+ All Categories
Home > Documents > Main Seminar Abu

Main Seminar Abu

Date post: 06-Apr-2018
Category:
Upload: abeer-zahid
View: 220 times
Download: 0 times
Share this document with a friend

of 33

Transcript
  • 8/3/2019 Main Seminar Abu

    1/33

    velocityprofile

    FlowControlLab,KAISTAbuSeena

    Phd Student

  • 8/3/2019 Main Seminar Abu

    2/33

    1 Lo lawvelocit rofilesinsmoothwallturbulent

    channelflows.2) Laglawforturbulentflowsintransitionalroughpipe.

    3) Reynoldsstressmodel(Sreenivasan 2005).

  • 8/3/2019 Main Seminar Abu

    3/33

    Introduction

  • 8/3/2019 Main Seminar Abu

    4/33

    u

    uT 2

    Tw

  • 8/3/2019 Main Seminar Abu

    5/33

    Osborne Reynolds : Turbulent Motion can

    ),,('),( += tyxuyxuU

    random fluctuations (u) on mean flow (u).

    ),,('),(

    ),,('),(

    ),,('),(

    +=

    +=

    +=

    tyxpyxpP

    tyxwyxwW

    tyxvyxvV

    '''''

    ns,fluctuatioofmeanSuch that

    ),,('),(

    =====

    += tyxTyxTTe

    0''

    but

    vu

  • 8/3/2019 Main Seminar Abu

    6/33

    '''''

    2

    2

    '

    wuvuu

    '''''

    appears,resseseyno s2

    Re

    =

    wwvwu

    wvvvu

    equationmomentumMean

    :owc anneeve opeu y

    Viscous Shear stress

    :ConditionsBoundary

    '' =

    dx

    vuyy

    ''

    0'',0,0:Wall

    ==

    ====

    u

    vuvuy

    (unknown)

    ,,y

  • 8/3/2019 Main Seminar Abu

    7/33

    era ure ev ew

  • 8/3/2019 Main Seminar Abu

    8/33

    "It became clear for me that it is unrealistic to hope for thecreation of a pure self-contained theory [of turbulent flows

    ...

    we have to rely upon hypothesis obtained by processingexperimental data... I did not carry out experiment workm sel but i s ent a lot o ener on calculations andgraphical processing of data obtained by otherresearchers.

    1) Boussinesq eddy viscosity model2) Prandtls mixing length model

    - , .

    Present Approach:Open or under-determined equations

  • 8/3/2019 Main Seminar Abu

    9/33

    InnerLa er WallLaw Prandtl 1925

    ViscousSheardominates

    OuterLayer DefectLaw (vonKarman,1930)

    TurbulentSheardominates

    OverlapRegion LogLaw (Izakson1937&Millikan1939)

  • 8/3/2019 Main Seminar Abu

    10/33

  • 8/3/2019 Main Seminar Abu

    11/33

    elocity.friction vis/,DominatesShearViscous =

    = u

    y

    uww

    groupslessdimensionatindependen1

    )dimensionstindependen3,parameters(4analysisldimensiona

    ,,,ParameterslDimensiona

    yw

    yuu ==u ++ ,

    +++

    = yuuLaw of the wall :

  • 8/3/2019 Main Seminar Abu

    12/33

    ParameterslDimensiona

    ''DominatesShearTurbulent =

    uU

    vuw

    groupsessdimensionltindependen1

    )dimensionstindependen3,parameters(4analysisldimensiona

    c

    channelofdepthsemi,and ==

    Yy

    u

    uUc

    yuUc ==

    Velocity Defect Law :

    u

  • 8/3/2019 Main Seminar Abu

    13/33

    OverlapRegion

    Izakson(1937)&Millikan(1939)

    YFuUuu =

    numberReynoldslargelysufficientFor

    DominatesShearTurbulentandViscousBoth

    FYuy

    c

    == ++ 1

    getweating,Differenti

    Fu

    or

    y

    +

    11

    Yyy=

    =

    ++

  • 8/3/2019 Main Seminar Abu

    14/33

    Lo Law :

    uU

    kByku

    uu

    =+== ++

    1

    ConstantKarmanvonln1

    Inner log law

    uRDBRUc =++= ,ln

    1

    DY

    ku

    c += ln

    Skin Friction Law :

    ku

    Uniformly valid solution :

    ===

    +=+= ++

    lawwake-wallComposite

    1)1(,0)0((1956),ColesoffunctionwakeW(Y)

    ,ln)()(,ln)()(

    WW

    DYk

    YFYWk

    DYk

    YFyuuu

    += ++

    sublayerviscoustheAbove

    )()( YWk

    yuuu

    ++= + )(ln YW

    kBy

    kuu

  • 8/3/2019 Main Seminar Abu

    15/33

    Traditional Log Region in Overlap Domain

    Innerloglaw

    SemilogScale

    Byk

    yu += +++ ln1)(

    DYk

    YuU += ++ ln1

    )(

  • 8/3/2019 Main Seminar Abu

    16/33

    Rou hness

    Lettheroughnessheightbeh

    h

    Thenroughnessparameter

    If Equivalent to smooth wall

    Viscous sub layer destroyed

    Transitionally Rough wall

    Major impact of the wall roughness is to perturb wall layer. Which leads to increase in wall shear stress accompanied by wall heat

    transfer and mass transfer.

  • 8/3/2019 Main Seminar Abu

    17/33

    LiteratureReview

    Millikan(1938)proposedtwolayertheory(InnerandOuterlayer)fortransitional,fullysmoothandfullyroughpipestoobtainloglawsdependenton

    k Karmanconstantandadditiveconstantdependingonroughness.

    Clauser &Hama(1954) Introducetheroughnessfunction ,asan

    additionaltermtosmoothwallloglaw,where

    itisusefuldescriptorofsurfaceroughnesseffectonmeanvelocitypro e nt e nnerreg on

    itphysicallyrepresentroughnessdominatedshiftinvelocityprofile

    fromloglawofsmoothwall

    t es t s ownwar ueto ncreaseo rag. theshiftisupwardduetoreductionofdrag.

  • 8/3/2019 Main Seminar Abu

    18/33

    LiteratureReview

    BZku

    uZu +== +++ ln

    1)(

    Fully Rough wall Log law

    Bh

    Z

    ku

    uZu +==+

    +++ ln

    1)(

    Log law for transitionally rough wall

    BUZku

    u

    Zu+==

    ++++ ln

    1

    )(

    Present Approach

    ++ =+==Z

    Bu

    u ,ln1

    )(

    )(exp += Uk

  • 8/3/2019 Main Seminar Abu

    19/33

    AlternateScales

    ew on mens ona roug nesssca e,

    oug nesscoor natean oug nessve oc ty

    Base ona ternateroug wa var a es,t e nnervar a esare e ne as

    RoughnessFrictionReynoldsnoR

    andRoughnessReynoldsnoRe

    2

    228

    82

    ===

    bbb

    U

    u

    UU

    d

    dx

    dp

  • 8/3/2019 Main Seminar Abu

    20/33

    Power law region in Overlap Domain

    Velocityprofile Velocityprofile

    Innerwallvariables OuterPowerLaw

    Reynoldsshearstress Reynoldsshearstress

    The inner la er e uation becomes The outer la er e uation becomes

    Matching

  • 8/3/2019 Main Seminar Abu

    21/33

    Lo Law :Inner log law , k = vonkarman conatantB

    ku

    uu +==+

    ln1

    )(

    Skin Friction Law :

    Composite velocity profile solutions:

    W(Y) = wake function of Coles(1956), with BC W(0)=0 and W(1) = 1and

  • 8/3/2019 Main Seminar Abu

    22/33

    Nikuradse Sand Grain Roughness data (inflectional roughness)

  • 8/3/2019 Main Seminar Abu

    23/33

    Shockling Superpipe data (with machine honed surface)

  • 8/3/2019 Main Seminar Abu

    24/33

    FrictionFactor:

  • 8/3/2019 Main Seminar Abu

    25/33

    CommercialandSandGrainRoughness

    Colebrooks Equation(commercialroughness)

    +=

    f

    D

    f Re

    51.2

    7.3log2

    1

    ++

    ===

    +=

    BBBBk

    hkU

    FF

    5.8,5.5)],(exp[

    )1ln(1

    ForInflectionalroughness(Loselevich andPilipenko)

    ++= h 1

    )25.2/(ln),(sin)ln5.8( 1 ++

    + =+= hqqhkBU .n

    +=

    jh ex1

    j=0 forColebrooksmonotonicroughness

    j=11forinflectionalroughness

    +h

  • 8/3/2019 Main Seminar Abu

    26/33

    ConclusionA) Openequations Functionalapproach

    1) The open momentum equation in fully developed turbulent channel flowconsists of two la ers, inner la er near the wall and outer la er awafrom the wall. The matching of the inner and outer layer in overlap

    region gives velocity profiles in terms of log law.

    =Zinnervariable, theroughnessfrictionReynoldsnumber

    and theroughnessReynoldsnumber.

    3 The velocit rofile in transitional wall rou hness inner variable

    /RR =

    Re/Re =

    , isuniversalforalltypesofwallroughness,in

    contrasttotraditionalwallvariableZ+orZ/h.

    4 The friction factor vs rou hness Re nolds number Re is also

    +=Z

    universal,explicitlyindependentofwallroughness.

  • 8/3/2019 Main Seminar Abu

    27/33

    ClosureModel:

    Lo arithmicEx ansionsforRe noldsStress

  • 8/3/2019 Main Seminar Abu

    28/33

    ClosureModel:ReynoldsShearStress

    Sreenivasan,K.R.andBershadskii(2006,JFMVol554pp477498):

    ProposedReynoldsShearStressModel

    2=

    ( )2/1

    87.1 Rym

    m

    =+

    ++

    Re nolds momentum e uation in a channel

    Maxima occurs at

    +

    +

    +

    + =+ yRdy

    du 11

    1111 ,1)]/[ln()(where

    )2()]2/()([const

    kpkkpeyyppyg

    Ryygyu

    omo =+=+=

    +=

    +++

    ++++

    o ut on or ve oc ty str ut on:

    .Reas1andenough,highisitleast whenatnumber,

    ReynoldsoftindependenbetoandConstants:Assumption 1

    kk

    .

  • 8/3/2019 Main Seminar Abu

    29/33

    PresentAnalysisonClosureModelforReynoldsShearStress

    [ ]kRy

    yyk

    mm

    m

    ==

    +=

    ++

    ++

    ,

    ...........)]/[ln(1 21Reynolds Shear stress:

    Maxima occurs at

    givesat0 Ry == ++

    221

    1 )]/[ln()]/[ln()( RyR m == +

    Boundary conditions (imposed):

    ,1)]/[ln()(where

    )]2/()([const

    kpkkpeyyppyg

    Ryygyu

    =+=+=

    += ++++

    Solution for velocity distribution

  • 8/3/2019 Main Seminar Abu

    30/33

    Velocity Distribution

  • 8/3/2019 Main Seminar Abu

    31/33

    Conclusion

    1. TheclosuremodelofReynoldsshearstressintermsoflogarithmsofnon

    dimensionalverticalcoordinateappearstoworksroughlyfory+ >10.

    . eve oc y ncoor na es u+ y+ +y+ , y+ area so ngoo agreemen

    withthedataalmostallthewaytocenterline.3. But velocityprofile(u+,y+) showappreciabledepartureintheoverlapregion,

    .

  • 8/3/2019 Main Seminar Abu

    32/33

    ThankYou

  • 8/3/2019 Main Seminar Abu

    33/33

    References

    Afzal,N.andAbuSeena 2007,AlternateScalesforTurbulentFlowinTransitionalRoughPipes:UniversalLogLaws J.FluidEngg,Vol 129,pp8090.

    Millikan,C.B.,1938,ACriticalDiscussionofTurbulentFlowinChannelsandCircularTubes,Proc.5thInt.

    Cong.Appl.Mech.Cambridge,J.P.denHartog andH.Peters,eds.,Wiley/ChapmanandHall,NewYork

    , . .

    Clauser,F.H.,1954,TurbulentBoundaryLayersinAdversePressureGradients,J.Aeronaut.Sci.,21,pp.91

    108.

    Hama,F.R.,1954,BoundaryLayerCharacteristicsforRoughandSmoothSurfaces,TransSocietyofNaval

    , , . .

    Abe,K.,Matsumoto,A.,Munakata,H.,andTani,I.,1990,DragReductionbySangGrainRoughness,In

    StructureofTurbulenceandDragReduction,A.Gyr,ed.,SpringerVerlag,Berlin,pp.341348.

    Nikuradse,J.,1933,LawsofFlowinRoughPipe,VI,Forchungsheft N361,EnglishtranslationNACATM1292,

    1950.

    Shockling,M.A.,2005,TurbulentFlowinRoughPipe,MSEthesis,PrincetonUniversity.

    Shockling,M.A.,Allen,J.J.,andSmits,A.J.,2006,RoughnessEffectsinTurbulentPipeFlow,J.FluidMech.,

    564,pp.267285.

    Colebrook,C.F.,1939,TurbulentFlowinPi esWithParticularReferencetotheTransitionRe ionBetweenthe

    SmoothandRoughPipeLaws,J.Inst.

    Civ.

    Eng,11,pp.133156.

    Allen,J.J.,Shockling,M.A.,andSmits,A.J.,2005,EvaluationofaUniversalTransitionalResistanceDiagram

    forPipesWithHonedSurfaces,Phys.Fluids,17,pp.121702.

    Abe,H.,Kawamura,H.,andMatsuo,Y.,2001,DirectNumericalSimulationofaFullyDevelopedTurbulent

    ChannelFlowWithRespecttoReynolds Number,J.FluidsEng.,123,pp.382393.

    Afzal,N.,1982,FullyDevelopedTurbulentFlowinaPipe:AnIntermediateLayer,Ing.Arch.,53,pp.355377.


Recommended