearest-neighbor hopping

connects different

sublattices

nmdda 14.0,3 ==

Wallace, Phys. Rev. 1947

Page 7: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Band structure

Exactly two independent cornerpoints K, K´ in first Brillouin zone.

Band structure: valence and conduction bands touch at corner

points (E=0), these are the Fermipoints in undoped graphene

� Low energies: Dirac light conedispersion

� Deviations at higher energies:

trigonal warping

( )

sec/106 mv

Kkq

qvqE

−=

±=rrr

rh

r

Page 8: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Dirac Weyl Hamiltonian

Low energy continuum limit:

massless relativistic quasiparticles

8 component spinor quantum field: spin, sublattice, K point („valley“) degeneracy

Pauli matrices in sublattice space:

Ψ⋅∇−Ψ=+= ∫+ )(2

' σr

hirdvHHH KK

),,,(),(,,',,,, BKBKAK

yx ↓↑↑ ΨΨΨ=Ψ L

),( yx σσσ =r

Page 9: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Electron-electron interactions

� Kinetic and Coulomb energy both scale linearly in density interaction parameter rs not tunable bygate voltage

� Simple estimate:� RG theory: interactions scale to weak coupling� Fermi liquid theory holds, but not RPA

Mishchenko, PRL 2007

� Experiments observe near cancellation of exchange and correlation energy Martin et al., cond-mat/0705.2180

� no spectacular deviations from noninteractingpredictions expected� Exceptions exist, e.g., asymmetric-in-B part of IV curve

De Martino, Egger & Tsvelik, PRL 2006

� In the following: disregard electron-electron interaction

1≈sr

Page 10: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Disorder effects

Two experimental

puzzles

� Universal minimum

conductivity ~4e2/h

� Linear dependence

of conductivity on

doping

Novoselov et al., Nature 2005

Page 11: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Theoretical implications

Experimental data can be rationalized only if

short-range impurity scattering suppressed

� Dominant mechanism: long-ranged Coulomb

scattering by defects Nomura & MacDonald, PRL 2007

� Then no K-K´ mixing

� Otherwise: strong localization expected Altland, PRL 2006

� Universal „minimum conductivity“ currently subject to

considerable & hot theoretical debateBadarzon, Twordzydlo, Brouwer & Beenakker, cond-mat/0705.0886,

Ostrovsky, Gornyi & Mirlin, PRB 2006

Page 12: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Universal minimum conductivity?

Subtle issue…

compare order of limits for the optical

conductivity of clean system at low frequency

( )h

e2

0

4

8,lim

πωσ

ω=∞=

→l

( )h

e241

,0limπ

ωσ ==∞→

ll

Ludwig et al., PRB 1994

Disorder would have to increase conductivity to explain

experimental data…

Page 13: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Klein tunneling� Dirac fermions can perfectly

tunnel through high and wide

barrier

� Electron and hole encoded in same equation (spinor!):

Charge-Conjugation Symmetry

� Graphene provides good

opportunity to study this

effect Williams, Di Carlo &

Marcus, cond-mat 0704.3487

� But: Confinement byelectrostatic fields (gates) is

then difficult

O.Klein, Z. Phys. B 1929

Katsnelson et al, Nature Phys. 2006

Page 14: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Electrostatic confinement

� Smooth electrostatic potentials: K-K´ scattering suppressed

� Single K point theory: Klein tunneling mostpronounced for normal incidence on barrier, other states may be reflected

Silvestrov & Efetov, PRL 2007

� How to produce mesoscopic structures? (quantum point contacts, quantum wires, quantum dots etc.)

� Our proposal: use magnetic barriers

Page 15: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Inhomogeneous magnetic field

Perpendicular orbital magnetic field

� Simplest level: ignore Zeeman field (and e-e interaction) electron spin irrelevant

� Consider ballistic case (for simplicity)� Disorder mostly of long-range type, preserves valley

degeneracy Nomura & MacDonald, PRL 2006

� For smooth field variation (on scale a):

K and K´ states remain decoupled,focus on single K point theory

Now: „minimal substitution“

AeyxBB z

rrr×∇== ),(

Aeiir

hh +∇−→∇−

Page 16: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Dirac-Weyl equation with magnetic field

equivalent to pair of decoupled Schrödinger-

like equations:

� Energies come in plus-minus pairs (chiralHamiltonian)

� Zeeman-like term in sublattice space

( )( ) 022

=Ψ−++∇− εσ zz BeAeir

h

( )

=

⋅+∇−

B

A

B

AAei

ψ

ψε

ψ

ψσrr

h

Page 17: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Homogeneous field

Relativistic Landau levels, 4-fold degenerate

results in „half-integer“ QHE because of

presence of zero-energy state

( ) neBvnE n 02sgn=

( )2

14 2

+= nh

exyσ

Experimentally confirmedZhang et al., Nature 2005, Novoselov et al., Nature Phys. 2006

0),( ByxB =

Page 18: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Integer QHE in graphene: expt. data

Page 19: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barrier: Model

Consider square barrier:

Good approximation for

Convenient gauge:

y component of momentum conserved!

aBF >> λλ

>

<=

dx

dxByxB

,0

,),(

0

>

<

−<−

⋅=

dxd

dxx

dxd

eBA y

,

,

,

0

rr

edge smearing length

Page 20: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic barrier: Solution

… pair of decoupled 1D Schrödinger eqns(assume electron-like state )

Effective potentials

parametrize momentum by kinematic

incidence angle

Gauge invariant velocity:

=

φ

φ

sin

cosvv

r

( )( ) ( ) 0/

2

/

2 =−+∂− xxV BABAx ψε0>ε

( ) ( ) ( )( )2

/ xeApxeAxV yyyBA ++±=

0sin

cos

edBp

k

k

y

y

x

+==

=

φε

φε

h

Page 21: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Incoming scattering state (from left)

Left of the barrier:

Under the barrier:

Right of the barrier:

with emergence angle in

−+

=Ψ −

−φφ i

xik

i

xik

lefte

ree

e xx11

( )( )( )( )∑

±

+−

±

+±±

=ΨBByl

B

BByl

barrierlxlkD

li

lxlkD

c

B

B

/22

/2

2/)(

2/)(1

2

2

ε

ε

ε

0eBlB

h=

´

´1

´ φixik

xxrighte

ekkt x

´cos´ φε=xk

Page 22: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Perfect reflection regime

� Transmission/reflection probability

� Relation between emergence and incidence

angle from y-momentum conservation

� No solution, i.e. perfect reflection, for low

energy and/or wide barrier

22sin´sin

Bld

εφφ =−

TrRtT −=== 1,22

BB ldl /<ε opens up possibility of confining

Dirac Weyl quasiparticles

Page 23: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Transmission probability

angular plot of

transmission

probability

(away from the

perfect reflection

regime)

)(φT

Page 24: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic quantum dot

� Circularly symmetric magnetic field

� Total angular momentum is

conserved, good quantum number

� gives Dirac-Weyl radial (1D) equations

zerBBrr

)(=

2ziJ

σθ +∂−=

2/1±= mj

( )( ) ( )

=

+

re

re

m

mi

m

im

B

A

χ

φψ

ψθ

θ

1 ( )mm

m

mmm

ir

rm

dr

d

ir

rm

dr

d

εφχϕχ

εχφϕφ

=++

+

=+

1

)(

( ) ∫=r

rBdrrer0

´)(´´ϕMagnetic flux through discof radius r in flux quanta

Page 25: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Simple model for magnetic dot

Again simple step-type model:

Solution:

( )

>

<=

RrB

RrrB

,

,0

0

2

2

22

2

~

2/

B

B

lr

mm

lR

=

−=

=

ξ

δ

δ( ) ( )( )

( )

+−+Ψ×

=>

=<−

>

<

ξε

θ

ξφ

εφξ

;~1,2

~~122

2/2/~

ml

mm

eaRr

rJaRr

B

m

m

mm

missing flux through dot

(in flux quanta)

degenerate hyper-

geometric function

Matching problem gives energyquantization condition!

Page 26: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Magnetic dot eigenenergies

(above zero, but below first bulk Landau level)

Energy levels

tunable via magnetic field

Estimate:

meVEl

nmlTB

B

B

441

,1340

=⇔=

=⇒=

ε

02

2

2B

lR

B

∝=δ

Page 27: Magnetic barriers in graphene - thphy.uni-duesseldorf.dethphy.uni-duesseldorf.de/~ls4/pdfs/magnbarr.pdf · Klein tunneling Dirac fermions can perfectly tunnel through high and wide

Conclusions

� Graphene as model 2DEG system made of

relativistic Dirac fermions

� Klein tunneling: Dirac fermions cannot be

easily trapped by electrostatic fields

� Magnetic fields (inhomogeneous) can confine

Dirac fermions. Solution discussed for

� Magnetic barrier (square barrier)

� Magnetic dot (circular confinement)


Recommended