+ All Categories
Home > Documents > Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford,...

Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford,...

Date post: 20-Jan-2016
Category:
Upload: erika-holmes
View: 221 times
Download: 1 times
Share this document with a friend
Popular Tags:
30
Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH [email protected]
Transcript
Page 1: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Making Gold : Nuclear Alchemy

Dr. Paddy Regan

Department of Physics

University of Surrey

Guildford, GU2 7XH

[email protected]

Page 2: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Medieval alchemist…trying to turn base metals into gold…Mistake…to try and use ‘chemistry’…needed nuclear physics!!

Page 3: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 4: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

‘Elemental my dear…..’

Mendeleyev

Page 5: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 6: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Moseley’s Law….evidence forAtomic numbers….

‘Characteristic’ X-rays…with a chemical (Z) dependence

Page 7: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

X-rays come fromatomic ‘vacancies’

i.e. holes in the electron shellsaround the atom.

Quantum mechanicsmeans that theelectron orbits arefixed in energy….

X-rays come from anelectron ‘dropping’ from one energy level to a lower one

Page 8: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

X-rays come fromatomic ‘vacancies’

i.e. holes in the electron shellsaround the atom.

Quantum mechanicsmeans that theelectron orbits arefixed in energy….

X-rays come from anelectron ‘dropping’ from one energy level to a lower one

Page 9: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

X-rays come fromatomic ‘vacancies’

i.e. holes in the electron shellsaround the atom.

Quantum mechanicsmeans that theelectron orbits arefixed in energy….

X-rays come from anelectron ‘dropping’ from one energy level to a lower one

X-ray emitted

Page 10: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 11: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Inside a nucleus

Neutron, changes mass,No charge.

Proton, changes massand charge, atomic number(Z) = number of protonsin atomic nucleus

3 protons +4 neutrons =7Li

2 protons +2 neutrons =4He

~10-15m

Page 12: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 13: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 14: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

How it all starts….Hydrogen (Z=1) to Helium (Z=2)

Page 15: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 16: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

PP-I

Qeff= 26.20 MeV

proton-proton chain

p + p d + e+ + p + d 3He +

3He + 3He 4He + 2p

86% 14%

3He + 4He 7Be +

2 4He

7Be + e- 7Li + 7Li + p 2 4He

7Be + p 8B + 8B 8Be + e+ +

99.7% 0.3%

PP-II

Qeff= 25.66 MeV PP-III

Qeff= 19.17 MeV

net result: 4p 4He + 2e+ + 2 + Qeff

proton-proton chain

Page 17: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 18: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Spectral Maps of the Galaxy

Ref http://adc.gsfc.nasa.gov/mw/mmw_images.html

Page 19: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Nuclear Fusion creates energy up to A~56 (Z=26 = Iron)If the star is hot enough, nuclear fusion will fuel the starand create elements up to A~56

Page 20: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 21: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

SN1987a before and after !!

Page 22: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.
Page 23: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Figure Wiescher, Regan & Aprahamian, Physics WorldFeb. 2002, page 33-38

Slow-neutron capture processallows formation of elementsfrom A~56 to A=209 (Bi)...

terminates at 209Bi...why?

Neutron capture…no electrostatic barrier to nuclear fusion….all you need are enoughNeutrons…

Page 24: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Beta –radioactive decay, (consequence of E=mc2)2 types: (i) Beta- plus proton changes to a neutron (Z ->Z-1) (ii) Beta – minus neutron changes to a proton (Z -> Z+1)

Page 25: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Nuclear reactions in Red giant stars create‘spare’ neutrons

Page 26: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

So, how do you make Gold ?

• Gold has 79 protons (i.e. Z=79)

• Start with Z=78 protons (i.e. Platinum)

• Specifically 196Pt ( Pt = Z=78, N=196-78=118)

• Reaction is 196Pt + neutron to make 197Pt

• 197Pt is radioactive and ‘beta-decays’ to make 197Au (i.e., normal ‘stable’ gold’

Page 27: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Q210Pb) = 5.41 MeVE = 5.30 MeV E(206Pb) = 0.11 MeVT1/2 = 138 days.

‘218Po =Radium A’

‘218At =Radium B’

C

D

E

210Po=Radium ‘F’ Radon

=‘Emanation’

‘Radium’

C’

C’’

The Natural Decay Chain for 238U

Page 28: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

S-process makes 209Bi from 208Pb+n → 209Pb (T1/2=3.2hr) → 209Bi

Neutron capture on stable 209Bi → 210Bi (T1/2 =5 days) → 210Po.

210Po → + 206Pb (stable nucleus, as is 207Pb and 208Pb).

Page 29: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

M.S. Smith and K.E. Rehm,Ann. Rev. Nucl. Part. Sci, 51 (2001) 91-130

Overview of main astrophysical processes

the vast majority of reactions encountered in these processes involve UNSTABLE species

hence the need for Radioactive Ion Beams

Page 30: Making Gold : Nuclear Alchemy Dr. Paddy Regan Department of Physics University of Surrey Guildford, GU2 7XH p.regan@surrey.ac.uk.

Summary

What’s made where and how ?– Hydrogen to Helium (in the sun, p-p chain

CNO cycles).– Helium to Carbon (a story for another day)– Carbon to iron: nuclear fusion reactions– Iron to Uranium

• Up to 209Bi (210Po end-point) slow neutron capture• Heavier than Bismuth (Z=83), rapid neutron

capture, supernovae.


Recommended