+ All Categories
Home > Documents > Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli...

Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli...

Date post: 14-Dec-2015
Category:
Upload: jaden-breeden
View: 216 times
Download: 1 times
Share this document with a friend
81
Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008
Transcript
Page 1: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Magnetic techniques for molecular and nanometric

materialsDante Gatteschi &

Roberta Sessoli

February 2008

Page 2: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Diapositive disponibili:

ftp://lamm21.chim.unifi.it/pub/Corso_Gatteschi_Sessoli

Per ogni problema scrivere a: [email protected]

Page 3: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Molecular Magnetic Materials

(nano)

EPR(Gatteschi)

Magnetic Techniques(Sessoli)

Page 4: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Molecular magnetic materials

• simple paramagnets: step 1

• Interacting paramagnets: step 2

• Size effects: step 3

Page 5: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Bulk 3D magnets

Page 6: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The first molecular ferromagnet

Miller, Epstein et al. MolCrystLiqCryst 1985

Page 7: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The first room temperature molecular

magnet

Miller, Epstein et al. Science, 1991

Page 8: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Nitroxides

Tc= 0.6 K

N

NO.

CH3

CH3

CH3CH3

O.

TC= 1.5 K

N

NNO2

O

O

Page 9: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Fullerene

TC= 16 K Alemand et al. Science 1991

Page 10: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

p-NC-Cp-NC-C66FF44-CNSSN-CNSSN••: : a monomeric S-based a monomeric S-based radicalradical

Page 11: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Single molecule magnets, SMM

Page 12: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The first single molecule magnet:Mn12-acetate

S4||z

top view

T. Lis Acta Cryst. 1980, B36, 2042.

MS=-10

MS= 10Easy axis of magnetization

lateral view z

Mn(AcO)2•4H2O + KMnO4 in 60% v/v AcOH/H2O

[Mn12O12(OAc)16(H2O)4]·2AcOH·4H2O

Ground stateS = 8*2 - 4*3/2 = 10Msaturation = 2.S = 20B

Barrier 60 K

Page 13: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The library of molecular magnets: single chain magnets

Page 14: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

More complex structures

Page 15: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Three different organizations

• 2: embedded in amorphous silica

• 3: LB film• 4: SAM

• Bogani et al. Adv Mater in press

Page 16: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

magnetmagnet paramagnetparamagnetsuper super paramagnetparamagnet

Reducing the size

Classical physicsQuantum mechanics????????????

Page 17: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Paramagnet

Inorganic radicalsO2, NO..

Organic radicalsTyrosyl, nitroxides

TM coordination compounds

RE coordinationcompounds

Page 18: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Outline of the EPR section

EPR in a nutshell:• The principle of the experiment • Basic EPR: the spin HamiltonianHF experiments:• Radicals and Biological systems• Clusters

Page 19: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Outline of the EPR section 2

Spin interactions:• The spin hamiltonian of pairs • SH parameters of pairsThe Mn12 testing ground:• Epr• Nmr

Page 20: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

EPR Spectroscopy in a Nutshell

• It is like NMR but is limited to paramagnetic systems

• Invented by Zavoiski in Kazan in 1944

• It needs a magnetic field and electromagnetic radiation

• Unlike NMR the field is scanned and the frequency is fixed

Page 21: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

.

General design of an EPR General design of an EPR spectrometerspectrometer

SourceSourceklystron (conventional)FIR lasers ( > 240 GHz)Gunn diodes (95-400 GHz)Carcinotron (very High power)

DetectorDetectorcrystal diodesbolometersSchottky diodes

Transmission lineTransmission linerectangular waveguides up to 150 GHz)corrugated waveguides.via space with refocusing devicesoversized waveguides

MagnetMagnetelectromagnets (up to 1.5 Tesla)superconductive magnets (up to 17 Tesla)resistive magnets (30 Tesla)hybrid magnets (45 Tesla)pulsed magnets (hundreds of Tesla)

Sample environmentSample environmentresonating structuretemperature controlmultiple irradiation

Page 22: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

.•Most of the efforts for the development of EPR at high frequeny are aimed at the extention at millimeter and sub-millimeter waves of the general design of the conventional microwave bridge.• The main problem along this path is the availability and/or the design and realization of devices (magic Tees, circulator, phase shifter etc.) able to carry on the function of the low-frequency analogoue.

The microvave techniques are used in conventional EPR. The propagation of the radiation is made by using mono- modal metallic rectangular waveguides, metallic cavities and the other devices present in a typical microwave bridge.

The microwave techniques can be successfully extended up to 150 GHz ca. Above this frequency waveguides become eccessively lossy (typical figure of merit 12 dB/m at 250 GHz) and the rectangular or cylindric cavities eccessively small.

Page 23: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

EPR Spectroscopy in a Nutshell: Zeeman Term

In a system with S= 1/2, when the static magnetic field is parallel to z,

E(M)= MgμBH

a transition is observed when

gz BH= hν= ge BH0Similar expressions hold for x, and y.

The g values and their anisotropy depend on the chemical environment, therefore they provide structural information

Page 24: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Zeeman Splitting

-0.50

-0.25

0

0.25

0.50

0 2000 4000 6000 8000 10000

h=gBH

-1/2gBH

1/2 gBH

G

cm-1

Page 25: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Some Useful Relations1 GHz= 3.3561x10-2 cm-

1

Res. Freq. Band Res. Field (GHz) g=2.00

9 X 0.3234

35 Q 1.2578

95 W 3.1441

200 7.1876

300 10.7814

500 17.9690

Page 26: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Polycrystalline Powder EPR Spectra

The EPR spectra of polycrystalline powders or frozen solutions provide the gx, gy, and gz values directly provided that the linewidth is smaller than the anisotropy

Page 27: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Polycrystalline Powder Spectra

0.25 0.27 0.30 0.33 0.35

B (T)

g

g||

g

gz

gy

gx

isotropic

axial

rhombic

Page 28: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The Spin Hamiltonian

H = B B.g.S+S.D.S+ k Ik.Ak.S

Zeeman Fine Hyperfine

Page 29: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Interazione iperfine e Interazione iperfine e superiperfinesuperiperfineCu2+ S=1/2

63Cu I=3/2 69%

65Cu I=3/2 31%

1- Termine di contatto: Axx=Ayy=Azz=8/3(gegnBn)|n(0)|2

3- Pseudo- contatto :Interazione spin nucleare-momento orbitalico: è funzione dell’anisotropia di gTraccia non nulla, anisotropo

2- Termine dipolare:

anisotropo, traccia nulla (Axx+Ayy+Azz=0)

2nI+1 n=2, I=1

Informazioni sull’intorno di coordinazione

Page 30: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Il CuIl Cu2+ 2+ nei prioninei prioni

Determinazione dei diversi siti leganti e della stechiometria

Determinazione del numero di azoti leganti per uno dei siti coordinanti

Biochemistry 2003 42, 6794

1 eq.2 eq.3 eq. 4 eq.5 eq.6 eq.

Alta conc. Bassa conc.

5.3 eq. Cu2+

Cu2+ legato

pH=4.00

pH=7.40

Cu2+ libero

Affinità per il Cu2+ a pH>6

7 linee min. 3 N leganti

Page 31: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.
Page 32: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Q-band of 6

Page 33: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

6 in solution. RT, X-band

Page 34: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

The spin hamiltonian and the parameters

nucleii

NNCuCuCuCuBsp HH ii

2

10

65656363

1 IASIASIASSgB

g ACu/MHz

AN/MHz

QN/MHz

Euler angle/°

x 2.0405 95 36.3 1.28 = 35

y 2.0405 95 50.5 -0.70 = 14

z 2.1860 632 37.5 -0.58 = 0

Page 35: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

High Frequency EPR: Why?

• increased resolution• simpler spectra• orientation effects• spectra from integer spin systems

with large zero field splitting• sign of the zero field splitting• different time scale

Page 36: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Enhanced Resolution

• The g tensor anisotropy of tyrosyl radicals present for instance in Photosystem II is completely resolved at high frequency. This provides important structural information, like their main orientation in the membranes.

Page 37: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Tyrosyl Radicals

• They are present in RNR and in Photosystem II

• RNR: ribonucleotide reductase catalyzes the reduction of ribonucleotide to deoxyribonucleotides

Page 38: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

EPR of Tyrosyl rad. of S. typhymurium

250 GHz 9.45 GHz

O

H

HH

H

H H

COOHRHN

H

gx=2.0090

gy=2.0044

gz=2.0022

Page 39: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Tyrosyl Radical

The g values are sensitive to the environment

O

H

HH

H

H H

COOHRHN

H

x

y

gx is the most sensitive, because of the interaction of the non-bonding oxygen orbitalsUn et al. JACS 1999, 121, 5743

Page 40: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Resolution effect

P700+ radical cation of PSI

Page 41: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Tyrosyl Radical in Different Environments

N-ac-L-tyr L-tyr-HCl RNREC PSII YD PSII YZ

gx 2.0094 2.0067 2.00868 2.00740 2.00750

gy na 2.0045 2.00430 2.00425 2.00422

gz na 2.0023 2.00203 2.00205 2.00225

giso 2.0055 2.0045 2.00500 2.00466 2.00466

Brustolon et al. J Phys Chem A 1999, 103, 9636

Page 42: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Tyrosyl Radical in Different Species Tyrosyl radical

of RNR of different species

E.coli 2.0091

mouse 2.0076

herpes 2.0076

typhimurium 2.0089

JACS 120, 5080, 1998

Page 43: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Orientation Effects in membranes

Page 44: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Il tensore g nei metalli di transizione

Page 45: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

L’anisotropia del fattore L’anisotropia del fattore gg

x2-y2 xy

xz yz

z2

662

22

8

2 2

zxy

Per un elettrone spaiato si ha:

gi=ge+

n

ng

ii

EE

gLnnLgΛ

g<ge dn n=1-4

g>ge dn n=6-9

g// = ge + 8 /(Edxy-Edx2-y

2)

g = ge + 2 /(Edyz- Edx2-y

2)

dx2-y

2

dz2

dxy

dxz,dyz

Es: Cu2+

elongato

Page 46: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

dxy, dxz, dyz

dx2-y

2, dz2

d1, 2T2g

eg

t2g

Es: Ti3+

d2, 3T1g

Es: V3+

d3, 4A1g

Es: Cr3+

d5, 2T2g

Es: Fe3+

basso spin

d5, 6A1g

Es: Fe3+

alto spin

d6, 5T2g

Es: Fe2+

alto spin

Stati fondamentali in campo Stati fondamentali in campo ottaedrico -1ottaedrico -1

Page 47: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

d9, 2Eg

Cu2+

Stati fondamentali Eg sono instabili rispetto alla distorsione Jahn-Teller e danno luogo a stati fondamentali orbitalmente non-degeneri

Stati fondamentali in campo Stati fondamentali in campo ottaedrico -2ottaedrico -2

d8, 3A2g

Es: Ni2+

Es: Co2+

d7, 4T2g

d4 , 5Eg

Mn3+

dx2-y

2

dz2

dxy

dxz,dyz

elong.

dz2

dx2-y

2

dxz,dyz

dxy

comp.

dz2

dx2-y

2

dxz,dy

z

dxy

comp.

dx2-y

2

dz2

dxy

dxz,dyz

elong.

Page 48: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Perturbative Approach

= ±/2S

n ng EE

gLnnLgΛ

g=

Page 49: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Valori di g per coordinazione pseudo-ottaedrica

Conf. elett. S Stato fond. gx gy gz

d1 1/2 2T2g ge-2/1 ge-2/2 ge-8/3

d2 1 3T1g ge-9/ ge-9/ ge

d3 3/2 4A2g ge-8/1 ge-8/2 ge-8/3

d4 2 5Eg comp. ge-6/1 ge-6/2 ge

elong. ge-2/1 ge-2/2 ge-8/3

d5 HS 5/2 6A1g ge ge ge

d6 2 5T2g ge+2/1 ge+2/2 ge+2/3

d7 3/2 4T2g Oh 2(5-)/3 2(5-)/3 2(5-)/3

elong. 0 0 2(3-)/3

comp. 4 4 2

d8 1 3A2g ge+8/1 ge+8/2 ge+8/3

d9 1/2 2Eg elong. ge+2/1 ge+2/2 ge+8/3

comp. ge+6/1 ge+6/2 ge

Page 50: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

g values for some ions

Configurati

on

S GroundState

gxgy

gz

d1 1/2 T2ga -2/1 -2/2 -8/3

d3 3/2 A2gb -8/1 -8/2 -8/3

d4 2 Egc -2/1 -2/2 -8/3

d8 1 A2gd -8/1 -8/2 -8/3

d9 ½ Ege -2/1 -2/2 -8/3

Page 51: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Spin hamiltonian for an individual spin

H= B B.g1.S1+ S1.D1.S1+ j S1.A1j.Ij+..

Electronic Zeeman

Electron-electron interaction (zero field splitting)

Electron-nucleus interaction

Page 52: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Zero field splitting

H= D[S1z2-S1(S1+1)/3]+ E(S1x

2-S1y2)

0E/D1/3

diagonal

Couples states differing in M by ±2

Page 53: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

-1.0

-0.5

0

0.5

1.0

1.5

-1.0 -0.5 0 0.5 1.0

axialaxial axial

Completely rhombic

Completely rhombic

Page 54: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Origin of the zero field splitting

For organic radicals: electron-electron dipolar interaction

For transition metal and rare earth ions: spin-orbit interaction

Page 55: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Ligand field approximation

= ±/2S

n ng EE

gLnnLgΛ

D1=2

Page 56: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

A simpler treatmentD=(/2)[gz-(gx+gy)/2]; E=(/4)[gx-gy]

For tetragonally elongated Ni(II):

gx= gy= 2.25; gz= 2.24; =-315 cm-1

D= 1.57 cm-1

3A2

3A1

3E

Page 57: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Higher order termsHigher order terms, which have their origin in higher order perturbations, are most coveniently described by Stevens operator equivalents:

H=n k Bnk On

k operator

parameter

n=0,±2,±4,..±2S; k=0,1…n

Page 58: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Advantages of the Stevens Operators

• They fully exploit the symmetry: easy calculations

• The number of the terms to be included are defined by symmetry

• For a C4 quantization axis only the k= 0 and k= 4 terms must be included

• For C2, k=0,2,4

• The Onk operators couple states differing in

M by ±k

Page 59: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Some examples of operators

k=2 O20=3Sz

2-S(S+1)

O22=(S+

2+S-2)

k=4 O40 =35Sz

4-30S(S+1)Sz2+25Sz

2-6S(S+1)+3S2(S+1)2

O42={(7Sz

2-S(S+1)-5)(S+2+S-

2)}S/2

O43={Sz(S+

3+S-3)}S/2

O44=(S+

4+S-4)/2 {A,B}S=(AB+BA)/2

D=3B20;E=B2

2

Page 60: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Fine StructureWhen the Zeeman term is dominant each line is split into 2S equally spaced lines (fine structure)

For an axial anisotropy the resonance fields are given by:

H(M-M+1)=(g/ge)[H0+D’(M/2)(3cos2-1)]

D’= D/(geB)

Page 61: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Nel limite di gBH>>D e anisotropia uniassiale

H//

2S linee separate da H=2D/gB

H

2S linee separate daH=D/gB

H(MM+1)=(ge/g)[H0+(2M+1)/D’/2]

D’=(3cos2-1)D/(geB)

Page 62: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

(M=-3)=9D-3gB H

(M=-2)=4D-2gB H

(M=-1)=1D-1gB H

etc

E(-3,-2)=5D-gB H

E(-2,-1)=3D-gB H

E(-1,-0)=1D-gB H

campi di risonanza:

HR(-3,-2)=(5D-h)/gB

HR(-2,-1)=(3D-h)/gB

HR(-1,-0)=(1D-h)/gB

Page 63: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

H//

H

T

2D/gB

D/gB

Per T tutti i livelli sono equipopolati e l’intensità delle righe è proporzionale alla probabilità di transizione

Page 64: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Resonance fields for S states

H(MM+1)=(ge/g)[H0+(2M+1)/D’/2];

D’=(3cos2-1)D/(geB)

Page 65: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

H//

H

2D/gB

D/gB

kBT<<gB

H

D < 0

Page 66: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

HF-EPR Provides the Sign of DNegative D:±S lie

lowestEasy axis type anisotropy

At low T only the -S-S+1 transition is observed

Page 67: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Quantitative LF Approach

Bencini,A.; Ciofini,I.; Uytterhoeven, M.G. Inorg. Chim. Acta 1998, 274, 90

The energies of the LF levels are calculated using a full matrix diagonalization approach. The SH parameters, in principle to any order, are obtained by best fit of the calculated energies.

Both classic crystal field and Angular Overlap parametrization can be used

Ask him the program!

Page 68: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

“EPR silent species”

• Ions with even numbers of unpaired electrons are EPR silent in a conventional X- or Q-band experiment due to large zero field splitting

• HF-EPR spectra of Mn(III), Fe(II), Ni(II), etc. become available

Page 69: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

An example

-10

-5

0

5

10

15

0 0.5 1.0 1.5 2.0

H(T)

E (c

m-1)

Page 70: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Chromium(II) Manganese(III)

x2-y2

x2-y2z2

z2

Compressed Elongated

Jahn-Teller distortion

Page 71: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Chromium(II) Aquo Ion329 GHz

D=-2.20 cm-1; g= 1.98

Telser et al Inorg Chem 1998, 37, 5769

Page 72: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Manganese(III): SH Parameters

Compressed:

gz= 2.00; gx=1.97

D= 4.72 cm-1

B20= 3.854 cm-1

B40=-9.82 10-3 cm-1

B44=5.18 10-3 cm-1

Elongated:

gz= 1.96; gx=1.99

D= -4.83 cm-1

B20=-3.948 cm-1

B40=-6.70 10-5 cm-1

B44=1.86 10-3 cm-1

Dq=1600 cm-1

Page 73: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Vanadium(III) Alum

3T1g

3Ag

OhS6

Page 74: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Vanadium(III) EPR

D= 4.8581 cm-1;

gz=1.9500; gxy= 1.8656

Az= 0.0098, Axy= 0.0078 cm-

1

Tregenna-Piggott et al Inorg Chem 1999 38 5928

Page 75: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Gadolinium Contrast Agents

Contrast enhanced MRI is a very effective technique for detecting and characterizing lesions, for identifying patho-physiological abnormalities and for providing functional information.

Usually contrast agents are slowly relaxing paramagnets.

Gd3+ is widely used because of its large spin

Need for understanding the mechanism

Page 76: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Gadolinium Chelates

DOTAP

EOB-DTPA

Page 77: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Multifrequency Gd-DOTAP Spectra

9 GHz

94 GHz

249 GHz

Hpp= 400 G

Hpp= 25 G

Hpp= 9 G

The broadening effect is due to unresolved fine structure

At high frequency Zeeman energy is much larger than zfs and the lines sharpen

JACS 120, 1998m 5060

Page 78: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Gd-DOTAP in multilamellar aqueous dispersion

2

2

eff2

31gg

22zz

2yy

2xx

2 /DDD

Page 79: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

R. S. Drago: Physical methods for chemists (Saunders, 1992)

J. S. Griffith: The theory of transition metal ions (Cambridge University Press, 1961)

J. R. Pilbrow: EPR of transition metal ions (Clarendon Press, 1990)

A. Abragam, B. Bleaney: EPR of transition ions (Dover, 1986)

J. A. Weil, J. E. Wertz, J. R. Bolton: Electron Paramagnetic Resonance (Wiley, 1994)

A. Bencini, D. Gatteschi: EPR of Exchange coupled systems (Springer Verlag, 1990)

A. Bencini, D. Gatteschi: Electron Paramagnetic Resonance Spectroscopy, in Inorganic Electronic Structure and Spectroscopy, E.I. Solomon, A.B.P.Lever, Vol. I Wiley 1999

Riferimenti bibliograficiRiferimenti bibliografici

Page 80: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Libri:

O. Kahn Molecular Magnetism VCH, Weinheim 1993.

Review:

A.-L. Barra, L.-C. Brunel, D. Gatteschi, L. Pardi, R. Sessoli, "High Frequency EPR Spectroscopy of Large Metal Ion Clusters. From Zero Field Splitting to Quantum Tunneling of the Magnetization" Acc. Chem. Res. 31, 460-466, 1998.

D. Gatteschi, R. Sessoli “Quantum tunneling of magnetization and related phenomena in molecular materials” Angew. Chem. Int. Ed. 42, 268-297, 2003.

D. Gatteschi, L. Pardi “High Frequency EPR Spectroscopy” in High Magnetic Fields, C. Berthier, L.P. Lévy, G. Martinez, Eds. Springer 2002.

J. van Slageren et al. “Frequency-domain magnetic resonance spectroscopy of moleuclar magnetic materials” Phys. Chem. Chem. Phys. 5, 3837-3843, 2003.

Riferimenti Riferimenti bibliograficibibliografici

Page 81: Magnetic techniques for molecular and nanometric materials Dante Gatteschi & Roberta Sessoli February 2008.

Programmi di simulazioneProgrammi di simulazione

Alcuni esempi:

Sim (H. Weihe)http://sophus.kiku.dk/software/epr.html (Inorg. Chem 32, 1993, 1216)

Easyspin (S. Stoll) http://www.esr.ethz.ch

EPRNMR (J. A. Weil & M. J. Mombourquette) http://web.chem.queensu.ca/eprnmr/

3 - Convoluzione spettro (scelta di forme e larghezze di riga)

1 - Definizione del modello e dei parametri2 - Calcolo delle probabilità di transizione per diverse orientazioni e campi


Recommended