+ All Categories
Home > Documents > Major: All Engineering Majors Author(s): Autar KawForward Elimination = 279.2 177.2 106.8 144 12 1...

Major: All Engineering Majors Author(s): Autar KawForward Elimination = 279.2 177.2 106.8 144 12 1...

Date post: 07-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
94
Gaussian Elimination Major: All Engineering Majors Author(s): Autar Kaw http://numericalmethods.eng.usf.edu Transforming Numerical Methods Education for STEM Undergraduates
Transcript
  • Gaussian Elimination

    Major: All Engineering Majors

    Author(s): Autar Kaw

    http://numericalmethods.eng.usf.eduTransforming Numerical Methods Education for STEM

    Undergraduates

    http://numericalmethods.eng.usf.edu/

  • Naïve Gauss Elimination

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Naïve Gaussian EliminationA method to solve simultaneous linear equations of the form [A][X]=[C]

    Two steps1. Forward Elimination2. Back Substitution

  • Forward Elimination

    =

    2.2792.1778.106

    11214418641525

    3

    2

    1

    xxx

    The goal of forward elimination is to transform the coefficient matrix into an upper triangular matrix

    −=

    −−

    735.021.968.106

    7.00056.18.40

    1525

    3

    2

    1

    xxx

  • Forward EliminationA set of n equations and n unknowns

    11313212111 ... bxaxaxaxa nn =++++

    22323222121 ... bxaxaxaxa nn =++++

    nnnnnnn bxaxaxaxa =++++ ...332211

    . .

    . .

    . .

    (n-1) steps of forward elimination

  • Forward EliminationStep 1 For Equation 2, divide Equation 1 by and multiply by .

    )...( 1131321211111

    21 bxaxaxaxaaa

    nn =++++

    111

    211

    11

    21212

    11

    21121 ... ba

    axaaaxa

    aaxa nn =+++

    11a21a

  • Forward Elimination

    111

    211

    11

    21212

    11

    21121 ... ba

    axaaaxa

    aaxa nn =+++

    111

    2121

    11

    212212

    11

    2122 ... ba

    abxaaaaxa

    aaa nnn −=

    −++

    '2

    '22

    '22 ... bxaxa nn =++

    22323222121 ... bxaxaxaxa nn =++++Subtract the result from Equation 2.

    −_________________________________________________

    or

  • Forward EliminationRepeat this procedure for the remaining equations to reduce the set of equations as

    11313212111 ... bxaxaxaxa nn =++++'2

    '23

    '232

    '22 ... bxaxaxa nn =+++

    '3

    '33

    '332

    '32 ... bxaxaxa nn =+++

    ''3

    '32

    '2 ... nnnnnn bxaxaxa =+++

    . . .

    . . .

    . . .

    End of Step 1

  • Step 2Repeat the same procedure for the 3rd term of Equation 3.

    Forward Elimination

    11313212111 ... bxaxaxaxa nn =++++'2

    '23

    '232

    '22 ... bxaxaxa nn =+++

    "3

    "33

    "33 ... bxaxa nn =++

    ""3

    "3 ... nnnnn bxaxa =++

    . .

    . .

    . .

    End of Step 2

  • Forward EliminationAt the end of (n-1) Forward Elimination steps, the system of equations will look like

    '2

    '23

    '232

    '22 ... bxaxaxa nn =+++

    "3

    "33

    "33 ... bxaxa nn =++

    ( ) ( )11 −− = nnnn

    nn bxa

    . .. .. .

    11313212111 ... bxaxaxaxa nn =++++

    End of Step (n-1)

  • Matrix Form at End of Forward Elimination

    =

    − )(n-n

    "

    '

    n)(n

    nn

    "n

    "

    'n

    ''n

    b

    bbb

    x

    xxx

    a

    aaaaaaaaa

    1

    3

    2

    1

    3

    2

    1

    1

    333

    22322

    1131211

    0000

    000

  • Back SubstitutionSolve each equation starting from the last equation

    Example of a system of 3 equations

    −=

    −−

    735.021.968.106

    7.00056.18.40

    1525

    3

    2

    1

    xxx

  • Back Substitution Starting Eqns

    '2

    '23

    '232

    '22 ... bxaxaxa nn =+++

    "3

    "3

    "33 ... bxaxa nn =++

    ( ) ( )11 −− = nnnn

    nn bxa

    . .. .. .

    11313212111 ... bxaxaxaxa nn =++++

  • Back SubstitutionStart with the last equation because it has only one unknown

    )1(

    )1(

    = nnn

    nn

    n ab

    x

  • Back Substitution

    ( ) ( )

    ( ) 1,...,1for11

    11

    −=∑−

    = −+=

    −−

    nia

    xabx i

    ii

    n

    ijj

    iij

    ii

    i

    )1(

    )1(

    = nnn

    nn

    n ab

    x

    ( ) ( ) ( ) ( )

    ( ) 1,...,1for...

    1

    1,2

    12,1

    11,

    1

    −=−−−−

    = −−

    +−++

    −+

    nia

    xaxaxabx i

    ii

    ninii

    iiii

    iii

    ii

    i

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Additional Resources

    For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

    http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html

    http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html

  • Naïve Gauss EliminationExample

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Example 1The upward velocity of a rocket is given at three different times

    Time, Velocity, 5 106.88 177.212 279.2

    The velocity data is approximated by a polynomial as:

    ( ) 12.t5 , 3221 ≤≤++= atatatvFind the velocity at t=6 seconds .

    ( )s t ( )m/s vTable 1 Velocity vs. time data.

  • Example 1 Cont. Assume

    ( ) 12.t5 ,atatatv ≤≤++= 3221

    =

    3

    2

    1

    323

    222

    121

    111

    vvv

    aaa

    tttttt

    3

    2

    1

    Results in a matrix template of the form:

    Using data from Table 1, the matrix becomes:

    =

    2.2792.1778.106

    11214418641525

    3

    2

    1

    aaa

  • Example 1 Cont.

    =

    22791121442177186481061525

    227921778106

    11214418641525

    3

    2

    1

    .

    .

    .

    .

    .

    .

    aaa

    1. Forward Elimination2. Back Substitution

  • Forward Elimination

  • Number of Steps of Forward Elimination

    Number of steps of forward elimination is (n−1)=(3−1)=2

  • Divide Equation 1 by 25 and

    multiply it by 64, .

    Forward Elimination: Step 1

    .

    [ ] [ ]408.27356.28.126456.28.1061525 =×

    [ ][ ][ ]208.96 56.18.4 0

    408.273 56.2 8.1264177.2 1 8 64

    −−−

    2.2791121442.17718648.1061525

    −−−

    2.279112144208.9656.18.408.1061525

    56.22564

    =

    Subtract the result from Equation 2

    Substitute new equation for Equation 2

  • Forward Elimination: Step 1 (cont.)

    .

    [ ] [ ]168.61576.58.2814476.58.1061525 =×

    −−−

    2.279112144208.9656.18.408.1061525

    [ ][ ][ ]968.335 76.48.16 0

    168.615 76.5 8.28 144279.2 1 12 144

    −−−

    −−−−−−

    968.33576.48.160208.9656.18.408.1061525

    Divide Equation 1 by 25 and

    multiply it by 144, .76.525

    144=

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Forward Elimination: Step 2

    [ ] [ ]728.33646.58.1605.3208.9656.18.40 −−−=×−−−

    −−−−−−

    968.33576.48.160208.9656.18.408.1061525

    [ ][ ][ ].760 7.0 0 0

    728.33646.516.80335.968 76.416.80

    −−−−−−

    −−−

    76.07.000208.9656.18.408.1061525

    Divide Equation 2 by −4.8

    and multiply it by −16.8,

    .5.38.48.16=

    −−

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Back Substitution

  • Back Substitution

    −=

    −−⇒

    −−−

    76.0208.968.106

    7.00056.18.40

    1525

    7.07.0002.9656.18.408.1061525

    3

    2

    1

    aaa

    08571.17.076.076.07.0

    3

    3

    3

    =

    =

    =

    a

    a

    aSolving for a3

  • Back Substitution (cont.)

    Solving for a2

    690519. 4.8

    1.085711.5696.208

    8.456.1208.96

    208.9656.18.4

    2

    2

    32

    32

    =−

    ×+−=

    −+−

    =

    −=−−

    a

    a

    aa

    aa

    −=

    −−

    76.0208.968.106

    7.00056.18.40

    1525

    3

    2

    1

    aaa

  • Back Substitution (cont.)

    Solving for a1

    290472.025

    08571.16905.1958.1062558.106

    8.106525

    321

    321

    =

    −×−=

    −−=

    =++aaa

    aaa

    −=

    −−

    76.02.968.106

    7.00056.18.40

    1525

    3

    2

    1

    aaa

  • Naïve Gaussian Elimination Solution

    =

    227921778106

    11214418641525

    3

    2

    1

    .

    .

    .

    aaa

    =

    08571.16905.19

    290472.0

    3

    2

    1

    aaa

  • Example 1 Cont.

    SolutionThe solution vector is

    =

    08571.16905.19

    290472.0

    3

    2

    1

    aaa

    The polynomial that passes through the three data points is then:

    ( )125 ,08571.16905.19290472.0 2

    322

    1

    ≤≤++=

    ++=

    tttatatatv

    ( ) ( ) ( ).m/s 686.129

    08571.166905.196290472.06 2

    =++=v

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Naïve Gauss EliminationPitfalls

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • 95511326

    3710

    321

    321

    32

    =+−=++

    =−

    xxxxxx

    xx

    Pitfall#1. Division by zero

    =

    9113

    5153267100

    3

    2

    1

    xxx

  • Is division by zero an issue here?

    95514356

    1571012

    321

    321

    321

    =+−=++=−+

    xxxxxx

    xxx

    =

    91415

    51535671012

    3

    2

    1

    xxx

  • Is division by zero an issue here? YES

    2852414356

    1571012

    321

    321

    321

    =+−=++=−+

    xxxxxx

    xxx

    =

    281415

    512435671012

    3

    2

    1

    xxx

    −=

    25.6

    15

    1921125.60071012

    3

    2

    1

    xxx

    Division by zero is a possibility at any step of forward elimination

  • Pitfall#2. Large Round-off Errors

    =

    −−

    9751.145

    3157249.23

    101520

    3

    2

    1

    xxx

    Exact Solution

    =

    111

    3

    2

    1

    xxx

  • Pitfall#2. Large Round-off Errors

    =

    −−

    9751.145

    3157249.23

    101520

    3

    2

    1

    xxx

    Solve it on a computer using 6 significant digits with chopping

    =

    999995.005.1

    9625.0

    3

    2

    1

    xxx

  • Pitfall#2. Large Round-off Errors

    =

    −−

    9751.145

    3157249.23

    101520

    3

    2

    1

    xxx

    Solve it on a computer using 5 significant digits with chopping

    =

    99995.05.1

    625.0

    3

    2

    1

    xxx

    Is there a way to reduce the round off error?

  • Avoiding Pitfalls

    Increase the number of significant digits• Decreases round-off error

    • Does not avoid division by zero

  • Avoiding Pitfalls

    Gaussian Elimination with Partial Pivoting• Avoids division by zero

    • Reduces round off error

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Gauss Elimination with Partial Pivoting

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Pitfalls of Naïve Gauss Elimination

    • Possible division by zero• Large round-off errors

  • Avoiding Pitfalls

    Increase the number of significant digits• Decreases round-off error

    • Does not avoid division by zero

  • Avoiding Pitfalls

    Gaussian Elimination with Partial Pivoting• Avoids division by zero

    • Reduces round off error

  • What is Different About Partial Pivoting?

    pka

    At the beginning of the kth step of forward elimination, find the maximum of

    nkkkkk aaa .......,,........., ,1+

    If the maximum of the values is

    in the p th row, ,npk ≤≤ then switch rows p and k.

  • Matrix Form at Beginning of 2ndStep of Forward Elimination

    =

    '

    '3

    2

    1

    3

    2

    1

    ''4

    '32

    '3

    '3332

    22322

    1131211

    0

    00

    n

    '

    nnnnn'n

    n'

    'n

    ''n

    b

    bbb

    x

    xxx

    aaaa

    aaaaaaaaaa

  • Example (2nd step of FE)

    =

    3986

    5

    43111217086239011112402167067.31.5146

    5

    4

    3

    2

    1

    xxxxx

    Which two rows would you switch?

  • Example (2nd step of FE)

    =

    69835

    21670862390

    111124043111217067.31.5146

    5

    4

    3

    2

    1

    xxxxx

    Switched Rows

  • Gaussian Elimination with Partial Pivoting

    A method to solve simultaneous linear equations of the form [A][X]=[C]

    Two steps1. Forward Elimination2. Back Substitution

  • Forward Elimination

    Same as naïve Gauss elimination method except that we switch rows before eachof the (n-1) steps of forward elimination.

  • Example: Matrix Form at Beginning of 2nd Step of Forward Elimination

    =

    '

    '3

    2

    1

    3

    2

    1

    ''4

    '32

    '3

    '3332

    22322

    1131211

    0

    00

    n

    '

    nnnnn'n

    n'

    'n

    ''n

    b

    bbb

    x

    xxx

    aaaa

    aaaaaaaaaa

  • Matrix Form at End of Forward Elimination

    =

    − )(n-n

    "

    '

    n)(n

    nn

    "n

    "

    'n

    ''n

    b

    bbb

    x

    xxx

    a

    aaaaaaaaa

    1

    3

    2

    1

    3

    2

    1

    1

    333

    22322

    1131211

    0000

    000

  • Back Substitution Starting Eqns

    '2

    '23

    '232

    '22 ... bxaxaxa nn =+++

    "3

    "3

    "33 ... bxaxa nn =++

    ( ) ( )11 −− = nnnn

    nn bxa

    . .. .. .

    11313212111 ... bxaxaxaxa nn =++++

  • Back Substitution

    ( ) ( )

    ( ) 1,...,1for11

    11

    −=∑−

    = −+=

    −−

    nia

    xabx i

    ii

    n

    ijj

    iij

    ii

    i

    )1(

    )1(

    = nnn

    nn

    n ab

    x

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Gauss Elimination with Partial Pivoting

    Example

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Example 2

    =

    227921778106

    11214418641525

    3

    2

    1

    .

    .

    .

    aaa

    Solve the following set of equations by Gaussian elimination with partial pivoting

  • Example 2 Cont.

    =

    227921778106

    11214418641525

    3

    2

    1

    .

    .

    .

    aaa

    1. Forward Elimination2. Back Substitution

    2.2791121442.17718648.1061525

  • Forward Elimination

  • Number of Steps of Forward Elimination

    Number of steps of forward elimination is (n−1)=(3−1)=2

  • Forward Elimination: Step 1• Examine absolute values of first column, first row

    and below.144,64,25

    • Largest absolute value is 144 and exists in row 3.• Switch row 1 and row 3.

    8.10615252.17718642.279112144

    2.2791121442.17718648.1061525

  • Forward Elimination: Step 1 (cont.)

    .

    [ ] [ ]1.1244444.0333.599.634444.02.279112144 =×

    8.10615252.17718642.279112144

    [ ][ ][ ]10.53.55560667.2 0

    124.1 0.44445.33363.99177.21 8 64

    8.106152510.535556.0667.20

    2.279112144

    Divide Equation 1 by 144 and

    multiply it by 64, .4444.014464

    =

    Subtract the result from Equation 2

    Substitute new equation for Equation 2

  • Forward Elimination: Step 1 (cont.)

    .

    [ ] [ ]47.481736.0083.200.251736.0279.2112144 =×

    [ ][ ][ ]33.588264.0 917.20

    48.470.17362.08325106.81 5 25

    8.106152510.535556.0667.20

    2.279112144

    33.588264.0917.2010.535556.0667.20

    2.279112144

    Divide Equation 1 by 144 and

    multiply it by 25, .1736.014425

    =

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Forward Elimination: Step 2• Examine absolute values of second column, second row

    and below.2.917,667.2

    • Largest absolute value is 2.917 and exists in row 3.• Switch row 2 and row 3.

    10.535556.0667.2033.588264.0917.20

    2.279112144

    33.588264.0917.2010.535556.0667.20

    2.279112144

  • Forward Elimination: Step 2 (cont.)

    .

    [ ] [ ]33.537556.0667.209143.058.330.82642.9170 =×

    10.535556.0667.2033.588264.0917.20

    2.279112144

    [ ][ ][ ]23.02.0 0 0

    53.33 0.75562.667053.10 0.55562.6670

    −−

    −− 23.02.00033.588264.0917.202.279112144

    Divide Equation 2 by 2.917 andmultiply it by 2.667,

    .9143.0917.2667.2

    =

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Back Substitution

  • Back Substitution

    1.152.023.023.02.0

    3

    3

    =−−

    =

    −=−

    a

    aSolving for a3

    −=

    −⇒

    −− 2303358

    2279

    20008264091720112144

    23.02.00033.588264.0917.202.279112144

    3

    2

    1

    ...

    aaa

    .

    ..

  • Back Substitution (cont.)

    Solving for a2

    6719.917.2

    15.18264.033.58917.2

    8264.033.5833.588264.0917.2

    32

    32

    =

    ×−=

    −=

    =+aa

    aa

    −=

    − 2303358

    2279

    20008264091720112144

    3

    2

    1

    ...

    aaa

    .

    ..

  • Back Substitution (cont.)

    Solving for a1

    2917.0144

    15.167.19122.279144122.279

    2.27912144

    321

    321

    =

    −×−=

    −−=

    =++aaa

    aaa

    −=

    − 2303358

    2279

    20008264091720112144

    3

    2

    1

    ...

    aaa

    .

    ..

  • Gaussian Elimination with Partial Pivoting Solution

    =

    227921778106

    11214418641525

    3

    2

    1

    .

    .

    .

    aaa

    =

    15.167.19

    2917.0

    3

    2

    1

    aaa

  • Gauss Elimination with Partial Pivoting

    Another Example

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Partial Pivoting: ExampleConsider the system of equations

    655901.36099.23

    7710

    321

    321

    21

    =+−=++−

    =−

    xxxxxx

    xx

    In matrix form

    −−

    5156099.230710

    3

    2

    1

    xxx

    6901.37

    =

    Solve using Gaussian Elimination with Partial Pivoting using five significant digits with chopping

  • Partial Pivoting: ExampleForward Elimination: Step 1

    Examining the values of the first column

    |10|, |-3|, and |5| or 10, 3, and 5

    The largest absolute value is 10, which means, to follow the rules of Partial Pivoting, we switch row1 with row1.

    =

    −−

    6901.37

    5156099.230710

    3

    2

    1

    xxx

    =

    −−

    5.2001.67

    55.206001.000710

    3

    2

    1

    xxx

    ⇒Performing Forward Elimination

  • Partial Pivoting: ExampleForward Elimination: Step 2

    Examining the values of the first column

    |-0.001| and |2.5| or 0.0001 and 2.5

    The largest absolute value is 2.5, so row 2 is switched with row 3

    =

    −−

    5.2001.67

    55.206001.000710

    3

    2

    1

    xxx

    =

    001.65.2

    7

    6001.0055.200710

    3

    2

    1

    xxx

    Performing the row swap

  • Partial Pivoting: Example

    Forward Elimination: Step 2

    Performing the Forward Elimination results in:

    =

    002.65.2

    7

    002.60055.200710

    3

    2

    1

    xxx

  • Partial Pivoting: ExampleBack Substitution

    Solving the equations through back substitution

    1002.6002.6

    3 ==x

    15.255.2 3

    2 −=−

    =xx

    010

    077 321 =

    −+=

    xxx

    =

    002.65.2

    7

    002.60055.200710

    3

    2

    1

    xxx

  • Partial Pivoting: Example

    [ ]

    −=

    =

    11

    0

    3

    2

    1

    xxx

    X exact[ ]

    −=

    =

    11

    0

    3

    2

    1

    xxx

    X calculated

    Compare the calculated and exact solution

    The fact that they are equal is coincidence, but it does illustrate the advantage of Partial Pivoting

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Determinant of a Square MatrixUsing Naïve Gauss Elimination

    Example

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

  • Theorem of Determinants

    If a multiple of one row of [A]nxn is added or

    subtracted to another row of [A]nxn to result in

    [B]nxn then det(A)=det(B)

  • Theorem of Determinants

    The determinant of an upper triangular matrix

    [A]nxn is given by

    ( ) nnii aaaa ×××××= ......Adet 2211

    ∏=

    =n

    iiia

    1

  • Forward Elimination of a Square Matrix

    Using forward elimination to transform [A]nxn to an

    upper triangular matrix, [U]nxn.

    [ ] [ ] nnnn UA ×× →

    ( ) ( )UA detdet =

  • Example

    11214418641525

    Using naïve Gaussian elimination find the determinant of the following square matrix.

  • Forward Elimination

  • Forward Elimination: Step 1

    .

    [ ] [ ]56.28.126456.21525 =×[ ][ ][ ]56.18.40

    56.2 8.12641 8 64

    −−

    11214418641525

    11214456.18.40

    1525

    −−

    Divide Equation 1 by 25 and

    multiply it by 64, .56.22564

    =

    Subtract the result from Equation 2

    Substitute new equation for Equation 2

  • Forward Elimination: Step 1 (cont.)

    .

    [ ] [ ]76.58.2814476.51525 =×[ ][ ][ ]76.48.16 0

    76.5 8.281441 12 144

    −−

    76.48.16056.18.40

    1525

    −−−−

    11214456.18.40

    1525

    −−

    Divide Equation 1 by 25 and

    multiply it by 144, .76.525

    144=

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Forward Elimination: Step 2

    .

    76.48.16056.18.40

    1525

    −−−−

    [ ]( ) [ ]46.58.1605.356.18.40 −−=×−−[ ][ ][ ]7.0 0 0

    46.58.16076.48.160

    −−−−−

    7.00056.18.40

    1525

    −−

    Divide Equation 2 by −4.8

    and multiply it by −16.8,

    .5.38.48.16=

    −−

    Subtract the result from Equation 3

    Substitute new equation for Equation 3

  • Finding the Determinant

    .

    7.00056.18.40

    1525

    11214418641525

    −−→

    After forward elimination

    ( )( )00.84

    7.08.425Adet 332211

    −=×−×=

    ××= uuu

  • Summary

    -Forward Elimination

    -Back Substitution

    -Pitfalls

    -Improvements

    -Partial Pivoting

    -Determinant of a Matrix

  • Additional Resources

    For all resources on this topic such as digital audiovisual lectures, primers, textbook chapters, multiple-choice tests, worksheets in MATLAB, MATHEMATICA, MathCad and MAPLE, blogs, related physical problems, please visit

    http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html

    http://numericalmethods.eng.usf.edu/topics/gaussian_elimination.html

  • THE END

    http://numericalmethods.eng.usf.edu

    http://numericalmethods.eng.usf.edu/

    Gaussian EliminationNaïve Gauss Elimination�� ��http://numericalmethods.eng.usf.edu��Naïve Gaussian EliminationForward EliminationForward EliminationForward EliminationForward EliminationForward EliminationForward EliminationForward EliminationMatrix Form at End of Forward EliminationBack SubstitutionBack Substitution Starting EqnsBack SubstitutionBack SubstitutionSlide Number 16Additional ResourcesNaïve Gauss Elimination�Example���� http://numericalmethods.eng.usf.eduExample 1Example 1 Cont. �Example 1 Cont.�Forward EliminationNumber of Steps of Forward EliminationForward Elimination: Step 1Forward Elimination: Step 1 (cont.)Forward Elimination: Step 2Back SubstitutionBack SubstitutionBack Substitution (cont.)Back Substitution (cont.)Naïve Gaussian Elimination SolutionExample 1 Cont.Slide Number 33Naïve Gauss Elimination�Pitfalls��� http://numericalmethods.eng.usf.eduSlide Number 35Is division by zero an issue here?Is division by zero an issue here? YESSlide Number 38Slide Number 39Slide Number 40Avoiding PitfallsAvoiding PitfallsSlide Number 43Gauss Elimination with Partial Pivoting��� http://numericalmethods.eng.usf.eduPitfalls of Naïve Gauss EliminationAvoiding PitfallsAvoiding PitfallsWhat is Different About Partial Pivoting?Matrix Form at Beginning of 2nd Step of Forward EliminationExample (2nd step of FE)Example (2nd step of FE)Gaussian Elimination �with Partial PivotingForward EliminationExample: Matrix Form at Beginning of 2nd Step of Forward EliminationMatrix Form at End of Forward EliminationBack Substitution Starting EqnsBack SubstitutionSlide Number 58Gauss Elimination with Partial Pivoting�Example��� http://numericalmethods.eng.usf.edu�Example 2��Example 2 Cont.�Forward EliminationNumber of Steps of Forward EliminationForward Elimination: Step 1Forward Elimination: Step 1 (cont.)Forward Elimination: Step 1 (cont.)Forward Elimination: Step 2Forward Elimination: Step 2 (cont.)Back SubstitutionBack SubstitutionBack Substitution (cont.)Back Substitution (cont.)Gaussian Elimination with Partial Pivoting SolutionGauss Elimination with Partial Pivoting�Another Example��� http://numericalmethods.eng.usf.eduPartial Pivoting: ExamplePartial Pivoting: ExamplePartial Pivoting: ExamplePartial Pivoting: ExamplePartial Pivoting: ExamplePartial Pivoting: ExampleSlide Number 81Determinant of a Square Matrix�Using Naïve Gauss Elimination�Example���� http://numericalmethods.eng.usf.eduTheorem of Determinants Theorem of Determinants Forward Elimination of a �Square Matrix�Example�Forward EliminationForward Elimination: Step 1Forward Elimination: Step 1 (cont.)Forward Elimination: Step 2Finding the DeterminantSummaryAdditional ResourcesSlide Number 94


Recommended