+ All Categories
Home > Documents > Manual for Management of Low-Volume Wastes From Fossil ...infohouse.p2ric.org/ref/25/24052.pdf ·...

Manual for Management of Low-Volume Wastes From Fossil ...infohouse.p2ric.org/ref/25/24052.pdf ·...

Date post: 02-Jul-2018
Category:
Upload: hoangkhanh
View: 217 times
Download: 0 times
Share this document with a friend
418
ilectric Power lesearch Institute Topics: Solid wastes Wastewater Hazardous materials Waste management Water management EPRl CS-5281 Project 2215-1 Final Report July 1987 Manual for Management of Low-Volume Wastes From Fossil-Fuel-Fired Power Plants Prepared by Radian Corporation Austin, Texas
Transcript

ilectric Power lesearch Institute

Topics: Solid wastes Wastewater Hazardous materials Waste management Water management

EPRl CS-5281 Project 2215-1 Final Report July 1987

Manual for Management of Low-Volume Wastes From Fossil-Fuel-Fired Power Plants

Prepared by Radian Corporation Austin, Texas

SUBJECTS

TOPICS

AUDIENCE

BACKGROUND

OBJECTIVES

APPROACH

RESULTS

R E P O R T S U M M A R Y Water quality control I Hazardousltoxic substances I Solid by-product disposallreuse I Integrated environmental control

Solid wastes Waste management Water management Wastewater

Hazardous materials .~

Generation engineers and operators l Environmental engineers and ~ ~ ~~~~

scientists -

Manual for Management of Low-Volume Wastes From Fossil-Fuel-Fired Power Plants

If a low-volume waste (LVW) is classified as hazardous, off-site dis- posal could cost 3 to 15 times more than conventional treatment. An integrated approach to LVW management is now available that summarizes current federal regulations, discusses classifications for 10 major wastes, and presents treatmentldisposal options with estimated costs.

LVWs are generated intermittently and have varied chemical compositions. According to the federal Resource Conservation and Recovery Act (RCRA), a nonhazardous waste cannot be reactive, ignitable, or corrosive and can- not produce an extract by the proposed toxic characteristic leaching proce- dure (TCLP) with a composition that is 100 times greater than primary drinking water standards. Nonhazardous LVWs can be discharged after treatment in National Pollutant Discharge Elimination System facilities or disposed in suitable landfills. In general, hazardous LVWs require more- involved and restrictive handling, treatment, and disposal procedures, although certain exceptions exist.

To characterize LVWs according to RCRA procedures and to summarize the technical and economic aspects of suitable LVW treatment/disposal options.

Researchers collected 90 LVW samples at 21 plants. These samples in- cluded not only raw wastes but also treated wastes to determine the perfor- mance of treatment practices. Samples were then characterized according to RCRA procedures. Using these data, researchers prepared generic con- ceptual designs for LVW treatment and disposal options and estimated the associated capital and annual operating costs. Finally, an integrated LVW management approach was developed by cross-referencing LVW with treat- ment/disposal options and presenting a series of example cases.

The study found almost all of the LVW samples to be nonhazardous ac- cording to the proposed RCRA TCLP Boiler chemical cleaning wastes (BCCWs) appeared to have the greatest potential for being classified as hazardous. Several BCCW samples had chromium concentrations that ex- ceeded the RCRA toxicity criteria. The high chromium levels were due to

__

~

EPRl CS-5281s

the presence of trivalent chromium, not hexavalent chromium. This dis- tinction is significant because RCRA has a process for excluding from RCRA regulation wastes containing trivalent chromium if certain condi- tions are met. In addition, BCCW from hydrochloric acid cleaning soh- tions may be classified as RCRA corrosive. However, neutralizing these wastes in-line or in tanks can eliminate the corrosivity. For most LVWs, treatment options are based on two fundamental approaches: (1) con- struction of dedicated treatmentldisposal facilities and (2) codisposal with highvolume wastes such as coal ash or scrubber sludge. The esti- mated costs for codisposal are significantly lower than the costs for dedicated treatment/disposal facilities. Although codisposal is an effec- tive treatment for most LVWs, BCCWs containing chelating agents are best treated in alkaline ash ponds; achieving adequate iron and copper levels for discharge from neutral or acidic ash ponds may be difficult.

____

EPRl PERSPECTIVE

Proper handling, treatment, and disposal of power plant LVWs depend on the classification of these wastes as hazardous or nonhazardous ac- cording to prevailing environmental regulations. In 1985, EPRl published report 65-3737, an evaluation of LVW characteristics and the probable classification of these wastes according to the toxicity criteria of the RCRA extraction procedure. This manual updates and expands that re- port by classifying wastes according to the more recent RCRA TCLP and by presenting technical and economic data on LVW treatment op- tions. Future LVW research, continuing under the same EPRl project, will focus on laboratory studies to evaluate the performance of various BCCW treatment approaches and to investigate the recyclelreuse of BCCW in limellimestone flue gas desulfurization systems and on field monitoring of BCCW evaporation in utility boilers to determine potential environmental impacts.

PROJECT RP2215-1 EPRl Project Managers: Wayne Micheletti; Ralph Komai Coal Combustion Systems Division Contractor: Radian Corporation

For further information on EPRl research programs, call EPRl Technical Information Specialists (415) 855-2411.

Manual for Management of Low-Volume Wastes From Fossil-Fuel-Fired Power Plants

CS-5281 Research Project 2215-1

Final Report, July 1987

Prepared by

RADIAN CORPORATION 8501 Mo-Pac Boulevard

Austin, Texas 78759

Principal Investigators L. J. Holcombe G. P Behrens S. J. Galegher

M. L. Owen

Prepared for

Electric Power Research Institute 3412 Hillview Avenue

Palo Alto, California 94304

EPRl Project Managers W. C. Michelett

R. Komai

Heat, Waste, and Water Management Program Coal Combustion Systems Division

ORDERING INFORMATION

Requests for copies of this report should be directed to Research Reports Center (RRC), Box 50490, Palo Alto, CA 94303, (415) 965-4081. There is no charge for reports requested by EPRl member utilities and affiliates, U S utility associations, U.S. government agencies (federal, state, and local), media, and foreign organizations with which EPRl has an information exchange agreement. On request, RRC will send a catalog of EPRl reports.

Electric Power Research Institute and EPRl are regiaered service marks 01 Electric Power Research Institute. Inc

Copyright @ 1987 Electric Power Research Institute, Inc. All rights reserved

NOTICE This iepolt was prepared by the organization(s) named below as an account of work Sponsored by the Electric Power Research Institute, Inc. (EPRI). Neither EPRI, members of EPRI. the organiratian(s) named below, nor any person aning an behalf of any of them: (a) makes any warranty, express or implied. wlth respect to the use of any information, apparatus, method. 01 process disclosed in this report or that such use may not infringe privately owned rights; or (b) assumes any liabilities with respen to the use of, or for damages resulting from the use 01, any information, apparatus. method. or P ~ O C ~ S S disclosed in this report

Prepared by Radian Corporation Austin. Texas

ABSTRACT

Proper handl ing, t rea tment and d isposal o f power p l a n t low volume wastes depend on

t h e c l a s s i f i c a t i o n o f these wastes as hazardous o r nonhazardous accord ing t o pre-

v a i l i n g environmental r e g u l a t i o n s .

c o l l e c t and c h a r a c t e r i z e accord ing t o Resource Conservat ion and Recovery A c t (RCRA)

procedures a s e r i e s o f low volume waste samples, and ( 2 ) t o summarize t h e techn ica l

and economic aspects of s u i t a b l e low volume waste t reatment op t ions . An e v a l u a t i o n

o f 90 samples f rom 21 p l a n t s i n d i c a t e d t h a t b o i l e r chemical c l e a n i n g wastes have

t h e g r e a t e s t p o t e n t i a l f o r be ing c l a s s i f i e d as RCRA hazardous.

wastes are generated i n t e r m i t t e n t l y and have v a r i e d chemical composi t ions, an

i n t e g r a t e d approach t o t reatment and d isposal i s recommended.

codisposal of low volume wastes w i t h h i g h volume wastes i s an e f f e c t i v e and economic

t reatment approach. However, some wastes, such as b o i l e r chemical c l e a n i n g wastes

c o n t a i n i n g c h e l a t i n g agents, may r e q u i r e t h e use o f dedicated t reatment /d isposal

f a c i l i t i e s .

The o b j e c t i v e s o f t h i s s tudy were (1) t o

Because low volume

I n many instances,

iii

ACKNCWLEDGMENTS

T h i s document represents t h e combined e f f o r t s o f a number o f i n d i v i d u a l s . The

au thors wish t o thank Mr . Wayne M i c h e l e t t i , P r o j e c t Manager a t t h e E l e c t r i c Power

Research I n s t i t u t e , f o r h i s va luab le guidance and ass is tance and Dr . Ralph Komai

who was t h e i n i t i a l EPRI P r o j e c t Manager.

power p l a n t owners and opera tors who a l lowed us access t o t h e i r s i t e s and as-

s i s t e d us i n sampling. Many of t h e concepts presented i n t h i s manual a r e a

d i r e c t product of d iscuss ions w i t h personnel a t t h e p l a n t s we v i s i t e d and sam-

pled.

We a l s o wish t o thank t h e v a r i o u s

The Radian p r o j e c t team was headed by M r . L a r r y Holcombe, P r o j e c t D i rec to r . and

M r . M i l t o n Owen. Program Manager. Mr . Greg Behrens and Ms. S h e i l a Galegher were

l a r g e l y respons ib le f o r t h e waste t rea tment engineer ing analyses.

Other members of t h e Radian p r o j e c t team inc luded M r . Dean Delleney, our Program

Manager a t t h e s t a r t of t h e pro jec t , M r . J im Owens. Sampler and Analyst, and Ms.

Donna Roten, P r o j e c t Secretary .

V

CONTENTS

ser;tino

1 INTROWCTION

Purpose

Organ iza t i on o f Manual

D e f i n i t i o n s

L i m i t a t i o n s o f Manual

2 UTILITY LCW VOLUME WASTE CHARACTERISTICS

A n a l y t i c a l P r e c i s i o n

P y r i t e s

Waste Source

Frequency o f Generat ion

Chemical Composit ion

Disposal P r a c t i c e s

Coal P i l e Runoff

Waste Source

Frequency o f Generat ion

Chemical Composit ion

Disposal P r a c t i c e s

F l o o r and Yard Dra ins

Demineral i z e r Regenerant Waste

Waste Source

Frequency o f Generat ion

Chemical Composit ion

Disposal P r a c t i c e s

Boi 1 e r B1 ow down

F i r e s i d e Wastes

Waste Source

Frequency o f Generat ion

Chemical Composit ion

Disposal P r a c t i c e s

.&2

1-1 1-1 1-2 1-4 1-5

2-1 2-2 2-0 2-0 2-0 2-9 2-9 2-9 2-9 2-11 2-11 2-11 2-13 2-13

2-13 2-14 2-14 2-15 2-15 2-15 2-15 2-16 2-16 2-17

v i i

CONTENTS (Continued)

B o i l e r Chemical Cleaning Wastes

Waste Source

Frequency o f Generation

Chemical Ccmposition

Disposal P r a c t i c e s

Cool ing Tower Basin Sludge

Treatment Sludges and Br ines

Waste Source

Frequency of Gene r a t i o n

Chemical Composition

Disposal P r a c t i c e s

San i ta ry Waste

Waste O i l s

Summa r y

3 ENVIRONMENTAL REGULATION OF LOW VOLUME WASTES

Resource Conservation and Recovery Act (RCRA)

I d e n t i f y i n g Hazardous Waste

RCRA C l a s s i f i c a t i o n of Low Volume Waste

Nonhazardous Waste

Hazardous Waste

Future Trends

RCRA Impacts on Low Volume Waste Management

Texas

C a l i f o r n i a

E f f e c t of S t a t e Regulat ions on Waste Management

A p p l i c a b i l i t y of Hazardous Waste Burn lng Regulat ions

Appl i c a b i l i t y of Hazardous Waste I n c i n e r a t o r Regulat ions

A p p l i c a b i l i t y of A i r Tox ics Regu la t ions

S t a t e Sol i d Waste Regulat ions

Evaporat ion of Low Volume Wastes i n B o i l e r s

Underground Storage Tanks

Clean Water Act (CWA)

2-19 2-19 2-20 2-21 2-28 2-29 2-29 2-29 2-29 2-30 2-36 2-36 2-36 2-37

3-1 3-2 3-2 3-5 3-13 3-15 3-16 3-16 3-19 3-20 3-21 3-23 3-23 3-23 3-25 3-27 3-20 3-29

v i i i

CONTENTS (Continued)

4 LOW VOLUME WASTE TREATMENT METHODS

Approach

A p p l i c a b l e Streams

Treatment E f fec t i veness

Conceptual Designs

Treatment Costs

N e u t r a l i z a t i o n

App l icab le Streams

Treatment E f fec t i veness

Conceptual Design

Treatment Costs

Special A p p l i c a t i o n s - N e u t r a l i z a t i o n o f HC1 B o i l e r Chemical Cleaning Waste

Process Summary

Impoundments and Tanks

A p p l i c a b l e Streams

Treatment E f fec t i veness

Conceptual Designs

Treatment Costs

Speci a1 Considerat ions

Process Summary

Physical/Chemical Treatment

A p p l i c a b l e Streams

Treatment E f fec t i veness

Conceptual Design

Treatment Costs

Process Summary

L a n d f i l l s

A p p l i c a b l e Streams

Treatment E f f e c t i v e n e s s

Conceptual Design

Disposal Costs

Specia l Considerat ions

Process Summary

4-1

4-2

4-2

4-2

4-2

4-4

4-8

4-10

4-10

4-11

4-14

4-23

4-27

4-27

4-27

4-28

4-37

4-40

4-54

4-57

4-59

4-59

4-60

4-64

4-67

4-68

4-72

4-72

4-73

4-79

4-02

4-91

4-91

i x

CONTENTS (Cont inued)

Evaporat ion

A p p l i c a b l e Waste Streams

Treatment E f fec t i veness

Conceptual Design

Treatment Costs

Specia l Considerat ions

Process Summary

A l t e r n a t i v e / I n n o v a t i v e Techniques

On-Stream B o i l e r Chemical Cleaning

Metal Recovery

Sol i d i f i c a t i o n

Reuse

I n n o v a t i v e Treatment Methods

I r r i g a t i o n and Land Treatment

5 INT€GRATION OF LOW VOLUME WASTE 1REATMENT WITH PLANT WATER AND WASTE MANAGEMENT - CASE STUDIES

Approach

Case 1. Eastern Coal P l a n t Wi th Dry Ash Handl ing

Low Volume Wastes and Treatment

System Costs

Lob Vclume Hastes and Treatment

Systeni Costs

Low Volume Wastes and Treatment

Systeni Costs

Low Volume Wastes and Treatment

System Costs

Low Volume Wastes and Treatment

System Costs

Case 2. Fastern Coal P l a n t Wi th Wet Ash Handl ing

Case 3. Western Coal P l a n t Wi th Dry Ash Handl ing

Case 4. Western Coal P l a n t Wi th Wet Ash Handl ing

Case 5. Eastern O i l P l s n t

Summary

X

4-92

4-92

4-92

4-93

4-94

4-97

4-97

4-97

4-98

4-99

4-99

4-100

4-100

4-100

5-1 5-1

5-3

5-3

5-7

5-7

5-10

5-12

5-12

5-15

5-17

5-19

5-19

5-22

5-24

5-24

5-27

5-27

CONTENTS (Continued)

6 GLOSSARY OF TERM

7 REFERENCES

APPENDIX A - SAMPLING AND ANALYSIS OF LOW VOLUME WASTES A 1 FOSSIL FUEL-FIRED POWER PLANTS

APPENDIX B - TABULATION OF RESULTS FOR SAMPLING AND ANALYSIS OF LOW VOLUME WASTES AT FOSSIL FUEL-FIRED POWER PLANTS

APPENDIX C - TABULATION OF REGULATORY ANALYSIS OF LOW VOLUME WASTES AT FOSSIL FUEL-FIRED POWER PLANTS

APPENDIX D - QUALITY ASSURANCE -- RESULTS OF FIELD AND LABORATORY QUALITY CQNTROL

APPENDIX E - COST BASIS

Pa&

6-1

7-1

A- 1

B-1

c- 1

D-1

E- 1

x i

ILLUSTRATIONS

3-1

4-1

4-2 4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13 4-14

4-15

4-16

4-17

4-18

D e f i n i t i o n of RCRA Hazardous Waste as it App l ies t o Low Vol ume U t i 1 i t y Waste

Low Volume Wastes and Common Treatment Processes

Conceptual Design f o r Rapid-Mix Tank N e u t r a l i z a t i o n

Conceptual Design for In -L ine N e u t r a l i z a t i o n

S e n s i t i v i t y of Rapid-Mix Tank N e u t r a l i z a t i o n C a p i t a l Cost t o t h e Number o f Chemical Feed Systems

S e n s i t i v i t y o f Rapid-Mix Tank Neut ra l i z a t i o n Opera t ing Cost t o t h e Number o f Chemical Feed Systems

S e n s i t i v i t y of Rapid-Mix Tank N e u t r a l i z a t i o n C a p i t a l Cost t o Caust ic Dosage

S e n s i t i v i t y o f Rapid-Mix Tank N e u t r a l i z a t i o n Operat ing and Maintenance Cost t o Caust ic Dosage

S e n s i t i v i t y of In -L ine N e u t r a l i z a t i o n C a p i t a l Cost t o t h e Number o f Chemical Feed Systems

S e n s i t i v i t y of In -L ine N e u t r a l i z a t i o n Operat ing and Maintenance Cost t o t h e Number o f Chemical Feed Systems

S e n s i t i v i t y of In -L ine N e u t r a l i z a t i o n C a p i t a l Cost t o Caust ic Dosage

S e n s i t i v i t y o f In -L ine N e u t r a l i z a t i o n Operat ing and Maintenance Cost t o Caust ic Dosage

Caust ic Cost f o r H y d r o c h l o r i c A c i d B o i l e r Chemical Cleaning Waste N e u t r a l i z a t i o n as a Func t ion o f B o i l e r Volume

Annual Net Evaporat ion i n t h e U n i t e d S t a t e s ( inches)

E f f e c t of D e l i v e r e d Clay Cost on t h e C a p i t a l Requirement f o r Clay-Lined Impoundments w i t h a Five-Foot L i q u i d Depth

E f f e c t o f D e l i v e r e d Clay Cost on t h e C a p i t a l Requirement f o r Clay-Lined Impoundments w i t h a 15-Foot Depth E f f e c t o f Var ious L i n e r Systems on t h e Cost o f F l e x i b l e Membrane-Lined Impoundments w i t h a Five-Foot L i q u i d Depth

E f f e c t o f Var ious L i n e r Systems on t h e Cost o f F l e x i b l e Membrane-Lined Impoundments w i t h a 15-Foot Depth

Est imated T o t a l C a p i t a l Requirement f o r FRP, Steel and Concrete Tanks

3-3 4-3 4-12 4-13

4-18

4-18

4-19

4-19

4-24

4-24

4-25

4-25

4-26 4-30

4-45

4-45

4-48

4-48

4-53

x i i i

ILLUSTRATIONS (Continued)

4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-21

4-28

4-29

5-1

5-2

5 -3

5-4

5-5

5-6

5-7

5-8

5-9

5-10

Est imated T o t a l C a p i t a l Requirement f o r Ponding Sol i d Wastes

Est imated D i r e c t I n s t a l l e d Cost f o r Impoundment A g i t a t o r s

Conceptual Design f o r Phys i ca lKhemica l Treatment

Est imated T o t a l C a p i t a l Requirement f o r Phys i ca lKhemica l Treatment Systems

Est imated Annual D i r e c t Opera t ing and Maintenance Cost f o r Phys i ca lKhemica l Treatment Systems

Conceptual Design f o r Clay-Lined L a n d f i l l s

Conceptual Design f o r Double-Lined L a n d f i l l s

Est imated T o t a l C a p i t a l Requi r m e n t s f o r Clay-Lined L a n d f i l l s

Est imated Annual D i r e c t Operat ing and Maintenance Cost f o r Clay-Lined Landf i l l s

T o t a l Est imated C a p i t a l Requi r m e n t f o r Double-Lined Landf i l l s

Est imated Annual D i r e c t Operat ing and Maintenance Cost f o r Double-Lined L a n d f i l l s

B lock Diagram o f t h e Case 1 Plan t : Eastern Coal F i r e d S t a t i o n Wi th Dry Ash Handl ing and Limestone FGO

Low Volume Waste Flowsheet f o r t h e Case 1 P l a n t

B lock Diagram o f t h e Case 2 P l a n t : Wet Ash Hand l ing

Low Volume Waste Flowsheet for t h e Case 2 P l a n t

B lock Diagram o f t h e Case 3 P lan t : Dry Ash Hand l ing

Low Volume Waste Flow Sheet f o r t h e Case 3 P l a n t

Block Diagram o f t h e Case 4: Ash Hand l ing

Low Volume Waste Flowsheet for t h e Case 4 P l a n t

B lock Diagram o f t h e Case 5 P lan t : Eastern O i l -F i red With Once-Through Cool i n g

Low Volume Waste Flowsheet for t h e Case 5 P l a n t

Eas tern Coal-Fired With

Western Coal-Fired With

Western Coal-Fired With Wet

4-55

4-58

4-67

4-71

4-7 1 4-80

4-81

4-86

4-86

4-90

4-90

5 -4

5 -5

5-9

5-11

5-14

5-16

5-20

5-21

5-25

5-26

x i v

TABLES

2-1 2-2 2-3

2-4 2-5 2-6 2-7 2-8 2-9 2-10 2-11

2-12

2-13 2-14 2-15 2-16 3-1 3-2 3 -3

3-4 3-5 3-6 4-1 4-2 4-3 4-4

4-5

Low Volume Wastes Co l l ec ted and Analyzed

A n a l y t i c a l P r e c i s i o n P y r i t e Composit ions

Coal P i l e Runoff Composit ions

Deminera l i zer Regenerant C h a r a c t e r i s t i c s

Frequewy and Volume o f F i r e s i d e Washes

F i r e s i d e Waste Compositions

EPRI Survey o f B o i l e r Chemical Cleaning Frequency

B o i l e r Volumes f o r B o i l e r Chemical Cleaning Waste

B o i l e r Chemical Cleaning Waste Composit ions

B o i l e r Cleaning Rinse Composit ions

Treatment Methods Observed f o r B o i l e r Chemical Cleaning Waste Samples Est imated Volumes of Sludges and Br ines

B o i l e r Cleaning Treatment Sludge Compositions

Vapor Compression Evaporat ion Sludges and Br ines

Summary of Low Volume Waste C h a r a c t e r i s t i c s

EP T o x i c i t y Resu l ts From L i q u i d Low Volume Wastes

EP T o x i c i t y Tes t Resu l t s f o r Low Volume Waste Sludges

Proposed T o x i c i t y C h a r a c t e r i s t i c Contaminants and Regulatory Leve ls

Comparison o f EP and TCLP E x t r a c t i o n s

C a l i f o r n i a Waste E x t r a c t i o n Tes t (WET) Resu l t s

BAT E f f l u e n t L i m i t a t i o n s (mg/L)

Bases for Conceptual Designs

T o t a l C a p i t a l Cost Es t ima t ion Methodology

Operat ing and Maintenance Cost Methodology

Reduction o f D isso lved Meta ls Concentrat ions i n a Hydroch lo r i c Ac id B o i l e r Cleaning Waste To ta l Cap i ta l Cost Es t ima t ion f o r Rapid-Mix Tank N e u t r a l i z a t i o n

2-3

2-7 2-10

2-12 2-14 2-16 2-18 2-20 2-21 2-22 2-26

2-28 2-31 2-32 2-34 2-38 3-7 3-12

3-17 3-18

3-22 3-30 4-5 4-7 4-9

4-11 4-16

xv

TABLES (Continued)

I?&&

4-6

4-7

4 -8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

4-17

4-18

4-19

4-20

4-21

4-22

4-23

4-24

4-25

4-26

4-27

4-28

4-29

4-30

4-31

4-32

Est imated Operat ing and Maintenance Costs f o r Rapid-Mix Tank N e u t r a l i z a t i o n

T o t a l Cap i ta l Cost Est imated fo r In -L ine N e u t r a l i z a t i o n

Est imated Opera t ing and Maintenance Cost f o r I n -L ine N e u t r a l i z a t i o n

Low Volume Wastes Stored i n Tanks o r Impoundments

Metal Concentrat ions i n EDTA Pond Samples

Metal Concentrat ions i n C i t r a t e Pond Samples

Metal Concentrat ions i n Ash Pond Discharge Samples

Resu l t s o f Laboratory T r i a l s o f Coponding Treatment Methods

Tank and Impoundment Conceptual Designs

Costs o f F l e x i b l e Membrane L i n e r s

Est imated To ta l Cap i ta l Requirement f o r Clay-Lined Impoundments

Est imated T o t a l Cap i ta l Requirement f o r Clay-Lined Impoundments

Est imated T o t a l C a p i t a l Requirement f o r F l e x i b l e Membrane-Lined Impoundments

Est imated T o t a l C a p i t a l Requirement f o r F l e x i b l e Membrane-Lined Impoundments Est imated T o t a l C a p i t a l Requirement f o r Ag i ta ted FRP Tanks

Est imated T o t a l C a p i t a l Requirement f o r Epoxy-Lined Stee l Tanks

Est in iated T o t a l C a p i t a l Requirement f o r Concrete Sumps

Est imated Sol i d s Vol ume For Low Vol ume Wastes S1 udges

F i e l d Resu l t s of Physical/Chemical Treatment o f B o i l e r Chemical Cleaning Wastes

Resu l t s of Labora tory Tes ts of Physical/Chemical Treatment Methods

F i e l d Resu l t s for Physical/Chemical Treatment o f F i r e s i d e Wastes

T o t a l C a p i t a l Requirement f o r Physical/Chemical Treatment

Annual D i r e c t 0 & M Costs f o r Physical/Chemical Treatment

EP T o x i c i t y Tes t Resu l t s on Low Volume Wastes Used i n Codlsposal Lab Study EP T o x i c i t y Tes t Resu l t s on Coal F l y Ashes Used i n Codisposal Lab Study

EP T o x i c i t y Tes t Resu l t s on Low Volume Wastes Codisposed w i t h Southeastern Bi tuminous Coal F l y Ash

EP T o x i c i t y T e s t Resu l t s on Low Volume Wastes Codisposed w i t h Midwestern Bi tuminous Coal F l y Ash

.&Is

4-17

4-21

4-22

4-28

4-32

4-33

4-35

4-36

4-38

4-40

4-42

4-43

4-46

4-47 4-50

4-51

4-52

4-57

4-61

4-63

4-65

4-69

4-70

4-74

4-74

4-75

4-75

xv i

TABLES (Continued)

4-33

4-34

4-35

4-36

4-37

4-38

4-39

4-40

4-41

4-42

5-1

5-2

5-3

5-4

5-5

5-6

5-7

EP T o x i c i t y Tes t Resu l ts on Low Volume Wastes Codisposed w i t h Western Subbituminous Coal F l y Ash

F i x a t i o n Fac tors f o r Low Volume Wastes Codisposed w i t h Southeastern Bi tuminous Coal F l y Ash

F i x a t i o n Fac tors f o r Low Volume Wastes Codisposed w i t h Midwestern Bi tuminous Coal F l y Ash F i x a t i o n Fac to rs f o r Low Volume Wastes Codisposed w i t h Western Subbituminous Coal F l y Ash

Est imated T o t a l C a p i t a l Requirement f o r Clay-Lined L a n d f i l l s

Annual 0 8 M Cost f o r Clay-Lined L a n d f i l l s

T o t a l C a p i t a l Requirement f o r Double FML L a n d f i l l s

Annual D i r e c t 0 8 M Costs f o r Double FML L a n d f i l l s

Est imated T o t a l C a p i t a l Requirement for I n c i n e r a t i o n o f B o i l e r Cleaning Waste

Annual D i r e c t 0 8 M Costs f o r I n c i n e r a t i o n of B o i l e r Cleaning Waste

Model P l a n t Con f igu ra t i ons

Est imated Treatment System Costs f o r Case 1 P l a n t

Est imated Treatment System Costs f o r Case 2 P l a n t

Est imated Treatment System Costs f o r Case 3 P l a n t

Est imated Treatment System Costs f o r Case 4 P l a n t

Est imated Treatment System Costs f o r Case 5 P l a n t

Summary o f Low Volume Waste Management Costs f o r F i v e Case Study P l a n t s

4-76

4-76

4-78

4-78

4-84

4-85

4-88

4-89

4-95

4-96

5-2

5-8

5-13

5-18

5-23

5-28

5-29

x v i i

SUMMARY

F o s s i l f u e l - f i r e d power p l a n t s generate a number o f waste streams which a re

recycled. t reated, discharged o r disposed us ing a combination of opt ions. Th is

manual descr ibes sane of t h e c h a r a c t e r i s t i c s and management op t i ons f o r low

volume u t i l i t y wastes. S p e c i f i c low volume wastes i nc lude py r i t es . coal p i l e

runoff, l i m e sof tener sludge, f l o o r and yard drains, deminera l i zer regenerant.

b o i l e r blowdown. f i r e s i d e c lean ing waste, b o i l e r chemical c lean ing waste, c o o l i n g

tower bas in sludge. and sludges and br ines from wastewater treatment.

Because u t i 1 i t y low volume wastes have v a r i e d chemical compositions, c e r t a i n

wastes may r e q u i r e d i f f e r e n t methods o f t rea tment and d isposal . For example,

some low volume wastes may have r e l a t i v e l y h ighe r concent ra t ions of d isso lved

meta ls than others. Several o f t h e b o i l e r chemical c lean ing wastes (BCCW)

sampled had concent ra t ions o f metals. genera l l y chranium. which exceeded t h e

t o x i c i t y c r i t e r i a es tab l i shed under t h e Resource Conservation and Recovery Act

(RCRA) regu la to ry program. Analys is o f these wastes, however, i nd i ca ted t h a t t h e

BCCW samples which d i d exceed t h e regu la to ry l i m i t s f o r chromium d i d so because

of t he presence o f t r i v a l e n t chrwnium. n o t hexavalent chromium. Th is i s s ig-

n i f i c a n t because t h e RCRA r e g u l a t i o n s prov ide fo r a p e t i t i o n i n g process t o

exclude t r i v a l e n t chromium-containing wastes from RCRA r e g u l a t i o n if c e r t a i n

c o n d i t i o n s a re met.

s o l u t i o n s may, i n c e r t a i n s i t u a t i o n s , a l so exceed t h e t o x i c i t y c r i t e r i a

th resho lds es tab l i shed under RCRA because of c o r r o s i v i t y .

c h a r a c t e r i s t i c , however, can be avoided by n e u t r a l i z i n g these wastes i n l i n e o r

i n elementary n e u t r a l i z a t i o n u n i t s ( tanks) .

I n add i t ion . BCCW from t h e use of hyd roch lo r i c ac id c lean ing

T h i s c o r r o s i v i t y

Most low volume wastes r e q u i r e t reatment before they can be discharged.

charge t o sur face waters o r p u b l i c l y owned t rea tment works i s regulated under t h e

Federal Water P o l l u t i o n Cont ro l Act. as amended by t h e Clean Water Act (CWA).

The c r i t e r i a f o r discharge o f most low volume waste streams inc lude pH, t o t a l

suspended so l i ds , and o i l and grease. Chemical metal c lean ing wastes, such as

those from b o i l e r chemical cleaning. must meet c r i t e r i a f o r these parameters as

we l l as l i m i t s f o r copper and i r o n . D i f f e r i n g t rea tment and disposal methods may

r e s u l t i n d i f f e r e n t management requirements f o r low volume wastes. For example,

Dis-

s- 1

under Sec t ion 3001 of RCRA. u t i l i t y wastes generated p r i c a r i l y from t h e conibus-

t i o n of coal o r o the r f o s s i l f ue l s a re tempora r i l y exempt from hazardous waste

regu la t i on . T h i s s t a t u t o r y exc lus ion encompasses o the r u t i l i t y wastes, i n c l u d i n g

low volume wastes. which a re generated i n con junc t i on w i t h t h e burn ing o f f o s s i l

f u e l s and which a re codisposed o r co t rea ted w i t h coa l combustion wastes. There-

fore. low volume wastes which a re co t rea ted o r codisposed w i t h u t i l i t y coal

combustion wastes are exempt from hazardous waste regu la t ion .

A range of t rea tment op t i ons e x i s t s which can be broad ly grouped i n t o t h e f o l -

low ing ca tegor ies :

N e u t r a l i z a t i o n ;

0 Physica l /chemical t rea tment i nco rpo ra t i ng pH adjustment. p r e c i p i t a t i o n ,

Evaporat ion d i r e c t l y i n t h e b o i l e r .

Treatment i n impoundments and tanks;

f l occu la t i on , c l a r i f i c a t i o n . f i l t r a t i o n , and s o l i d s concentrat ion; and

The above op t i ons can be app l l ed t o t h e t reatment and disposal o f low volume

wastes us ing two fundamental approaches: 1) cons t ruc t i on o f dedicated t reatment

o r d isposa l f a c i l i t i e s f o r t h e low volume wastes o r 2) codisposal o f low volume

wastes w i t h h igh volume wastes such as coa l ash o r scrubber sludge.

gas - f i r ed p l a n t s on l y t h e f i r s t approach i s ava i l ab le .

a f f e c t i n g t h e t rea tment approach used a t c o a l - f i r e d p l a n t s i s t h e t ype o f ash

handl ing used.

t rea tment /d isposa l opt ion. The c a p i t a l and opera t i ng and maintenance cos ts

est imated i n t h i s manual f o r p l a n t s us ing coponding were s i g n i f i c a n t l y lower than

f o r p l a n t s us ing dedicated low volume waste t reatment and disposal f a c i l i t i e s .

A t o i l - and

The primary f a c t o r

Ash hand l ing a f f o r d s a cho ice because coponding can be used as a

Coponding can be an e f f e c t i v e t rea tment o p t i o n f o r many 3ow volume wastes.

However, f i e l d and labo ra to ry r e s u l t s from t h i s study showed t h a t t h e e f f e c t i v e -

ness o f t r e a t i n g low volume wastes i n ash ponds depends on t h e t ype o f low volume

waste and on t h e ash. The most d i f f i c u l t t o t r e a t wastes were t h e b o i l e r

chemical c lean ing wastes us ing c h e l a t i n g agents t o promote metal s o l u b i l i t y

(i.e., e thy lenediamine t e t r a a c e t i c ac id (EDTA) o r c i t r i c ac id ) . Based on labo-

r a t o r y tes ts . a l k a l i n e ash ponds are more e f f e c t i v e i n reducing i r o n and copper

l e v e l s t o t h e requ i red d ischarge l i m i t s than a re n e u t r a l or a c i d i c ash ponds.

s-2

Sect ion 1

INTRODUCTION

The vast m a j o r i t y of wastes produced a t f o s s i l f u e l - f i r e d power p l a n t s c o n s i s t o f

ash and sludge from a i r p o l l u t i o n c o n t r o l devlces. However, u t i l i t i e s a l s o

generate a number o f low volume wastes such as py r i t es . coa l p i l e runoff, l i m e

so f tene r sludge, f l o o r and yard drains, deminera l i zer regenerant, b o i l e r blow-

down, f i r e s i d e c lean ing waste, waters ide c lean ing waste ( b o i l e r chemical c lean ing

wastes), c o o l i n g tower basin sludge, and sludges and b r ines from wastewater

t reatment . These wastes vary cons iderab ly i n chemical c h a r a c t e r i s t i c s , q u a n t i t y

produced, and frequency o f generation.

The proper choice o f t rea tment and disposal methods f o r each waste should con-

s i d e r waste composition, c u r r e n t waste disposal and e f f l u e n t regu la t ions , costs.

and s i t e c h a r a c t e r i s t i c s . The 1984 amendments t o t h e Resource Conservation and

Recovery Ac t (RCRA) cou ld r e s u l t i n changes i n t h e management of some low volume

wastes.

cou ld cos t up t o $0.80 per g a l l o n o r more, versus convent ional t reatment cos ts

t h a t range from $0.05 t o $0.25 per ga l l on .

If a low volume waste i s c l a s s i f i e d as hazardous, o f f - s i t e disposal

The E l e c t r i c Power Research I n s t i t u t e (EPRI) i s sponsoring research t o a s s i s t

u t i l i t i e s i n t h e management o f low volume wastes. T h i s research (RP2215) has

inc luded: 1) c o l l e c t i n g and ana lyz ing low volume waste samples from coal-. o i l - ,

and gas - f i red power p lan ts ; 2) determin ing t rea tment and disposal requirements

necessary t o meet fede ra l regu la t ions ; and 3 ) c h a r a c t e r i z i n g t h e performance o f

t reatment processes c u r r e n t l y p rac t i ced by t h e e l e c t r i c u t i l i t y indus t ry . Th i s

i n fo rma t ion was used t o develop t h i s manual.

PURPOSE

The purpose o f t h i s manual i s t o p rov ide in fo rmat ion f o r u t i l i t y managers and

engineers t o develop s t r a t e g i e s f o r cos t -e f fec t i ve management o f l o w volume

wastes w h i l e meeting t h e c u r r e n t regu la to ry requirements f o r environmental

p ro tec t i on .

1-1

Previous EPRI research charac ter ized low volume wastes and commonly p r a c t i c e d

t rea tment and disposal methods (1 - 4). Much of t h e i n fo rma t ion presented i n

t h i s manual i s a r e s u l t o f a sampling and ana lys i s e f f o r t t o cha rac te r i ze t h e

composit ion of d i f f e r e n t low volume wastes from over 20 power p lan ts . Based on

t h i s e f f o r t and e a r l i e r research, low volume wastes were i d e n t i f i e d which might

present problems t o u t i l i t i e s i n meeting regu la t i ons such as RCRA and t h e Federal

Water P o l l u t i o n Cont ro l Ac t (FWPCA). Some low volume wastes may have t h e charac-

t e r i s t i c s of hazardous waste based on RCRA gu ide l i nes f o r t o x i c i t y and c o r r o s i -

v i t y . However, c e r t a i n s t a t u t o r y and regu la to ry p rov i s ions a l low these wastes

and t h e i r res idua ls t o be handled i n such a manner t h a t they are not c l a s s i f i e d

as hazardous. These p rov i s ions o f t e n al low u t i l i t y opera tors t o avoid t h e RCRA

regu la to ry process.

Performance da ta were a l s o c o l l e c t e d du r ing t h e sampling and ana lys i s e f f o r t t o

determine t h e e f fec t i veness of var ious a l t e r n a t i v e s i n t r e a t i n g low volume

wastes. These data i n d i c a t e t h a t same low volume wastes are more d i f f i c u l t t o

t r e a t than others. T h i s manual presents t rea tment approaches and conceptual

designs t o meet e f f l u e n t l i m i t s .

a re a l s o presented.

The associated cos ts o f t h e conceptual designs

An e f f e c t i v e low volume waste management system must a l s o consider s i t e - s p e c i f i c

fac to rs d i c t a t e d by fue l type, p l a n t loca t ion , and p l a n t design. Th is manual

prov ides examples of how t h e low volume waste management system can be i n teg ra ted

i n t o t h e o v e r a l l p l a n t a i r , water, and s o l i d waste management systems. The

examples cons ider such va r iab les as fue l t ype (coal , o i l ) . p l a n t l o c a t i o n (east-

e r n and western Un i ted Sta tes) , federal and reg iona l r e g u l a t i o n s (NSPS requ i re -

ments f o r f l u e gas d e s u l f u r i z a t i o n (FGD), reg iona l requirements f o r zero d i s -

charge), and p l a n t design (wet versus dry f l y ash handling. e t c ) .

ORGANIZATION OF MANUAL

The manual i s organized t o f a c i l i t a t e i t s use i n develop ing management p lans f o r

low volume wastes. Low volume waste c h a r a c t e r i s t i c s . i n c l u d i n g q u a n t i t i e s

generated and t h e i r compositions, a re presented i n Sec t ion 2. Most in fo rmat ion

i n t h a t sec t i on i s based on sampling and ana lys i s a c t i v i t i e s conducted du r ing t h e

course of t h e p ro jec t . These data a re supplemented by i n fo rma t ion i n o the r

p u b l i c a t i o n s desc r ib ing u t i l i t y low volume wastes.

Sec t ion 3 presents c u r r e n t regu la t i ons addressing low volume waste handling.

treatment. and d isposal , i n c l u d i n g regu la t i ons enacted by RCRA and FWPCA. Th is

1-2

sec t i on r e l a t e s t h e r e g u l a t i o n s t o t h e low volume waste c h a r a c t e r i s t i c s presented

e a r l i e r i n Sec t ion 2 . Sect ion 3 a l s o presents t h e r e s u l t s o f s o l i d waste c l a s s i -

f i c a t i o n s based on RCRA and se lec ted s t a t e procedures.

E x t r a c t i o n Procedure ( c u r r e n t regu la t i ons ) and t h e proposed T o x i c i t y Charac ter is -

t i c Leaching Procedure (proposed regu la t i ons ) a r e presented.

Data from both t h e RCRA

Treatment methods f o r low volume wastes a r e discussed i n Sec t ion 4, and inc lude:

N e u t r a l i z a t i o n ;

Treatment i n impoundments and tanks; i n c l u d i n g coponding w i t h h igh volume waste, pond evaporation, sedimentation, and storage;

Phys ica l /chemical treatment; i nco rpo ra t i ng pH adjustment, p r e c i p i - t a t i o n . f l occu la t i on , c l a r i f i c a t i o n , f i l t r a t i o n . and so l i d s concentrat ion;

L a n d f i l l i n g ; separate, c o l a n d f i l l i n g w i t h h igh volume waste. and cont rac ted d isposal ; and

Evaporat ion d i r e c t l y i n a b o i l e r .

Discussed f o r each t rea tment method are: 1) t h e a p p l i c a b i l i t y o f a t rea tment

method t o a g iven waste stream; 2) t rea tment e f fec t i veness as determined from

f i e l d and l a b o r a t o r y measurements; 3 ) conceptual designs of t h e t reatment sys-

tems; and 4 ) t rea tment c o s t s (Class I1 p r e l i m i n a r y c o s t est imates f o r t h e con-

ceptual designs presented).

Sec t ion 5 discusses t h e i n t e g r a t i o n of low volume waste management w i t h t h e

o v e r a l l p l a n t a i r . water. and s o l i d waste management systems. Case s tud ies f o r

f i v e model p l a n t s a re presented as i l l u s t r a t i o n s of how t o use t h e i n fo rma t ion

presented i n t h e prev lous sec t i ons of t h e manual.

u r a t i o n s a r e exaniples se lec ted t o i l l u s t r a t e t h e use o f t h e manual f o r a v a r i e t y

o f common t rea tment scenarios.

These case s tudy p l a n t con f ig -

The appendices p rov ide d e t a i l e d in fo rmat ion and a n a l y t i c a l data from t h e charac-

t e r i z a t i o n work performed i n t h i s p r o j e c t . Also, t h e bas i s f o r c o s t est imates i n

Sec t ion 4 i s conta ined i n t h e appendices.

1-3

DEFINITIONS

Low volume wastes a r e de f i ned i n t h i s manual as a l l l i q u i d . s o l i d , and semi -so l id

streams, o the r than ash, FGD waste, and c o o l i n g tower blowdown, t h a t a r e t rea ted ,

discharged, stored, recycled/reused, o r disposed a t a f o s s i l f u e l - f i r e d power

p lan t . Not a l l low volume waste streams a r e addressed i n t h i s manual. Those

t h a t a re addressed a r e de f ined below.

r e p o r t a r e presented i n t h e Glossary.

Other s p e c i f i c terms used throughout t h i s

m. i ze rs .

Rock fragments which a r e r e j e c t e d from t h e coal crushers o r pu lver -

Cm1 P i l e Runaff. R a i n f a l l o r snow me l t runof f from t h e coal s torage p i l e .

Elwr and Yard Drains.

systems, i n c l u d i n g pump seal leakage, tank leakage, wash water, and supply

1 i n e leakage.

Wastewater c o l l e c t e d i n f l o o r and yard drainage

a1 i z e r R e . Waste so lu t ions , e i t h e r a c i d i c o r basic, r e s u l t -

i n g from t h e regenera t ion of i o n exchange m a t e r i a l s used t o t r e a t b o i l e r

feed water o r condensate.

Boiler. A l i q u i d stream used t o purge low concent ra t ions o f

i m p u r i t i e s from b o i l e r c y c l e water.

Fireside. o f t h e b o i l e r equipment exposed t o combustion and h o t f l u e gas, i n c l u d i n g

t h e a i r preheater, ESP, duc t work, stack, and t h e b o i l e r f i r e s i d e . The U.S.

Environmental P r o t e c t i o n Agency (EPA) separates t h e f i r e s i d e ( b o i l e r fire-

s ide) and a i r preheater washes (5). Both a r e r e f e r r e d t o as metal c lean ing

waste o r b o i l e r c lean ing waste.

Waste and wastewater r e s u l t i n g from t h e p e r i o d i c c lean ing

U t e r s i d e ULnrte. Spent s o l u t i o n from c lean ing o f t h e i n t e r n a l , o r water-

side. su r face o f t h e b o i l e r tubes. The EPA re fe rs t o t h i s waste as metal

c lean ing waste o r b o i l e r chemical c lean ing waste.

QsiLtng Tower Bas in Sludge. A i rborne and waterborne dus t and debr is t h a t

become entrapped du r ing opera t i on of t h e c o o l i n g tower and c o l l e c t i n t h e

c o o l i n g tower basin.

1-4

k i i e w a t e r Treatment Sludges and Br ines. Sludges and b r i n e s produced from

processes t r e a t i n g e i t h e r water o r wastewater.

LIMITATIONS OF MANUAL

The major l i m i t a t i o n s of t h i s manual r e s u l t f rom t h e c o n s t a n t l y changing regula-

t o r y c l fmate. F u t u r e changes i n RCRA or FWPCA c o u l d a l t e r s t r a t e g i e s f o r man-

ag ing low volume wastes. As much as poss ib le , t h e manual addresses c u r r e n t

r e g u l a t i o n s and cons iders p o s s i b l e f u t u r e r e g u l a t i o n s . For example, t h e r e s u l t s

of t h e proposed T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure (TCLP) a r e presented

f o r numerous wastes, a l though t h e ac tua l procedure and r e g u l a t o r y l i m i t s have n o t

been adopted. However. sane u n c e r t a i n t y I n t h e r e g u l a t o r y f u t u r e i s unavoidable.

I n a d d i t i o n , t h e manual does n o t a t tempt t o address a l l p o s s i b l e t r e a t m e n t

approaches o r a l t e r n a t i v e s . S i t e - s p e c i f i c f a c t o r s may present o t h e r t rea tment

op t ions , and u t i l i t i e s , vendors, and eng ineer ing f i r m s may i d e n t i f y and develop

a l t e r n a t i v e , i n n o v a t i v e t rea tment schemes for develop ing new c o s t - e f f e c t i v e

management plans.

1-5

Sect ion 2

UTILITY LOW VOLUME WASTE CHARACTERISTICS

Dur ing t h e process o f combusting f o s s i l f u e l s t o generate e l e c t r i c i t y , power

p l a n t s produce several waste o r by-product streams. The g rea tes t volumes of

waste r e s u l t f rom t h e c o n t r o l o f p a r t i c u l a t e and s u l f u r d i o x i d e (SO2) emissions

produced by f o s s i l f u e l combustion. These streams a re o f t e n c l a s s i f i e d as h i g h

volume wastes: bottom a s h / f l y ash, and f l u e gas d e s u l f u r i z a t i o n (FGD) wastes.

A d d i t i o n a l l y , c o o l i n g tower blowdown i s o f t e n considered a h i g h volume waste

stream. Th is manual focuses on t h e low volume wastes which are generated.

Eleven s p e c i f i c streams have been i d e n t i f i e d as low'volume wastes and a re

discussed i n t h i s sec t ion :

P y r i t e s B o i l e r chemical c lean ing wastes Coal p i l e r u n o f f Coo l ing tower basin sludge F l o o r and ya rd d r a i n s Treatment sludges and b r i n e s Deniineral i z e r regenerant San i ta ry wastes B o i l e r blowdown Waste o i l s F i r e s i d e wastes

The low volume wastes generated a t each p l a n t depend on fac to rs such as fuel,

geographic l o c a t i o n , environmental regu la t i ons , and o the r s i t e - s p e c i f i c

cons idera t ions . Many of these wastes a re generated cont inuous ly d u r i n g p l a n t

opera t ion . Streams such as demineral i z e r regenerant, f l o o r and yard drains,

water and wastewater t rea tment sludges, b o i l e r blowdown, and s a n i t a r y wastes are

e i t h e r generated cont inuous ly o r a re f r e q u e n t l y produced i n batch volumes du r inc

t h e opera t i on o f t h e power p l a n t .

outages f o r equipment maintenance. These s t r e a m inc lude f i r e s i d e and b o i l e r

chemical c lean ing wastes, and c o o l i n g tower bas in sludge. A d d i t i o n a l l y . some

p l a n t s may generate o t h e r low volume wastes, f o r example. wastes c o n t a i n i n g

so l ven ts and p a i n t sludges. These wastes a re n o t discussed here.

Other streams are generated du r ing scheduled

Prev ious E P R I research on u t i l i t y low volume wastes examined t h e chemical

c h a r a c t e r i s t i c s of a v a r i e t y of low volume waste streams (1). Based on t h i s

screening study, t h r e e types of wastes were found t o con ta in r e l a t i v e l y h igher

concent ra t ions o f metals than many o t h e r low volume wastes. Th is f i n d i r l g was

based on t h e r e s u l t s of t o x i c i t y t e s t i n g by t h e U.S. Environmental Proi.ectior1

2-1

Agency (EPA) E x t r a c t i o n Procedure (EP) (6 ) . The t h r e e streams were b o i l e r

chemical c l e a n i n g wastes, f i r e s i d e wastewater f rom o i l - f i r e d plants, and some

t ypes o f wastewater t reatnient residues. A d d i t i o n a l c h a r a c t e r i z a t i o n data "ere

gathered f o r these t h r e e streams t o f u r t h e r d e f i n e t h e c o n d i t i o n s under which

u t i l i t y low volume waste streams might be c l a s s i f i e d as hazardous.

Besides t h e d e t a i l e d c h a r a c t e r i z a t i o n data presented f o r t h e t h r e e wastes

mentioned above, data f o r o the r low volume waste streams a re a l s o presented.

These data were ob ta ined from prev ious EPRI research (L), t h e Development

Document fo r E f f l uen t L i m i t a t i o n s Gu ide l ines (5) . and from p u b l i c l i t e r a t u r e .

Tab le 2-1 l i s t s t h e samples ob ta ined from host u t i l i t y s i t e s du r ing 1985.

sampling and a n a l y t i c a l r e s u l t s f rom t h i s e f f o r t a re presented i n Appendices A,

B, and C.

The

T h i s sec t i on i s organized by s p e c i f i c low volume waste streams w f t h an i n t r o -

duc tory s e c t i o n on t h e p r e c i s i o n o f t h e a n a l y t i c a l procedures used.

presented f o r each stream inc lude t h e source of t h e waste, t h e frequency and

vu1 unie produced, chemical composit ion. and common t rea tment methods. E f f l u e n t

l i m i t s a re s t a t e d f o r those streams t h a t have s p e c i f i c regu la to ry requirements.

Desc r ip t i ons o f t h e u t i l i t y s i t e s where samples were ob ta ined a re presented i n

Appendix A; Appendix B presents t h e c h a r a c t e r i z a t i o n data o f each i n d i v i d u a l

samDle.

Topics

ANALYTICAL PRECISION

Charac te r i za t i ons o f t h e low volume wastes presented i n t h i s manual i nvo l ved

chemical analyses of l i q u i d and s o l i d samples, some o f which cons is ted of very

complex chemical mat r i ces . Th is sec t i on w i l l he lp de f ine t h e p r e c i s i o n and

l i m i t s o f d e t e c t i o n o f t h e data presented i n t h i s s e c t i o n and throughout t h e

ranua l .

assurance ( C A I program fo l lowed on t h i s p r o j e c t . Fu r the r d e t a i l s on t h i s and

o the r aspects o f t h e QA program can be found i n Appendix D.

Much of t h e i n fo rma t ion on a n a l y t i c a l p r e c i s i o n comes from t h e q u a l i t y

A recent EPRI r e p o r t (1) est imated t h e p r e c i s i o n and b i a s of chemical methods

commonly used i n t h e e l e c t r i c u t i l i t y i ndus t r y . The researchers i n t h i s r e p o r t

have anslyzed a v a i l a b l e p r e c i s i o n and b i a s data on EPA-approved procedures f o r

measuring t r a c e elements.

methods f o r t h e analyses presented i n t h i s manual, namely atomic abso rp t i on and

plasma m i s s i o n spectroscopy.

The methods they reviewed inc luded t h e 5 a ~ e a n a l y t i c a l

2-2

ElAixt

A

B

C

D

E

F

G

H

Table 2-1

LOW VOLVvlE WASTES COLLECTED AND ANALYZED

EPRI Data Reoion w SamDle

West Gas f i r e s i d e waste t r e a t e d e f f l u e n t EDTA wash t r e a t e d EDTA combined s o l i ds

HC1 waste n e u t r a l i z e d HC1 r i n s e water soda ash r i n s e s ludge from bas in e f f 1 uent

Nor th East 01 1

West

Nor th East

South Cent ra l

West

West

South East

Gas

01 1

Gas

o i 1

O i l

Coal

ammonium bromate HC1 waste pond water pond s o l i d s

f i r e s i d e wash c l a r i f i e r supernate s ludge s o l i d s c l a r i f i e r underflow

c i t r a t e waste

waters ide composite t r e a t e d e f f l u e n t t rea tment sludge

composite waste t r e a t e d e f f l u e n t t rea tment s ludge HC1 waste ammonium bromate water r i n s e hydraz ine waste

ammonium bromate HC1 waste n e u t r a l i z e d HC1 pond water

2-3

J

J

K

L

M

N

Table 2-1 (cont inued)

LOW VOLUME WASTES COLLECTED AND ANALYZED

EPRI Data Realon fual SamDle South Eas t Coal HC1 waste

HC1 waste t r i s o d i u m phosphate coa l p i l e r u n o f f ash pond water ash pond water ash pond water ash pond water ash pond water ash pond water

EDTA waste t h i c k e n e r be fo re t h i c k e n e r a f t e r pond be fo re pond a f t e r coa l p i l e r u n o f f

West Cen t ra l Coal

Nor th East

Eas t Cen t ra l

West

West

West

East Cen t ra l

O i 1

Coal

Coal

Coal

Coal

Coal

a i r p reheater wash t h i c k e n o r ove r f l ow pond e f f l u e n t t h i c k e n e r underf low ESP wash s o l i d s

EDTA waste coa l p i l e r u n o f f

b r i n e concen t ra te r e j e c t evapora t ion pond l i q u i d evapora t ion pond s o l i d s

wastewater p roduc t water b r i n e concen t ra te r e j e c t b r i n e concent ra te r e j e c t p y r i t e s

b r i n e concen t ra te r e j e c t evapora t ion pond l i q u i d evapora t ion pond s o l i d s p y r i t e s

c i t r a t e waste f i r s t r i n s e ash pond water - ash pond water ash pond water ash pond water ash pond water

-

2-4

Table 2-1 (cont inued)

LOW VOLUME WASTES COLLECTED AND ANALYZED

€%ant

Q

R

S

T

U

EPRI Data Reaion

Nor th East Coal

Nor th East Coal

Nor th East

Nor th East

East Cent ra l

Coal

Gas/o i 1

Coal

Coal

SamDle moistened f l y ash p y r i t e s from p u l v e r i z e r

f l y ash from pond bottom ash from pond p y r i t e s from p u l v e r i z e r

f l y ash from s i l o s p y r i t e s from p u l v e r i z e r

f i r e s i d e waste f i r e s i d e waste c l a r i f i e r over f low f i l t e r s o l i d s

EDTA waste EDTA r i n s e hyd roxyacet ic / fo rmic

2-5

The major s t a t i s t i c from t h e EPRI work, as it app l i es t o t h i s manual, i s t h e

p r e c i s i o n of ana lys is . P r e c i s i o n i s t h e measure o f t h e s c a t t e r of data from

r e p l i c a t e analyses. It i s de f i ned mathematical ly as:

where:

RSD, % i s t h e r e l a t i v e standard d e v i a t i o n i n percent,

S i s t h e samDle standard dev ia t ion , and

- X i s t h e sample mean concent ra t ion .

Tab le 2-2 presents t h e prec is ion , expressed as t h e RSD, f o r a s e t of r e p l i c a t e

analyses performed on one sample of b o i l e r chemical c lean ing waste from t h i s

study.

a n a l y t i c a l task. The sample was analyzed each t ime a batch o f low volume waste

samples was sent t o t h e l a b f o r ana lys is . A lso presented i n t h e t a b l e a r e

p r e c i s i o n da ta compiled f o r t h e e a r l i e r EPRI study (7) . The mat r ices of t h e

samples t e s t e d i n t h e e a r l i e r study inc luded d i s t i l l e d water, r i v e r water, and

min ing wastewater.

The sample was analyzed four t imes over t h e f i v e month d u r a t i o n of t h e

The RSO values f o r elements analyzed i n t h e b o i l e r chemical c lean ing waste range

from near u n i t y t o over 100 percent. The l a r g e r RSDs a re a t t r i b u t a b l e t o t h e

concen t ra t i ons being very near t h e d e t e c t i o n l i m i t s o f t h e a n a l y t i c a l method o r

t o t h e complex m a t r i x present i n t h e b o i l e r chemical c lean ing waste sample.

Ma jor d i f f e r e n c e s i n t h e p r e c i s i o n observed i n t h i s study and t h e e a r l i e r EPRI

study a re apparent f o r cadmium, copper. lead, and s i l v e r . The cadmium

concen t ra t i on i n t h e b o i l e r chemical c lean ing waste sample i s very near t h e

d e t e c t i o n l i m i t f o r t h e plasma emission spectrometer, hence t h e poor p rec i s ion .

The copper concen t ra t i on i n t h e waste sample decreased d r a s t i c a l l y over t h e

d u r a t i o n of t h e analyses ( a f i v e month t i m e pe r iod ) due t o degradat ion of t h e

copper c h e l a t i n g agent i n t h e b o i l e r chemical c lean ing waste sample. The

p r e c i s i o n measured f o r l e a d a n a l y s i s was low because o f one o u t l y i n g r e s u l t

o f an a n a l y s i s performed i n October of 1985 and t h e s i l v e r concent ra t ions i n t h e

waste sample were a l s o near o r below t h e a n a l y t i c a l d e t e c t i o n l i m i t s .

2 - 6

Table 2-2

ANALYTICAL PRECISION (mg/L)

P r e c i s i o n Data P r e c i s i o n Data For Th is Proiect-

Std.

Elemental Ana lys i s A1 um i num A n t i rriony Arsen ic Barium B e r y l l i u m @oron Cadmium Calcium Chromium Coba l t Copper I r o n Lead Magnezium Manganese Mercury Molybdenum Nicke l Pot ass i um Selen i um S i l i c o n S i l v e r Sodium Tha l l i um Vanadium Z inc

Water Qual i t v Values PH ( u n i t s ) - A c i d i t y (as CaCO ) 5200 A l k a l i n i t y (as CSCO,) DL Amnionia (as N) 0

e

18 0.62

1.3 DL

OL 10

34 0.37

6.1 1.6

101 4700

17 28

1.2

DL 0.58

25 12

23

180

OL

0.073

DL 0.35

28

1.7

Dev ia t i on RSDX

11 59 0.15 24

0.91 70 DL OL

OL OL 6.0 60. 0.38 104.

~ .~ 5.1 15 0.46 7.5 0.05 3.2

6 1 60. 180 3.8

0.94 60. 2.9 17 0.83 3.0

DL DL 0.70 35 I .2 4.9

15 120 OL DL

15 66 0.045 62

130 72 OL OL

0.17 49 1.5 4.4

0.20 11 3100 5.9

DL DL 0.0 0 .o

coo 8900 3000 34 C h l o r i d e 29000 10600 37 F1 u o r i de 2800 96 0 34 N i t r a t e DL OL OL N i t r a t e (as N) (0.02 0.0 0.0 S u l f a t e TOS

210 150 74 7700 4400 57

TOC 3500 4300 120

from EPRI CS-3744 (7 ) Concent ra t ion O v e r a l l

Level

NA 0.44 0.05

NA 0.0053

NA 0.3250

NA 1.13

NA 0.5210

NA 1.57

NA NA

NA

NA

NA

NA

NA

0.002

0.959

0.01

0.05

0.1

1.75

. RSD,%

NA 20.7 34.7

NA

NA 11.6

NA 8.4

NA 4.7

NA 8.35

NA NA

NA

NA

NA

NA NA NA

2.25

104

37.9

6.7

13.6

13.4

RSO,% = r e l a t i v e standard dev ia t ion , i n percent (see t e x t f o r d e f i n i t i o n ) NA = Not analyzed DL = Concent ra t ion was near o r below de tec t i on l i m i t

'Copper concen t ra t i on decreased d r a s t i c a l l y w i t h t inte i n t h e @C sample due t o degradat ion o f t h e t h i o u r e a

2-7

The l i m i t s of d e t e c t i o n (LOCI) f o r a Siven a n a l y s i s a re based on t h e standard

d e v i a t i o n th rough t h e f o l l o w i n g r e l a t i o n s h i p :

LOO = 3s0

where:

LOD i s t h e l i m i t o f de tec t i on and

So i s t h e standard d e v i a t i o n a t zero concent ra t ion .

Therefore, t h e LOD f o r an element v a r i e s f rom sample t o sample depending on t h e

p r e c i s i o n o f ana lys i s f o r t h a t sample.

mat r ix . such as a b o i l e r chemical c lean ing waste, would have lower p r e c i s i o n and

t h u s a h ighe r LOD than a sample o f a more d i l u t e wastewater. For t h i s reason,

t h e analyses presented i n t h i s sec t i on o f ten show d i f f e r e n t LOD's f o r one element

between d i f f e r e n t samples.

For example, a sample w i t h a complex

PYRITES

h & e Source

Before coa l i s used i n a u t i l i t y b o i l e r , several steps a re i nvo l ved i n p repar ing

t h e fue l f o r combustion, i n c l u d i n g c rush ing and p u l v e r i z i n g . Dur ing t h l s

p repara t ion , rock fragments incorpora ted i n t h e coa l may be r e j e c t e d from t h e

c rushers o r p u l v e r i z e r s because they are harder than t h e coal .

f ragnents. c a l l e d coa l r e j e c t s o r p y r i t e s . t y p i c a l l y c o n s i s t o f shale from t h e

coa l seam. The ac tua l p y r i t e ( i r o n s u l f i d e ) conten t o f t h i s r e j e c t stream i s

va r iab le .

These rock

Frequencv of Generat ion

The p y r i t e waste o f concern t o t h e u t i l i t y i s usua l l y removed i n t h e coa l

p u l v e r i z e r s immediately be fore t h e b o i l e r . The waste i s generated cont inuously,

a l though it may be removed f o r disposal on an i n t e r m i t t e n t basis. Volumes of

p y r i t e wastes vary depending on t h e coa l and t ype of p u l v e r i z e r .

p l a n t s generated 750, 950, and 1200 tons of p y r i t e per year per 100 Mw capac i ty .

A l l t h r e e p l a n t s f i r e d a bi tuminous coa l w i t h medium s u l f u r con ten t (1.5 t o 3.5

percent s u l f u r by we igh t ) .

Three eas tern

2-8

Chemical C o m a o w

P y r i t e wastes do n o t c o n s i s t e n t i r e l y of t h e minera l p y r i t e (FeS2), b u t u s u a l l y

c o n t a i n a l a r g e percentage o f p y r i t e incorpora ted i n unweathered rock.

wastes can generate a c i d i c leachate. The r e a c t i o n s respons lb le f o r producing

a c i d i c leachate from u t i l i t y p y r i t e wastes a r e t h e same r e a c t i o n s t h a t produce

a c i d i c drainages from coal mines, base metal mines. and mine t a i l i n g s . A l l

r e s u l t from t h e weatherlng of p y r i t e .

P y r i t e

Elemental analyses o f p y r i t e samples from four p l a n t s a r e presented i n Table 2-3. Assuming t h e p y r i t e s tandard t o be as pure a form o f minera l p y r i t e as possible,

t h e u t i l i t y p y r i t e s c o n t a i n between 6 and 86 percent a c t u a l minera l p y r l t e . The

p y r i t e wastes from eas tern bituminous c o a l s c o n t a i n t h e h i g h e s t percentage o f

p y r i t e : 27, 44, and 86 f o r p l a n t s S, Q, and R, r e s p e c t i v e l y . The p y r l t e from

t h e p l a n t f i r i n g western subbituminous coal c o n t a i n s much l e s s ac tua l p y r i t e : 6

percent.

rock. probably shale.

The remainder o f t h e waste t h a t i s n o t p y r i t e c o n s i s t s of t h e hos t

DisDosal P r a c t i c e s

P y r i t e s a r e t y p i c a l l y combined w i t h f l y ash o r bottom ash waste streams f o r

d isposal .

Coponding i s a l s o an opt ion.

The canbined waste i s then l a n d f i l l e d , o r b a c k f i l l e d i n t h e coal mine.

COAL P ILE RUNOFF

Coal p i l e runof f i s an i n t e r m i t t e n t low volume waste stream which i s generated

d u r i n g per iods of r a i n f a l l and snow mel t . I n some cases. it i s s u i t a b l e f o r

sur face water d ischarge w i thout t reatment .

and/or conta ins suspended s o l i d s and r e q u i r e s n e u t r a l i z a t i o n and/or c l a r i f i c a t i o n

p r i o r t o dlscharge.

A t o t h e r s i t e s , t h e runoff I s a c f d i c

Waste Source

Coal p i l e runoff may c o n t a i n coal f ines and/or fe r rous s u l f a t e and s u l f u r i c a c i d

from o x i d a t i o n of p y r i t e i n t h e coal .

represented by t h e f o l l o w i n g r e a c t i o n :

The o v e r a l l o x i d a t i o n o f p y r i t e can be

2FeS2 ( p y r i t e ) t 702 t 2H20 2FeS04 + 2H2S04.

The f e r r o u s i r o n can be f u r t h e r ox id ized. e i t h e r chemical ly o r b i o l o g i c a l l y , t o

f e r r i c i ron, which forms a d d i t i o n a l s u l f u r i c ac id . A t pH l e v e l s below 5, severa l

2-9

.

Table 2-3

PYRITE CCMPOSITIONS (Ilg/g)

P1 ant: N

Coal : Subbltumlnous

Elemental Ana lys is Aluminun 16100 Antimony Arsenic Barium B e r y l 1 i um Boron Cadmium Cal c i um Ch rumium Col ba l t Copper Ironl Lead Magnesium Manganejle Me rc u ry Mol yb den um Nicke l Phosphorus Potass iuy Selenium S i l v e r Sodium S u l f u r ( % I T i t a n i um Tha l l ium Vanadi um Z i n c

Heat ing Val ue ( B t u / l b )

12 36 209

37 (4

10800 320

0.56

3.3 6.2

1.6 26000

7960 410 0.04 1.3 7.4

340 6380

0.5 (0.4

5120

420 1180

11 19

0.94

6100

R

Bituminous

8130 (40

3460 (2 12

(100 (4

1670 520 15

374000

610 170

11 59

(500 1190

9.2

0.27

0.76

(0.5 5.8

46.34 940

150 (180 (3 0 78

3200

Q

Bituminous

17100 (40 1180

(2 (2

(100 (4

15300 550

57 193400 1560 1800 280

3.2

0.86 (0.4 2.6

1500 7460 (0.5 1.8

18.12 3.4

8180

(180 67 34

4900

S P y r i t e

B i tum ino& Standard

48800 (40 200 3800

15 NA (4

3670 44 20 100

65 3000 130

86900 435900

0.2 15 37

1300 11000

(4 (2 730 14.04 49.5

2500

4200 2174

‘Atanic absorp t ion ana lys is . plasma emiss ion spect rometry (ICP).

NOTE: analyses which were prepared f o r a n a l y s i s by l i t h i u m metaborate fus ion .

A l l o t h e r elements by i n d u c t i v e l y coupled argon

Whole-sample d i g e s t i o n s b y . p e r c h l o r i c acid, except f o r i r o n and s i l i c o n

2-10

a c i d o p h i l i c , chemoautotrophic b a c t e r i a t h a t per form t h e fe r rous o x i d a t i o n

r e a c t i o n become ac t i ve . These species i nc lude J h i o b a d l l u s ferroxidanst F e r r o b a c i l l u s f e r r o x i d a m , and M e t a l l o o e n i w , which use C02 as t h e i r carbon

source ( 5 ) . Because o f these react ions, coa l p i l e r u n o f f can be very ac id i c :

t h i s low pH may i n t u r n s o l u b i l i z e o t h e r meta ls from t h e coal .

Freau encv . of G ene ra t i o n

Coal p i l e runo f f i s on l y generated du r ing r a i n f a l l o r snow m e l t cond i t i ons . The

Tennessee Va l l ey A u t h o r i t y has developed t h e f o l l o w i n g

the amount o f runof f from a r a i n (5 ) : c o r r e l a t i o n t o p r e d i c t

Runoff ( inches /acre) = r a i n f a l l ( inches) x 0.855 t 0.0082.

Th is equat ion i n d i c a t e s t h a t about 86 percent o f a r a i n f a l l becomes runoff.

Chemical Comoosi ti on

Analyses f o r runof f samples from t h r e e u t i l i t i e s a re presented i n Table 2-4.

P l a n t I burns b i tuminous coal , w h i l e P lan ts J and L burn a l k a l i n e subbituminous

coa l . The pH o f t h e runof f from t h e b i tuminous coal i s a c i d i c (3.1), w h i l e t h e

two subbituminous coa ls have neu t ra l t o a l k a l i n e runof f pH values. The f a c t o r s

which a f f e c t t h e pH, a c i d i t y , and t r a c e metal concent ra t ions o f coal p i l e r u n o f f

a re (I):

a Concentrat ion and form of p y r i t i c s u l f u r i n t h e coal;

a Size of t h e coa l p i l e ;

a Method o f coal p repara t i on and c lean ing p r i o r t o storage:

a C l i m a t i c condi t ions, i n c l u d i n g r a i n f a l l and temperature;

a Concentrat ions of a1 ka l i n e substances i n t h e coal ;

a Concentrat ion and s p e c i a t i o n o f t r a c e meta ls i n t h e coal ; and

a Residence t ime i n t h e coal p i l e .

Disposal P r a c t i c e s

Coal p i l e r u n o f f d isposal methods depend on t h e water composition, geographic

l o c a t i o n , and t h e p l a n t c o n f i g u r a t i o n . I n many Instances, r u n o f f i s d i r e c t e d t o

ash ponds w i t h o u t any t reatment . A t o the r l oca t i ons , a sedimentat ion impoundment

2-11

Plant :

1 Coal :

Elemental Analys is A1 um 1 n urn Antimony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Chromium Cobal t Copper I r o n Lead Magnesl um Manganese Mercury Molybdenum Nicke l Potassium Sel en i um S i l i c o n S i l v e r Sodium Thal 1 ium Vanadium 7.1 nc

Water Q u a l i t y pH ( u n i t s ) A c i d i t y (as CaCO 1 A l k a l i n i t y (as C&03) COD Chlor ide F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

Table 2-4

COAL PILE RUNOFF COMPOSITIONS (mg/L)

I

14 (0.02 <0.002 0.04 0.007

(0.05 0.004

72 0.005 0.17 0.06 2.6

(0.08 19 3.2 0.0003 0.005 0.21 1.8

(0 .002 4.4 0.0018

12 (0.09 (0,003

0.59

3.1 180 (1 (5 20

0.61 2

(0.02 480 660

2

J

Subbltumlnous

0.15 (0.02 <0.002 0.078

<0.001 0.8

<0.001 45 (0.005 (0.006 0.002 0.38

(0.002 18 0.023 0.0003

(0.002 (0.003

0.76 (0.002 1.8 0.0023

85 <0.09 (0.003 (0.003

9.3 (10 93 ( 5 8 0.24 6 0.03

420 970

2

1

Sub b i t u m i w

0.54 c0.02 0.006 0.043

<0.001 0.95 0.001

(0.005 <O .006 0.002

13.3 0.015

68 1.2

(0 . 0002 <0.002 3 4.1

270

(0.002 11

48 0.0012

<o .09 CO .003

0.01

8.4 (10 310

<5 34

<2 0.24

c0.02 740

1500 4

' A l l coa ls conta in l e s s than 1.5 percent s u l f u r .

2-12

may be used t o reduce suspended s o l i d s concent ra t ions . Runoff i s pH ad jus ted as

necessary t o meet t h e requirements o f sur face d ischarge pe rm i t s (pH 6 t o 9) . I f

h igh l e v e l s o f meta ls a re present, it may be necessary t o use a phys ica l /chemical

t rea tment system p r i o r t o d ischarg ing t h e water.

i n a r i d regions, runo f f i s genera l l y c o l l e c t e d and recyc led f o r use as makeup

water.

A t zero discharge s ta t ions . o r

FLOOR AND YARD DRAINS

Numerous l o c a t i o n s i n power p l a n t s generate wastewater which i s c o l l e c t e d i n

dralnage systems. Pump seals, tank leakage. wash water, and temporary supply

l i n e s a l l c o n t r i b u t e t o f l o o r and yard d r a i n f lows. None o f these wastes were

sampled d u r i n g t h e EPRI program. P o l l u t a n t s o f regu la to ry concern i nc lude sus-

pended s o l i d s and o i l and grease. I n a pub l i shed study, t h e average f low f o r

f l o o r and yard dra ins was estimated t o be 30 ga l l ons per day per megawatt

(gpd/MW) (8 ) . Laboratory sample l i n e s used t o analyze b o i l e r opera t ion are

genera l l y operated cont inuous ly and produce an est imated f l ow o f 10 gpd/MW (a). Laboratory d r a i n wastes do no t i nc lude wastes such as spent so lvents which are

genera l l y c o l l e c t e d and disposed o f o f f s i t e by con t rac to rs .

d r a i n waste surface discharges are requ i red t o meet t h e standard pH, t o t a l

suspended s o l i d s (TSS), and o i l and grease parameters f o r power p lan ts . They are

commonly combined w i t h o the r waste streams a f t e r o i l removal.

F loo r and yard

DEMINERALIZER REGENERANT WASTE

Deminera l izer regenerant i s produced du r ing t h e regenera t ion of t h e makeup water

and condensate p o l i s h e r i on exchange beds. Th is stream can be e i t h e r a c i d i c o r

a l k a l i n e , depending on t h e exchange mate r ia l and t h e regenerant so lu t i on . - I o n exchange m a t e r i a l s a re t h e most common means of t r e a t i n g b o i l e r cyc le water.

These m a t e r i a l s a re o rgan ic macro rec t i cu la r r e s i n s which con ta in numerous a c t i v e

s i t e s . Several f o rmu la t i ons e x i s t f o r d i f f e r e n t t reatment ob jec t i ves . I n

operat ion, t h e a c t i v e s i t e s remove i o n i c species and r e l i n q u i s h hydrogen o r

hydroxyl ions. Dur ing regeneration, e i t h e r ac ids or bases are used t o remove t h e

i o n i c species and rep lace them w i t h hydrogen o r hydroxyl ions. The waste

s o l u t i o n con ta ins s a l t s of t h e m a t e r i a l s removed from t h e b o i l e r cyc le water and

2-13

an excess o f t h e regenerant. e i t h e r a c i d or base. Th is excess ac id o r base can

c r e a t e RCRA hazardous wastes i f t h e pH f a l l s below 2.0 o r r i s e s above 12.5,

because o f t h e c o r r o s i v i t y c h a r a c t e r i s t i c .

w Average spent regenerant f low ra tes were determined i n an EPA study t o be 104,

86, and 42 gpd/MW f o r coal. gas, and o i l un i t s , r e s p e c t i v e l y (I). o f regenera t ion depends on severa l factors , no tab ly i n l e t water composit ion.

Batch regenera t ion frequency may vary from severa l t imes pe r day t o once pe r

week.

t h e manner i n which r i n s e volumes are handled.

The frequency

The amount of regenerant produced per batch depends on u n i t s i z e and on

The composit ions of deminera l i zer regenerant wastes are h i g h l y var iab le . F i v e

bas ic types of i o n exchange m a t e r i a l s a re used. Weak and s t rong a c i d and base

res ins are used f o r removing e i t h e r a l k a l i n e ca t i ons (weak ac id) , m inera l a c i d

anions (weak base). o r a l l ions ( s t rong a c i d and base). Sodium c y c l e r e s i n replaces ca lc ium and magnesium w i t h sodium. The regenerat ion o f t h e s t rong

r e s i n s i s performed w i t h h i g h (2 t o 6 percent ) concent ra t ions of e i t h e r s u l f u r i c

a c i d o r caus t i c .

h igh d isso lved s o l i d s concentrat ions, which can cause ca lc ium s u l f a t e and ca lc ium carbonate s c a l i n g i n equipment.

As can be seen, t h e minimum pH values recorded are l e s s than 2. i n d i c a t i n g t h e

p o s s i b i l i t y o f process ing a RCRA c o r r o s i v e waste.

Th is may produce a waste stream w i t h co r ros i ve pH l e v e l s and

Table 2-5 presents f i n d i n g s from an EPA survey.

Table 2-5

DEMINERALIZER REGENERANT CHARACTERISTICS (5)

P a r a m e t e r Q h m u t b E Me an L!l.” l3zd”

PH 122 6.15 1.7 10.6 Suspended so l i d s (mg/L) 88 44 3.0 3 05 Dissolved s o l i d s (mg/L) 39 6060 1890 9650 O i l and grease (mg/L) 29 6.0 0.13 22

2-14

D i S D O s a l P r a c t i c es

Spent regenerant i s o f ten routed t o an e q u a l i z a t i o n tank where c a t i o n i c and

an ion i c wastes a r e combined.

g e n e r a l l y adequate t o produce a non-corrosive e f f l u e n t (2<pH<12.5).

a l t e r n a t i v e s i n c l u d e coponding, m i x i n g w i t h c o o l i n g tower blowdown, and t reatment

i n a phys ica l /chemical system. Federal e f f l u e n t discharge standards r e q u i r e a pH

between 6 and 9, 30 mg/L TSS (30-day average, 100 mg/L one day maximum), 15 mg/L

o f 1 and grease (30-day average, 20 mg/L one day maximum). I n some regions,

discharge pe rm i t s a l s o r e g u l a t e t h e concen t ra t i on and/or mass r a t e of d i sso l ved

s o l i d s which can be discharged.

Th is prov ides a degree of s e l f - n e u t r a l i z a t i o n .

Other

BOILER BLOWOOWN

B o i l e r blowdown i s t y p i c a l l y one o f t h e h ighes t q u a l i t y waste streams produced a t

a power p l a n t and i s o f t e n reused w i t h i n t h e p l a n t r a t h e r than discharged

a l though it may c o n t a i n t r a c e l e v e l s of c o n d i t i o n i n g chemicals, such as

hydrazine. No b o i l e r blowdown samples were obta ined d u r i n g t h i s program.

b o i l e r s o p e r a t i n g above 2,000 ps i , t h e maximum recommended t o t a l s o l i d s

concen t ra t i on i s 15 mg/L, which would a l s o be t h e blowdown concen t ra t i on (5). Average f low r a t e s f o r blowdown a r e presented i n t h e EPA e f f l u e n t l i m i t a t i o n s

gu ide l i nes document (5 ) . r a t e i s 148 gpd/MW.

gpd/MW, respec t i ve l y .

f l ows for p l a n t s us ing d i f f e r e n t f ue l s .

a t t r i b u t a b l e t o t h e age and types o f b o i l e r systems a t t h e p l a n t s surveyed.

For

For c o a l - f i r e d un i t s , t h e est imated average blowdown

Blowdowns f o r o i l and gas u n i t s a re g lven as 287 and 163

No exp lana t ion i s g i ven for t h e v a r i a t i o n i n blowdown

It i s l i k e l y t h a t t h i s v a r i a t i o n i s

FIRESIDE WASTES

Waste Source

Coal, o i l , and t o a l e s s e r e x t e n t n a t u r a l gas, c o n t a i n i m p u r i t i e s . These impur i -

t i e s form both gaseous ( s u l f u r d ioxide, n i t r o g e n oxides. hydrogen ch lo r i de , e tc . )

and s o l i d ( f l y ash, bottom ash, soot, s l a g ) combustion byproducts.

s o l i d s a r e e n t r a i n e d from the b o i l e r i n t h e combustion gas stream and a r e removed

by p a r t i c u l a t e c o n t r o l equipment such as e l e c t r o s t a t i c p r e c i p i t a t o r s o r baghouses

f o r coa l and some o i l p lan ts . However, small amounts of t h e s o l l d s adhere t o t h e

heat t r a n s f e r surfaces of t h e b o i l e r , i.e.. water tubes, superheater tubes. and

a i r preheater. I n some cases, the p a r t i c u l a t e c o n t r o l equipment a l s o becomes

fouled.

Most o f t h e

2-15

Over time, these deposi ts b u i l d up and reduce t h e b o i l e r e f fect iveness. O i l -

f i r e d b o i l e r s a re prone t o soo t depos i t i on on t h e b o i l e r tubes.

s low ly ox id ized, caus ing flames a long t h e tube banks and sparks e x i t i n g i n t h e

f l u e gas.

deposi t ion; however, tube depos i ts can be formed i f s lagg ing occurs because t h e

ash fus ion tenpera tu re i s exceeded. The c h a r a c t e r i s t i c s of tube f o u l i n g formed

du r ing s lagg ing cond i t i ons may range from so f t , e a s i l y removed deposi ts t o hard,

masslve depos i ts t h a t r e q u i r e mechanical c lean ing (91.

This m a t e r i a l i s

I n c o a l - f i r e d un t t s , abras ion from f l y ash can he lp t o reduce

w F i r e s i d e c l e a n i n g frequency depends p r i m a r i l y on f u e l c h a r a c t e r i s t i c s . O i l - f i r e d

p l a n t s r e p o r t c lean ing f requencies o f two t o s i x t imes pe r year f o r a base load

u n i t . I n these p lants , a i r preheaters a r e sometimes cleaned monthly. I n

c o a l - f i r e d p lan ts , f i r e s i d e c lean ing i s t y p i c a l l y requ i red less f r equen t l y . The

volume of water used t o c lean t h e f i r e s i d e depends on t h e b o i l e r s i z e and t ype

and ex ten t of deposi t ion.

determine t h e volume and frequency o f f i r e s i d e washes a r e shown i n Table 2-6 (5). I n s u f f i c i e n t da ta were gathered from t h e p l a n t s sampled i n t h i s program t o

determine an average f i r e s i d e waste volume.

p l a n t s sampled. A and K. were 8 and 24 gpd/MW, respec t i ve l y . P l a n t A had been

burn ing gas t h e year p r i o r t o sampling. P l a n t K burned No. 6 f u e l o i l .

The r e s u l t s of a survey conducted f o r t h e EPA t o

Estimated f l ows from two of t h e

Table 2-6

FREQUENCY AND VOLUME OF FIRESIDE WASHES (5)

Annual Data Average Flow .€LEA Stream Freauency eeintS- Coal F i r e s i d e 2 42 2.9

A i r p reheater 12 148 14.5

01 1 F i r e s i d e 6 81 7 A i r p reheater 12 110 17.6

Four f i r e s i d e wastes were sampled du r ing t h e EPRI program.

p l a n t s f i r e d o i l , t h e f o u r t h f i r e d gas and o i l .

du r ing t h e prev ious program (1).

Three o f t h e f o u r

A c o a l - f i r e d p l a n t was sampled

The r e s u l t s o f analyses performed on f i r e s i d e

2-16

waste streams a re shown i n Table 2-7. The p r e d m i n a n t contaminants i n t h e wastes

a r e i ron, magnesium, n i c k e l . s u l f a t e , vanadium, and zinc. Some u t i l i t i e s use a

s o l u t i o n o f soda ash d u r i n g t h e e a r l y stages o f washing t o c o n t r o l pH. The P l a n t

T analyses show t h e d i f fe rences i n waste composi t ion between t h e e a r l y and l a t e

stages of a c lean ing episode.

concentrat ions, and, t h e r e f o r e i s n o t c l a s s i f i e d as a RCRA hazardous waste

according t o t h e t o x i c i t y c h a r a c t e r i s t i c . Several s t a t e s have a d d i t i o n a l

c r i t e r i a t h a t may inc lude metals n o t on t h e RCRA l i s t f o r EP t o x i c i t y .

example, t h e l e v e l s of n i c k e l and vanadium i n some of t h e f i r e s i d e wastes

analyzed exceed t h e t o x i c i t y l e v e l s i n C a l i f o r n i a Department o f Hea l th Serv ices

s t a t e regu la t i ons . (See Sec t ion 3 o f t h i s manual f o r a d iscuss ion o f C a l i f o r n i a

s t a t e regu la t ions . )

None of these waste streams exceeds EP t o x i c metal

For

The composi t ions o f o i l -genera ted f i r e s i d e wastes determined i n a p rev ious study

(1) were s i m i l a r t o those shown i n Table 2-7. I n t h e e a r l i e r study, coa l b o i l e r

f i r e s i d e wastes were found t o have s i g n i f i c a n t l y lower l e v e l s o f d i sso l ved

metals. Calcium, magnesium, and t h e o the r elements common t o f l y ash were t h e

major species i n t h e f i r e s i d e wastes from c o a l - f i r e d b o i l e r s .

Cur ren t discharge requirements f o r f i r e s i d e wastes a r e s p e c i f i e d i n t h e Federal

Reg is te r (U). These wastes, i f generated from c lean ing us ing added chemicals.

a r e considered t o be chemical metal c lean ing wastes, and a re governed by t h e

f o l l o w i n g discharge c r i t e r i a :

0 6.0 < pH (9.0;

0 T o t a l suspended s o l i d s (30 mg/L;

O i l and grease (20 mg/L; and

0 I r o n and copper il mg/L each.

The Best A v a i l a b l e Technology (BAT) f o r these wastes i s physical /chemical t r e a t -

ment us ing l i m e p r e c i p i t a t i o n (EL). A l l of t h e o i l - f i r e d power p l a n t s sampled

d u r i n g t h i s program used t h i s method f o r t r e a t i n g f i r e s i d e wastes. I n add i t i on ,

P l a n t D i nco rpo ra ted fe r rous s u l f a t e a d d i t i o n t o remove vanadium pentoxide. The

e f f e c t i v e n e s s of physical /chemical t rea tment f o r f i r e s i d e wastes i s presented i n

Sec t ion 4 along w i t h system costs.

2-17

Table 2-7

FIRESIDE WASTE COMPOSITIONS (mg/L)

P1 ant:

Sample Desc r ip t i on :

Elemental Ana lys i s A1 um i n um Ant i mony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Chromi um Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Zinc

Water Q u a l i t y DH ( u n i t s )

A

F i r e s i d e l t e d r € -

0.66 <0.021 <0.002 0.083 10.001 CO.02 0.004 89 (0.005 0.26 0.12 8.6 0.007 47 0.84

<o . 0002 0.003 5.7 4.4

<0.002 2.9 0.0022

160 10.09 0.14 0.45

6.5 A c i d i t y (as C a m ) 23 A l k a l i n i t y (as CkO,) 35 Ammonia (as N) COD 230 Ch 1 o r i de 130 F1 uor i d e 2.1 N i t r a t e <O.l N i t r i t e (as N ) (0.1 S u l f a t e TDS TOC

560 1040

D K

1 F i r e s i d e A i r preheater B Z t e - _waste--

13 <0.2 <0.002 0.26 (0.01 (0.5 0.027

0.32 0.79 0.63 87 (0.002

950 3.6 0.0003 1.1

89 <0.5 <o ,002 13 0.016

700 1

180 4.3

270

3.3 480 (1

5 67

0.28 25

0.22 6400 8900

3

2.8 <o .02 (0.002 0.061 (0.001 0.2 0.017

0.21 0.22 0.33

0.082 0,008 1.1

<o .0002 0.036 6.5 8.8

<0.002 0.49 0.019

10

36

420 <o .09 6.8 0.71

3.9 170 (1

(5 35 0 0.21 10 (0.02

990 2000

4

T

2 F i r e s i d e W +16 hours

21 (0.05 0.31 0.087

(0.002 0.016

0.012 <0.001

0.2 <0.002

0.53 (0.005 5.4 (0.006 7.1 0.012

0.051 0.008

1.3 0.002 <0.0002 <0.0002 0.074 0.43 0.59 0.032

10.002 <0.002 6.1 0.98 0.022 <0.002

5790 75 0 0.27 (0.09 4.7 19 25 0.007

(0.5 0.29

381 14

513 0.52

2710 17

335 5.5

10.1 110 1400

18 13 1.2 2 0.06

340 2200

3

' U n f i l t e r e d samplc, f i l t e r e d sample ana lys i s was e s s e n t i a l l y i d e n t i c a l t o u n f i 1 tered.

2Samples taken one and s i x teen hours i n t o wash episode.

2-18

If t h e f i r e s i d e i s cleaned o n l y w i t h water, t h e waste i s cons idered nonchemical

metal c l e a n i n g waste. The EPA has n o t e s t a b l i s h e d d ischarge requirements f o r

t h i s waste a t t h i s t ime.

Coponding w i t h h i g h volume wastes i s an acceptable t rea tment method a t c o a l - f i r e d

s t a t i o n s .

agents, successfu l t rea tment i s e a s i e r t o o b t a i n than w i t h some b o i l e r chemical

c l e a n i n g wastes. No coal generated f i r e s i d e washes were sampled i n t h i s program.

Since t h e waste stream does n o t c o n t a i n c h e l a t i n g o r complexing

BOILER CHEMICAL CLEANING WASTES

The chemical composit ions o f b o i l e r chemical c l e a n i n g wastes (BCCW) a r e d i f f e r e n t

from most o t h e r wastes generated a t power p lan ts .

p r i m a r i l y c o n t a i n t h e elements p resent i n ash hand l ing and FGD system wastes as

major spec ies (?.e., calcium. magnesium, sodium, carbonate. and s u l f a t e ) . BCCW,

however, c o n t a i n h i g h concent ra t ions o f heavy metals, p r i m a r i l y i r o n and copper,

and i n o r g a n i c o r o rgan ic s o l v e n t s n o t commonly p resent i n power p l a n t l i q u i d

wastes. Much of t h e developmental work on t rea tment of these types o f wastes has

been conducted i n t h e metal f i n i s h i n g i n d u s t r y f o r streams such as p i c k l e

l i q u o r s . p l a t i n g baths, and e t c h i n g so lu t ions .

Most low volume wastes

Yaste Sou r c e

Over t i m e , even w i t h p roper b o i l e r c y c l e water chemist ry c o n t r o l , t h e i n t e r n a l

sur faces o f b o i l e r tubes c o l l e c t deposi ts . These depos i ts increase t h e

r e s i s t a n c e t o heat t r a n s f e r from t h e h o t combustion gases t o t h e water and steam

i n s i d e t h e tubes, which reduces b o i l e r e f f i c i e n c y . I n extreme cases, depos i ts

r e s t r i c t t h e f low o f water s u f f i c i e n t l y t o cause overheat ing and subsequent

f a i l u r e o f t h e b o i l e r tubes.

B o i l e r c l e a n i n g and t h e mechanisms o f depos i t format ion a r e discussed i n d e t a i l

i n a recent EPRI p u b l i c a t i o n (U). formed by t h e r e a c t i o n of elemental i r o n and steam.

immediately a f t e r a chemical c l e a n i n g and cont inue t o grow s lowly throughout t h e

opera t iona l c y c l e of a b o i l e r . The r e s u l t i n g f i l m prevents excess ive m e t a l l i c

i r o n cor ros ion . Other contaminat ion i s caused by leakage i n t o t h e water system

(e.g., from condenser tube leaks) , poor feedwater treatment, and contaminat ion

d u r i n g outages. Since no means c u r r e n t l y e x i s t t o e f f e c t i v e l y p revent depos i ts

from forming, it i s necessary t o c lean t h e tube sur faces p e r i o d i c a l l y .

I n - s i t u depos i ts of magnet i te (Fe304) a r e

These dense depos i ts form

2-19

S e l e c t i o n of c l e a n i n g agents depends on t h e type o f depos i ts t o be removed,

b o i l e r t y p e and meta l lu rgy , and c l e a n i n g costs .

conducted t o h e l p de f ine t rea tment requirements.

commonly used. I n h i b i t e d h y d r o c h l o r i c a c i d i s t h e most p r e v a l e n t s o l v e n t f o r

drum type b o i l e r s o p e r a t i n g over 1800 p s i UD. before t h e h y d r o c h l o r i c a c i d i f copper depos i ts a r e heavy. Ethylenediamine

t e t r a a c e t i c a c i d (EDTA) i s t h e most cmmonly used organ ic so lvent . Both EDTA and

ammoniated c i t r i c a c i d can remove i ron and copper deposi ts . HydroxyaceticJform4c

a c i d (HAF) i s t h e most popular s o l v e n t f o r once-through b o i l e r s . These u n i t s

t y p i c a l l y have s t a i n l e s s s t e e l tubes t h a t cannot t o l e r a t e c l e a n i n g w i t h

h y d r o c h l o r i c ac id .

Laboratory t e s t s are u s u a l l y

F i v e types o f s o l v e n t s a r e

Ammonium bromate i s o f t e n used

v of GeneratiQn

The EPRI manual on chemical c l e a n i n g c o n t a i n s t h e r e s u l t s of a survey conducted

t o i d e n t i f y b o i l e r chemical c l e a n i n g waste p r a c t i c e s U). The r e s u l t s o f t h a t

survey are reproduced i n Table 2-8. These r e s u l t s show a range o f two t o f i v e

years between c leaning5 f o r h i g h e r pressure b o i l e r s t y p i c a l l y used i n t h e

e l e c t r i c u t i 1 i t y i n d u s t r y .

Table 2-8

SURVEY OF BOILER CHEMICAL CLEANING FREQUENCY (l.J.1

Years betwee n chemical c l e Boi 1 e r ty e W e r o f un i ts h avarssa w

Once-th rough Drum type: Over 1800 p s i 1201-1800 p s i 500-1200 p s i

150

467 3 15 228

0.5 2.66 5

1 1 3

3.95 10 4.96 20

10.18 30

2-20

The volume of BCCW wastes produced d u r i n g a c lean ing episode depends on t h e

b o i l e r s i z e and t h e number of r i nses requ i red t o remove a l l of t h e so lvent .

Based on l i m i t e d i n fo rma t ion gathered from p l a n t s sampled d u r i n g t h i s program, an

average b o i l e r volume i s approximately 125 g a l l o n s p e r MW o f genera t ing capac i ty .

B o i l e r volumes f o r these p l a n t s a r e l i s t e d i n Table 2-9. The volume f o r u n i t 3 of P l a n t I i s lower than t h e o t h e r un i t s ; it has a s u p e r c r i t i c a l , once-through

b o i l e r .

--mtiL B G H I, U n i t 1 I, U n i t 3 J L

Table 2-9

BOILER VOLUMES FOR BOILER CHEMICAL CLEANING WASTE

B o i l e r U n i t U n i t Vol u m Capaci ty Volume 0 M 0 30,000 30,000

35.000 83.000 40,000

3 00 100 254 118 35 0 143 350 147 65 0 54 145 111 317 126

€ka o i l o i 1 coa l coa l coa l coa l o i l

One r i n s e i s t y p i c a l l y used f o r EDTA, c i t r a t e , HAF, and ammorlium bromate so lu -

t i o n s .

removal o f t h e c h l o r i d e ion .

f rom one c l e a n i n g episode may be several hundred thousand g a l l o n s a t l a r g e power

p lan ts . On an annual ized basis, t h i s volume represents o n l y a few ga l l ons per

minute; however, i n p rac t i ce , t h e volume 1s generated over a pe r iod of several

hours. producing f lows on t h e o rde r o f hundreds of ga l l ons per minute.

HC1 s o l u t i o n s a r e u s u a l l y r i nsed t h r e e o r f o u r t imes t o ensure complete

Based on these values, t h e BCO/ r e q u i r i n g t rea tment

!2bhemical Composit ions

The chemical composi t ions of 17 BCCW samples a r e presented i n Table 2-10. Four

EDTA, two c i t r a t e , two HAF. s i x HC1, and t h r e e ammonium bromate samples a re

presented. Exc lud ing ammonium bromate, t h e o t h e r four types of waste streams

c o n t a i n i m n a t l e v e l s o f 2,000 t o 10,000 mg/L.

p r e v a l e n t metal i n these four wastes, a t concen t ra t i ons up t o 300 mg/L. The

copper concen t ra t i on i n t h e P l a n t C ammonium bromate sample was analyzed a t 1,000

mg/L. Nickel , z inc , and vanadium a r e p resen t i n several of t h e wastes a t lower

Copper i s t h e second most

2-21

Table 2-10

BOILER CHEMICAL CLEANING WASTE COMPOSITIONS (mg/L)

P1 ant: AL J L U E P

Sample D e s c r i p t i o n : EDTA LDlL LELA Wu&i €&r.c&e

E l e m n t a1 Ana lys is Aluminum Antimony Arsenic Barium B e r y l 1 i um Boron Cadmium Cal c i um ChromIum Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nicke l Pot ass i um Selenium S i l i c o n S i l v e r Sodium Thal 1 i um Vanadium Zinc

3.6 15 18 (5 11 12 0.089 0.72 I. .3 0.74 (2.1 0.77 0.21 0.043 0.36 0.4 0.031 0.17 0.34

(0.001 0.16 0.061

0.55

0.41 1.5

240

150 1.1

66 1.8

0.2 8.3

<0.0002

7.3 (0 .002 7.4 0.012

1100 (0.09 12

1.4

0.2 0.65 (0.1 (0.1 19 (5 0.21 0.78 5.6 140 2.4 7.7 0.02 0.89

<0.6 1.8 280 320

5430 7000

(3 23 5 1 42 CO.0002 0.0004

0.024 1.8

0.71 2.4 1.4 160

(0 .5 (0.5 <0.002 <0.002 6.8 17 0.031 0.057

1660 150 (0.9 10.9 (0.3 (0.3 3.3 64

1.3 1.1 0.32 (0.1 (0.1 (0.1 (5 (5 80 (0.2 0.19 (0.2 c5 32 26 4.7 3.4 5.7 3 0.6 1.2 0.95

120 220 3.8 65 80 2270 6950

23 1.6 0.19 27 15 7.9 32 16 47

0.0012 <0.0002 <0.0002 1 2.2 1.1

15 13 4.9 9.9 6.8 (0.05

(0.002 <0.002 t0.002 14 8.5 (0.02 0.029 0.37 (0.02

0.43 (9 0.41 0.28 13 0.29

1790 1800 2110

60 61 2.7

Water Q u a l i t y pH ( u n i t s ) 6.7 9.6 10.3 6.4 9.8 9.8 A c i d i t y (as CaCO ) 300 110 (10 (10 (10 < l o A l k a l i n i t y ( a s Ca303) 440 17000 19000 11000 19000 21000 Ammonia (as N) 520 6600 7560 6300 7380 8410 COD 6200 15000 32000 40000 14000 15000 Chl o r i de 280 60 (10 (10 F1 uor i de 2.3 0.19 0.67 1.9 0.06 620 N i t r a t e (0.1 20 120 11 N i t r i t e (as N) 1.01 840 0.21 800 1.2 370 S u l f a t e 2100 350 23 (20 TDS 9400 29000 43000 17000 25000 TOC 2500 16000 23000 20500 6900 7050

'D i lu ted about 1 : l O w i t h r inses.

2-22

P1 ant:

Sample Oescr i p t i o n :

Elemental Ana lys is Aluminum Antimony Arsen ic Barium B e r y l 1 i um Boron Cadmium Cal c i um Chromium Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nicke l Potassium Selenium Si1 i c o n S i l v e r Sodium Thal 1 i um Vanadium Z i n c

Table 2-10 (cont inued)

BOILER CHEMICAL CLEANING WASTE COMPOSITIONS (mg/L)

F

&

2.6 0.69

10.002 0.097 (0.01 1.3 0.19 3.1 3.6 0.06 0.13 0.91

0.88 1.4 4.7 0.076 1.6 0.031 (0.5 co.002 2.7 0.11

795

22 (0.9 0.27 0.23

Water Q u a l i t y pH ( u n i t s ) 3.8 A c i d i t y (as CaC03) 1800 A1 k a l i n i t y

COO 1500 C h l o r i d e 13

(as CaC03) (1

F1 u o r i de 0.15 N i t r a t e (10 N i t r i t e (as N) S u l f a t e 19 TOS 2300 TOC 1000

U

-HAEL

(5 2.8 0,007 0.16 (0.1 (5 (0.2 (5 17 0.27 0.62 0.1

0.3 6000

B

L

25 0.5

<0.002 0.47 (0.1 12 0.78 29 6 0.47 1.5

180 4140

0.51

C

a

15 10 0.015 1.6 (0.1 (5 0.24 8.8 8.3 0.51 1

290 5100

4.2

G H

(5 29 5.6 0.89 0.004 0.007 1 2.6 (0.1 10.1 6.2 18 0.18 0.019 74 27 3.5 5.7 0.24 2.4 1.6 0.78

320 10.5 5900 6960

1.6 0.33 4.2 14 3.6 42 (3 38 27 37 31 52 0.0004 0.@003 0.0005 (0. 0002 13 0.45 0.1 0.72 0.43 6.2 26 410 210 180 (5 (0.5 (5 (5 <O .5 10.002 <0.002 <0.002 <0.002 <0.002 13 (0.2 (3 (9 1.3 3.8

3.1 43000

(1 25000

(1 1500 50

100 9600 15000

15 27

390 130 0.098 0.11

(0.9 (9 0.094 (0.3 30 240

(1 (1 8000 7400 33000 43000 2100 19 (10 (0.02 0.01 50 34

12000 24000 890 1400

22 16

160 190 0.17 0.001

(9 (0.9 (0.3 (0.3 30 100

1.5 59000

(1 340

38000 2300 (10

(0.02 26

18600 110

- 2 0 i l u t e d about 1:5 w i t h r i n s e s .

2-23

Table 2-10 (cont inued)

BOILER CHEMICAL CLEANING WASTE COMPOSITIONS (mg/L)

P lan t :

Sample Descr ip t ion :

Elemental Ana lys is A1 uminum Antimony Arsenic Barium B e r y l 1 i um Boron Cadmium Cal c i um Ch r o m i urn Chrmium V I Cobal t Copper I r o n Lead Magnes i urn Manganese Mercury Mol ybden urn N icke l Potassium Selenium S i1 i con S i l v e r Sodium Thal 1 i um Vanadium Z inc

Water Q u a l i t y pH ( u n i t s ) A c i d i t y (as CaCO ) A1 ka l i n i t y (as Cb03) Ammonia (as N) coo Ch lor ide F l u o r i d e N i t r a t e N i t r i t e (as N ) S u l f a t e TDS TOC

1-3

HC1

36 0.91 0.12 0.87 (0.1 22

13 0.13

6.4 0.2 0.83

290 7060

0.008 A . 5

1-1

HC1

33 1.4 0.011 0.31 (0.1 22 0.066 3 . 1

1.1 0.64 1.7

35

10500

C

Bromate

(0.5 (0 .2 <0.002 0.015 (0.01 (0.5 0.021 0.53 (0.05

10.06 1050 87

G

Bromate

(5 5.8

<0.002 (0.1 <0.1 (5 0.006 6.3 0.5

(0.6

(0.8 450

H

Bromate

(0.5 (0.2 (0.002 0.022 (0.01 (0.5

(0.5 (0.05

(0.06

(0.08

0.007

330

0.17 <0.002 0.016 . .. 5.4 2.2 5.4 1

32 58 (0.01 (0.1 (0.01 0.0003 0.0008 <0.0002 <0.0002 1.1 4 3.4

<0.002 25 0.2

360 (0.9 0.32

170

1.0 76000

(1

83 00 48000 3400 <lo

390 14000 1800

8.5 0.058 7.4 2.3

(0 .5 (0.5 (0.002 co.002 32 0.32 0.044 (0.02

3 90 200 co.9 (0.9 0.5 10.03 0.56 7.9

1.1 10.4 52000 (10

Cl 15000 6.5 3840

3400 2900

2100 15 (10 (10

0.57 53 0

14000 2600 270 1

0.59 0.031 1.5 0.098 (5 2.1 (0.002 <0.002 3.2 (0.2 0.26 0.069

190 320 (9 (0.9 (0.3 (0.03 3 3.1

10.8 (10

13000 3980 160 310

(2

( 2 1200

4

0.08

0.2

2-24

concentrat ions. The ac tua l waste composit ion i s dependent upon several impor tan t

f a c t o r s which were n o t c o r r e l a t e d i n t h i s document. They inc lude t h e b o i l e r

meta l lurgy, t ime between chemical cleaning, l eng th o f c leaning. and p u r i t y o f t h e

so lvent . A l l o f these fac to rs a f f e c t t h e waste composit ion t o sane extent. The

reader i s r e f e r r e d t o t h e EPRI manual o f b o i l e r c lean ing f o r f u r t h e r i n fo rma t ion

(11).

Of t h e s i x t e e n concentrated BCCW samples, n ine may be RCRA hazardous because of

EP t o x i c i t y c h a r a c t e r i s t i c s . One EDTA waste, one c i t r a t e waste, one HAF waste,

and f o u r HC1 wastes tes ted as having t o t a l chromium concent ra t ions above t h e

regu la to ry l i m i t o f 5 mg/L. One EDTA waste t e s t e d as hav ing a l ead va lue above

t h e l i m i t of 5 mg/L. The s i x HC1 samples might a l s o be c l a s s i f i e d as RCRA

hazardous, cor ros ive , if t h e pH were n o t ra i sed above 2 i n an elementary

n e u t r a l i z a t i o n u n i t . The ana lys i s i n Table 2-10 shows t h a t chromium i s present

predominantly i n t h e t r i v a l e n t s ta te .

measured. Fu r the r d iscuss ion of t h i s issue i s presented i n Sec t ion 3.

No hexavalent l e v e l s above 5 mg/L were

Each o f t h e wastes has spec ia l c h a r a c t e r i s t i c s based on t h e so l ven t fo rmula t ion .

The EDTA streams con ta in high l e v e l s o f ammonia, which a t pH l e v e l s o f 8 t o 11

complex w i t h copper. Sodium n i t r i t e i s a l s o added t o t h e s o l u t i o n i n some

instances t o reduce o x i d a t i o n reac t i ons i n t h e b o i l e r . EDTA. c i t r a t e , and HAF

a l l have h igh TOC and COD values because o f t h e i r o rgan ic base. The HAF solu-

t i o n s con ta in very low l e v e l s of copper, r e f l e c t i n g t h e i r use i n once through

u n i t s where few copper components a re employed.

very low I n pH, r e f l e c t i n g an i n i t i a l HC1 concent ra t ion o f about f i v e weight

percent. Z inc and n i c k e l l e v e l s a r e a l s o somewhat h i g h e r i n t h e HC1 wastes than

t h e other, more a l k a l i n e so lu t i ons . Ammonium b i f l u o r i d e , th iourea , Cutain, and

Rodine a re a d d i t i v e s used t o prevent t h e p l a t i n g of s o l u b i l i z e d copper on c lean

metal surfaces. The presence of these i n h i b i t o r s i n hyd roch lo r i c a c i d wastes i s

i n d i c a t e d by h i g h TOC concentrat ions.

e x c l u s i v e l y fo r removing copper ox ide deposits.

d i s s o l v e t h e deposits, w h i l e t h e ammonia forms c u p r i c tetraamine, a very s t a b l e

i o n a t a l k a l i n e pHs.

The hyd roch lo r i c a c i d d ra ins a r e

Ammonium bromate s o l u t i o n s a re used

Sodium bromate i s used t o

Table 2-11 presents analyses of seven r i nses from b o i l e r chemical c lean ing

wastes. The f i r s t r i n s e a f t e r t h e s o l v e n t has been dra ined o f t e n conta ins l e v e l s

o f i r o n and copper g rea te r than 1 mg/L, and 5 t o 10 percent o f t h e so lvent .

2-25

P1 ant:

Sample Oescr i p t ion :

Elemental Ana lys is A1 urn i n um Antimony Arsenic Barium B e r y l 11 um Boron Cadmi um Calcium Chromium Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Zinc

Water Qual i t y pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C k 0 3 ) COO Ch lor ide F l u o r i d e N i t r a t e N i t r i t e (as N) Su l fa te TOS

Table 2-11

BOILER CLEANING RINSE COMPOSITIONS (mg/L)

B

HC1 _BII15k

0.48 0.077

<0.002 0.051

(0.001 (0.05 0.002

21 0.045 0.013 1.7

86 0.7 5 0.9 0.0003 0.007 0.25 2.4

co.002 2.2 0.0038

13 (0.09 (0.003 0.14

P

C i t r a t e -Binsk

1.2 0.15 0.018 0.097

(0.01 4 0.04 6.3 0.77 0.09 8.5

(0.002 0.91 3.4

<0.0002 0.19 0.49

(0.05 (0.002 1.2

(0.02 85 (0.09 0.03 0.49

520

9.3 (10

1050

24 150 (1 12 (5

1700

U

EDTA _BFas8

(0.05 0.032 0.014 0.005 . ~ ~~

0.004 (0.05 (0.002 21

0.11 0.023 0.94

0.46 145

4.1 1.3

<o . 0002 0.098 0.64 1.3

<0.002 0.45

<0.002 25 (0.09 0.003 1.6

9.1 (10 530

1200 6 0.7

30 1.4

20 1400 460 TCC

2-26

Plan t :

Sample Desc r ip t l on :

Elemental Ana lys i s A1 umi num Antimony Arsenic Barium Bery l1 i um Boron Cadmium Cal c i um Chromium Chrmium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Pot ass1 um Selenium S i l i c o n S i l v e r Sod i um Thal 1 i um Vanadium Zinc

Water Q u a l i t y pH ( u n i t s ) A c i d i t y (as CaCO ) A1 k a l i n i t y ( a s C a b 3 ) coo Ch lo r ide F l u o r i d e N i t r a t e N i t r i t e (as N) S u l f a t e TDS TOC

Table 2-11 (cont inued)

BOILER CLEANING RINSE COMPOSITIONS

B

Soda ash Rinse

0.51 (0.02 <0.002 0.019

(0.001 (0.05 0.022 0.64

(0.005

(0.006 0.39 4.6 0.64

(0.03 0.01 (0 .0002 0.022

(0.003 1.9

(0.02 0.94 0.011

2200 (0.09 (0 .003

0.09

(mg/L)

G

Water -Ehs.e-

<0.05 0.075 0.004 0.006

(0.001 0.23 0.007

0.011

(0.006 0.31 0.14

<0.002 6.2 0.004

0.033 0.031 3.2

(0.002 6.7 0.0063

18

35 (0.09 0.009 0.006

G

Hydrazine Au@s%-

(0.5 (0.2

(0.01 (0.01 (0.5 0.041 6.9 0.07 0.064

(0.06 0.98

<0.002 0.5 0.86

0.49 3

(0.5 (0 .002 1.1 0.028

0.015

120

1900 (0.9 (0.03 0.11

i

Phosphate Rinse

0.85 c0.02 0.01 0.009

(0.001 c0.05 (0.002 0.17 0.028 0.007

(0.006 0.29 0.24

(0.08 (0.03 (0.001 <0.0002 0.018

(0.003 0.34

(0.002 2.9

co.002

(0.09 1530

0.012 0.013

9.4 (10

2800 480 11

1.3 (2 (0.02 10

5600 53

2-27

Disoosal P r a c t i c e s

Cur ren t federa l d ischarge r e g u l a t i o n s f o r BCCW a r e s p e c i f i e d by t h e U.S.

Environmental P r o t e c t i o n Agency (EPA) (U). EPA as a metal c l e a n i n g waste and must meet t h e f o l l o w i n g requirements p r i o r t o

d ischarge under t h e NPDES program:

Th is stream i s r e f e r r e d t o by t h e

6 <pH (9;

e T o t a l suspended s o l i d s (30 mg/L;

O i l and grease- (20 mg/L; and

e I r o n and copper- cl mg/L each.

F u r t h e r d e t a i l s on r e g u l a t i o n s associated w i t h t h i s and o t h e r wastes a r e

conta ined i n Sec t ion 3.

The Best A v a i l a b l e Technology (BAT) de f ined by EPA f o r these wastes i s

phys ica l /chemical t rea tment us ing l i m e p r e c i p i t a t i o n (I). The u t i l i t y s i t e s

sampled used a v a r i e t y of t rea tment techniques f o r these wastes. Table 2-12 presents t h e d i s p o s i t i o n of t h e sampled waste streams.

t reatn lent i s t h e most f requent ly p r a c t i c e d technique, fo l lowed by coponding w i t h

f l y ash. As can be seen, t h e organ ic c lean ing s o l u t i o n s (EDTA and c i t r a t e ) a r e

the on ly wastes t r e a t e d by d i r e c t evaporat ion i n t h e b o i l e r .

Physical/chemical

Table 2-12

TREATWENT VETHODS CBSERVED FOR BOILER CHEMICAL CLEANING WASTE SAMPLES

B o i l e r Chenlical Cleaning

Waste Tvoe

EDTA C i t r a t e tiAF HC1 Ammonium bromate

Number o f 0-s

Evaporat ion P h v s i c a l K h i n B o i l e r CoDondlna

1 - 2 3 2

The performance e f fec t i veness and c o s t s of each of these processes i s discussed

i n Sec t ion 4 .

2-28

COOLING TOWER BASIN SLUDGE

A i rborne s o i l and dust and system debr is can be scrubbed from t h e a i r by t h e

c o o l i n g water d u r i n g c o o l i n g tower operat ion. T h i s m a t e r i a l . along w i t h

suspended s o l i d s i n t h e makeup water, c o l l e c t s i n t h e tower bas in and requ i res

i n f r e q u e n t d isposal . A p r i o r low volume waste survey determined t h a t t h e sludge

was ronioved over a frequency o f one t o f i v e years. Three samples were analyzed

and found t o c o n t a i n l a r g e f r a c t i o n s o f aluminum, calcium, i ron . and presumably

s i l i c a (1). wastes p r i o r t o l a n d f i l l i n g .

The waste was e i t h e r l a n d f i l l e d separa te ly o r mixed w i t h h igh volume

TREATMENT SLUDGES AND BRINES

Waste S ource

Sludges a r e produced from l i m e s o f t e n i n g and c l a r i f i c a t i o n o f raw p l a n t makeup

water; however, because raw water seldom conta ins de tec tab le l e v e l s of t o x i c

metals, these sludges a r e n o t t y p i c a l l y of concern under RCRA. The sludges t h a t

a r e o f g rea ter concern a r e those generated d u r i n g phys ica l /chemical t rea tment o f

v a r i o u s p l a n t waste streams.

Low volume wastes may be t r e a t e d i n d i v i d u a l l y o r m y be combined i n an

e q u a l i z a t i o n bas in p r i o r t o t reatment .

t rea tment i s g e n e r a l l y d i c t a t e d by t h e c h a r a c t e r i s t i c s of t h e low volume wastes

and t h e d ischarge requlrements f o r s p e c i f i c streams. Metal c l e a n i n g wastes

( b o i l e r chemlcal c l e a n i n g wastes and f i r e s i d e wastes) must meet more s t r i n g e n t

d ischarge c r i t e r i a than o t h e r low volume wastes, such as demineralizer

regenerant. dra ins, o r b o i l e r blowdown. As a r e s u l t , metal c l e a n i n g wastes a r e

o f t e n t r e a t e d separate ly .

The choice o f separate o r combined

Treatment of l a r g e r volume wastes a l s o r e s u l t s i n t h e produc t ion of sludges o r

b r ines .

s i o n evapora t ion a r e examples of h igh volume waste t reatments t h a t produce

sludges and br ines .

streams, t h e sludges from these processes a r e considered low volume wastes f o r

t h e purposes of t h i s manual.

Sidestream s o f t e n i n g of r e c i r c u l a t i n g c o o l i n g water and vapor compres-

Although they a r e t h e r e s u l t of t r e a t i n g l a r g e volume waste

b a u e n c v of Gene r a t i o n

Sludge o r b r i n e i s generated cont inuous ly when makeup water treatment, sidestream

sof ten ing, or vapor compression evaporat ion t rea tment i s requfred. Sludges from

2-29

t reatment o f b o i l e r chemical c lean ing wastes a r e produced a t r e l a t i v e l y

i n f r e q u e n t i n t e r v a l s .

f r a n b o i l e r c leanings annually, even though t h e l i q u i d c lean ing wastes a r e

generated and t r e a t e d several t imes a year.

t reatment i s i n s u f f i c i e n t t o j u s t i f y more frequent ope ra t i on of t h e dewater ing

equipment.

One u t i l i t y sampled d u r i n g t h i s program processes sludges

The sludge volume produced p e r

The sludge volumes produced a re dependent on stream f l ow rates, t h e amount of

p r e c i p i t a t e d s o l i d s formed, and t h e t ype of t reatment used.

a re removed from t h e waste stream, they must a l s o be inc luded i n t h e sludge

volume. Table 2-13 presents est imated volumes of sludges and b r i n e s f o r va r ious

low volume wastes.

I f suspended s o l i d s

Chemical ComDosi t i o a

The composi t ion o f sludges and b r ines depends p r i m a r i l y on t h e waste stream and

t h e t reatment procedure used.

employed, t h e sludge w i l l be predominant ly ca lc ium carbonate and metal

hydroxides. w i t h t h e remainder c o n s i s t i n g o f t h e o r i g i n a l suspended s o l i d s

con ten t of t h e waste.

i r o n and copper hydrox ide concentrat ions.

a h igh i n e r t s content, and i r o n and o t h e r metal hydroxides. Streams such as

deminera l izer regenerant. f l o o r and yard drains, and b o i l e r blowdown produce few,

i f any. s o l i d s d u r i n g t reatment .

Where cold-1 ime so f ten ing and c l a r i f i c a t i o n a r e

B o i l e r chemical c lean ing wastes produce sludges w i t h h igh

F i r e s i d e wastes produce a s ludge w i t h

Table 2-14 presents sludge composi t ions f o r e i g h t wastes; these inc lude four

f i r e s i d e and f o u r BCCW.

l i m a t reatment) i r on , magnesium ( u s u a l l y a f u e l o i l a d d i t i v e ) , n i cke l , sodium.

and vanadium as major c o n s t i t u e n t s ( g r e a t e r than one percent by weight ) . BCCU

waste sludges a r e sanewhat s i m i l a r , c o n t a i n i n g copper, s i l i c o n , and sodium a t

h i g h l e v e l s i n a d d i t i o n t o t h e above meta ls (except vanadium).

The f i r e s i d e t reatment sludges c o n t a i n ca lc ium (from

Table 2-15 presents composi t ions o f sludges and b r i n e s r e s u l t i n g from vapor

compresslon evaporat ion (VCE) of p l a n t wastewaters. Three power p l a n t s a r e

represented i n Table 2-15. Samples o f evaporat ion pond l i q u i d were obta ined from

two of t h e p l a n t s where t h e VCE r e j e c t s a r e disposed o f . The composi t ions of t h e

pond l i q u i d s show increased d i sso l ved i o n concentrat ions. Major c o n s t i t u e n t s

i n c l u d e sodium, magnesium. ch lo r i de . and su l fa te . The sludge s o l i d s produced by

vapor compression evaporat ion a r e almost e n t i r e l y ca lc ium based, presumably

2-30

- Coal p i l e runo f f

Oeniineral i z e r regenerant

B o i l e r blowdown

F l o o r 8 yard d r a i n s

F i r e s i d e waste

B o i l e r chml i ca l c lean ing waste

Water or wastewater t reatment sludge

( th i ckened)

Cool ing tower s ludge

P v r i t e s (b i tuminous)

Table 2-13

ESTIMATED VOLUMES OF SLUDGES AND BRINES

Suspended - 200

10

0

50

100

50

75,000

350,000

- (sub b i tumi nous 1 -

E s t i mated Slugge Volume

P o t e n t i a l (yd / m i l l i o n l

0 0.8

v _qsl l lons)

0 0.04

0 0

0 0.2

500 2

10,000 42

0 310

0 1460

- 0.02 cu yd/yr/MW

- 10 cu yd/yr/MW - 0.1 cu yd /y r /W

'Estimated sludge volumes generateg by one m i l l i o n g a l l o n s o f low volume waste. A s e t t l e d bu lk dens i t y of 75 l b / f t was assumed.

2-3 1

Table 2-14

BOILER CLEANING WASTE TREATMENT SLUDGE COMPOSITIONS (CIg/g)

P1 ant:

Sample Descr ip t ion :

Elemental Ana lys is A1 uminum Antimony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Ch rom i um Cobal t Copper I r o n Lead Magnesl um Manganese Molybdenum Nicke l Potassium Selenium S i l i c o n S i l v e r Sod i um T h a l l i um Vanadium Zinc

A

F i r e s i d e Sludae

570

65 110 (1 57 15

12000 27 63 300

32000 76

15000

6.1

4.2 4.2

1000 (4.3 18 4.7 0.41

2400

680 210

(7.8

0

F i r e s i d e Sludae

3200 600 38 370

(50 130

43300 110 120 160

87600 380

74400 590 170

10100 (50 230 1600 16

6400 290

73300 730

1.4

K

F i r e s i d e (ESP) Sludae

2900 47

1830 75 0 <1 <50 50

5380 130 110 160

26800 1400 19000

47 470 3540 (50 <80 1140

4550 (90

26500 260

2.7

T

F i r e s i d e Sludoe

10200 55 340 84 (1 60

52600 180 130 400

72500 181

149300 1320 26

4330 1930 96 83 0

5 090 40

6840 1940

5.2

4.4

2-32

Table 2-14 (cont inued)

BOILER CLEANING WASTE TREATMENT SLUDGE COMPOSITIONS

P l a n t :

Sample D e s c r i p t i o n :

Elemental Ana lys is A1 um i n um A n t i mony Arsenic Bar i urn B e r y l 1 I um Boron Cadnii um Calcium Chrom i urn Coba l t Copper I r o n Lead Magnesium Manganese Molybdenum N i c k e l Potass i um Sel en i um S i l i c o n S i 1 ver Sodium Thal 1 i um Vanadium Z inc

B

BCCW LmLdQe-

8900 200 330

73

510 57

118900 35 0 130

6800 255400

610 6000

65 0 8 1

2700 <50 250

17400 (2

15400 (90

3500 1900

4.1

(c1!3/9)

C

BCCW s.J-uQe

19000 670 870 150 (10

1500 160

7100 1400

150 44600

305500 <800 6300 1600

160 11000 <500 1200 6400

73 88700

1900 620

10700

F

BCCW .Sludae

2590 36

170

(1 610

12 49100

780 27

5 00 200000

36 128000

1100 340 290 150 150

3670

26200 18 63

120

7.9

2.9

G

BCCW Sludoe

3370 88

120 36

220 99

144900 430

62 11900

186900 290

10100 2740

3 1 6880

(50 210

11600 (2

7410 189 280

4440

1.6

2-33

Tab le 2-15

VAWR COMPRESSION EVAWRATION SLUDGES AND BRINES (mg/L)

P l a n t : M N 0 M 0

1

w

3.9

Sample D e s c r i p t i o n : B r i n e

Elemental Ana lys i s A1 um i n um Antimony 0.28 Arsen ic 0.27 Barium 0.1 B e r y l l i u m 0.003 Boron (0.05 Cadmium 0.03 Calcium 452 Chrom i um 0.31 Chrmium V I Coba l t 0.05 Copper 1.4 I r o n 10 Lead (0.002 Magnes i urn 3100 Manganese 1.7 Mercury 0.0003 Molybdenum 1.5 N i c k e l 0.37 Potassium 710 Selenium 0.027 S i l i c o n 69 S i 1 ver 0.03 Sodium 25800 Thal 1 i urn 0.19 Vanad i Lim 0.51 Z inc 4.1

Water Qual i t y Values pH ( u n i t s ) 4.9 A c i d i t y (as CaCO ) 570 A l k a l i n i t y (as C&03) 440 Ammonia (as N) coo 4400 C h l o r i d e 36000 F l u o r i d e 170 N i t r a t e (500 N i t r i t e (as N) 40 S u l f a t e 63000 TDS 104000 TOC 710

1

blouid m B r i n e 1 B r i n e

(0.5 (0.05 0.33 0.036 0.52 0.02 0.14 0.18 0.008 0.001

19 12 (0.02 (0.002

420 620 0.14 (0.005

0.1 0.018 0.33 0.011 2.6 0.34

(0 .002 (0 .002 10900 1510

Pond2 liollFd

4.6 0.22 0.019 0.1 0.02

(0.05 0.04

0.26

3.5 1.8

42 (0.002

396

630 16 1.8 3.1 <0.0002 <0.0002 0.025 0.87 0.039 0.68 0.84 0.28

1000 2 14 (0.002 <0.002 0.68 3.6 0.022 (0 .002

0.54 0.1 0.68 0.14

20 (0.003

14800 2780

7.0 7.2 97 29

240 170

1300 510 3 700 1900

20 15 ~~

0.06 (1 40 0.07

23000 11000 47000 20000 ~

490 230

__ 'Reject from vapor conlpression evapora t ion u n i t .

'Evaporation pond water.

1.3

1.5

0.01

0.12 0.41 4.4

165

99

49300

4.6 5100

15

7400 4100

40 6400

43000 107000

180

0.02

2 Pond blouid

(0.05 0.12 0.14 0.15 0.003

56 0.003

353 0.025

0.047 0.076 0.39

(0.002 3620

1.8 (0 .0002 0.33 0.32

380 0.037

45 <0.002

7110 0.21 0.27 2.2

6.2 140 310

4200 7600

100 (1 3.9

66000 122000

1800

2-34

Table 2-15 (cont inued)

VAPOR COMPRESSION EVAPORATION SLUDGES AND BRINES ( W g )

P l a n t :

Sample D e s c r i p t i o n :

Elemental Ana lys is A 1 um i n um Antimony Arsenic Bar i uni B e r y l 1 i um Boron Cadmium Calcium Ch rom i um Coba l t Copper I r o n Lead Magnesium Manganese Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l i um Vanadium Z inc

N

VCE Sludae

72 <21

(6 169 <0.1

146 10.2

247000 11

33 95 (8

2010

0.75

3.9 0.73 4

292 11

186 1.7

4160 <9

42 5.4

'VCE - vapor compression evapora t ion

0

VCE' S1 udge

705 (20

(6 165 <0.09 51 (0.19

226500 3.5

<0.6 14

418 <8

1840 16 <0.02 0.98

220 <8

3226

1450 <8

55

0.96

3.2

2-35

gypsum and some calc ium carbonate.

impoundments used t o s t o r e o r evaporate t h e VCE b r i n e s .

These sludges c o l l e c t a t t h e bottom of

D isoosa l P r a c t i c e s

Disposal p r a c t i c e s f o r t rea tment sludges and b r i n e s vary accord ing t o r e g u l a t o r y

requirements. Of p a r t i c u l a r concern i s t h e t o x i c i t y c h a r a c t e r i s t i c determined

us ing t h e E x t r a c t i o n Procedure (EP). According t o RCRA, t h e composi t ion o f a

s o l i d o r semi-so l id waste does n o t determine i f it i s t o x i c . The r e s u l t s o f t h e

EP, i n which t h e sludge i s mixed w i t h a l e a c h i n g f l u i d , which i s t h e n analyzed,

determines i f a waste i s t o x i c . L i q u i d wastes ( l e s s than 0.5 percent s o l i d s ) a r e

analyzed d i r e c t l y and compared t o t h e EP t o x i c i t y l i m i t s . These r e g u l a t o r y

issues and t h e r e s u l t s o f t h e EP and o t h e r types o f e x t r a c t i o n s a r e discussed i n

d e t a i l i n Sec t ion 3.

Non-hazardous sludges a r e g e n e r a l l y disposed o f by coponding o r c o l a n d f i l l i n g if

f a c i l i t i e s a r e a v a i l a b l e .

l a n d f i l l s , c o n t r a c t o r s a r e h i r e d t o dispose o f these sludges.

c l a s s i f i e d as hazardous, l a n d f i l l s o r ponds used f o r d isposal must meet RCRA

standards.

A t p l a n t s t h a t do n o t have e i t h e r ash ponds o r

For sludges

Consequently, hazardous s1 udges a r e o f t e n disposed o f by c o n t r a c t o r s .

SANITARY WASTE

San i ta ry wastes a r e produced a t a l l f a c i l i t i e s and a r e n o t unique t o power

s t a t i o n s . Est imated s a n i t a r y sewage f l o w s from i n d u s t r i a l f a c i l i t i e s range from

0 t o 25 g a l l o n s per day per c a p i t a . Disposal or t rea tment of t h i s stream depends

p r i m a r i l y on t h e p r o x i m i t y o f a mun ic ipa l t rea tment p l a n t . If no p u b l i c f a c i l i t y

i s a v a i l a b l e f o r in terconnect ion, small package systems may be purchased and

operated by u t i 1 i t i e s . I n remote regions, s imple systems such as f a c u l t a t i v e

lagoons o r s e p t i c tanks may be used.

sludge can be purchased as complete systems from vendors.

f o r s a n i t a r y waste a r e u s u a l l y s e t by l o c a l r e g u l a t i o n s and vary depending on t h e

f l o w and q u a l i t y of t h e r e c e i v i n g stream.

More advanced systems us ing a c t i v a t e d

E f f l u e n t requirements

WASTE O I L S

Waste o i l s a r e produced a t power p l a n t s by equipment maintenance opera t ions

(e.g., l u b r i c a t i o n o i l s , h y d r a u l i c f l u i d s . e t c . ) and by o i l / w a t e r separa t ion

processes w i t h i n waste t rea tment systems.

determine t h e d isposal requirements f o r these wastes. These standards may

address t h e p o l y c h l o r i n a t e d b iphenyl (PCB) and halogenated hydrocarbon

C u r r e n t l y proposed r e g u l a t i o n s w i l l

2-36

concent ra t ions of some waste o i l s . Waste o i l t rea tment and d isposal i s n o t

discussed f u r t h e r i n t h i s r e p o r t because gu ide l ines regard ing t h e i r r e g u l a t o r y

s t a t u s a r e forthcoming. S p e c i f i c i tems o f concern i n storage, disposal, and

combustion of waste o i l s i n c l u d e PCB and halogenated hydrocarbon concentrat ions.

SUMMARY

Table 2-16 summarizes severa l impor tan t ca tegor ies o f i n f o r m a t i o n about t h e low

volume waste streams discussed i n t h i s sec t ion . The i n f o r m a t i o n presented here

i s general and s p e c i f i c analyses should be performed p r i o r t o s e l e c t i o n of

appropr ia te d isposal op t ions . The r e g u l a t o r y fac to rs t h a t should be considered

i n a s p e c i f i c a n a l y s i s a r e discussed next i n Sec t ion 3.

2-31

N I w m

Tab le 2-16

SUMMARY OF LOW VOLUME WASTE CMPRACTERISTICS

Frequency o f Waste Source Generat ion

P y r i t e s Coal Can be cont inuous

Coal p i l e P rec i p i - Var ies r u n o f f t a t i o n

F l o o r and Pump seals, Continuous yard d r a i n s sumps, c lean-

ing, l a b analyses

Deminer- Raw water Continuous a l i z e r t rea tmen t regenerant

B o i l e r Steam c y c l e Continuous b l owdown con t am i n ants

F i res i de Furnace 1-6 annua l ly c lean ing sur faces

- Vol ume

Var ies s i g n i f i c a n t l y

Var ies s i gni f ican tl y

40 g p d / N

40-100 gpd/FM

150-290 gpd/MW

3-18 gpd/MW

Treatment/ Disposal

Composit ion P rac t i ces

I n e r t s , FeS2 Col andf i 1 1, coponding. 1 and f i 1 1

Can be a c i d i c N e u t r a l i z a t i o n , w i t h h i s h sedimentation, i ron 1 eve1 s

P o t e n t i a l l y O i l skimming, contaminated reuse, coponding, w i t h o i l , sus- discharge pended so l i d s

Var ies from Neu t ra l i za t i on , a c i d i c t o equa l i za t i on , bas i c coponding

High q u a l i t y Reuse, coponding, (<15 mg/L TSS) discharge

High metals. P h y s i c a l / c h m i c a l , suspended cop0 n d i ng so l i d s concen t ra t i on

coponding

' I ' I I ' I

Waste

B o i l e r chec ica l c lean ing

Coo l ing t c s e r bas in sludge

Sludges and t r i n e s

S a n i t a r y waste

Waste O i l s

' I ! I

Tab le 2-16 (cont inued)

SUNbiP,RY OF LW! VGLLINE WASTE CHARACTERISTICS

Source

E o i l e r t u b e i n t e r n a l s

D i r t , dust, d e b r i s

K a t e r and wastewater t rea tment

U t i l i t y personnel

Maintenance opera t ions

Frequency of Generat ion

Once every 2-5 yesrs

Every 1-5 y t a r s

Can be cont inuous

Continuous

I n t e r i x i t t e n t

Volume

125 g a l l o n s per 1%

Var ies

Var ies s i g n i f i c a n t l y

8-25 gpd/ person

Unkcown

. . Comcosit ion

High iron, copper, s c l - veri t l e v e l s

I n e r t s . a1 um- ina-s i1 i c a t e s

Hydrox i de, carbonate, s u l f a t e s a l t s c f c a t i o n s present

Crganic contan i n a n t s

Hydrocartons w i t h p c s s i b l e t r a c e meta ls

Treatment/ G i sposal

P r a c t i c e s

F h y s i c a l / c h m i c a l , copontiins, evapora t ion

L a n d f i l l . coland- fill, coponeing

C o l a n d f i l l . land- f i l l . evapora t ion ponds. c o n t r a c t d isoosa l

Discharge t o FCTW, s e p t i c systems, lagoons

Burnin5, con- t r a c t d isposa l

I ' I

Sect ion 3

ENVIRONMENTAL REGULATION OF LOW VOLUME WASTES

The major f ede ra l environmental regu la t i ons a f f e c t i n g t h e management of low

volume u t i l i t y wastes are t h e Resource Conservation and Recovery Act (RCRA) and

t h e Federal Water P o l l u t i o n Cont ro l Act (FWPCA). RCRA, as enacted i n 1976 and

amended i n 1984. regu la tes t h e storage, t rea tment and d isposal o f s o l i d waste.

It app l i es t o low volume wastes when they a r e d iscarded o r a re no longer used i n

t h e process. As amended i n 1984, RCRA a l s o regu la tes t h e s torage o f hazardous

substances and petroleum i n underground tanks.

Clean Water Act (CWA) of 1977, regu la tes t h e discharge o f i n d u s t r i a l waters t o

surface waters through t h e Nat iona l P o l l u t a n t Discharge E l i m i n a t i o n System

(NPDES). Any d i r e c t discharges o f low volume waste o r t rea tment o f low volume

waste fo r d ischarge a r e governed by NPDES regu la t i ons .

wastes t o p u b l i c l y owned t rea tment works (POW) i s governed by pret reatment

standards.

The FWPCA. as amended by t h e

Discharge o f low volume

The r e s p o n s i b i l i t y f o r admin i s te r i ng p a r t s of t h e federa l RCRA and NPDES

regu la to ry programs has, w i t h U.S. Environmental P r o t e c t i o n Agency (EPA)

approval, been assumed by many s ta tes . I n a d d i t i o n to, o r i n l i e u o f , t h e

federa l programs. most s t a t e s admin is te r wastewater d ischarge and so l id /hazardous

waste regu la to ry programs author ized under s t a t e law.

Th is review i s n o t in tended as a d e f l n i t i v e o r comprehensive d e s c r i p t i o n o f t h e

s o l i d waste r e g u l a t i o n s p o t e n t i a l l y app l i cab le t o management o f low volume

u t i l i t y wastes. It i s a summary o f r e g u l a t i o n s a t t h e time o f t h e r e p o r t and

inc luded as a re ference p o i n t f o r t h e issues be ing addressed and should on ly be

viewed as such. For c u r r e n t r e g u l a t o r y in format ion, t h e reader i s re fe r red t o

p r i n a r y sources such as t h e Federal Rea i s a o r t h e Code o f Federal R e o u l a t i u .

3-1

RESOURCE CONSERVATION AND RECOVERY ACT (RCRA)

As enacted by Congress i n 1916 and amended i n 1984, t h e Resource Conservation and

Recovery Act (RCRA) au thor izes EPA t o e s t a b l i s h a comprehensive program f o r

r e g u l a t i n g t h e generation, t r a n s p o r t a t i o n , treatment, storage, and d isposal of

s o l i d wastes (bo th hazardous and non-hazardous).

Under RCRA, a waste generator r e t a i n s r e s p o n s i b i l i t y f o r t h e hazardous waste

whether it i s disposed o f on s i t e or hauled t o an o f f - s i t e l o c a t i o n by a

cont rac tor . Therefore, l i a b i l i t y as w e l l as c o s t should be considered i n

s e l e c t i n g d isposa l methods. I n recent c o u r t r u l i n g s , a l l generators o f wastes

t rea ted , stored, o r disposed a t o f f - s i t e f a c i l i t i e s have been dec lared l i a b l e f o r

c o s t s o f remed ia t ing environmental damages which r e s u l t from improper treatment,

storage, o r d isposal . - F i g u r e 3-1 presents a dec is ion c h a r t for i d e n t i f y i n g RCRA-regulated hazardous

waste from u t i l i t y low volume wastes.

A m a t e r i a l i s a hazardous waste if it i s l i s t e d as hazardous, o r has t h e

c h a r a c t e r i s t i c s of a hazardous waste, i s discarded, and i s n o t express ly exempt

under RCRA. A "discarded m a t e r i a l " i s any m a t e r i a l which i s :

e Abandoned --disposed of, --burned or inc inerated, o r - -s tored o r t r e a t e d p r i o r t o being abandoned:

e Recycled --used i n a manner c o n s t i t u t i n g d isposal by be ing placed on t h e

--burned f o r energy recovery, --reclaimed, o r --accumulated s p e c u l a t i v e l y :

1 and,

a Accumulated f o r s p e c u l a t i v e sale: o r

e I n h e r e n t l y was te- l i ke as designated by EPA.

I f t h e waste i s t r e a t e d f o r d ischarge under CWA, t h e discharge i t s e l f i s n o t a

s o l i d waste and t h u s i s n o t regu la ted under RCRA: b u t a l l s torage i n impoundments

o r tanks b e f o r e d ischarge i s RCRA-regulated.

3-2

I

I - I I

RCRA r e g u l a t i o n s s p e c i f y t h e methods by which wastes a re c l a s s i f i e d as hazardous.

States, however, may l i s t a d d i t i o n a l wastes as hazardous o r may speci fy d i f f e r e n t

methods which a r e t o be used t o c l a s s i f y wastes as hazardous.

Although some low volume wastes may be considered hazardous according t o RCRA

c l a s s i f i c a t i o n , t h e i r codisposal o r cot reatment w i t h c e r t a i n u t i 1 i t y wastes i s

t e m p o r a r i l y exempt from RCRA regu la t i on .

l e g i s l a t l o n e n a c t i n g RCRA, t h e EPA prov ided an i n t e r i m exc lus ion of f o s s i l fue l

combustion wastes from hazardous waste r e g u l a t i o n s (U). The exc lus ion prov ides

t h a t t h e f o l l o w i n g s o l i d wastes a re n o t hazardous wastes:

As mandated by Congress i n t h e 1976

F l y ash waste, bottom ash waste, s l a g waste. and f l u e gas emission c o n t r o l waste generated p r i m a r i l y from t h e combustion of coal o r other f o s s i l f u e l s .

EPAfs O f f i c e o f S o l i d Waste has i n t e r p r e t e d t h e language o f t h e f o s s i l fue l

combustion waste exc lus ion t o mean t h a t t h e f o l l o w i n g s o l i d wastes a r e n o t

hazardous wastes (B) :

F l y ash, bottom ash, b o i l e r s l a g and f l u e gas emission c o n t r o l wastes r e s u l t i n g from: (1) t h e combustion s o l e l y o f coal , o i l . o r na tu ra l gas, (2) t h e combustion o f any m i x t u r e o f these f o s s i l fue ls , o r (3) t h e combustion o f any m i x t u r e o f coa l and o t h e r fue ls , up t o a 50 percent m i x t u r e o f such o the r fue l s .

Wastes produced i n con junc t i on w i t h t h e combustion of f o s s i l f ue l s , which a re n e c e s s a r i l y associated w i t h t h e product ion of energy, and which t r a d i t i o n a l l y have been, and which a c t u a l l y are, mixed w i t h and codisposed o r co t rea ted w i t h f l y ash. bottom ash, b o i l e r slag, o r f l u e gas emission c o n t r o l wastes from coal combustion.

T h i s p r o v i s i o n includes, b u t i s not l i m i t e d to , t h e f o l l o w i n g wastes:

B o i l e r c l e a n i n g s o l u t i o n s ;

B o i l e r blowdown;

Deminera l izer regenerant;

P y r i t e s ; and

Cool ing tower blowdown.

T h i s exc lus ion from hazardous waste r e g u l a t i o n app l i es o n l y u n t i l such t ime as

EPA s t u d i e s t h e environmental e f f e c t s from disposal of these wastes and deter-

mines how they should be regulated. I n A p r i l 1987. EPA i s scheduled t o produce a

r e p o r t o f i t s f i n d i n g s and recanmendations on f o s s i l f u e l combustion wastes t o

Congress. A t t h a t t ime , a recommendation f o r c o n t i n u a t i o n o r cessat lon o f t h e

3-4

exemption s t a t u s f o r u t i l i t y wastes w i l l be submi t ted by EPA.

low volume wastes which a re codisposed or cot rea ted a re regu la ted as s o l i d

wastes, sub jec t t o RCRA S u b t i t l e D c r i t e r i a ( S u b t i t l e D--State o r Regional S o l i d

Waste P1 ans) and s t a t e r e g u l a t i o n s adopted thereunder.

I n t h e meantime,

I f t h e low volume waste i s sub jec t t o RCRA r e g u l a t i o n and i s n o t express ly

exempted, then it i s c l a s s i f i e d as hazardous o r nonhazardous i n accordance w i t h

Subpart C of 40 CFR P a r t 261. l These r e g u l a t i o n s speci fy t e s t s f o r determin ing

if a waste i s i g n i t a b l e , cor ros ive , reac t i ve , o r E x t r a c t i o n Procedure (EP) t o x i c

by c h a r a c t e r i s t i c .

O f t h e f o u r Subpart C c h a r a c t e r i s t i c s o f hazardous w a s t e - - i g n i t a b i l i t y . reac-

t i v i t y , c o r r o s i v i t y , and t o x i c i t y - - o n l y t h e l a t t e r two usua l l y apply t o power

p l a n t low volume wastes.

t hus are n o n i g n i t a b l e ( i ,e., they have a f l a s h p o i n t o f g rea ter than 14OoF as

measured by EPA methods).

r e g u l a t i o n s (i.e.. they are no t explos ive, they do no t reac t v i o l e n t l y w i t h

water, and they a re n o t capable of generat ing t o x i c gases such as cyanide or s u l f i d e ) .

Most o f t h e streams are aqueous o r inorgan ic s o l i d s and

These streams are a l so no t r e a c t i v e as defined by RCRA

The waste streams r e s u l t i n g from t h e i n t e r n a l c lean ing o f b o i l e r tubes w i t h

i n h i b i t e d hyd roch lo r i c a c i d may be RCRA c o r r o s i v e because o f t h e i r low pH (12). However, these wastes are o f t e n n e u t r a l i z e d i n l i n e o r i n an elementary neu t ra l -

i z a t i o n u n i t .

t rea tment process regu la ted by RCRA if it i s performed t o n e u t r a l i z e wastes which

a re hazardous on ly because they are c o r r o s i v e by c h a r a c t e r i s t i c .

r e s u l t i n g n e u t r a l i z e d wastes RCRA regu la ted subsequent t o t h e i r n e u t r a l i z a t i o n .

Th is type of n e u t r a l i z a t i o n i s n o t considered a hazardous waste

Nor a re the

O f t h e t o t a l number of low volume waste samples t e s t e d du r ing RP2215-1, eleven

may be c l a s s i f i e d as hazardous on t h e bas i s of t h e E x t r a c t i o n Procedure (EP)

t o x i c i t y t e s t . Nine b o i l e r chemical c lean ing wastes, an evaporat ion pond

'A waste i s a l s o a RCRA-regulated hazardous waste i f it l i s t e d on one o f f o u r l i s t s conta ined i n Subpart 0. r e p o r t a re c u r r e n t l y l i s t e d .

None of t h e l o w volume wastes discussed i n t h i s

3-5

l i q u i d sample, and one sample of e l e c t r o s t a t i c p r e c i p i t a t o r (ESP) washwater

sludge fran an o i l - f i r e d p l a n t were p o t e n t i a l l y EP t o x i c .

r e s u l t s o f analyses o f t h e l i q u i d samples f o r EP t o x i c i t y .

waste t e s t e d as exceeding t h e EP t o x i c i t y l i m i t f o r lead; t h e o the r e i g h t had

h i g h chromium l e v e l s .

t h e c r i t e r i a was EP t o x i c due t o t h e presence o f selenium.

Table 3-1 presents t h e

One b o i l e r c lean ing

The one evaporat ion pond b r i n e which t e s t e d as exceeding

Several o f t h e low volume waste samples were sludges: f o r example. sludges from

t h e dredging o f wastewater ho ld ing ponds. fran t rea tmen t systems and from

dewater ing equipment.

t e s t . The r e s u l t s are presented i n Table 3-2, a long w i t h t h e minimum leach

concen t ra t i ons which c l a s s i f y t h e waste as hazardous. For a l l of t h e s ludge

samples tested, t h e EP produced on ly one value above t h e l i m i t f o r t h e e i g h t

regulated metals; cadmium exceeded t h e s t a t u t o r y l i m i t i n an ESP wash sludge from

an o i l - f i r e d p l a n t .

These sludge samples were e x t r a c t e d accord ing t o t h e EP

O f t h e eleven waste samples which exceeded t h e EP t o x i c i t y l eve l s , e i g h t d i d so

because o f t o t a l chranium leve ls . Wastes which exceed these l e v e l s may be

sub jec t t o RCRAls hazardous waste program. There i s , however, a regu la to ry

procedure by which any person, on behal f of an i n d i v i d u a l company o r on an

indust ry-wide basis, may p e t i t i o n EPA t o exempt any waste which exceeds t h e EP

l e v e l s f o r t o t a l chranium fran t h e d e f i n i t i o n of "hazardous waste" and t h e

corresponding regu la to ry c o n t r o l s . I n o rde r t o q u a l i f y f o r t h i s regu la to ry

exclusion. t h e p e t i t i o n e r must demonstrate t h e f o l l o w i n g t h r e e c r i t e r i a regard ing

t h e waste i n quest ion (U.2):

( A ) The chromium i n t h e waste i s e x c l u s i v e l y ( o r n e a r l y e x c l u s i v e l y )

t r i v a l e n t chranium; and

( 6 ) The waste i s generated from an i n d u s t r i a l process which uses t r i v a l e n t

chranium e x c l u s i v e l y ( o r n e a r l y e x c l u s i v e l y ) and t h e process does n o t

generate hexavalent chromium; and

( C ) The waste i s t y p i c a l l y and f requent ly managed i n non-ox id iz ing

environments.

I n a d d i t i o n t o p r o v i d i n g a case-by-case exemption f o r c e r t a i n chromium-containing

wastes, t h e RCRA r e g u l a t i o n s a l s o exempt several i n d u s t r y s p e c i f i c wastes from t h e d e f i n i t i o n of "hazardous waste" because such i n d u s t r i e s use t r i v a l e n t

chranium. as opposed t o hexavalent chromium, i n processing opera t i ons (i.e..

l e a t h e r tanning, T i02 pigment product ion, e tc . ) . I n t h e 1980 preamble t o t h i s

3-6

Class: P1 ant: Sample:

Arsenic Barium Cadmium C hrom i um Chromium V I Lead Mercury Selenium S i l v e r

pH ( u n i t s )

C1 ass: P1 ant: Sample:

Arsen ic Barium Cadmium C hrom i um Chranium V I Lead Mercury Selenium S i l v e r

pH ( u n i t s )

Table 3-1

EP TOXICITY TEST RESULTS FROM LIQUID LOW VOLUME WASTES (mg/L)

B o i l e r Chemical C1 eanina W aste A B C C E

RCRA EDTA HC1 Bromate HC1 C i t r i c w KaSix &d&eAias t !L lYs&..e

5 0.21 <0.002 <0.002 0.015 0.031 100 0.34 0.47 0.015 1.6 1.1

1 0.061 0.78 0.021 0.24 0.19 5 0.55 6 (0.05 8.3 3.4

5 1.1 0.51 0.17 4.2 1.6 0.2 <0.0002 0.0003 <0.0002 0.0005 <0.0002 1 <0.002 <0.002 <o. 002 <0.002 <0.002 5 0.012 0.038 (0.02 0.11 0.37

Z(pH(12.5 6.7 1.8 10.4 1.05 9.15

0.47 0.51 3

RCRA w

5 100

1 5

5 0.2 1 5

e e n F G G G H

Composite Composite Bromate HC1 Bromate (HAF) Waste - Waste -K?&& Y..GLQ J h z k

<0.002 0.097 0.19 3.6 0.06 0.88 0.076

<0.002 0.11

0.008 <0.002 0.004 (0.002 0.17 (0.1 1 0.022 0.15 0.006 0.18 0.007 1.1 0.5 3.5 <0.05 0.12 3 0.24 0.032 <0.002 1.6 0.016

<0.0002 <0.0002 <0.0002 <0.0002 to. 002 <o. 002 <0.002 <o. 002 0.055 0.26 0.17 0.069

2<pH<12.5 3.8 1.5 9.75 1.5 10.8

(Continued)

3-7

Class: P lan t : Sample:

Arsenic Barium Cadmium Chromium Chranium V I Lead Mercury Sel en i um S i l v e r

pH ( u n i t s )

C1 ass: P lan t : Sample:

Arsenic Barium Cadmium Chromi um Chrmium V I Lead Mercury Selenium Si1 ver

pH ( u n i t s )

Table 3-1 (cont inued)

EP TOXICITY RESULTS FROM LOW VOLUME WASTES (mg/L)

RCRA u 5

100 1 5

5 0.2 1 5

ZipH(12.5

RCRA !Aim

5 100

1 5

5 0.2 1 5

2<pH<12.5

B o i l e r C hemical C1 eanino Waste H H I I J

HC1 Neu t ra l i zed HC1 Waste HC1 Waste EDTA K & Q - H ! x J h k - U n i t 1

0.007 (0.002 0.12 0.011 2.6 (0.001 0.07 0.31 0.019 0.002 0.13 0.066 5.7 0.02 6.4 35 2.4 0.064 0.2 1.1 0.33 (0.03 0.008 0.33

<0.0002 0.0039 0.0003 0.0008 <o. 002 <0.002 <0.002 <0.002 0.001 <0.001 0.2 0.044

0.043 0.2 0.21 2.4 0.02 0.024

<0.0002 <0.002 0.031

1.5 12.1 1.01 1.12 9.6

B o i l e r Chemical C1 eanina Waste L P U U

EDTA C i t r a t e EDTA HAF K&.Q -!d.&& lY.3S.b w..&zk

0.36 0.17 0.4 0.007 0.65 0.32 1.3 0.16 0.70 (0.2 7.1 5.7

(0.2 <o. 2 4.7 17 .

0.89 0.027 1.8 0.19 23 0.3 0.0004 <0.0002 0.0012 0.0004

<0.002 <o* 002 <0.002 <0.002 0.057 (0.02 0.029 (0.2

10.3 9.8

(Continued)

3-8

Table 3-1 (cont inued)

EP TOXICITY RESULTS FROM LIQUID LOW VOLUME WASTES (mg/L)

C1 ass: P lan t : Sample:

Arsenic Barium Cadmium Chromi urn Chranium V I Lead Mercury Sel en i um S i l v e r

pH ( u n i t s )

C1 ass: P1 ant: Sample:

Arsen ic Barium Cadmium C h rom i um Chranium V I Lead Mercury Selenium S i l v e r

pH ( u n i t s )

RCRA !JlLii

5 100

1 5

5 0.2 1 5

2<ph<12.5

RCRA w

5 100

1 5

5 0.2 I 5

Z<pH<12.5

Waterside Rinses B B G G

Waste Waste Water Hydrazine Soda Ash 5hZs D r a i n

<o. 002 <0.002 0.004 0.015 0.051 0.019 0.006 (0.01 0.002 0.022 0.007 0.041 0.045 <O. 005 0.011 0.07 0.47 0.06 0.064 0.7 0.64 <o. 002 <0.002 0.0003 <0.0002 0.076

<o. 002 (0.02 <0.002 <0.002 0.0038 0.011 0.0063 0.028

1.8 3.8

Waterside Rinses I P U

C i t r a t e EDTA m RiEEL Rinse

0.01 0.018 0.014 0.009 0.097 0.005

<o. 002 0.04 <0.002 0.028 0.77 0.11 0.007

(0.08 <0.002 0.46 <o. 0002 <0.0002 <0.0002 <0.002 <0.002 <o. 002 <0.002 <0.02 <0.002

9.4 9.3

(Continued)

3-9

C1 ass: P lan t : Sample:

Arsenic Barium Cadmium Chromium Chrcmiurn V I Lead Mercury Sel e n i um S i l v e r

pti ( u n i t s )

Class: P1 ant: Sample:

Arsenic Barium Cadmium Ch ran i um Chromium V I Lead Mercury Sel en i urn S i l v e r

pH ( u n i t s )

Table 3-1 (cont inued)

EP TOXICITY RESULTS FROM LIOUIO LOW VOLUME WASTES (mg/L)

RCRA Limit

5 100

1 5

5 0.2 1 5

21 pH<12.5

RCRA Lir?lf,

5 100

1 5

5 0.2 1 5

2<pH<12.5

F i r e s i d e and Ai r Preh e a t e r Wastewater A n K T T .. - ..

F i r e s i d e F i r e s i d e A i r Preheater F i r e s i d e F i r e s i d e .Jkxt.%- Wa s t e Waste t1 Hr t 1 6 Hrg

<0.002 <0.002 <0.002 <0.002 0.016 0.083 0.26 0.076 0.089 0.09 0.004 0.027 0.011 0.2 <0.002

<O. 005 0.32 <0.005 0.53 <0.005

0.007 (0.002 <0.002 0.051 0.008 t0.0002 0.0003 <0.0002 <0.0002 <0.0002

0.0022 0.016 0.021 0.022 <0.002

6.5 3.1

Coal P i l e Runoff r I J 1

Runoff 5KlQf-f m <o. 002 <0.002 0.006 0.04 0.078 0.043 0.004 <o. 001 0.001 0.005 <0.005 (0.005

<o. 08 <0.002 0.015

<0.002 <0.002 <0.002 0.0003 0.0003 <0.0002

0.0018 0.0023 0.0012

3.1 9.3 8.4

(Cont inued )

3-10

Table 3-1 (cont inued)

EP T O X I C I N RESULTS FRCM LIQUID LOW VOLUME WASTES (mg/L )

Class: Wastewater Br ines P l a n t : M M N 0 0 Sample: RCRA R e j e c t Pond R e j e c t R e j e c t Pond

wl&J&l K & % r ! & . ! u l & J & l W a t e r

Arsenic Barium Cadmium Chromium Chranium V I Lead Mercury Selenium S i 1 ver

5 0.27 0.019 0.52 100 0.1 0.1 0.14

1 0.03 0.04 <0.02 5 0.31 0.26 0.14

5 <0.002 <o. 002 to. 002 0.2 0.0003 0.025 <0.0002 1 0.027 1.5 <0.002 5 0.03 0.01 0.022

0.02 0.18

<0.002 (0.005

10.002 <0.0002 <0.002 <0.002

0.14 0.15 0.003 0.025

<0.002 <0.0002 0.037

<0.002

pH ( u n i t s ) ZcpH(12.5 4.9 4.6 4.9 4.6

3-11

Table 3-2

EP TOXICITY TEST RESULTS FOR LOW VOLUME WASTE SLUDGES (mg/L)

Class: P lan t :

Arsenic Barium Cadmium Chromium Lead Mercury Selenium S i l v e r

C1 ass: P lan t :

Arsenic Barium Cadmium Chromium Lead Mercury Selenium S i l v e r

Class: P l a n t :

Arsenic Barium Cadmium Chromium Lead Mercury Sel e n i urn S i l v e r

F I r e s i d e Wash U a e B m a L . M t A l L L

5 <0.002 <0.002 <0.002

1 0.18 0.48 co.002 5 0.036 0.053 0.014 5 <0.002 <0.002 co.002 0.2 0.0006 <0.0002 0.0094 1 co.002 <0.002 0.007 5 0.0006 0.014 <0.002

100 1.5 0.16 0.22 <0.002 0.21 0.012 0.014

<0.002 <0.0002 (0.003

0.011

B o i l e r Chemical Cleaning Waste Sludae

R ! a u m t L L L L A 5 <0.002 0.077 (0.002 <0.002 0.036

100 0.15 0.033 0.092 0.26 0.002 1 0.24 0.056 0.042 0.054 <0.002 5 0.02 0.012 c0.05 0.056 0.01 5 <0.002 <0.002 (0.002 (0.002 <0.03 0.7 <0.0002 cO.0002 0.0009 <0.0002 0.0052 - ~ . ...- 1 <0.002 <0.002 <0.002 <0.002 <0.002 5 0.009 0.016 0.01 0.016 0.004

Stack Wash ESP Wash Sludae-SJmQ

& T x f u h E L iL S 0.1 0.19

100 0.03 0.13 1 0.23 9.4

Wastewater Treatment Sludne N O

(0.002 0.015 0.045 0.12

<0.002 10.002 5 0.25 1. 0.1 0.011 5 0.058 <0.002 0.006 CO.002 0.2 0.0002 10.0002 <0.0002 <0.0002 1 0.026 co.002 5 0.008 0.083

(0.003 (0.003 <0.002 0.004

3-12

exclusion. t h e agency proposed t h a t t h e EP l i m i t f o r chromium o f 5 mg/L be based

on hexavalent c h r m i u m as opposed t o t o t a l chromium. T h i s change has never been

promulgated. With a c t i v i t y on t h e T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure and

research on d e f i n i n g new Maximum Contaminant Leve ls (MCL's), it i s n o t known what.

form a f i n a l chromium regu la . t ion w i l l take. For t h e present, wastes w i t h t o t a l

chrc%ium l e v e l s i n excess o f 5 mg/L are genera l l y considered hazardous unless

c o n d i t i o n s A, B, and C above a re s a t i s f i e d and a generator o r indus t ry -w ide group

o f generators reques ts a temporary exc lus ion .

rdous Wa-

I f a s o l i d waste i s c l a s s i f i e d as nonhazardous, it may s t i l l be sub jec t t o

r e g u l a t o r y c o n t r o l by t h e s t a t c i n which t h e waste i s disposed. There i s no

p r o v i s i o n i n RCRA f o r a f e d e r a l l y operated regu la to ry tr pe rm i t program f o r

nonhazardous s o l i d wastes, a l though RCRA does encourage s t a t e s t o develop t h e i r

own regu la to ry programs i r . which t h e disposal o f s o l i d wastes i s t o be regulated.

EPA has developed c r i t e r i a f o r c l a s s i f i c a t i o n of nonhazardous s o l i d waste d i s -

posal s i t e s as "open dumps" o r as " san i ta ry l a n d f i l l s " (40 CFR P a r t 257). If a

d isposa l s i t e w e t s t h e c r i t e r i a . it i s c lassed as a s a n i t a r y l a n d f i l l , which

means t h a t it poses %o reasonable p r o b a b i l i t y o f adverse e f f e c t s on h e a l t h o r t h e environment."

and must be e v e n t u a l l y upgraded o r i r c l u d e f l o o d p l z i n and endangered species

s i t i n g r e s t r i c t i o n s , su r face water discharge c o n t r o l s , and groundwater con-

tam ina t ion c r i t e r i a .

cause c o n s t i t u e n t concent ra t ions i n underground d r i n k i n g water sources t o exceed

pr imary and secondary d r i n k i n g water standards beyond an a l t e r n a t e state-approved

boundary. Natura l concent ra t ions which a re above d r i n k i n g water standards may

n o t be increased.

S i t e s t h a t do n o t meet t h e c r i t e r i a a re c lassed as open dumps

The groundwater c r i t e r i a r e q u i r e t h a t a f a c i l i t y may n o t

The gu ide l i nes pub l lshed under Sec t ion 1008 o f RCRA a re app l l cab le t o s o l i d waste

d isposa l ope ra t i ons t h a t i n v o l v e t h e b u r i a l o f s o l i d waste, exc lud ing hazardous

wastes. The g u i d e l i n e s suggest p r e f e r r e d methods f o r t h e design and opera t i on of

these s o l i d waste d isposa l f a c i l i t i e s . Many o f t h e s t a t e regu la t i ons i nco rpo ra te

these and o t h e r gu ide l i nes as appropr ie te .

d e s c r i p t i o n s of a l t e r n a t i v e s i t i n g , design, l r a c h a t e c o n t r o l , cas con t ro l ,

sur face runoff c o n t r o l , and mon i to r i ng approaches and techno log ies t h a t may be

u t i l i z e d t o meet s i t e - s p e c i f i c l e v e l s o f environnlental p ro tec t i on . Fo l l ow ins i s

a very b r i e f summary cf t h e major sec t i ons of t h e proposed gu ide l i nes :

I n general, t h e gu ide l i nes p rov ide

3-13

The g u i d e l i n e s s t a t e t h a t s i t e s e l e c t i o n should be based on thorough cons ide ra t i on o f hydrogeologic, economic, and environniental f ac to rs . S i t e s e l e c t i o n should avo id env i ronmenta l l y s e n s i t i v e areas, i d e n t i f i e d as wetlands, f l o o d p l a i n s , permafrost areas, c r i t i c a l hab i ta t s , and recharge zones o f s o l e source aqui fers. zones o f a c t i v e f a u l t s and k a r s t t e r r a i n be avoided as l a n d f i l l s i t e s . S i t e eva lua t i ons should i nc lude cons ide ra t i on of poss ib le i n c o r p o r a t i o n i n t o e x i s t i n g o r f u t u r e reg iona l s o l i d waste d i s - posal systems.

The design sec t i on emphasizes t h a t design o f a f a c i l i t y should analyze t r a d e o f f s among environmental inipacts, economic cons idera t ions , f u t u r e use a l t e r n a t i v e s and t h e na tu re o f t h e wastes. The major goal o f ma in ta in ing ground- and surface water q u a l i t y can be a t t a i n e d by c o n t r o l l i n g leachate and gas as a prime o b j e c t i v e .

The gu ide l i nes a l s o suggest t h a t

The leacha te c o n t r o l s e c t i c n i s concerned w i t h c o n t r o l l i n g produc- t i o n of leachate and i t s escape from t h e s i t e and consequent impact on t h e environment. Syn the t i c and n a t u r a l c l a y l i n e r s a re techno log ies t h a t a re a v a i l a b l e t o c o n t r o l leachate produc t ion by r e s t r i c t i n g groundwater i n t r u s i o n i n t o t h e s i t e , and t o p revent l eacha te escape i n t o t h e environment. Leachate c o l l e c t i o n tech- niques a l s o a s s i s t i n n , in in l i z ing leachate escape from t h e s i t e , w h i l e l eacha te t reatnient and r e c y c l i n g techniques more d i r e c t l y min imize t h e impact of leachate on t h e surrounding environment.

e The gas c o n t r o l sec t i on i s concerned p r i m a r i l y w i t h reduc ing methane gas produc t ion by min in l i z ing mo is tu re i n f i l t r a t i o n , w i t h c o n t r o l l i n g escape o f gases i n t o t h e atmosphere and w i t h minimiz- i n g t h e m i g r a t i o n o f gases i n t o ad jacent s o i l s . These o b j e c t i v e s can be achieved by us ing va r ious combinat ions of v e r t i c a l imper- meable ba r r i e rs , v e r t i c a l p i p s vents. h o r i z o n t a l g rave l trenches, and o t h e r gas c o l l e c t i o n techno log ies .

e Recommended p r a c t i c e s i n t h e r u n o f f c o n t r o l sec t i on i nc lude d i v e r t i n g runoff through channel ing devices, such as d i kes o r o t h e r techniques, and inc reas ing r u n o f f from t h e l a n d f i l l sur face by t h e use of cover n:aterial, grading, and revegeta t ion . Ponding can be used t o remove eroded sediment o r o t h e r s o l i d m a t e r i a l s suspended i n runoff t h a t may o therw ise contaminate r e c e i v i n g waters.

The s e c t i o n on l a n d f i l l ope ra t i on encompasses t h e f u l l range o f l a n d f i l l i n g fran c o n s t r u c t i o n of waste c e l l s t o personnel s a f e t y on t h e s i t e . Compaction, shredding, and b a l i n g a re s p e c i f i c technology a l t e r n a t i v e s employed i n t h e c o n s t r u c t i o n of waste c e l l s . Other issues t h a t a r e discussed inc lude access c o n t r o l , sa fe ty , f i r e con t ro l , vec to r con t ro l , and 1 i t t e r c o n t r o l .

The monitor i l ;g s e c t i o n of t h e gu ide l i nes i n d i c a t e s t h a t m o n i t o r i n s o f leachate and gas produc t ion should con t inue du r ing c o n s t r u c t i o n and a f t e r comple t ion of a l a n d f i l l f a c i l i t y . Once base l i ne condi- t i o n s a r e es tab l i shed f o r groundwater suppl ies, leachate genera- t i o n and m i g r a t i o n should be monitored r e g u l a r l y . Exp los ive and t o x i c gas genera t ion and m i g r a t i o n should a l so be monitored r e g u l a r l y i n t h e ad jacent s o i l s and i n s t r u c t u r e s ad jacent t o t h e l a n d f 11 1.

3-14

Hazardous Waste

Hazardous waste genera tors who s t o r e t h e i r wastes i n con ta ine rs o r tanks f o r l e s s

than 90 days and who dispose of t h e i r wastes o f f s i t e i n accordance w i t h 40 CFR

P a r t 262 do n o t have t o o b t a i n a permi t from EPA. Llnless q u a l i f y i n g f o r t h e

small q u a n t i t y generator exemption ((100 ki lograms/month), generators do have t o

conlply w i t h numerous requirements p e r t a i n i n g t o l abe l i ng , man i fes t ing , and

reco rd keeping. S i m i l a r l y , t r a n s p o r t e r s who t r a n s p o r t hazardous waste do n o t

have t o have permits, b u t do have t o comply w i t h hand l i ng requirements d e t a i l e d

i n 40 CFR P a r t 263.

With few exceptions, RCRA requ i res pe rm i t s f o r new and e x i s t i n g hazardous waste

t reatment. storage', and d isposa l (TSD) f a c i l i t i e s from e i t h e r EPA or a s t a t e

au tho r i zed by EPA t o admin is te r t h e RCRA program.

standards, which became e f f e c t i v e January 26. 1983, supercede t h e P a r t 267

i n t e r i m standards a p p l i c a b l e t o new f a c i l i t i e s and w i l l r ep lace t h e P a r t 265

i n t e r i m s t a t u s r e g u l a t i o n s app l i cab le t o e x i s t i n g f a c i l i t i e s a f t e r t h e f a c i l i t i e s

a re perni i t ted. These standards i nc lude both general requirements and s p e c i f i c

standards a p p l i c a b l e t o each t ype o f TSD f a c i l i t y .

c o n s i s t p r i m a r i l y of t h r e e general t ypes o f performance standards:

The P a r t 264 permanent program

The P a r t 264 standards

General f a c i l i t y standards a p p l i c a b l e t o a l l types o f hazardous waste (HW) f a c i l i t i e s , i n c l u d i n g waste ana lys i s plans, s e c u r i t y procedures. personnel t r a i n i n g , emergency preparedness and preven- t i o n , cont ingency plans, i n s p e c t i o n schedules, and c l o s u r e plans;

a Groundwater p r o t e c t i o n standards f o r mon i to r i ng and c o r r e c t i v e a c t i o n a p p l i c a b l e t o f a c i l i t i e s t h a t t r e a t , s to re , o r dispose o f hazardous waste i n su r face impoundments, waste p i l es , l a n d t r e a t - ment u n i t s , o r l a n d f i l l s ; and

S p e c i f i c design and opera t i ng standards app l i cab le t o each o f t h e severa l t y p e s of hazardous wastes f a c i l i t i e s ( i .e., con ta iners , tanks, surface impoundments, waste p i l es , l and treatment, l a n d f i l l s , and i n c i n e r a t o r s ) .

Of a l l t h e P a r t 264 standards. t h e minimum techno log ica l and opera t i ng standards

f o r l a n d d isposa l f a c i l i t i e s , such as su r face impoundments and l a n d f i l l s , a re of

p a r t i c u l a r concern t o t h e u t i l i t y indus t ry , as they apply t o hazardous low volume

wastes produced by f o s s i l - f i r e d power p lan ts .

'Storage of o n - s i t e generated hazardous wastes f o r l e s s than 90 days i n con ta ine rs o r t a n k s does n o t r e q u i r e a RCRA permi t .

3-15

Fu tu re Trends

The c u r r e n t EP t o x i c i t y t e s t was developed by EPA as a means o f c l a s s i f y i n g s o l i d

waste as t o x i c or non-toxic.

because 1) it does n o t address t h e l e a c h a b i l i t y of o rgan ic c o n s t i t u e n t s and

2) it i s n o t very accurate i n p r e d i c t i n g leachate q u a l i t y from a codisposal

scenar io. Thus, i n t h e 1984 amendments t o RCRA (Hazardous and S o l i d Waste

Amendments of 1984), Congress mandated EPA t o develop an accurate method t o

a s c e r t a i n t o x i c i t y c h a r a c t e r i s t i c s . I n response, EPA developed and r e c e n t l y

proposed t h e T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure (TCLP).

developed a f t e r t h r e e years o f l each ing research conducted a t Oak Ridge Na t iona l

Laboratory. As w i t h t h e EP, t h e TCLP s imu la tes codisposal i n a mun ic ipa l land-

f i l l .

a l l ows t h e de terminat ion o f o rgan ic chemical hazards as we l l as i no rgan ic

hazards.

The EP has l i m i t a t i o n s i n c l a s s i f y i n g t o x i c wastes

The TCLP was

The most s i g n i f i c a n t change i n t h e TCLP ove r t h e EP i s t h a t t h e TCLP

I f adopted as proposed, t h e TCLP may r e s u l t i n r e c l a s s i f i c a t i o n of some low

vol i !n~e wastes as hazardous. I n o t h e r words. t h e p o s s i b i l i t y e x i s t s t h a t wastes

t h a t were nonhazardous by EP t e s t c r i t e r i a might be hazardous by TCLP c r i t e r i a .

(It i s a l s o p o s s i b l e t h a t some EP hazardous wastes migh t be r e c l a s s i f i e d as non-

hazardous).

As proposed i n 5 1 Fed. Reg. 21648 (June 13, 19861, t h e TCLP l i s t s t h e contam-

i n a n t s and r e g u l a t o r y l e v e l s which w i l l r e s u l t i n a waste's being c l a s s i f i e d as

RCRA-toxic.

l e v e l s . The EPA niay even tua l l y cons ider any o r a l l of t h e contaminants i n t h e

EPA l i s t o f Hazardous Cons t i t uen ts (Appendix V I 1 1 o f P a r t 261 o f t h e CFR) as

p o t e n t i a l a d d i t i o n s t o t h e TCLP. A d d i t i o n a l l y , t h e maximum contaminant l e v e l s i n

Tab le 3-3 may be modif ied, a f f e c t i n g t h e regu la to ry s t a t u s o f wastes.

Tab le 3-3 1 i s t s t h e proposed TCLP conteminants and regu la to ry

Several of t h e samples c o l l e c t e d du r ing RP2215 were evaluated according t o t h e

TCLP.

As shown, t h e two e x t r a c t i o n procedures produced near l y i d e n t i c a l concen t ra t i ons

o f meta ls i n t h e i r e x t r a c t s .

TCLP r e s u l t s f rom t h r e e samples a r e compare< t o EP r e s u l t s i n Table 3-4.

Ana lys i s o f o rgan ic c o n s t i t u e n t s was n o t performed.

RCRA ImDact, --on L o r Vol u me Waste M a n w @ m ! n

Cur ren t ly , most. u t i l i t y low volume wastes a re nonhazardous under RCRA.

volume waste stream which has t h e g rea tes t p o t e n t i a l f o r being RCRA-hazardous i s

b o i l e r chemical c lean ing waste. Many a c i d c l e a n i n g wastes cou ld be

The low

3-16

w DO18 DO04 DO05 DO19 DO20 DO06 DO21 DO22 DO23 DO24 DO25 DO07 DO26 DO27 DO28 DO16 DO29 DO30 DO3 1 DO32 DO33 DO12 DO34 DO35 DO36 DO37 DO38 DO08 DO13 DO09 DO14 DO39 DO40 DO41 DO42 DO43 DO44 DO10 DO11 DO45 DO46 DO47 DO48 DO49 DO15 DO50

DO52 DO53 DO54 DO17 DO55

HWNO - -

Table 3-3

PROPOSED TOXICITY CHARACTERISTIC CONTAMINANTS AND REGULATORY LEVELS

Contaminants

A c r y l o n i t r i l e Arsenic Barium Benzene 81s (2 -ch lo roe thy l ) e ther Cadn ium Carbon d i s u l f l d e Carbon t e t r a c h l o r i de Chlordane Chlorobenzene Chloroform Chranium o-Cresol m-Cresol p-Cresol

1,Z-Di c h l orobenzene 1,4-Dichlorobenzene 1,2-Di ch 1 oroethane 1 , l -D i ch loroethy lene 2,4-Din i t ro to l uene Endr in Heptachlor (and i t s hydrox ide) Hexachlorobenzene Hexachlorobutadiene Hexachloroethane Isobutanol Lead Lindane Mercury Methoxychlor Methylene c h l o r i d e Methyl e thy l ketone Nitrobenzene Pentachlorophenol Phenol P y r i d i n e Selenium S i l v e r l,l,l,Z-Tetrachloroethane l,l,Z,Z-Tetrachloroethane Tet rach lo roe thy lene 2,3,4,6-Tetrachlorophenol To1 uene Toxaphene l,l, 1-Tr i c h l oroeth ane 1,1,2-Tr i c h 1 oroethane T r i ch lo roe thy lene 2,4,5-Tri ch 1 orophenol 2,4,6-Tr ich lorophenol 2,4,5-TP ( S i l v e x ) V iny l c h l o r i d e

2 ~ 4 - D

Hazardous waste numbers.

Leve l (ma/L)

5 .O 5 .O

100.0 0.07 0.05 1.0

14.4 0.07 0.03 1.4 0.07 5 .O

10.0 10.0 10.0

1.4 4.3

10.8 0.40 0.1 0.13 0. DO3 0.001 0.13 0.72 4.3

36.0 5 .O 0.06 0.2 1.4 8.6 7.2 0.13 3.6

14.4 5.0 1.0 5.0

10.0 1.3 0.1 1.5

14.4 0.07

30.0 1.2 0.07 5.8 0.30 0.14 0.05

3-17

Table 3-4

COMPARISON OF E P ~ AND T C L P ~ EXTRACTIONS (mg/L)

Arsenic Barium Cadmi urn

Lead Mercury Selenium S i l v e r

w

w m Chromium

Sludge from m-u EP TCLP

<0.002 (0.004 0.045 0.07

<0.002 <0.002 0.01 0.018 0.006 <0.002

<o. 0002 0.0002 (0.003 (0.003 <0.002 0.009

Sludge from Hastewater Pond (0) L TCLP

0.015 0.016 0.12 0.089

<0.002 <0.002 0.011 0.023

<0.002 0.16 <0.0002 <o. 0002 (0.003 <0.03 0.004 0.012

'EP - E x t r a c t i o n Procedure T o x i c i t y Test (6).

'TCLP - T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure (14).

' I I I

F i r e s i d e Wash S1 udge from O i l - F i r e d P l a n t ( T ) EP TCLP

<0.002 <0.002 0.21 0.64 0.012 0.011 0.014 0.012

<o. 002 <0.002 <o. 0002 <0.0002 <O. 003 (0.003

0.011 0.011

I ' I

RCRA-hazardous because of t h e lcw pH ( c o r r o s i v i t y ) . However, most p l a n t s p revent

t h e a c i d wastes from becoming RCRA wastes by n e u t r a l i z i n g them i n - l i n e o r i n an

elementary n e u t r a l i z a t i o n u n i t . As p r e v i c u s l y discussed, some DCCN samples may

be considered RCRA hazardous due t o t o t a l chromium content.

t h r e e low volume waste types had samples which t e s t e d as EP t o x i c :

chemical c lean ing wastes, one sample of e l e c t r o s t a t i c p r e c i p i t a t o r (ESP)

washwator s ludge from an o i l - f i r e d p lan t , and a sample o f b r i n e i n an evapora t ion

pond.

if t h e l i m i t s a r e changed. Also, t h e f u t u r e s t a t u s o f t h e coa l ash exemption and

t h e codisposal exemption i s uncer ta in .

I n t h i s p ro jec t ,

n i n e b o i l e r

F u t u r e c l a s s i f i c a t i o n s under RCRA may change when t h e TCLP i s adopted o r

Hazardous waste genera tors who accumulate and s t o r e

t h e i r wastes i n con ta ine rs o r tanks f o r l e s s than 90 days and who dispose o f

t h e i r wastes a t o f f s i t e hazardous waste management f a c i l i t i e s i n accordance wi th

40 CFR P a r t 262 do n o t have t o o b t a i n a RCRA permit .

-Waste_Treatment. If hazardous low volume wastes a r e t r e a t e d f o r

discharge pursuant t o a Nat iona l P o l l u t a n t Discharge E l i m i n a t i o n System (NPOES)

wastewater d ischarge pe rm i t and t h e t rea tment system c o n s i s t s of tanks ( a s

de f ined under 40 CFR Sec t ion 260.1), then t h e waste t rea t r ren t f a c i l i t i e s a r e

exempt from RCRA p e r m i t t i n g requirements under 40 CFR Sec t ion 270.

NPDES-permitted d ischarge i s a l s o RCRA-exempt). A lso exempt from RCRA a re

pre t rea tment and d ischarge o f hazardous wastes t o p u b l i c l y owned t rea tment works

which a r e NPOES-pormitted.

(The

-. Regulat ions f o r i n c i n e r a t i o n of hazardous waste

a r e s t i l l evolv ing. U t i l i t y b o i l e r s used f c r evapora t ion of low energy hazardous

wastes (e.g., BCCW wastes t h a t a re hazardous because o f EP t o x i c i t y o r

c o r r o s i v i t y ) may r e q u i r e RCRA hazardous waste i n c i n e r a t o r permits. I f t h e DCCW

i s c l a s s i f i e d as hazardous o n l y because of c o r r o s i v i t y and con ta ins & minirrt&

l e v e l s o f Appendix V I 1 1 c o n s t i t u e n t s ( l e s s than 100 mg/L), then it may be

p o s s i b l e t o o b t a i n a RCRA perm i t which imposes few regu la to ry r e s p o n s i b i l i t i e s .

D iscuss lons l a t e r i n t h i s sec t i on expand on evapora t ion of low volume waste i n

boi 1 e rs .

STATE SOLID WASTE REGULATIONS

Norhazardous u t i l i t y low volume wastes a r e sub jec t t o regu la to ry c o n t r o l by t h e

s t a t e i n which t h e waste i s disposed. Nowever, most o f t h e s t a t e s have adopted

EPA r e g u l a t i o n s f o r nonhazardous s o l i d waste disposal . Primary areas most l i k e l y

3-19

t o be addressed i n s t a t e regu la t i ons f o r low volume wastes are s i t e se lec t ion ,

f a c i l i t y design, and f a c i l i t y operat ion. I n a few s ta tes , requirements

app l i cab le t o s o l i d waste d isposal f a c i l i t i e s a re as d e t a i l e d and s t r i n g e n t as

RCRA requirements.

Many s t a t e s c a r e f u l l y regu la te l o c a t i o n of d isposal s i t e s i n env i ronmenta l l y

s e n s i t i v e areas, such as f loodp la ins , wetlands. and recharge zones f o r s o l e

source aqu i fe rs .

requirements f o r t h e fo l low ing :

t h e seasonal h igh groundwater tab le ; p rox im i t y t o sur face waters; minimum

d is tance t o po tab le water suppl ies; 1 i n e r s p e c i f i c a t i o n s and p roper t y l i n e

cons t ra in t s .

From s t a t e t o s ta te , t h e d isposal f a c i l i t y designs d i f f e r i n

d is tance between t h e bottom o f t h e l a n d f i l l and

These requirements vary according t o waste t o x i c i t y . s o i l a t tenua t ion capaci ty .

evapot ransp i ra t ion cond i t ions . and ambient groundwater q u a l i t y .

The pr imary ope ra t i ng requirements may i n v o l v e s i t e moni tor ing, and leachate

mon i to r i ng and c o l l e c t i o n . p a r t i c u l a r l y i n a l and codisposal scenar io . Moni-

t o r i n g requirements a re dependent upon what t h e s t a t e regards as necessary t o

p r o t e c t t h e environment. Fur ther , i f low volume wastes a r e codisposed w i t h ash

o r o the r u t i l i t y h igh volume wastes, f a c i l i t y c losu re requirements p e r t a i n i n g t o

cap design and cover may apply. I n add i t ion , some s t a t e s may r e q u i r e pos tc losure

s i t e mon i to r i ng and f i n a n c i a l r e s p o n s i b i l i t y f o r env i ronmenta l l y acceptable s i t e

maintenance.

Texas and C a l i f o r n i a a r e two s t a t e s which have t h e i r own waste c l a s s i f i c a t i o n

procedures. These procedures a r e described below:

I!?xai The Texas Water Commission's (TWC) waste evaluation/classification system groups

wastes i n t o t h r e e c lasses:

0 Class I Wastes - any i n d u s t r i a l o r s o l i d waste o r m ix tu re o f wastes which i s t o x i c , cor ros ive , flammable. a s t rong s e n s i t i z e r , r e a c t i v e o r poses a t h r e a t t o human hea l th o r t h e environment. EPA hazardous wastes a r e a subset o f t h i s c lass.

0 Class I1 Wastes - any i n d u s t r i a l o r s o l i d waste which cannot be descr ibed as Class I o r 111.

Class I11 Wastes - i n e r t and e s s e n t i a l l y i n s o l u b l e s o l i d waste, i n c l u d i n g rock, b r ick , glass, d i r t , e tc .

3-20

Class I wastes i n c l u d e a l l hazardous waste and m a t e r i a l s which a r e t o x i c o r

carc inogenic , mutagenic, teratogenic , bioaccumulative, o r p e r s i s t e n t . Those low

volume wastes which f a i l t h e EP t o x i c i t y t e s t o r a r e c o r r o s i v e (h igh o r low pH)

and a r e n o t n e u t r a l i z e d would f a l l i n t h i s category.

Class I 1 wastes have p r o p e r t i e s such as c m b u s t i b i l l t y , b i o d e g r a d a b i l i t y . and/or

s o l u b i l i t y i n water.

c r i t e r i o n t o d i s t i n g u i s h between Class I1 and Class I11 ( i n e r t ) wastes. A Class

I1 waste might leach c o n s t i t u e n t s i n excess of t h e l i m i t s f o r d r i n k i n g water when

u s i n g t h i s t e s t .

d i s t i l l e d water leachate t e s t ( c o o l i n g tower bas in sludge, c i t r i c a c i d waters ide

wash, deminera l i zer regenerant, f i r e s i d e washwater). I n a l l four cases, a t l e a s t

one of t h e d r i n k i n g water elements exceeded t h e pr imary d r i n k i n g water s tandard

and t h e r e f o r e would be considered a Class I1 waste.

The TWC uses a d i s t i l l e d water leachate t e s t as one

Four low volume wastes were t e s t e d i n RP2215 (1) u s i n g t h e

Class I11 wastes a r e " e s s e n t i a l l y i n s o l u b l e " and do n o t leach c o n s t i t u e n t s i n

excess of t h e l i m i t s f o r d r i n k i n g water.

c l a s s i f i c a t i o n , a l though none of t h e four t e s t e d i n RP2215 met t h e c r i t e r i a (1). Some low volume waste may f i t t h i s

Q l i f o r n i a

The C a l i f o r n i a Department of Hea l th Serv ices (DHS) regu la tes t h e i d e n t i f i c a t i o n

o f hazardous waste. L i k e t h e f e d e r a l hazardous waste i d e n t i f f c a t i o n system, t h e

C a l i f o r n i a DHS i d e n t i f i c a t i o n system c l a s s i f i e s a waste based on i t s t o x i c i t y ,

c o r r o s i v i t y , i g n i t a b i l i t y . and r e a c t i v i t y . However. t h e t e s t procedures and

c r i t e r i a used t o eva lua te these c h a r a c t e r i s t i c s a r e very d i f f e r e n t from t h e EPA

t e s t s and c r i t e r i a .

For u t i l i t y l o w volume waste, t h e major d i f f e r e n c e between t h e C a l i f o r n i a and

federa l waste c l a s s i f i c a t i o n system i s t h e Waste E x t r a c t i o n Test (WET) used t o

assess t o x i c i t y .

b u t t h e e x t r a c t i n g media i s a 0.2 M c i t r a t e s o l u t i o n a t pH 5.0.

s t ronger e x t r a c t i n g media than t h e a c e t a t e s o l u t i o n used i n t h e EP t o x i c i t y t e s t .

As a r e s u l t , low volume waste c o u l d be t o x i c u s i n g t h e WET procedure b u t n o t

t o x i c us ing t h e EP. Table 3-5 presents WET r e s u l t s on 11 u t i l i t y low volume

sludges.

t rea tment o f f i r e s i d e washwater; one sample o f sludge from t h e t rea tment o f ESP

washwater; and two samples of sludge from t h e t reatment o f b o i l e r chemical

c l e a n i n g waste washwater.

T h i s i s an aqueous waste e x t r a c t i o n , l i k e t h e EP t o x i c f t y t e s t ,

T h i s I s a much

Six of t h e sludges t e s t e d as t o x i c : t h r e e samples of sludge from t h e

Cadmium, n i c k e l , and vanadium exceed t h e C a l i f o r n i a

3-21

Table 3-5

CALIFORNIA WASTE EXTRACTION TEST (WET) RESULTS ( mg/L )

Sample Desc r ip t i on

Arsenic Barium Bery l 1 ium Cadmium Chromium Chromium V I Cobal t Copper F l u o r i d e Lead Mercury Molybdenum Nicke l Selenium S i l v e r Tha l l i um Vanadium Zinc

Sample Desc r ip t i on

STII;l

5 100

0.75 1

560 5

80 25

180 5 0.2

350 20 1 5 7

24 25 0

Arsenic 5 Barium 100 Bery l 1 i urn 0.75 Cadmium 1 Ch rom i um 560 Chromium V I 5 Coba l t 80 Copper 25 F l u o r i d e 180 Lead 5 Me rcu r v 0.2

A-S4 F i r e s i d e

Wash Sludae

0.018 1.3 0.4 0.1 0.7

2.8 0.69 2.7 1.1 0.00084 0.08

34 <0.002 0.065

10.9 7.4

11

K-ESP1

c-s4 0 4 3 F-S3 g-53 Waterside F i r e s i d e Waterside Waterside

Wash Wash Wash Wash Sludae Sludae Sluda e Sludae

0.31 1.1

(0.1 1.5

27 0.13 1.3 1 0.06 0.26

<0.0002 2

100 <0.002

0.8 (9 9

100

M-S3

ESP Evaporation Wash Pond

a!Ld!E Sol i d s

1.3 0.052 0.21 0.08

<0.01 0.005 13 0.009 2.6 1.6 0.026

32 0.14 11 4.2 7.6 50 4.7 <0.002

<0.0002 0.0027 Molybdknum 350 20 0.11 N icke l 20 1100 0.37 Selenium 1 0.016 0.28 S i l v e r 5 0.24 0.02 T h a l l ium 7 4.5 <o .09 Vanadium 24 970 0.21 Z inc 25 0 59 0.44

0.33 2.6 0.029 1.5 1.2 0.037 1.6 2.2

10.01 2.4

<0.0002 2.9

10.002 0.26 4.2

110

1000 11

0.021 0.26 0.014 0.062 6.8 0.054 0.21 0.62 0.01

<0.002 <0.0002 3.1 2

<0.002 (0.02 10.9 0.44 1.1

0.17 1.2

<0.1 0.47 6.5

(0.6 0.29 0.21

10.002 <0.0002 10.2 79 <o .002 c0.2 19

1.9 56

N-S3 0 4 2 t-53 F i r e s i d e

Evaporation Evaporation Wash Pond Pond F i l t e r

Sol i d s Solids Sol i d s

(0.008 (0.016 0.13 0.059 0.067 0.42 0.001 0.001 (0.01

<0.002 <0.002 <0.02 0.047 0.061 1.4

0.009 0.56

18 (0.002 0.0002 0.017 0.046

(0.03 0.006

<0.09 0.11 2.3

10.006 0.96 0.082 3.7 8.4 9.8

<0.002 0.7 0.0003 0.0007 0.007 0.29 0.048 23

10.02 <0.003 0.004 <0.02

<o .09 <0.9 10.083 43

2.1 2.2

‘STLC - So lub le Threshold L i m i t Concentrat ion.

3-22

s o l u b l e t h r e s h o l d l i m i t concent ra t ions . The EP t e s t does n o t i n c l u d e l i m i t s f o r

n i c k e l o r vanadium. Using RCRA EP, on l y t h e ESP washwater was EP t o x i c .

5 Most s t a t e s f o l l o w t h e fede ra l l e a d i n t h e i r procedures f o r i d e n t i f i c a t i o n of

hazardous waste. However, some s t a t e s (e.g., C a l i f o r n i a ) have s t r i c t e r c l a s s i -

f i c a t i o n c r i t e r i a and a g rea te r percentage o f low volume waste could. there fore .

f a l l i n t o t h e hazardous class. Hazardous low volume waste must be handled i n

accordance w i t h t h e s t a t e hazardous waste standards which must be as s t r i n g e n t as

RCRA standards.

I n most states. s t a t e and l o c a l s o l i d waste regu la t i ons have t h e g r e a t e s t impact

on t h e hand l i ng o f u t i l i t y low volume waste. S ta tes may impose r e s t r i c t i o n s on

s i t e se lec t ion , design o f d isposal f a c i l i t y , l eacha te con t ro l , runoff c o n t r o l ,

d isposa l s i t e opera t ion , and mon i to r ing .

EVAPORATION OF LOW VOLUME WASTES I N BOILERS

Wi th respect t o t h e f i r i n g or evaporat ion of low volume wastes i n u t i l i t y

b o i l e r s , t h e p r i n c i p a l regu la to ry issues a r i s e i f t h e wastes a re hazardous o r

w i l l cause t o x i c a i r emissions when f i r e d . I f t h e wastes are hazardous, t h e i r

on -s i t e s to rage and subsequent evapora t ion i n u t i l i t y b o i l e r s w i l l be regu la ted

under fede ra l and s t a t e hazardous waste management programs. Whether t h e wastes

a r e hazardous or nonhazardous. a i r emissions from t h e i r f i r i n g or evapora t ion i n

u t i l i t y b o i l e r s a re a l s o regu la ted through s t a t e and fede ra l a i r pe rm i t

processes.

b o i l e r s , t h e i r evapora t ion may be a sub jec t o f regu la to ry concern and. conse-

quent ly. a i r qual i t y regu la t i ons .

To t h e e x t e n t t h a t low volume wastes inc rease a i r emissions from

Three major regu la to ry i ssues may a r i s e from t h e evapora t ion of low volume wastes

i n u t i l i t y b o i l e r s :

a p p l i c a b i l i t y o f hazardous waste i n c i n e r a t o r regu la t ions ; and 3 ) a p p l i c a b i l i t y o f

a i r t o x i c s regu la t i ons .

1) a p p l i c a b i l i t y o f hazardous waste bu rn ing regu la t ions ; 2 )

Waste

Under t h e impetus o f t h e November 1984 Hazardous and S o l i d Waste Amendments

(HSWA) t o RCRAt EPA adopted regu la t i ons i n 1985 s e t t i n g standards app l i cab le t o

t h e l e g i t i m a t e use, reuse, recyc l i ng , and rec lamat ion o f hazardous wastes. These

r e g u l a t i o n s were adopted i n t h r e e separate rulemakings and were pub l ished i n 50

3-23

Fed. Reg. 614 (January 4, 19851, 50 Fed. Reg. 1690 (January 11, 1985), and 50 Fed. Reg. 49164 (November 29, 1985). The regu la t i ons have t h e f o l l o w i n g i m p l i -

ca t i ons f o r t h e burn ing of hazardous wastes fo r energy recovery i n u t i l i t y

b o i l e r s :

0 Recyc l ing a c t i v i t i e s which are regu la ted under RCRA i n c l u d e burn ing hazardous waste o r waste f u e l s f o r energy recovery i n u t i l i t y bo i l e rs , as def ined i n 40 CFR 260.10;

0 Recycled wastes w i l l be defined and regu la ted as s o l i d and hazardous wastes when recycled;

U t i l i t y b o i l e r opera tors burn ing n f f - z i t e aenerated hazardous waste o r waste fue l s w i l l be requ i red t o :

- - n o t i f y EPA ( o r t h e au thor ized s t a t e agency) regard ing t h e i r e x i s t i n g waste-as-fuel a c t i v i t i e s by January 29, 1986;

--submit a P a r t A o r rev i sed P a r t A pe rm i t a p p l i c a t i o n t o EPA or t h e au thor ized s t a t e agency by May 29, 1986 i n o rder t o o b t a i n o r preserve i n t e r i m s t a t u s f o r t h e i r e x i s t i n g hazardous waste o r waste f u e l s torage f a c i l i t i e s pending issuance o f a hazardous waste permi t ; and

--comply w i t h man i fes t and record keeping requirements and prov ide c e r t i f i c a t i o n no t i ces t o hazardous waste or waste f u e l s u p p l i e r s by March 31, 1986;

B o i l e r opera tors may begin s t o r i n g Qn-s i te a- hazardous waste and waste fue l s fo r l e s s than 90 days and burn ing those wastes i n t h e b o i l e r s any t ime p r i o r t o t h e e f f e c t i v e date of t h e yet-to-be proposed permi t standards fo r i n d u s t r i a l b o i l e r s , probably a f t e r January 1, 1988.

EPA in tends t o propose and l a t e r adopt subs tan t ive standards f o r u t i l i t y b o i l e r s

which burn hazardous waste o r waste f u e l s f o r energy recovery.

r e g u l a t i o n s f o r hazardous waste i nc ine ra to rs , t h e f u t u r e u t i l i t y b o i l e r pe rm i t

standards may r e q u i r e a d e s t r u c t i o n and removal e f f i c i e n c y (DRE) of 99.99 percent

f o r hazardous organ ic c o n s t i t u e n t s i n t h e fuels, as we l l as impose general

design, mon i to r i ng and inspec t i on standards.

L i k e t h e e x i s t i n g

EPA, however. i s cons ide r ing a procedura l approach f o r ob ta in ing a RCRA u t i l i t y

b o i l e r pe rm i t which would a l l ow a waiver o f a t r i a l burn p lan upon demonstrat ion

t h a t t h e b o i l e r s a re opera t i ng i n accordance w i t h 8 t o 10 spec i f i ed cond i t i ons

designed t o ensure t h e 99.99 percent DRE.

"permi t -by-ru leoo f o r b o i l e r s which operate i n . accordance w i th t h e s p e c i f i e d

r e g u l a t o r y cond i t ions . Some uncer ta in t y e x i s t s as t o whether a "permi t -by-ru le"

i s au tho r i zed under e x i s t i n g s t a t u t o r y language.

EPA i s a l so cons ider ing a l l ow ing a

3-24

It i s impor tan t t o emphasize t h a t t h e hazardous waste burn ing r e g u l a t i o n s w i l l

apply o n l y t o u t i l i t y b o i l e r s which a r e burn ing o r w i l l burn hazardous waste or hazardous waste fue l f o r " l e g i t i m a t e " energy recovery. What c o n s t i t u t e s

" l e g i t i m a t e " energy recovery i s genera l l y de f ined i n a 1983 EPA memorandum (40

Fed. Reg. 1157, March 16. 1983). I n general, b o i l e r s burn ing low energy wastes

( i .e . . hav ing l e s s than 5000 - 8000 E t u / l b hea t ing value as generated) a re

considered by EFA t o be i n c i n e r a t i n g t h e wastes and are, there fore , s u b j e c t t o

e x i s t i n g r e g u l a t i o n s f o r hazardous waste i n c i n e r a t o r s (40 CFR P a r t 264. Subpart

0) .

A l l o f t h e metal c lean ing wastes s tud ied under RP2215 have l i t t l e o r no hea t ing

value. For t h i s reason. i f metal c lean ing wastes are c l a s s i f i e d as hazardous

*waste, t h e burn ing o f such wastes may be regu la ted under t h e hazardous waste

i n c i n e r a t o r r u l e s r a t h e r than t h e e x i s t i n g and f u t u r e hazardous waste bu rn ing

ru les .

A D D l i c a b i l i t v of Hazardous Waz te -hc ine ra to r Reaulat i ons

Performance standards and a p p l i c a t i o n requirements f o r hazardous waste i n c i n -

e r a t o r s a r e s p e c i f i e d i n r u l e s 40 CFR P a r t 264, Subpart 0, and 40 CFR P a r t 270.

A RCRA permi t a p p l i c a t i o n f o r an i n c i n e r a t o r genera l l y c o n s i s t s o f t h e f o l l o w i n g

elements: 1) a F a r t A p e r m i t , a p p l i c a t i o n desc r ib ing t h e i n c i n e r a t o r and any

a n c i l l a r y f a c i l i t i e s (tanks, con ta ine r storage), as w e l l t h e wastes and waste

cenera t i ng processes: 2 ) a general d e s c r i p t i o n of a l l RCRA regu la ted u n i t s ; 3 ) a

d e s c r i p t i o n of s e c u r i t y procedures; 4 ) an inspec t i on schedule: 5) a personnel

t r a i n i n g plan; 6 ) cont ingency p lan documentation demonstrat ing preparedness f o r

and p reven t ion of emergencies; 7 ) procedures f o r addressing spec ia l requirements

a p p l i c a b l e t o t h e hand l i ng of i g n i t a b l e and r e a c t i v e wastes; 8) d e s c r i p t i o n o f

waste r o u t i n g t o and from t h e i n c i n e r a t o r ; 9) documentation p e r t a i n i n g t o

f a u l t i n g and f l o o d i n g o f t h e f a c i l i t y s i t e ; 1 C ) topograph ic map(s) showing a

d is tance of 1000 f e e t around t h e regu la ted u n i t s and t i r p i c t i n g a v a r i e t y of

d e t a i l s : 11) an i n c i n e r a t o r t r i a l burn p lan i n c l u d i n g a d e t a i l e d ens ineer ing

d e s c r i p t i o n of t h e i n c i n e r a t o r ; 12) eng ineer ing reports. plans, and

s p e c i f i c a t i o n s f o r any a n c i l l a r y f a c i l i t i e s such as storage tanks and waste

p i l e s ; 13) f a c i l i t y c l o s u r e p l a n ( s ) ; and 14) documentation of f i n a n c i a l assurance

f o r c l o s u r e and l i a b i l i t y coverage f o r sudden acc iden ta l occurrences assoc ia ted

w i t h t h e regu ls ted u n i t s .

An impor tan t RCRA a p p l i c a t i o n requirement f o r a hazardous waste i n c i n e r a t o r i s

p repara t i on of a t r i a l burn plan. App l i can ts f o r RCRA i n c i n e r a t o r permi ts a re

3-25

requ i red t o demonstraie by performing a t r i a l burn t h a t t h e i n c i n e r a t o r i s

capable o f t h e r m a l l y des t roy ing and removing 99.99 percent o f t h e hazardous

o rgan ic c o n s t i t u e n t s conta ined i n t h e wastes i nc ine ra ted . Performance standards

a r e a l s o spec i f l e d f o r hydrogen c h l o r i d e emissions and p a r t i c u l a t e s . The

i n c i n e r a t i o n of hazardous meta ls contained i n t h e waste i s presumed t o be

regu la ted under t h e p a r t i c u l a t e standard: 180 m i l l i g r a m s per dry standard cub ic

rrieter (0.08 g r a i n s per dry standard c u b i c f o o t ) when co r rec ted f o r t h e amount o f

oxygen i n t h e s tack gas.

A t r i a l burn p lan should be designed t o demonstrate compliance w i t h t h e

a p p l i c a b l e standards a t t h e process c o n d i t i o n s t h a t w i l l p rov ide t h e owner/

opera tor w i t h maxlmum opera t i ng f l e x i b i l i t y . Tria.1 burn p lan p repara t i on

genera l l y r e q u i r e s t h e f o l l o w i n g steps: 1) sampling and ana lys i s of t h e waste

f o r a l l Appendix V I 1 1 hazardous c o n s t i t u e n t s l i k e l y t o be present: 2) s e l e c t i o n

o f " p r i n c i p a l o rgan ic hazardous c o n s t i t u e n t s " (POHCs) which w i l l be sampled and

analyzed f o r du r ing and a f t e r t h e t r i a l burn: 3) prepara t i on o f a d e t a i l e d

ens inee r ing d e s c r i p t i o n o f t h e i n c i n e r a t o r : 4 ) prepara t i on o f a sampling and

a n a l y s i s p lan f o r mon i to r i ng t h e performance o f t h e i n c i n e r a t o r under severa l

t e s t cond i t i ons : and 5) prepara t i on of a q u a l i t y assurance/qual i t y c o n t r o l p lan

f o r ensur ing t h e accuracy o f t h e data produced.

EPA i n c i n e r a t o r r e g u l a t i o n s a l low t h e agency t o exempt a p p l i c a n t s from most RCRA

requireirents, i n c l u d i n g t r i a l burn p lan p repara t i on and implementation, p rov ided

t h e waste t o be burned:

e Is hazardous on ly for t h e c h a r a c t e r i s t i c o f c o r r o s i v i t y ( o r i g n i t a b i l i t y ) ;

e Conta ins " i n s i g n i f i c a n t " (& m in im is ) l e v e l s o f Appendix VI11 c o n s t i t u e n t s ( i n c l u d i n g hazardous metal 5 ) ; and

Otherwise does n o t pose a t h r e a t t o human h e a l t h and t h e environment when burned i n an i n c i n e r a t o r .

The EPA pe rn i i t wr i te r ' s guidance document e s t a b l i s h e s 100 mg/L as t h e l e v e l a t

which most c o n s t i t u e n t s become s i g n i f i c a n t f rom a regu la to ry s tandpo in t (U). If an a p p l i c a n t c a r r i e s t h e burden o f proof f o r t h i s exeniption, it w i l l not be

necessary t o perforn: a t r i a l burn. Nor w i l l t h e app l i can t be requ i red t o comply

w i t h o the r perfcrmance and opera t i ng requ i rement.s s p e c i f i e d i n Subpart 0, except

waste a n a l y s i s and c l o s u r e requirements.

e

3-26

As i n d i c a t e d above, u t i l i t y b o i l e r s used f o r evaporat ion o f low energy hazardous

wastes may r e q u i r e RCRA hazardous waste i n c i n e r a t o r permits.

c lean ing wastes a r e c o r r o s i v e and con ta in ' l e v e l s of hazardous

c o n s t i t u e n t s ( l e s s than 100 mg/L). it may be poss ib le t o o b t a i n a pe rm i t which

imposes few regu la to ry r e s p o n s i b i l i t i e s .

I f t h e rnetal

B p p l i c a b i l i t v of A i r Toxi-

The U.S. EPA regu la tes emissions of a i r contaminants from s t a t i o n a r y sources,

such as power p lants . through t h e Prevent ion of S i g n i f i c a n t D e t e r i o r a t i o n (PSD)

pe rm i t program. L i k e t h e RCRA permi t program, s t a t e agencies may be au thor ized

by EPA t o assume r e s p o n s i b i l i t y f o r admin is te r ing t h e PSD perm i t program.

addi t ion, many s t a t e s have separate s t a t e a i r programs which r e q u i r e permi ts f o r

even those emission sources which do n o t r e q u i r e PSD permits.

I n

P r i o r t o 1980. t h e pr imary focus o f bo th t h e federa l and s t a t e a i r programs was

c o n t r o l o f c r i t e r i a o r convent ional p o l l u t a n t s : s u l f u r ox ides ( s u l f u r d iox ide )

hydrocarbons, p a r t i c u l a t e matter, carbon monoxide, photochemical oxidants,

n i t rogen d i o x i d e and lead. The es tab l i shed regu la to ry c o n t r o l l e v e l s were

enforced by pe rm i t s con ta in ing emission. design, equipment, work place. o r

opera t iona l standards.

Since 1980, increased emphasis has been p laced on t o x i c a i r contaminants by

federal and s t a t e governmental leve ls . As of June 1986, EPA has l i s t e d as

hazardous a i r p o l l u t a n t s (under Clean A i r Act Sec t ion 112) asbestos, benzene,

bery l l ium, coke oven emissions. inorgan ic arsenic. mercury, rad ionucl ides, and

v i n y l ch lo r i de . EPA must develop n a t u r a l emission standards f o r a l l a i r

p o l l u t a n t s l i s t e d as hazardous under CAA 112.

i n t e n t t o 1 i s t cadmium, carbon t e t r a c h l o r i d e . chloroform, chromium, e thy lene

d i ch lo r i de , e thy lene oxide. and 1.3-butadiene. L i s t i n g dec is ions a r e expected i n

t h e near f u t u r e on d iox in , methylene ch lo r ide , n icke l , perchloroethylene, phenol,

and t r i c h l o r e t h y l e n e . F i n a l emission standards have been issued f o r asbestos,

benzene, b e r y l 1 ium, mercury, rad ionucl ides, and v i n y l ch lo r i de . Eventual ly, a l l

contaminants l i s t e d as hazardous a i r p o l l u t a n t s w i l l be regu la ted by EPA-issued

na t i ona l emission standards and enforced by EPA o r t h e s t a t e s through permits.

EPA has a l so issued no t i ces of

EPAls rev i sed a i r t o x i c s p o l i c y env is ions a pr imary r o l e f o r s t a t e s and l o c a l

agencies i n t h e c o n t r o l o f hazardous a i r emissions.

hazardous a i r p o l l u t a n t s t o t h e s t a t e s f o r s t a t e enforcement.

EPA in tends t o r e f e r some

Some s t a t e s have

3-21

al ready taken t h e lead on c o n t r o l l i n g sources o f t o x i c a i r p o l l u t a n t s .

June 1986. 19 s t a t e s and 21 l o c a l a i r p o l l u t i o n c o n t r o l agencies have a i r t o x i c s

programs i n place, and 23 s t a t e s and 4 agencies have regu la t i ons under

development.

As o f

Federal and s t a t e a i r t o x i c s p r o g r a m may be ( o r become) a p p l i c a b l e t o hazardous

emissions from u t i l i t y b o i l e r s evaporat ing metal c lean ing wastes, p a r t i c u l a r l y i f

t h e wastes con ta in c o n s t i t u e n t s n o t o therwise present i n t h e fue l .

poss ib le a t t h i s t i m e t o assess t h e i m p l i c a t i o n s of a i r t o x i c s r e g u l a t i o n f o r t h e

evaporat ion o f metal c lean ing wastes i n u t i l i t y b o i l e r s g i ven t h e evo lv ing s t a t e

of regu la to ry development.

It i s n o t

UNDERGROUND STORAGE TANKS

The most s i g n i f i c a n t new i n i t i a t i v e a f f e c t e d by t h e RCRA amendments o f 1984 i s

t h e underground storage tank (LIST) regu la to ry program. Th is program i s n o t

a c t u a l l y p a r t o f t h e Resource Conservation and Recovery Act ( S u b t i t l e C), b u t i s

an e n t i r e l y new s u b t i t l e ( S u b t i t l e I) o f t h e S o l i d Waste Disposal Act. The

program r e s u l t e d from Congress' percept ion t h a t EPA lacked sound s t a t u t o r y

a u t h o r i t y f o r r e g u l a t i n g underground tanks s t o r i n g hazardous m a t e r i a l s o r

products which may leak i n t o t h e environment i f n o t p roper l y designed and

maintained.

S u b t i t l e I es tab l i shes a bas i s f o r comprehensive r e g u l a t i o n o f underground

storage tanks through a s e r i e s o f mandatory n o t i f i c a t i o n s and EPA rulemakings.

Regulated tanks a re those which s t o r e " regu la ted substances" w i t h more than 10

percent o f t h e i r volumes ( i n c l u d i n g underground connect ive p ip ing ) beneath t h e

sur face of t h e ground. Tanks excluded from S u b t i t l e I r e g u l a t i o n include: 1) heat ing o i l tanks; 2 ) p i p e l i n e f a c i l i t i e s regu la ted under o the r laws; 3 ) stormwater and wastewater c o l l e c t i o n systems; 4) hazardous waste s torage tanks;

5) f low-through process tanks; and 6) t r a p s and ga the r ing l i n e s d i r e c t l y r e l a t e d

t o o i l and gas produc t ion and ga the r ing operat ions.

petroleum (crude o i l and re f i ned products) and hazardous substances designated

under Superfund.

Regulated substances i n c l u d e

It i s impor tan t t o emphasize t h a t t h e UST program under RCRA does n o t apply t o

s torage of hazardous wastes which a re regu la ted under EPA hazardous waste

r e g u l a t i o n s conta ined i n 40 CFR P a r t 264, Subpart J . and r e g i s t r a t i o n program requ i res a c t i o n s by bo th d i s t r i b u t o r s o f regu la ted

The S u b t i t l e I n o t i f i c a t i o n

3-28

substances and owners o f new and e x i s t i n g underground storage tanks as we l l as

tanks taken o u t o f ope ra t i on w i t h i n t h e l a s t 10 years.

The second h a l f o f t h e underground storage tank program invo lves EPA adopt ion of

re lease de tec t i on , prevent ion, and c o r r e c t i o n r e g u l a t i o n s designed t o p r o t e c t

human h e a l t h and t h e environment. For a l l underground storage tanks, EPA's

r e g u l a t i o n s must i nc lude requirements f o r : 1) ma in ta in ing a leak d e t e c t i o n

system, an i nven to ry c o n t r o l systeni c m b i n e d w i t h tank t e s t i n g , o r a comparable

system o r method designed t o i d e n t i f y releases; 2) implementing c o r r e c t i v e

ac t i on ; 3 ) recordkeeping; 4 ) r e p o r t i n g re leases and c o r r e c t i v e ac t i on ; 5) abandoning t h e tank; and 6) secur ing f i n a n c i a l assurance, as necessary o r

des i rab le, f o r c o r r e c t f v e a c t i o n and t h f r d - p a r t y l i a b i l i t y . For new underground

storage tanks, t h e performance standards must i nc lude requirements for design,

cons t ruc t i on . i n s t a l l a t i o n , re lease detect ion, and m a t e r i a l s c o m p a t i b i l i t y .

These r e g u l a t i o n s w i l l be adopted by EPA i n accordance w i t h a phased schedule:

0 9 February 1987 - date by which EPA must adopt r e g u l a t i o n s f o r e x i s t i n g petroleum tanks and performance standards f o r new petroleum tanks;

9 August 1987 - date by which EPA must adopt performance standards f o r new Superfund hazardous chemical product tanks; and

9 August 1988 - date by which EPA must adopt r e g u l a t i o n s f o e x i s t i n g Superfund hazardous chemical product tanks.

0

0

For t h e i n t e r i m pe r iod from 7 May 1985 u n t i l t h e e f f e c t i v e dates of new tank

performance standards, an underground storage t a n k ( s i n g l e o r double-walled) may

be i n s t a l l e d or brought i n t o use on ly i f : 1) it w i l l prevent releases due t o

c o r r o s i o n o r s t r u c t u r a l f a i l u r e f o r t h e opera t i ona l l i f e of t h e tank; 2) it I s

c a t h o d i c a l l y protected, cons t ruc ted of noncorros ive mater ia ls , s tee l - c lad w i t h a

noncorros ive ma te r ia l , or designed i n a manner t o prevent t h e re lease of t h e

s t o r e d substance; and 3 ) t h e m a t e r i a l used i n c o n s t r u c t i n g or l i n i n g t h e tank i s

compat ib le w i t h t h e substance stored.

CLEAN WATER ACT (CWA)

The U.S. EPA has developed e f f l u e n t l i m i t a t i o n s (40 CFR P a r t 423) f o r t h e steam

e l e c t r i c i n d u s t r y i n compliance w i t h t h e Federal Water P o l l u t i o n Contro l Act of

1972, as amended. These e f f l u e n t l i m i t a t i o n s apply t o several u t i l i t y i n d u s t r y

waste streams.

t h i s manual inc lude:

The streams t h a t correspond t o t h e low volume wastes discussed i n

3-29

"Low volume waste" - wastewater from a l l sources except those f o r which s p e c i f i c l i m i t a t i o n s are es tab l i shed. These low volume wastes would include, b u t a re n o t l i m i t e d to , wastewater from wet scrubbers, deminera l i zer regenerant. evaporator br ine, b o i l e r blowdown. c o o l i n g tower bas in sludge, and f l o o r drains.

"Metal c lean ing waste" - wastewater r e s u l t i n g from cleaning. w i t h o r w i thou t chemical add i t i ves , any metal process equipment i n c l u d i n g b o i l e r tube cleaning, b o i l e r f i r e s i d e cleaning, and a i r p reheater c lean ing .

For any e x i s t i n g f a c i l i t y , t h e e f f l u e n t l i m i t a t i o n s achievable th rough app-

l i c a t i o n of t h e "best a v a i l a b l e technology economical ly achievable" (BAT) a re

l i s t e d i n Table 3-6.

Table 3-6

BAT EFFLUENT LIMITATIONS

(mg/L)

Chem i ca l

Low V O l u me Waste Metal Cleaning Waste Coal P i l e Runoff Average Average

o f D a i l y o f D a i l y Values Values

Maximum f o r 30 Maximum f o r 30 Maximum f o r Any Consecutive f o r Any Consecutive f o r Any

Parameter 1 Dav Davs J-kdY- Davs LLiQEL

TS S 100.0 30.0 100.0 30.0 50 O i l and grease 20.0 15.0 20.0 15 .O NA Copper NA NA 1 .o 1.0 NA I r o n NA NA 1 .o 1.0 NA

- NA - Not app l i cab le .

I n add i t i on , t h e pH o f low volume waste and metal c lean ing waste discharges s h a l l

be w i t h i n t h e range of 6.0 t o 9.0. And, no discharge of po l ych lo r i na ted biphenyl

compounds i s al lowed.

New source performance standards (NSPS) m i r r o r t h e BAT e f f l u e n t l i m i t a t i o n s w i t h

a few except ions. Whereas. t h e BAT e f f l u e n t l i m i t a t i o n s f o r f l y ash and bottom

3-30

ash t r a n s p o r t water a re t h e same as f o r low volume waste, f o r a new source no

discharges a re al lowed from f l y ash t r a n s p o r t water. NSPS f o r bottom ash t r a n s -

p o r t water i s t h e same as t h e BAT.

c l e a n i n g wastes are, as yet, es tab l i shed on ly f o r chemical metal c lean ing wastes

( b o i l e r chemical c lean ing waste) and a re i d e n t i c a l t o t h e BAT. Nonchemical metal

c l e a n i n g wastes ( f i r e s i d e and a i r preheater waste) a re s t i l l under cons ide ra t i on

f o r e f f l u e n t l i m i t a t i o n g u i d e l i n e development.

Also, NSPS e f f l u e n t l i m i t a t i o n s for metal

The r e g u l a t i o n s developed under t h e FWPCA and t h e CWA a l s o s e t c r i t e r i a f o r d i s -

charges t o pub1 i c l y owned t rea tment works.

e x i s t i n g sources (PSNS) and new sources (NSPS) r e q u i r e t h e fo l l ow ing :

These pre t rea tment standards f o r

No discharge of p o l y c h l o r i n a t e d biphenol (PCB) compounds; and

a Chemical metal c lean ing wastes ( b o i l e r chemical c l e a n i n g wastes) s h a l l n o t exceed 1.0 mg/L i n copper as a d a i l y maximum.

L i m i t s f o r nonchemical metal c lean ing waste a r e n o t y e t es tab l i shed. Also, f o r

new sources, no discharge of wastewater from f l y ash t r a n s p o r t water i s al lowed.

3-31

Sect icn 4

LOW VOLUME WASTE TREATMENT METHODS

U t i l i t i e s have severa l a l t e r n a t i v e s f o r s to r ing . t r e a t i n g , and d ispos ing of low

volume wastes. Treatment methods a r e se lec ted based on t h e c h a r a c t e r i s t i c s o f

t h e waste, a p p l i c a b l e regu la t ions , t rea tment method e f f e c t i v e n e s s and cost, and

s i t e s p e c i f i c f a c t o r s i n v o l v i n g t h e i n t e g r a t i o n of t h e low volume waste nianage-

Kent s t r a t e g y w i t h t h e o v e r a l l p l a n t water and waste management plan.

s e c t i o n presents i n f o r m a t i o n on t h e t rea tment e f fec t i veness , conceptual designs,

and c o s t s of methods used t o store, t r e a t , and d ispose o f low volume wastes

(descr ibed i n S e c t i o n 2) i n accordance w i t h r e g u l a t o r y requirements (descr ibed i n

Sec t ion 3).

This

U t i l i t i e s use a v a r i e t y of n:ethods i n combination o r separa te ly f o r low volume

waste management and treatment. These inc lude:

a C o l a n d f i l l i n g ;

a Cont rac t d isposal ;

a Coponding;

a Evaporation;

N e u t r a l i z a t i o n ;

a O i l / w a t e r separation;

a Physica l /chemical t reatment ;

a Pond evaporation;

a Recycle/reuse; and

a Setiin,entation.

Not a l l of t h e t rea tment methods l i s t e d above a r e discussed i n t h i s sect ion.

Methods such as o i l and grease removal, s a n i t a r y waste t rea tment and disposal.

and l a b o r a t o r y waste t i isposal have been excluded s i n c e they a r e n o t unique t o t h e

u t i l i t y indus t ry .

u t i l i t i e s t o t r e a t power p l a n t - s p e c i f i c wastes.

The processes t h a t a r e discussed a r e those commonly used by

Many o ther t rea tment methods a r e

4-1

a v a i l a b l e t o t h e u t i l i t y indus t ry , although they a r e n o t w ide ly p rac t iced , and

i n n o v a t i v e processes a r e c u r r e n t l y under development. Several of these tech-

niques a r e discussed a t t h e end o f t h i s sec t ion .

APPROACH

The low volume waste t rea tment processes discussed i n t h i s s e c t i o n were se lec ted

based on t h e surveys and p l a n t t r i p s conducted d u r i n g RP2215 ( i n c l u d i n g

i n f o r m a t i o n from over 30 f o s s i l f u e l - f i r e d power p l a n t s ) , and o t h e r in fo rmat ion

ob ta ined from l i t e r a t u r e d e s c r i b i n g power p l a n t operat ions. The in fo rmat ion

presented f o r each t rea tment process inc ludes:

@

Treatment e f fec t i veness ;

Conceptual des ign(s) ; and

Treatment costs .

A p p l i c a b i l i t y t o s p e c i f i c low volume wastes;

- f h e streams considered f o r t rea tment by each process a r e presented i n F i g u r e 4-1.

It should be noted t h a t F i g u r e 4-1 does n o t i n c l u d e a l l p o s s i b l e combinations o f

t rea tment processes and streams. The a p p l i c a b l e streams and t h e t rea tment

processes a r e based on i n f o r m a t i o n ob ta ined from p l a n t t r i p s and l i t e r a t u r e data.

Jreatment F f fec t i veness

Treatment processes a r e discussed i n terms o f t h e i r e f f e c t i v e n e s s f o r p a r t i c u l a r

low volume wastes.

t rea tment a t many p l a n t s d u r i n g t h e course o f t h i s program.

c h a r a c t e r i z a t i o n r e s u l t s i n d i c a t e t h a t most o f t h e wastes cou ld be t r e a t e d us ing

convent ional t rea tment approaches. Some, however, were more d i f f i c u l t t o t r e a t

(i.e., spent che la ted b o i l e r chemical c l e a n i n g wastes) than others. Laboratory

s t u d i e s were a l s o conducted t o eva lua te t h e e f f e c t i v e n e s s of t rea tment and

d isposal techniques f o r s p e c i f i c low volume wastes.

t rea tment e f f e c t i v e n e s s data i s presented w i t h each process d e s c r i p t i o n .

Low volume waste streams were sampled be fore and a f t e r

The sampling and

An overview of these

v Conceptual designs used as t h e bas is f o r e s t i m a t i n g c o s t s a r e presented fo r each

t rea tment method.

a r e p r a c t i c e d a t many f o s s i l f u e l - f i r e d power p lan ts . D i f fe rences i n

It should be noted t h a t v a r i a t i o n s i n these conceptual designs

4-2

pyrites

Coal Pile Runoff

Raw Water Treatment Sludge I 0

Floor and Yard Drains

Demineralizer I Regenerant

I Boiler Blowdawn

FireSide I Wastes

Bolier Chemical

Cooling Tower Basin Sludge I 0

I. Treatment Sludges and Brines

0 0 0 0

0

0 0

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0

0

Figure 4-1. Low Volume Wastes and Common Treatment Processes

4-3

s i t e - s p e c i f i c s i t u a t i o n s and i n processes a v a i l a b l e from equipment vendors o f ten

r e s u l t i n t h e use of a l t e r n a t i v e designs. Th is manual does n o t address a l l of

t h e p o s s i b l e design approaches; ra ther , it prov ides s u f f i c i e n t d e t a i l t o a l l o w

t h e user t o t a i l o r a design t o a s p e c i f i c s i t u a t i o n .

Several sources were used i n d e f i n i n g t h e design bases f o r these t rea tment

processes. Typ ica l stream flows. system capac i t ies , and s to rage requ i rements

were obta ined p r i m a r i l y from t h e EPRI Technical Assessment Guide (&I and from

t h e EPA e f f l u e n t g u i d e l i n e s document (5). sources was taken from t h e p l a n t survey data c o l l e c t e d d u r i n g t h i s p r o j e c t . The

design bases used i n t h i s study a r e presented i n Tab le 4-1. I n t h i s tab le , t h e

low volume waste stream f l o w s based on power generat ion c a p a c i t i e s a r e used t o

d e f i n e t h e range o f system s i z e s used f o r develop ing t rea tment designs and costs .

In fo rmat ion n o t a v a i l a b l e from these

- Estimated c a p i t a l , and opera t ing and maintenance (0 B M) c o s t s a r e presented f o r

each t rea tment method i n f i r s t q u a r t e r 1986 d o l l a r s .

sented accord ing t o t h e format g iven i n t h e EPRI Technica l Assessment Guide (&).

Leve l i zed c o s t s a r e n o t presented because t h e p r o j e c t and equipment l i f e may vary

g r e a t l y from p l a n t t o p lant . e s p e c i a l l y f o r r e t r o f i t s i t u a t i o n s . The est imates

presented i n t h i s manual should be considered accurate w i t h i n k 15-30 percent

(e.g., a Class I 1 p r e l i m i n a r y estimate. u s i n g vendor quotes f o r major equipment

i tems and f a c t o r s f o r o t h e r m a t e r i a l s and l a b o r ) .

These est imates a r e pre-

A worksheet showing t h e methodology used t o determine t o t a l c a p i t a l requirements

i s presented i n Tab le 4-2. Whenever possible, ac tua l vendor quotes were used f o r

equipment and i n s t a l l a t i o n costs; c o s t s presented by Richardson (I&) and Means

(39) were a l s o u t i l i z e d i n p r i c t n g equipment and s i tework. D e t a i l e d equipment

l i s t s and c o s t s f o r t h e t rea tment processes a r e presented i n Appendix E.

s torage and d isposal opt ions, design methodology and c o s t s a r e presented. These

l i s t s c o n t a i n s u f f i c i e n t d e t a i l t o a l low t h e user t o modify designs and cos ts t o

r e f l e c t d i f fe rences r e s u l t i n g from s p e c i f i c a p p l i c a t i o n s . Factors from t h e EPRI

Technica l Assessment Guide (19). from G u t h r i e (a), and from Peters and Timmer-

haus were used t o es t imate c o s t s o f o n - s i t e and o f f - s i t e f a c i l i t i e s .

On-site cos ts i n c l u d e t h e m a t e r i a l s and l a b o r f o r p ip ing, foundations. e l e c t r i -

cal, and I n s u l a t i o n , pa int , and cleanup. O f f - s i t e f a c i l i t i e s i n c l u d e bu i ld ings ,

storage. u t i l i t i e s , and o f f - s i t e p ip ing. The format and f a c t o r s f o r p r e s e n t a t i o n

o f i n d i r e c t c a p i t a l c o s t s were taken from t h e EPRI Technical Assessment Guide

(U).

For t h e

4-4

Table 4-1

DASES FOR CONCEPTUAL DESIGNS

Coal P i l e Runoff coal p i l e = 0.075 acres/MW (22 1

maximum weekly p r e c i p i t a t i o n : W i s c o n s i n / I l l i n o i s = 6.5 inches (Lz) Arizona/New Mexico = 4.0 inches (U)

t rea tment i n t e r v a l f o r r u n o f f o f maximum weekly p r e c i p i t a t i o n = 10 days

P v r i t e s - volume generated i s dependent on fue l type.

bituminous coa l = 10 cu yd/yr/MW ( P l a n t Surveys) subbituminous c o a l fue l supply = 0.1 c u yd/yr/MW ( P l a n t Surveys)

-t e r - produced i n batch opera t ions severa l t imes d a i l y .

c o a l - f i r e d p l a n t = 79 gpd/MW o i l - f i r e d p l a n t = 226 gpd/MW

batch regenera t ion frequency = 6 hrs

(51 (5)

b k e u D Water S o f t e ntna Sluda e - dependent on raw water q u a l i t y and s o l i d s concent ra t ion o f sludge.

Based on t h e f o l l o w i n g assumptions:

1) 2)

raw water requirement o f 15,000 gpd/MW, dry s o l i d s p roduc t ion o f 2100 lb/MG o f raw water t r e a t e d ,

average volumes f o r design are: 7.5 percent s o l i d s sludge = 48 gpd/MW 35 percent s o l i d s sludge = 9.R gpd/MW

and Y a r d 0 - ra F l o o r

= 30 gpd/MW (U)

B i l e r B l o w d m

c o a l - f i r e d p l a n t = 148 gpd/MW (5) o i l - f f r e d p l a n t = 287 gpd/MW (5)

4-5

Tab le 4-1 (cont inued)

BASES FOR CONCEPTUAL DESIGNS

B o i l e r Chem i c a l Cleanina Wastes - performed once every 2-5 years b o i l e r volume = 125 gal/MW ( P l a n t Surveys)

volume/cleaning = 1 b o i l e r volume (5) = 125 gal/MW

r i n s e volume/cleaning = 1 b o i l e r volume (5) = 125 gal/MW

( r i n s e volume/cleaning = 4 b o i l e r volumes (500 gal/MW) if HC1 wash)

F i r e s i d e Wastes - design based on combined f i r e s i d e and a i r p reheater wash

c o a l - f i r e d p l a n t : f i r e s i d e = 2.9 gpd/MW (5 ) a i r preheater = 14.5 aDd/ MW (5) t o t a l = 17.4 gpd/MW

o i l - f i r e d p l a n t : f i r e s i d e = 7.0 gpd/MW (5 ) a i r preheater = 17.6 aDd/ MY (5 ) t o t a l = 24.6 gpd/MW

Coo l ina Tower Basin Sludgg = 0.02 cu yd/yr/MW ( P l a n t Surveys)

eqsion B r i n g = 3 1 gpd/MW (5)

- dependent on t h e t y p e o f t rea tment and t h e t y p e of waste t r e a t e d .

For t rea tment o f s p e c i f i c wastes, designs were based on t h e f o l l o w i n g est imated s o l i d s p roduc t ion amounts. c a l c u l a t e d us ing average waste composit ions from Appendix C.

deminera l i zer regenerant: d ry s o l i d s = 1.2 lb /1000 g a l l o n s t r e a t e d f i r e s i d e c l e a n i n g waste: dry s o l i d s = 32 lb/1000 g a l l o n s t r e a t e d waters ide c l e a n i n g waste: d ry s o l i d s = 1 7 lb/1000 g a l l o n s t r e a t e d

These were

4-6

Table 4-2

TOTAL CAPITAL COST ESTIMATION METHODOLOGY

System Throughput, gpm:

D i r e c t Process and O f f - s i t e Cap i ta l CQ&

Major equipment i t e m 1 Major equipment item 2 Major equipment i tem 3 Major equipment i tem 4 Major equipment i t em 5

Vendor quotes f o r puchased equipment cost. Factored est imates f o r i n s t a l l a t i o n a r e inc luded i n t h i s number.

On-site Costs' (0.15 t o 0.45) X Purchased Equipment Cost

D i r e c t Process Cost

O f f - s i t e Costs'

Sum of t h e Above

(0.05 t o 0.30) X D i r e c t Process Cost

T o t a l D i r e c t C a p i t a l Cost (TDCC) Sum o f t h e above - Engineering and Home O f f i c e Fees (10%) 0.10 X TDCC

Process Contingency ( 5%) 0.05 X TDCC P r o j e c t Contingency (20%) 0.20 x mcc

TOTAL PLANT COST (TPC) Sum o f D i r e c t and I n d i r e c t Costs

Allowance fo r Funds During Construct ion $0 i f l e s s than 6 months

TOTAL PLANT INVESTMENT (TPI) Sum o f t h e above

Preproduct ion Costs

Inven to ry C a p i t a l

One month o f F ixed and Var iab le Operat ing Costs + 0.02 X TPI

Two month chemical i nven to ry

I n i t i a l Chemicals Charge Working volume

TOTAL CAPITAL REQUIREMENT (TCR) Sum o f t h e above

- 'On-site c o s t s i n c l u d e m a t e r i a l s and l a b o r for piping, foundations, e l e c t r i c a l , and i n s u l a t i o n , paint . and cleanup.

'Off-si te cos ts i n c l u d e m a t e r i a l s and l a b o r f o r bu i ld ings, storage f a c i l i t i e s , u t i l i t i e s , and o f f - s i t e p ip ing.

4-7

Operating and maintenance ( 0 8 M) cos ts were developed us ing t h e EPRI Technica l

Assessment Guide (&I and d e t a i l e d est imates of ope ra t i ng l a b o r requirements,

reagent consumption, and power usage.

es t ima t ion niethodology i s presented i n Table 4-3.

maintenance l a b o r and mater ia ls , and a d m i n i s t r a t i v e and suppor t l a b o r were s p l i t

between f i x e d and v a r i a b l e cos ts assuming a 65 percent p l a n t capac i t y f a c t o r

(16). Chemical p r i c e s were obta ined from t h e Chemical Market ing Repor ter (22) . E l e c t r i c a l and opera t ing l a b o r cos ts were based on t h e EPRI Technica l Assessment

Guide (&I.

A worksheet showing t h e 0 8 M c o s t

Costs f o r ope ra t i ng labor ,

Fo r each t rea tment process, curves i l l u s t r a t i n g t o t a l c a p i t a l requirement and

annual d i r e c t ope ra t i ng c o s t as a func t i on o f system throughput o r capac i ty a re

presented.

us ing t y p i c a l low volume waste f l ows (LI.6) f o r a wide range o f power s t a t i o n

c a p a c i t i e s (approx imate ly 100 t o 1,000 MW).

(i.e., impoundments. tanks, and l a n d f i l l s ) . c o s t curves a r e presented on a c o s t

per u n i t volume basis .

severa l o rders o f magnitude.

I n each case t h e range of t rea tment system s i zes was determined by

For t h e s torage and d isposal methods

T h i s approach was used because s i z e ranges spanned

For severa l processes, c o s t s e n s i t i v i t i e s t o s p e c i f i c v a r i a b l e s a r e presented.

Process mod i f i ca t i ons judged t o be t h e most useful t o u t i l i t y users were chosen

as v a r i a b l e s f o r s e n s i t i v i t y analyses. These inc luded design mod i f i ca t ions .

changes i n m a t e r i a l s of cons t ruc t ion , v a r i a t i o n s i n chemical feeds and dosages.

and changes i n ope ra t i on (e.g., cons tan t versus i n t e r m i t t e n t f l ow) . Unless

s p e c i f i c a l l y noted, a l l t reatment methods a r e assumed t o be f o r non-hazardous

wastes. I n most cases, t reatment of hazardous wastes would be s im i la r , except

t h a t RCRA p e r m i t t i n g c o s t s may be incurred.

Using t h i s methodology, f i v e t rea tment processes and s torage methods were

evaluated: n e u t r a l i z a t i o n . impoundments and tanks, phys ica l /chemical treatment,

l a n d f i l l s , and evaporation. Although e i g h t t reatment processes a r e shown i n

FISure 4-1, severa l processes a r e based on s i m i l a r technology. C o l a n d f i l l i n g and

c o n t r a c t o r d isposa l a r e bo th discussed i n t h e l a n d f i l l subsection. Coponding.

sedimentation, and pond evapora t ion a r e discussed i n t h e impoundments and tanks

subsection,

NEUTRALIZATION

N e u t r a l i z a t i o n i s a wastewater t rea tment technique i n which a c i d i c o r a l k a l i n e

wastes a r e t r e a t e d w i t h e i t h e r s t rong bases (e.g., caus t ic , l ime) o r ac ids (e.g.,

4-8

Table 4-3

OPERATING AND MAINTENANCE COST METHODOLOGY

System Throughput, gpm:

1 Fixed ODerat i n 0 Costs

Opera t ing Labor Maintenance Labor Maintenance Ma te r i a1 s A d m i n i s t r a t i v e 8 Support Labor

0.65 X $15.25/hr X h r s / y r

0.65 X 0.07 X TDCC X 0.60 0.30 X F ixed 0 8 M Labor

0.65 x 0.07 x TDCC x 0.40

ANNUAL FIXED 0 8 M COST

Y a r i a b l e ODerat i n a Costs

Opera t ing Labor Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

Consumables: Chemical s

E 1 e c t r i c i t y

Sum o f Fixed Costs

0.35 X $15.25/hr X h r s / y r 0.35 X 0.07 X TDCC X 0.40 0.35 X 0.07 X TUCC X 0.60 0.30 X Va r iab le 0 8 M Labor

$ / u n i t X u n i t / y r $0.04/kWh X kWh/yr

ANNUAL VARIABLE 0 8 M COST

ANNUAL DIRECT 0 8 M COST2

Sum o f Va r iab le Costs

Sum o f Fixed and Var iab le Costs

'Fixed c o s t s i n c l u d e 65 percent of o p e r a t i n g labor, maintenance costs, and a d m i n i s t r a t i v e and suppor t cos ts based on a 65 percent p l a n t c a p a c i t y fac to r . The remaining 35 percent o f these cos ts a re app l i ed t o v a r i a b l e costs.

' I n d i r e c t ope ra t i ng costs, such as deprec ia t ion . insurance. taxes, and general and a d m i n i s t r a t i v e cos ts a r e n o t included.

4-9

s u l f u r i c ac id ) . respec t i ve l y . t o produce a near n e u t r a l stream pH. Two s i t u a -

t i o n s r e q u i r f n g n e u t r a l i z a t i o n o f low volume wastes a re commonly encountered i n

t h e u t i l i t y i ndus t r y :

c Wastewater t h a t i s discharged under NPDES perm i t s must be w i t h i n a pH range o f 6.0 t o 9.0; and

0 The pH l s v e l s o f s t r o n g l y a c i d i c wastes must be ra i sed above a va lue of 2.0 and those of s t r o n g l y a l k a l i n e wastes must be decreased below a va lue o f 12.5 t o comply w i t h RCRA c o r r o s i v i t y l i m i t s .

Treatment methods o t h e r than those descr ibed here can a l s o be used t o n e u t r a l i z e

low volume wastes, such as coponding a c i d wastes i n an a l k a l i n e pond o r us ing t h e

n e u t r a l i z a t i o n c a p a b i l i t y o f a physical /chemical t rea tment system.

B p ~ l i c a b l e Streams

Three low vo l uine wastes t h a t may r e q u i r e n e u t r a l i z a t i o n t o meet NPDES requ i re -

ments a re :

Deminera l i zer regenerant;

Coal p i l e r u n o f f ; and

B o i l e r blowdown.

I n add i t ion , it may be necessary t o n e u t r a l i z e extremely a c i d i c demine ra l i ze r

regenerant t o avo id c l a s s i f i c a t i o n of t h i s waste as c o r r o s i v e under RCRA guide-

l i n e s . Hydroch lo r i c a c i d b o i l e r chemical c lean ing waste requ i res n e u t r a l i z a t i o n

t o avo id be ing c l a s s i f i e d as a RCRA c o r r o s i v e waste; a l l spent hyd roch lo r i c a c i d

c lean ing wastes analyzed d u r i n g t h i s study had an i n i t i a l pH below 2.0. Th is

n e u t r a l i z a t i o n s tep i s n o t considered t o be hazardous waste t rea tment under RCRA

when 1) t h e stream i s o n l y hazardous because o f t h e pH, and 21 t h e n e u t r a l i z a t i o n

occurs i n - l i n e o r i n a tank (a tank as defined under RCRA i s cons t ruc ted o f

non-earthen m a t e r i a l s and i s se l f - suppor t i ng ) .

If removal of o t h e r contaminants i s a l s o requ i red (e.g., suspended s o l i d s o r d i s -

so lved meta ls ) , o t h e r t rea tmen t methods may be necessary. such as sedimentat ion

o r phys i ca l /chemi ca l t reatment.

I r e a t m e n t F f f e c t i veness

Chemical n e u t r a l i z a t i o n t o a d j u s t t h e pH of low volume wastes i s s t r a i g h t f o r w a r d

s ince t h e streams considered do n o t possess s i g n i f i c a n t b u f f e r i n g capac i ty . For

4-10

example. n e u t r a l i z a t i o n of s t r o n g l y a c i d i c (pH < 2 ) h y d r o c h l o r i c a c i d wastewater

can be r e a d i l y achieved w i t h a s t r o n g base ( c a u s t i c o r l i m e ) i f t h e a d d i t i o n of

n e u t r a l i z i n g reagent i s p r o p e r l y c o n t r o l l e d and s u f f i c i e n t m i x i n g provided.

A secondary e f f e c t o f n e u t r a l i z a t i o n may be chemical p r e c i p i t a t i o n o f s l i g h t l y

s o l u b l e s a l t s and/or meta ls f rom s o l u t i o n . Al though a r e d u c t i o n i n metal con-

c e n t r a t i o n s i s n o t t h e o b j e c t i v e o f n e u t r a l i z a t i o n , it can be an impor tan t s i d e

r e a c t i o n because it may serve as a pre- t reatment s tep. Also, any s o l i d s which

form due t o p r e c i p i t a t i o n r e a c t i o n s may r e q u i r e removal t o meet suspended s o l i d s

l i m i t s . Table 4-4 p resents an example o f reduc t ions i n d i s s o l v e d meta ls concen-

t r a t i o n s a t a s i n g l e p l a n t as a r e s u l t o f n e u t r a l i z i n g h y d r o c h l o r i c a c i d b o i l e r

chemical c l e a n i n g wastes. I n t h i s case n e u t r a l i z a t i o n was accomplished i n a

rap id-mix t a n k system.

Table 4-4

REDUCTION OF DISSOLVED METALS CONCENTRATIONS I N A HYDROCHLORIC A C I D BOILER CLEANING WASTE

D i s s o l v e d M e t a l

Ch rom i um

Copper

I r o n

N i c k e l

Z inc

Concent ra t ion 0 Percent Reduct i o n &€Q.c.? AfLQL

6 0.85 86

182 32 83

4140 1450 65

26 9.8 62

30 6.4 79

m D t u a l Desian

Two types o f n e u t r a l i z a t i o n systems a r e commonly used. The f i r s t u t i l i z e s a

small, a g i t a t e d tank, t o which t h e reagent i s added as requ i red . T h i s system i s

d e s i r a b l e f o r batch o p e r a t i o n s and w i t h l a r g e f l o w v a r i a t i o n s . For streams w i t h

cons tan t f l o w and composi t ion, i n - l i n e n e u t r a l i z a t i o n i s o f t e n employed. I n t h i s

design. overdoses of reagents can occur i f t h e waste composi t ion changes r a p i d l y ,

s i n c e t h e m i x i n g occurs w i t h i n t h e t r a n s p o r t p i p i n g .

F igures 4-2 and 4-3 p r e s e n t conceptual designs f o r rap id-mix tank and i n - l i n e

n e u t r a l i z a t i o n systems, r e s p e c t i v e l y . I n a d d i t i o n t o t h e rapid-mix t a n k and

4-11

1 ------------- CHEMICAL NEUTRALIZATION SYSTEM I

' I I

CHEMICAL FEED PUMPS

I I

I TREATMENT I I I

FI - FLOW INDICATOR

LS - LEVEL SENSOR pH - pH SENSOR

INSTRUMENT AIR LINE _ _ _ - INSTRUMENT ELECTRICAL LEAD

F igu re 4-2. Conceptual Design for Rapid-Mix Tank N e u t r a l i z a t i o n

-------------

TO DISCHARGE OR FURTHER

WASTE TREATMENT STREAM

EHEMICAL NEUTRALIZATION SYSTEM

,-------- ------ FI - FLOW INDICATOR pH - pH SENSOR

7*L--*L INSTRUMENT AIR LINE ---- INSTRUMENT ELECTRICAL LEAD

Figure 4-3. Conceptual Design for In-Line Neutralization

I I

i n - l i n e mixer, each system inc ludes t r a n s f e r pumps and p r o v i s i o n s fo r chemical

feed o f bo th a c i d and a l k a l i n e reagents, pH c o n t r o l . and f l o w measurement.

I n many instances, m o d i f i c a t i o n s t o these bas i c designs may be approp r ia te for a

s p e c i f i c a p p l i c a t i o n . For example. a d d i t i o n a l f a c i l i t i e s f o r waste s to rage and

t r a n s p o r t i n g may be necessary ( these c o s t s a r e presented i n t h e impound-

ments/tanks d i scuss ion o f t h i s sec t i on ) . I n o t h e r cases, o n l y one reagent may be

needed f o r pH adjustment ( i .e., when any a c i d i c o r a l k a l i n e low volume waste i s

n e u t r a l i z e d i n t h e equipment). A d d i t i o n a l l y , when i n - l i n e n e u t r a l i z a t i o n i s used

t o t r e a t h y d r o c h l o r i c a c i d b o i l e r chemical c lean ing waste as it i s d ra ined from

t h e b o i l e r , s u f f i c i e n t head i s sometimes a v a i l a b l e so t h a t a t r a n s f e r pump i s n o t

requ i red .

l r e a t m e n t Costs

The design da ta used t o d e f i n e t h e range o f f low r a t e s and system c a p a c i t i e s f o r

developing t rea tment c o s t s were presented i n Table 4-1. Flow r a t e s of demine-

r a l i z e r regenerant, b o i l e r blowdown, coa l p i l e runo f f , and h y d r o c h l o r i c a c i d

b o i l e r chemical c l e a n i n g waste were considered i n s i z i n g n e u t r a l i z a t i o n systems.

Separate c o s t s were developed f o r rapid-mix tank and i n - l i n e n e u t r a l i z a t i o n

systems w i t h th roughputs of 50, 250, and 500 gpm. I n es t ima t ing c o s t s f o r these

systems, it was assumed t h a t t h e pr imary use o f t h e systems was f o r r a i s i n g t h e

pH o f a c i d i c streams. The second chemical feed system was inc luded i n t h e

designs t o p rov ide a c i d a d d i t i o n i n t h e event t h a t t h e upper pH l i m i t was

exceeded. Ac id feed r a t e s were assumed t o be one-tenth those o f t h e c a u s t i c feed

ra tes .

For bo th rapid-mix tank and i n - l i n e n e u t r a l i z a t i o n , t h e s e n s i t i v i t i e s o f c o s t s t o

t h e number of chemical feed systems and t o chemical dosage were determined. The

c a p i t a l and o p e r a t i n g c o s t s of two-feed systems were compared t o those f o r

systems hav ing o n l y t h e c a u s t i c feed over t h e throughput range o f 50 t o 500 gpm.

A c a u s t i c dosage of 0.5 gal lons/1000 g a l l o n s o f wastewater was assumed f o r t h i s

comparison.

range o f system s i zes w i t h c a u s t i c dosages rang ing from 0.02 ( f o r m i l d l y a c i d i c

coal p i l e r u n o f f ) t o 2.0 ga1/1000 ga l l ons ( f o r s t r o n g l y a c i d i c deminera l i zer

regenerant ) .

Costs as a func t i on of c a u s t i c dosage were a l s o compared f o r t h i s

RaD I d -Mix Tank N e u t r a l i z a t i on. I n t h i s conceptual design (shown i n F igu re 4-2)

low volume waste streams a r e routed t o a rapid-mix tank where s u l f u r i c a c i d o r

4-14

c a u s t i c i s added t o a d j u s t t h e pH. The equipment inc luded i n t h e c a p i t a l c o s t

es t imate inc ludes :

1 - conc re te sump w i t h g ra ted t o p and suppor ts f o r pump and a g i t a t o r ;

1 - s t a i n l e s s s t e e l a g i t a t o r ;

2 - chemical feed tanks ( f i b e r g l a s s r e i n f o r c e d p l a s t i c ) ;

2 - c e n t r i f u g a l sump pumps f o r system discharge (1 spare);

2 - a c i d meter ing pumps w i t h A l l o y 20 i n t e r n a l s (1 spare);

2 - c a u s t i c meter ing pumps w i t h s t a i n l e s s s t e e l i n t e r n a l s (1 spare);

1 - pH c o n t r o l system ( 2 t ransmi t te rs . 1 o p e r a t i n g probe, 1 spare probe);

1 - l e v e l c o n t r o l system; and

1 - f l o w i n d i c a t o r .

The rapid-mix tank systems evaluated had c a p a c i t i e s o f 2000 g a l l o n s (50 gpm),

10,000 g a l l o n s (250 gpm). and 20,000 g a l l o n s (500 gpm). Breakdowns o f t h e t o t a l

c a p i t a l requirement and annual d i r e c t o p e r a t i n g c o s t s f o r two-feed systems a t a

c a u s t i c dosage of 0.5 ga1/1000 gal a re presented i n Table 4-5 and Tab le 4-6,

respec t i ve l y . D e t a i l e d equipment l i s t s and u n i t c o s t s a re presented i n

Appendix E. The c a p i t a l cos ts i n Table 4-5 show t h a t i n c r e a s i n g t h e system s i z e

by a f a c t o r of 10 inc reases t h e t o t a l p l a n t investment (TPI ) by approximately 65

pe rcen t w h i l e i n c r e a s i n g t h e t o t a l c a p i t a l requirement ( T M ) by n e a r l y 100

percent. The 65 pe rcen t inc rease i n t h e TPI r e f l e c t s t h e increase i n t h e c o s t o f

purchased equipment f o r t h e l a r g e r system.

r e s u l t o f a t e n - f o l d increase i n i nven to ry c a p i t a l based on t h e requirement f o r

two months of chemical s to rage and on t h e c o n t r i b u t i o n o f annual chemical cos ts

t o t h e p rep roduc t i on charge.

f o u r - f o l d inc rease i n annual d i r e c t o p e r a t i n g c o s t as system throughput i s

increased from 50 t o 500 gpm; t h i s increase i s shown i n Table 4-6.

The l a r g e r inc rease i n TCR i s t h e

The c o s t o f chemical feed a l s o accounts f o r t h e

F igures 4-4 and 4-5 show t h e s e n s i t i v i t i e s of c a p i t a l and opera t i ng cos ts t o t h e

number of chemical feed systems inc luded i n t h e design. F igu re 4-4 shows t h a t

e l i m i n a t i o n of t h e a c i d feed system decreases t h e t o t a l c a p i t a l requirement by

15-25 percent . An o p e r a t i n g c o s t decrease o f approximately 5 percent i s shown i n

F igu re 4-5.

t h e c o s t of acid, l ower ing e l e c t r i c i t y usage, and us ing maintenance and adminis-

t r a t l v e c o s t s f a c t o r e d from a lower c a p i t a l cos t .

T h i s o p e r a t i n g c o s t decrease i s t h e combined r e s u l t o f e l i m i n a t i n g

4-15

Table 4-5

TOTAL CAPITAL COST ESTIMATE FOR RAPID-MIX TANK NEUTRALIZATION ( two chemical feed systems - 0.5 gal caust ic /1000 ga l l ons )

System Capacity, ga l lons:

System Throughput, gpm:

Uzxt Process and O f f - s i t e

CaDItall Rapid-Mix Tank A g i t a t o r Chemical Feed Tank (2) Discharge Pumps ( 2 ) Acid Feed Pumps (2) Caust ic Feed Pumps (2) pH Cont ro l System Level Cont ro l System Flow I n d j c a t o r On-site

O i r e c t Process Costs O f f - s i t e cos ts

To ta l D i r e c t Cap i ta l Cost

Engineer ing and Home Of f i ce Fees (10%) P r o j e c t Contingency (20%) Process Contingency (5%)

TOTAL PLANT COST

2,000 10.000 20.000

50250500

$2,500 6,000 4,700 4,800 5,400 5,300 4,200 4,300 1,300

LLAQQ 46,000 m 52,900

5,300 11.000 2JQQ 71,900

Allowance f o r Funds Dur ing Const ruc t ion 0 TOTAL PLANT INVESTMENT 71,900

Preproduct ion cos ts Inven to ry Cap i ta l I n i t i a l Chemicals Charge

TOTAL CAPITAL REQUIREMENT

3,700 1 I 700 400

$77,700

$6,800 $11,000 9,900 11,000 79100 10.000 7,200 8,600 5.500 5.500 5,300 5,400 4.200 4 I 200 5.700 6 9 700 1,300 1,300 m u 64,000 76,000 9 r l p a L L M a 73,500 87,000

7.300 8,800 15,000 18,000 l rLM4r4aQ 99,500 118,200

00 99.500 118,200

8,200 13,000 8.700 17,000 ~ 3 . 6 0 0

$118.000 $152,000

' I n s t a l l a t i o n , on-s i te f a c i l i t i e s , and o f f - s i t e f a c i l i t i e s cos ts have been factored i n t o t h e d i r e c t c a p i t a l costs . See Appendix E f o r a d e t a i l e d breakdown o f ac tua l purchase, i n s t a l l a t i o n . and o the r costs .

4-16

Table 4-6

ESTIMATED OPERATING AND MAINTENANCE COSTS FOR RAPID-MIX TANK NEUTRALIZATION (two chemical feed systems - 0.5 ga1/1000 ga l l ons )

System Capacity, ga l lons: System Throughput, gpm:

2,000 10,000 20,000 2 2 5 0 5 0 0

F ixed Operati-

Operating Labor B $15.25/hr $11,000 $14.000 $18,000 Maintenance Labor 1,000 1,300 1,600 Maintenance M a t e r i a l s 1,400 2,000 2.400 Admin i s t ra t i ve A Support Labor LL5!2.Q4.7005,900

ANNUAL FIXE0 0 A M COST 16,900 22,000 279900

v Operating Labor 8 $15.25/hr 5,800 7,800 99700 Maintenance Labor 500 700 900 Maintenance M a t e r i a l s 800 1,100 19300 Admin i s t ra t i ve A Support Labor 1,900 2,600 3,200

Consuma b l es : 66 Be S u l f u r i c B $0.62/gal 50% Caust ic @ S l . l d /ga l l on E l e c t r i c i t y B $0.04/kWh

ANNUAL VARIABLE o a M COST

5 00 2,600 5,300 9,900 50,000 99,000

"4rlM

23t100 69.400 1259700

ANNUAL DIRECT 0 8 M COST' $40,000 $91,400 6153.600

' Ind i r e c t opera t ing costs, such as deprec iat ion. insurance, taxes. and general and a d m i n i s t r a t i v e cos ts a r e n o t fncluded.

4-17

0

- 160 -

e - m = 160- 0" -

System Throughput, gpm

F i g u r e 4-4. Number of Chemical Feed Systems

S e n s i t i v i t y o f Rapid-Mix Tank N e u t r a l i z a t i o n Cap i ta l Cost t o t h e

G - 5 40-

20 - 0

.. e - -

I ~~~

i o 160 200 300 400 f System Throughput, gpm

F i g u r e 4-5. Number of Chemlcal Feed Systems

S e n s i t i v i t y of Rapid-Mix Tank N e u t r a l i z a t i o n Operating Cost t o t h e

4-18

The s e n s i t i v i t i e s of c a p i t a l and opera t i ng cos ts t o c a u s t i c dosage are shown i n

F igures 4-6 and 4-7. The curves i n these f i g u r e s c l e a r l y i l l u s t r a t e t h e impor-

tance o f chemical dosage t o t h e c o s t s o f a rapid-mix tank n e u t r a l i z a t i o n system.

Cap i ta l cos ts a re approx imate ly 65 percent h ighe r f o r a 500 gpm system than a 50

gpm system. w h i l e t h e c o s t s associated w i t h t h e r a t e o f chemical use inc rease i n

d i r e c t p ropor t i on t o t h e inc rease i n system size. Therefore, t h e l a r g e r t h e

throughput o f a n e u t r a l i z a t i o n system. t h e l a r g e r t h e f r a c t i o n of i t s o v e r a l l

c o s t t h a t i s determined by chemical dosage ra te . The t o t a l c a p i t a l requirement

i s a f f e c t e d by t h e r a t e of chemical usage because of t h e i n c l u s i o n o f chemical

i nven to ry cos t . Annual ope ra t i ng cos ts a r e af fected because of increased

chemical consumption,

& - l i n e Neut r a l i z a t i o n . The conceptual design f o r i n - l i n e n e u t r a l i z a t i o n was

i l l u s t r a t e d p rev ious l y i n F igu re 4-3. I n t h i s system, a reagent a c i d or base i s

added upstream o f a s t a t i c mixer. The major equipment inc luded i n e s t i m a t i n g t h e

caD i ta l cos ts a re :

1 - i n - l i n e s t a t i c mixer;

2 - chemical feed tanks ( f i b e r g l a s s - r e i n f o r c e d p l a s t i c ) ;

2 - c e n t r i f u g a l pumps f o r system d ischarge (1 spare);

2 - a c i d meter ing pumps w i t h A l l o y 20 i n t e r n a l s (1 spare);

2 - c a u s t i c meter ing pumps w i t h s t a i n l e s s s t e e l i n t e r n a l s (1 spare);

1 - pH c o n t r o l system ( 2 t ransmi t te rs . 1 opera t i ng probe, 1 spare probe); and

1 - f low i n d i c a t o r .

The est imated c a p i t a l cos ts f o r i n - l i n e n e u t r a l i z a t i o n systems w i t h throughputs

of 50, 250, and 500 gpm a re shown i n Table 4-7. These c o s t s a re f o r two-feed

systems w i t h a c a u s t i c dosage of 0.5 ga1/1000 ga l .

u n i t cos ts a re presented i n Appendix E. The est imated annual ope ra t i ng and

maintenance c o s t s f o r these systems a re presented i n Table 4-8.

f o r rap id-mix tank n e u t r a l i z a t i o n , t h e inc rease i n t o t a l p l a n t investment (TPI)

w i t h i nc reas ing system throughput was found t o be less dramatic than t h e increase

i n t o t a l c a p i t a l requirement (TCR), 45 percent as opposed t o 95 percent. Th is I s

again due t o t h e inc rease i n t h e c o s t o f i nven to ry c a p i t a l . as was expla ined i n

d e t a i l i n t he r a p i d - m i x tank d iscuss ion. Likewise, t h e increase i n ope ra t i ng and

maintenance c o s t w i t h system throughput r e s u l t s p r i m a r i l y from t h e l a r g e r annual

chemicals consumption.

De ta i l ed equipment l i s t s and

As was t h e case

4-19

280

240

$ 220

2 200 -

Caustic Dose Rate (ga1/1000 gal) -

g 180 --- 180 S G E S 140 $!ul '5 s 120 X= = t 100 a 'Z 80

- 60

40

20

0

- m

m

50 100 200 300 400 500

System Throughput, gpm

F i g u r e 4-6. Dosage

S e n s i t i v i t y of Rapid-Mix Tank N e u t r a l i z a t i o n Cap i ta l Cost t o Caust ic

'" 2 400-

Caustic Dose Rate (gal/lOOO gal) 2i

n a -

50 100 200 300 400 500

System Throughput, gpm

F i g u r e 4-7. Maintenance Cost t o Caust ic Dosage

S e n s i t i v i t y o f Rapid-Mix Tank N e u t r a l i z a t i o n Operating and

4-20

Table 4-7

TOTAL CAPITAL .COST ESTIMATE FOR IN-LINE NEUTRALIZATION (two chemical feed systems - 0.5 ga1/1000 ga l l ons )

System Throughput, gpm: 50

D i r e c t Process and O f f s i t e C a o i t d - 1$5ts1

I n - l i n e mixer Chemical Feed Tanks (2) Discharge Pumps (2) Acid Feed Pumps (2) Caust ic Feed Pumps (2) pH Contro l System Flow I n d i c a t o r On-site

$1,200 4 t 800 4,800 5,400 5,300 4,200 1,300

5 A X ! D i r e c t Process Costs 32,000

O f f - s i t e c o s t s AAQQ To ta l D i r e c t Cap i ta l Cost 36,800 Engineer ing and Home O f f i c e Fees (10%) 3,700 P r o j e c t Contingency (209%) 7,400

TOTAL PLANT COST 50,300

Allowance for Funds Dur ing Construct ion 0 TOTAL PLANT INVESTMENT 50,300

I nven to ry Cap i ta l 1,700

TOTAL CAPITAL REQUIREMENT $55,600

Process Contingency (5%) m

Preproduct ion cos ts 3,200

I n i t i a l Chemicals Charge 400

- 2 2 2

2.500 7,100 70200 5.500 5.300 4,200 1,300

49M 40,000

49M. 46,000 4,600 9,200 2&!Q 62,100

0 62,100 7,400 8.700 3

3

4,200 10,000 8,600 5,500 5,400 4,200 1,300 M 47,000

_LL(Lp

549100 5,400 11,000 2Lz!x! 73.500

0 73.500 12,000 17,000

3AQ.Q $80.000 $106,100

' I ns ta l l a t i o n , on -s i t e f a c i l i t i e s , and o f f - s i t e f a c i l i t i e s cos ts have been factored i n t o t h e d i r e c t c a p i t a l costs. See Appendix E f o r a d e t a i l e d breakdown o f actua l purchase, i n s t a l l a t i o n . and o t h e r costs.

4 -21

Table 4-8

ESTIMATED OPERATING AN0 MAINTENANCE COST FOR IN-LINE NEUTRALIZATION ( two chemical feed systems - 0.5 ga1/1000 ga l lons)

System Throughput. gpm: - Operating Labor @ $15.25/hr Maintenance Labor Maintenance M a t e r i a l s Admin is t ra t i ve 8 Support Labor

ANNUAL FIXED o a M COST

F Operat ing Labor 8 $15.25/hr Maintenance Labor Maintenance M a t e r i a l s Admin is t ra t i ve 8 Support Labor

Cons umabl es: 66 Be S u l f u r i c @ $0.62/gal 50% Caust ic @ $1.16/gallon E l e c t r i c i t y 8 $0.04/kWh

ANNUAL VARIABLE o a M COST

ANNUAL DIRECT o a M COST^

50

$11,000 700

1,000 -3mQ

16,200

5,800 400 5 00

1,900

5 00 9,900

_;tmn

22,300

$3 8,5 00

250500

$14,000 $18,000 800 1.000

1,300 1,500 _ 4 9 a P L d Q Q

20,700 26,200

7 I 800 9.700 450 500 700 800

2,500 3,100

2.600 5.300 50.000 99,000 _IrllLp4rdzlzI

67,750 123,000

$88,450 $149,200

' Ind i rect operat ing costs, such as depreciat ion. insurance, taxes, and general and a d m i n i s t r a t i v e costs a r e . n o t included.

4-22

Figures 4-8 and 4-9 compare t h e c a p i t a l and opera t i ng costs. respec t i ve l y , f o r

i n - l i n e n e u t r a l i z a t i o n systems having one o r two chemical feed systems.

F igu re 4-8, t h e t o t a l c a p i t a l requirement f o r a one-feed system i s shown t o be

25-35 percent lower than t h a t f o r a two-feed system o f t h e same s ize. The annual

d i r e c t o p e r a t i n g and maintenance c o s t s f o r a one-feed system a re shown, i n F igu re

4-9. t o be approximately 5 percent lower than those f o r s i m i l a r l y s ized two-feed

systems.

I n

Figures 4-10 and 4-11 i l l u s t r a t e t h e s e n s l t i v i t i e s o f i n - l i n e n e u t r a l i z a t i o n

cos ts t o c a u s t i c dosage.

of h i g h e r dosages increases d r a m a t i c a l l y as system s i z e i s increased. Th is

occurs because chemical cos ts increase i n p r o p o r t i o n t o increases i n system size,

w h i l e d i r e c t c a p i t a l and o t h e r o p e r a t i n g c o s t s a r e much l e s s s e n s i t i v e t o system

s i z e w i t h i n t h e throughput ranges presented.

t o t a l c a p i t a l c o s t i s magnif ied by t h e f a c t t h a t f o r these r e l a t i v e l y smal l

systems. c o s t s f o r i nven to ry c a p i t a l a t t h e h ighe r dosage r a t e s exceeds t h e

purchased equipment costs.

c o s t i s magnif ied by t h e f a c t t h a t chemical consumption i s t h e s i n g l e l a r g e s t

c o n t r i b u t o r t o t h i s cost . except a t very low dosages.

As was observed f o r rapid-mix tank systems, t h e e f f e c t

The e f f e c t o f chemical dosage on

Likewise, t h e e f f e c t of dosage on annual ope ra t i ng

SDeci 2- i ons - Ne r i i n a Waste

Treatment o f t h i s stream may r e q u i r e s u b s t a n t i a l m o d i f i c a t i o n t o t h e design b a s i s

f o r which c o s t s were estimated. The systems descr ibed above p e r t a i n p r i m a r i l y t o

a p p l i c a t i o n s where low t o moderate c a u s t i c dosages a re requ i red (e.g., 0.02 t o 2

ga1/1000 ga l ) .

i n d i c a t i n g cont inuous operat ion.

chemical c l e a n i n g waste r e q u i r e s much h i g h e r c a u s t i c dosages, and i s performed

over a p e r i o d of a few hours once every two t o f i v e years p e r b o i l e r .

t h e i n t e r m i t t e n t na tu re o f t h i s stream, i n c u r r i n g t h e c a p i t a l and annual

o p e r a t i n g c o s t s of a dedicated t reatment system may n o t be warranted.

instances, u t i l i t i e s employ c o n t r a c t o r s f o r b o i l e r c l e a n i n g and t h e c o s t of

n e u t r a l i z a t i o n i s inc luded i n t h e c o n t r a c t fee. I n o the r instances, temporary

equipment i s i n s t a l l e d f o r i n - l i n e n e u t r a l i z a t i o n of h y d r o c h l o r i c a c i d b o i l e r

c l e a n i n g waste.

f o r most o f t h e n e u t r a l i z a t i o n cost .

as a f u n c t i o n o f t h e volume o f b o i l e r chemical c lean ing waste t r e a t e d over a

range o f dosages from 5 t o 80 ga1/1000 gal . Based on data c o l l e c t e d from p l a n t

surveys, t h i s range was determined t o be a p p l i c a b l e t o n e u t r a l i z a t i o n of hydro-

c h l o r i c ac id b o i l e r chemical c l e a n i n g waste.

I n add i t i on , o p e r a t i n g c o s t s were presented on an annual bas is

N e u t r a l i z a t i o n of h y d r o c h l o r i c a c i d b o i l e r

Because of

I n many

I n t h i s app l i ca t i on , t h e c o s t of t h e c a u s t i c requ i red accounts

F igu re 4-12 i l l u s t r a t e s t h e c o s t of c a u s t i c

4-23

140 - e m - 120-

- - B

100-

- -- C Y I - ! i g 80- ': 2 - z s - m - One Chemical Feed System

60- - ._ 0

40;

20-

- m - - -

0 50 100 200 300 400

F i g u r e 4-8. Chemical Feed Systems

S e n s i t i v i t y o f In -L ine N e u t r a l i z a t i o n C a p i t a l Cost t o t h e Number o f

,

500

50 100. 200 300 400

System Throughput, gpm 0

F i g u r e 4-9. t o t h e Number of Chemical Feed Systems

S e n s i t i v i t y o f In -L ine N e u t r a l i z a t i o n Operating and Maintenance Cost

4-24

I I __. J

180 - 160 - 140 - 120 -

- - Caustic Dose Rate (gal11000 gal)

- -

40 - 20 - 0 ,

- - 50 100 200 300 400 500

System Throughput, gpm

F i g u r e 4-10. S e n s i t i v i t y of In -L ine N e u t r a l i z a t i o n Cap i ta l Cost t o Caust ic Dosage

J"y 1 I

400 1 Caustic Dose Rate (gal/lOOO gal) / I lL? 100

O ! I 50 100 200 300 400 500

System Throughput, gpm

F i g u r e 4-11. Cost t o Caust ic Dosage

S e n s i t i v i t y o f In -L ine N e u t r a l i z a t i o n Operating and Maintenance

4-25

15 I

14 - 13- 12 - 11 - 10 - 9- 8- 7 -

6-

Caustic Dose Rate (ga111000 gal)

10 30 50 70 90 110

Boiler Volume. Thousand Gallons

0

F i g u r e 4-12. N e u t r a l i z a t i o n as a Funct ion o f B o i l e r Volume

Caust ic Cost for Hydrochlor ic Acid B o i l e r Chemical Cleaning Waste

4-26

- N e u t r a l i z a t i o n i s used e i t h e r t o produce an e f f l u e n t s u i t a b l e f o r d ischarge (pH

6-91 or t o p revent c l a s s i f i c a t i o n o f a waste as RCRA hazardous because o f t h e pH

l i m i t s de f ined f o r c o r r o s i v i t y . Adjustment o f pH can r e s u l t i n t h e p r e c i p i t a t i o n

of d i sso l ved ions, thereby r e q u i r i n g t h e a d d i t i o n of sedimentation, f i l t r a t i o n ,

o r o the r s o l i d s separa t i on s teps p r i o r t o discharge.

For s i m i l a r l y s i zed systems c o n t a i n i n g t h e same number o f chemical feed systems

and opera t i ng a t equ iva len t chemical dosages, i n - l i n e n e u t r a l i z a t i o n i s l e s s

expensive than rapid-mix tank n e u t r a l i z a t i o n . The t o t a l c a p i t a l requirement

(TCR) f o r i n - l i n e systems i s approximately 70 percent o f t h e TCR f o r s i m i l a r l y -

s i zed rapid-mix tank systems; annual ope ra t i ng cos ts f o r i n - l i n e n e u t r a l i z a t i o n

a re approximately 95 percent of those f o r rapid-mix tank systems.

Although comparably s i z e d i n - l i n e systems a r e l e s s expensive, s i t e - s p e c i f i c and

s t ream-spec i f i c f a c t o r s may r e q u i r e t h a t t h e more f l e x i b l e rapid-mix tank

n e u t r a l i z a t i o n be employed. The rapid-mix tank system prov ides t h e volume

necessary f o r s e l f - n e u t r a l i z a t i o n t h a t can be ob ta ined by m ix ing a c i d i c and bas i c

streams ( i .e. , deminera l i zer regenerant streams from s t r o n g a c i d and s t rong base

i o n exchangers). I n add i t ion , rapid-mix systems can be operated i n a f i l l and

draw mode f o r use w i t h wastes produced i n batch operat ions, and e f f l u e n t pH can

be more e a s i l y c o n t r o l l e d because o f t h e system r e t e n t i o n t ime.

IMPOUNDMENTS AND TANKS

Impoundments and tanks a r e used for a v a r i e t y o f purposes i n low volume waste

management. An impoundment, as def ined i n t h i s manual, i s cons t ruc ted o f ear then

ma te r ia l s . It may be l i n e d w i t h low pe rmeab i l i t y s o i l s or f l e x i b l e membrane

l i n e r s . The impoundments a r e cons t ruc ted by us ing excavated m a t e r i a l t o form

dikes. Tanks i n t h i s manual a r e assumed t o meet t h e RCRA d e f i n i t i o n of tanks,

i.e., they a r e cons t ruc ted o f non-earthen m a t e r i a l s (concrete. s tee l , o r

f i b e r g l a s s re in fo rced p l a s t i c ) and p rov ide t h e i r own s t r u c t u r a l support.

Impoundments a r e canmonly used f o r h o l d i n g wastewater ( e i t h e r be fore o r a f t e r

t rea tmen t ) as p a r t of a t rea tment process ( f l o w equa l i za t i on . sedimentation, and

coponding). o r for f i n a l d isposa l (evapora t ion ponds and coponding). - A l l of t h e low volume waste streams i d e n t i f i e d i n F igu re 4-1 may r e q u i r e s to rage

i n a tank o r impoundment du r ing one o r more stages o f t reatment. The t rea tment

4-27

processes of coponding, i n c i n e r a t i o n , n e u t r a l i z a t i o n . physical /chemical

t reatment, evaporation, and sedimentat ion a l l r e q u i r e e i t h e r a tank o r an

impoundment.

addressed i n t h i s manual.

Tab le 4-9 p resents t h e use o f impoundments f o r wastes t h a t a r e

Tab le 4-9

LOW VOLUME WASTES STORED I N TANKS OR IMPOUNDMENTS

Low Volume W e

Coal p i l e r u n o f f

Sof tener s1 udge

F l o o r and yard d r a i n s

Demi n e r a l i z e r regene r a n t

B o i l e r blowdown

F i r e s i d e c l e a n i n g waste

B o i l e r chemical c lean ing waste

Coo l ing tower sludge

Treatment b r i n e

Trea ted water

Use o f I m p d m e n t

sedimentation, coponding

coponding

storage, coponding

storage, equa l i za t i on , coponding

storage, coponding

storage, coponding. evapora t ion

storage, coponding, evapora t ion

coponding

evapora t ion

s to rage

Jreatment Effect iveness

Impoundaents and tanks a re used i n t rea tment s teps f o r e q u a l i z i n g flows, evapc-

r a t i n g wastewater, coponding low volume w i t h h i g h volume wastes. and as sedimen-

t a t i o n bas ins f o r coal p i l e runo f f . Storage a p p l i c a t i o n s a re n o t discussed i n

terms o f t rea tment e f fec t i veness i n t h i s manual. However, t h e use o f

impoundments and tanks f o r t r e a t i n g low volume wastes a re discussed i n t h e

f o l 1 owing appl i c a t ions:

a Equa l i za t i on ;

a Evaporation;

a Coponding; and

a Sedimentation.

i z a t i o n . A c i d i c and a l k a l i n e demine ra l i ze r regenerant wastes can be f low-

and-concentrat ion-equal i z e d i n tanks, t h u s avo id ing pH extremes and c l a s s i f i c a -

t i o n as a RCRA t reatment. The bed r i n s e s can be c o l l e c t e d and mixed i n an

a g i t a t e d vessel . The purpose o f t h e m ix ing i s t o produce a non-corrosive (RCRA

non-hazardous) waste stream w i t h a pH between 2 and 12.5. Since regenera t ion i s

4-28

a batch process, a c i d i c and bas ic wastes a re produced d u r i n g each process ing

cyc le .

can be combined, p r o v i d i n g n e u t r a l i z a t i o n w i t h o u t chemical add i t i on . The stream

may then be routed t o f u r t h e r t reatment.

t h e b o i l e r chemical c lean ing wastes and f i r e s i d e c l e a n i n g wastes p r i o r t o

physical /chemical t rea tment t o improve t rea tment e f fec t i veness .

By p roper l y s i z i n g t h e e q u a l i z a t i o n vessel, c a t i o n i c and a n i o n i c wastes

Equa l i za t i on may a l s o be prov ided f o r

m o r a t i o n .

aqueous wastes.

amounts of l i q u i d s .

vapor compression evaporators and reverse osmosis systems generate h igh

concent ra t ion , lower volume waste streams. The concent ra ted waste b r i n e s f rom

these recovery processes can be sent t o evapora t ion ponds.

I n a r i d reg ions of t h e country, evapora t ion i s used f o r d isposa l o f

Evapora t ion ponds a r e used t o dispose of l a r g e and sma l le r

If maximum recovery and r e c y c l i n g of water i s p rac t i ced ,

The evapora t ion r a t e i s dependent on t h e surface area o f t h e pond, t h e s a l i n i t y

of t h e pond water. and c l i m a t o l o g i c a l in f luences (temperature, humidi ty.

p r e v a i l i n g wind d i r e c t i o n and speed, e t c . ) .

predominately i n reg ions w i t h 30 or more inches p e r year o f n e t evaporat ion.

Th is corresponds t o a processing r a t e of about 1.5 gpm per acre.

impoundments a r e g e n e r a l l y shal low, s ince t h e evapora t ive capac i t y i s su r face

area dependent. S u f f i c i e n t depth i s p rov ided i n t h e design t o c o n t r o l f l ow

surges as they occur, t o a l l ow f o r accumulat ion of sediment, and t o p rov ide

freeboard f o r h igh winds.

F igu re 4-13 shows t h e annual n e t

' evapora t ion across t h e c o n t i n e n t a l U.S. Evaporat ion ponds a re found

These

CODOndinS.

c u r r e n t l y exempt f rom RCRA hazardous c l a s s i f i c a t i o n (see Sect ion 3 ) ( 2 3 ) . If discharges occur from t h e ponds, t h e water q u a l i t y must meet NPDES requirements

f o r s p e c i f i c c o n s t i t u e n t s .

A c t (CWA), Bes t A v a i l a b l e Cont ro l Technology (BACT) must be used t o c o n t r o l t h e

p o l l u t a n t s o f concern (normal ly pH, suspended s o l i d s , i r o n , copper, and o i l and

grease).

f a c i l i t i e s (5 ) . requ i red t rea tmen t l e v e l .

shown t o be as e f f e c t i v e as t h e BACT technology.

is t h e s p e c i f i e d BACT f o r waters ide b o i l e r c lean ing wastes, w i t h e f f l u e n t l e v e l s

o f 1 mg/L f o r i r o n and copper.

coponded, it may be necessary t o per fo rm an equivalency demonstrat ion t o o b t a i n

t h e NPDES permi t .

Low volume wastes which a re coponded w i t h h i g h volume wastes a r e

A d d i t i o n a l l y , under t h e p r o v i s i o n s of t h e Clean Water

The CWA a1 lows t h e demonstrat ion of e q u i v a l e n t t rea tment i n e x i s t i n g

I n general, each waste stream has a s p e c i f i c BACT which s e t s t h e

For most of t h e low volume wastes, coponding has been

Lime o r c a u s t i c p r e c i p i t a t i o n

When b o i l e r chemical c lean ing wastes a r e

4-29

P

w 0

F i g u r e 4-13. Annual Net Evaporation i n t h e United States ( inches) (u8)

Three p l a n t s which dispose of spent b o i l e r chemical c l e a n i n g waste s o l u t i o n s i n

s l i g h t l y a l k a l i n e ash ponds were sampled (see Appendix A, P l a n t s I, J , and P I .

One p l a n t t r e a t s an ammoniated EDTA c lean ing s o l u t i o n i n a c losed- loop pond.

Th is p l a n t has s t a t e approval for disposal based on u l t r a v i o l e t degradat ion of

t h e EDTA and subsequent p r e c i p i t a t i o n of t h e i r o n and copper. Table 4-10 pre-

sents analyses of t h e pond water before and one week a f t e r c lean ing w i t h EDTA a t

t h i s s i t e . The d i l u t i o n i n t h i s pond was approximately 1500:lr t h i s r e s u l t s i n

an a d d i t i o n o f about 5.5 mg/L o f i r o n and less than 0.5 mg/L o f copper t o t h e ash

pond when b o i l e r chemical c lean ing waste i s introduced. The i r o n l e v e l measured

one week a f t e r a d d i t i o n of t h e b o i l e r chemical c lean ing waste was 4.8 mg/L, w h i l e

p r i o r t o adding b o i l e r chemical c lean ing waste t o t h e pond, i r o n l e v e l s of 2.2

mg/L were measured. Copper increased from 0.01 t o 0.18 mg/L. Since t h i s pond

water i s reused i n combined FGD-fly ash scrubbers, it i s poss ib le t h a t t h e normal

background l e v e l of i r o n i s a r e s u l t o f l each ing from t h e ash.

A second p l a n t uses c i t r i c acid, which i s discharged t o t h e ash pond. Table 4-11 presents t h e analyses o f t h e ash pond water f o r t h i s p lan t , p r i o r t o and a f t e r

a d d i t i o n o f t h e c i t r a t e b o i l e r chemical c lean ing waste. A t t h i s s i t e , e f f l u e n t

from t h e pond showed an e leva ted i r o n l e v e l two days a f t e r b o i l e r c lean ing waste

was introduced. Subsequent samples showed reduced i r o n l e v e l s . Th i s i n d i c a t e s

tha t , f o r t h i s case, a hold-up of about f o u r days i s requ i red f o r t h e pond

e f f l u e n t t o be reduced below one mg/L. The r a t i o o f pond volume t o b o i l e r

c l e a n i n g waste volume was approximately 500:l a t t h i s p l a n t .

concen t ra t i on of t h e b o i l e r chemical c lean ing waste, t h i s should have r e s u l t e d i n

an ash pond concen t ra t i on o f approximately 16 mg/L immediately a f t e r a d d i t i o n o f

t h e c l e a n i n g s o l u t i o n . A t t h e t ime of sampling, t h e u t i l i t y d i d n o t have an i r o n

o r copper discharge requirement; however, t h e pe rm i t was r e c e n t l y renewed w i t h an

i r o n and copper l i m i t of 1.0 mg/L f o r discharge. With t h e c u r r e n t b o i l e r

c lean ing procedures ( i .e. , d ischarge of c i t r a t e waste t o t h e ash pond) ash pond

water would n o t meet these discharge c r i t e r i a u n t i l f o u r days a f t e r i n t r o d u c t i o n

o f t h e b o i l e r c l e a n i n g waste.

Based on t h e i r o n

The t h i r d s i t e us ing coponding as t rea tmen t o f b o i l e r c lean ing wastes had p r e v i -

ous ly demonstrated t h e e f fec t i veness of us ing t h e i r ash ponds t o t r e a t ammonium

bromate and h y d r o c h l o r i c a c i d washwaters ( 3 ) . success fu l coponding f i e l d demonstrations, they have rece ived pe rm i t s f o r t h e i r

n ine p l a n t s t o use coponding f o r BCCW treatment.

f o l l o w s :

Based on t h e i r l a b o r a t o r y and

The p e r m i t requirements a re as

4-3 1

Table 4-10

METAL CONCENTRATIONS I N EDTA POND SAMPLES (mg/L)

w n t a l Analv s i s

Aluminum Antimony Arsenic Barium R e r y l l ium Boron Cadmium Calcium Chranium Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Pot ass i um Selenium S i l i c o n S i l v e r Sodium Thal 1 i um Vanadium Zinc

DH ( u n i t s )

NA- n o t analyzed

Pond Before EDTA D r a i n

24 0.29

<0.002 0.18

(0.01 170

450 0.054

0.037 0.17 0.01 2.2

NA 4590

34 0.0002 2.3 0.35

(0.05

19

420

NA

0.071

(0.09 0.69 0.46

NA

Pond A f t e r EDTA D r a i n

24 (0.2 (0.002 0.3

(0.01 177

460 0.046

0.3 0.13 0.18 4.8

(0.004 4270

32 0.0003 2.3 0.31

1 0 . 5 0.062

20

390 0.014

(0.9 0.52 0.41

7.6

4-32

Table 4-11

METAL CONCENTRATIONS I N CITRATE POND SAMPLES (mg/L)

Elemental A n w

A1 um i num A n t i m n y Arsenic Barium Bery l1 ium Boron Cadmium Calcium Chromi urn Cobal t Copper I m n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Zinc

B e f o r e w 0.54 0.12 <0.002 0.07 <0.001 8.5 <0.002

0.03 (0.006 0.02 1.1

<0.002 8.4 0.16 0.0025 0.13 0.02 8.3 0.008 2.7 0.02 29 (0.09 0.02 0.01

139

Time after pMd flow r w m e d +2 davs LUus LkhIUs

0.58 0.09

<0.002 0.08 (0.001 9.4 0.003

0.03 0.009 0.02 4.2 <0.002 8.4 0.13 <0.0002 0.14 0.02

0.009 2.8 0.02 28 (0.09 0.04 0.01

140

8.5

0.66 0.07 <0.002 0.07

<O.OOl 8.4

<o. 002

0.02 (0.006 0.01 0.81

<o. 002 8 0.18

<0.0002 0.12 0.01 8.5 0.009 2.9 0.01 25 (0.09 0.01 0.01

130

0.46 0.1

<0.002 0.08 (0.001 9.1

<0.002

0.02 (0.006 0.01 0.47

<0.002 8 0.14

<0.0002 0.13 0.01 8.5 <0.002 2.7 0.01 27 <0.09 0.03 0.007

136

0.61 0.11 0.006 0.08 <0.001

9.2 0.002

0.03 0.007 0.01 0.71 <0.002 8.2 0.15 <0.0002 0.13 0.01 8.7 0.007 3 0.01 27 (0.09 0.04 0.009

139

4-33

Large ash pond volumes p r o v i d i n g p o t e n t i a l d i l u t i o n r a t i o s of 1OO:l;

Wel l -def ined shal low ash d e l t a near t h e ash pond i n f l u e n t ;

Ash pond pH o f no l e s s than 6.5 p r i o r t o metal c l e a n i n g waste add i t ion ;

Four days r e t e n t i o n t i m e i n t h e ash pond a f t e r t h e f i r s t a d d i t i o n o f h y d r o c h l o r i c a c i d c l e a n i n g waste w i t h t h e e f f l u e n t f low v i r - t u a l l y stopped;

B o i l e r volume l e s s than 86,000 ga l lons ;

Chemicals f o r c l e a n i n g t o i n c l u d e one or more of t h e f o l l o w i n g :

a) Copper removal step- Sodium bromate (NaBrO ) ammonium carbonate and ammonium hydrox i d& NH40H;

H y d r o c h l o r i c acid, HC1; ammonium b i f l u o r i d e p r o p r i e t a r y i n h i b i t o r s ;

b ) I r o n removal step- NH4HF2; and

Maximum d i l u t i o n of 6:l w i t h r i v e r water before wastes e n t e r ash pond; and

A f t e r t rea tment of metal c l e a n i n g wastes, if m o n i t o r i n g of pond e f f l u e n t s as requ i red by p e r m i t r e v e a l s discharges o u t s i d e t h e l i m i t of t h e permit. t h e p l a n t w i l l c l o s e t h e pond and conduct such in-pond sampling as necessary t o determine t h e cause o f noncompliance, take a p p r o p r i a t e c o r r e c t i v e act ions, and f i l e a r e p o r t w i t h EPA i n c l u d i n g a l l p e r t i n e n t data.

I n t h e e l g h t years s ince t h e p e r m i t was issued. t h e u t i l i t y has had no problems

i n meeting t h e p e r m i t requirements u s i n g ammonium bromate and h y d r o c h l o r i c a c i d

i n b o i l e r c lean ings a t i t s o l d e r s t a t i o n s (hydroxyacet ic- formic a c i d i s used a t

t h e newer c o a l - f i r e d u n i t s ) . Table 4-12 presents analyses performed under t h i s

p r o j e c t f o r t h e most recent h y d r o c h l o r i c a c i d c l e a n i n g a t one p lan t .

analyses show t h e ash pond composi t ion p r i o r t o a b o i l e r d r a i n and f o r t h e f i r s t

f o u r days a f t e r e f f l u e n t flow was r e i n s t i t u t e d (which was four days a f t e r t h e

b o i l e r c lean ing) .

observed fo r copper.

1 mg/L.

The

As can be seen, o n l y a s l i g h t concent ra t ion increase i s

None o f t h e e f f l u e n t water has i r o n and copper l e v e l s above

Table 4-13 presents t h e r e s u l t s of l a b o r a t o r y experiments conducted t o eval uate

coponding o f b o i l e r c l e a n i n g washwaters w i t h f l y ash. Four types of f l y ash were

used as reagents. Each o f t h e ashes had a d i f f e r e n t e q u i l i b r i u m pH, rang ing from

about 4 t o 11. d l l u t i o n wi th an ash s l u r r y . Th is amount o f d i l u t i o n i s a conserva t ive simula-

t i o n o f what occurs i n an a c t u a l ash pond, because t h e d i l u t i o n a t a p l a n t i s

The experiments cons is ted of m i x i n g t h e waste streams i n a 1OO:l

4-3 4

Table 4-12

METAL CONCENTRATIONS I N ASH POND DISCHARGE SAMPLES (mg/L)

Elemental Anal v s i s

Aluminum Antimony Arsenic Barium Bery l 11 um Boron Cadmium Calcium Chromium Chranium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Sodi um Selenium S i l i c o n Si1 ver T h a l l i um Vanadium 21 nc

pH ( u n i t s )

Before dcalnina 0.62

(0.02 0.016 0.16 (0.001 0.43 (0.001 27 (0.005 (0.005 (0.006 0.002 0.39 (0.08 4.3 0.42

<0.0002 0.037 0.006 3.9

0.01 6.2 0.0009 (0.09 0.012 0.004

7

11

Time a f t e r DO nd f l ow resumed t2 hour S~~~~

0.47 (0.02 (0.06 0.16 (0.001 0.26 (0.001 26 (0.005

NA (0.006 0.61 0.3 (0.08 4.2 0.23

NA 0.04 0.005 4 13 (0.08 6.6 0.0009 (0.09 (0 .003 0.014

7

0.44 (0.02 (0.06 0.17 (0.001 0.28 (0.001 25 (0.005

NA (0.006 0.01 0.23 (0.08 4.1 0.22

NA 0.046 0.007 4

13 (0.08 6.5 0.0006 (0.09 0.009 0.013

7.2

0.59 (0.02 (0.06 0.18 (0.001 0.37 (0.001 26 (0.005

NA (0. 006 0.03 0.25 (0.08 4.1 0.25

NA 0.045 0.006 4.2 13 (0 .08 6.7 0.0006 (0.09 0.012 0.015

7.15

0.5 (0.02 (0 . 06 0.18 (0.001 0.38

<o. 001 26 (0.005

NA <0.006 0.01 0.22

(0.08 4.1 0.25

NA 0.043 0.008 4.1 13 (0.08 6.8 0.0003 (0.09 0.009 0.013

7.16

0.41 (0.02 0.024 0.18 (0.001 0.3

(0. 001 25 (0.005 (0.005 (0.006 0.02 0.19 (0.08 4 0.23

<0.0002 0.043 0.005 4 14 0.02 6.7 , 0.0004

0.009 0.012

7.18

(0.09

- NA- n o t analyzed

4-35

Table 4-13

RESULTS OF LABORATORY TRIALS FOR COPONDING TREATMENT METHODS

Concentrat ion i n ash s l u r r i e s ' -Ac id i c ash -Neutra l ash -A1 k a l i ne Ash No. 1 - A l k a l i n e Ash No. 2

2 Concentrat ion a f t e r d i l u t i o n Concentrat ion a f t e r t rea tment

-Ac id i c ash -Neutra l ash - A l k a l i n e Ash No. 1 - A l k a l i n e Ash No. 2

Concentrat ion a f t e r d i l u t i o n Concentrat ion a f t e r t reatment

-Ac id i c ash -Neutra l ash - A l k a l i n e Ash No. 1 - A l k a l i n e Ash No. 2

Concentrat ion a f t e r d i l u t i o n Concentrat ion a f t e r t reatment

-Ac id i c ash -Neutra l ash -Ak la l i n e Ash No. 1 - A k l a l i n e Ash No. 2

Concentrat ion a f t e r d i l u t i o n Concentrat ion a f t e r t rea tment

-Ac id i c ash -Neutra l ash - A l k a l i n e Ash No. 1 - A l k a l i n e Ash No. 2

Concentrat ion a f t e r d i l u t i o n Concentrat ion a f t e r t rea tment

-Ac id i c ash -Neutra l ash - A l k a l i n e Ash No. 1 -A1 k a l i n e Ash No. 2

No Waste S o l u t i o n ptl -kQLhu-

3.6 1.1 0.86 7.0 (0. 1 0.48 11.1 (0.1 (0.1 11.2 (0.1 (0.1

ptl Hvdroch lo r ic Ac id Waste

L l x n h d U - 41.4 0.2

3.7 31.8 1.47 7.0 (0.1 (0.1 10.4 (0.1 (0.1 10.1 (0.1 (0.1

Hvdroxvacet ic Formic Ac ld -- 8 10.1

ptl

4.2 7.1 1.1 7.7 (0.1 c0.1 10.4 (0.1 (0.1 10.3 co.1 (0.1

h - m A u u - co. 1 3.5

4.1 0.2 2.68 7.7 10.0

(0.1 co.1

10.1 (0.1 - .

10.8 (0.1 c0.1 C i t r i c Ac id Waste

ptl -- 69.5 (0.1

4.6 6.1 0.39 7.9 1.4 0.86 10.0 (0.1 (0.1 10.9 (0.1 (0.1

ptl Ammoniated EDTA Waste b x L L h u u -

54.3 2.8

4.3 53.9 1.3 8.1 49.8 1.1 9.7 (0.1 (0.1 10.6 (0.1 (0.1

'Ash s l u r r i e s w i thou t waste add i t ion , s t i r r e d f o r 24 hours *The waste i s d f l u t e d 1OO:l when added t o t h e ash s l u r r y 3A f te r be ing s t i r r e d w i t h t h e i n d i c a t e d ash s l u r r y fo r 24 hours

4-36

t y p i c a l l y h igher .

experiments u n t i l t h e pH remained s tab le. Shown on each t a b l e a r e t h e s t a r t i n g

concen t ra t i ons of i r o n and copper a f t e r t h e i n i t i a l waste add i t i on , and t h e

values measured a f t e r 24 hours o f mixing.

minimal e f f e c t on t h e metal concentrat ions, occas iona l l y r e s u l t i n g i n f i n a l

concen t ra t i ons h ighe r than those measured a t t h e s t a r t o f t h e t e s t .

a l k a l i n e ashes success fu l l y reduced i r o n and copper concentrat ions i n a l l o f t h e

wastes below t h e d e t e c t i o n l i m i t . Although t h i s i s n o t c o n s i s t e n t w j t h

e q u i l i b r i u m s o l u b i l i t y c a l c u l a t i o n s , it i s n o t s u r p r i s i n g . E q u i l i b r i u m

computations do n o t account f o r t h e extremely h i g h s o l i d s l o a d i n g i n t h e ash

coponding experiments. The ash p a r t i c l e s p rov ide considerable sur face area f o r

heterogeneous reac t i ons (such as adsorpt ion and c o p r e c i p i t a t i o n ) and c a t a l y t i c

reac t i ons t o occur on t h e ash surface.

A d d i t i o n a l ash was added du r ing t h e f i r s t few hours of t h e

As expected, t h e a c i d i c ash had a

The two

Based on these l i m i t e d f i e l d and l a b o r a t o r y resu l t s , coponding of b o i l e r c lean ing

s o l u t i o n s i n a l k a l i n e ash ponds can s u c c e s s f u l l y reduce t h e d i sso l ved metal

concen t ra t i ons i n t h e waste. The h i g h l y a l k a l i n e ash ponds were successful i n

t r e a t i n g a l l b o i l e r chemical c l e a n i n g wastes tested. Neutra l ash ponds have been

shown t o be e f f e c t i v e f o r a c i d c lean ing wastes ( h y d r o c h l o r i c a c i d ) b u t l e s s

successful i n s h o r t t i m e pe r iods w i t h chelated c lean ing wastes (EDTA and c i t r i c

ac id ) .

$edimentatPm.

drainage ( i .e., from a 10-year storm event) . These impoundments a r e designed t o

p rov ide adequate residence t i m e f o r sedimentat ion of suspended s o l i d s .

case o f a c i d i c coal p i l e runoff . i n - l i n e n e u t r a l i z a t i o n can be prov ided p r i o r t o

discharge. S o l i d s t h a t c o l l e c t i n t h e impoundment may be p e r i o d i c a l l y re turned

t o t h e coal p i l e or disposed o f i n a l a n d f i l l . No a n a l y t i c a l r e s u l t s were

obta ined on sedimentat ion e f fec t i veness of impoundments. a l though v i s u a l

i n s p e c t i o n o f several dry impoundments revealed s u b s t a n t i a l accumulations of coal

f ines. Back-up t reatment f o r suspended s o l i d s removal (e.g., c l a r i f i c a t i o n ) , can

be prov ided if high r a i n f a l l pe r iods reduce t h e ef fect iveness o f sedimentat ion

basins.

Coal p i l e runoff impoundments a re used t o c o l l e c t and h o l d

I n t h e

v Impoundments a r e requ i red f o r a wide range of c a p a c i t i e s and waste composit ions.

Table 4-14 presents s i x general types of impoundments and tanks t o demonstrate

t h e o p t i o n s a v a i l a b l e t o u t i l i t i e s when fo rmu la t i ng a low volume waste t reatment

4-37

scheme.

f o r which each may be used.

A lso shown a r e t h e range of volumes f o r each impoundment and t h e streams

Table 4-14

TANK AND IMPOUNDMENT CONCEPTUAL DESIGNS

ImDoundment Desc r io t i on

Clay l i n e d

S ing le f l e x i b l e membrane l i n e r

Double f l e x i b l e membrane l i n e r (meets RCRA Standards)

Concrete tank

Steel t anks

F iberg lass Reinforced P l a s t i c (FRP) tanks

Volume Range - 0.1 - 100

0.1 - 100

0.1 - 100

0.001 - 4

0.005 - 0.1

0.001 - 0.02

Low Yo1 ume Waste

coal p i l e runoff, i ntermedi ate-qual i t y water, h i g h - q u a l i t y water, d ischarge water

a l l streams

f i r e s i d e waste, b o i l e r s i d e waste, VCE b r i n e

in termediate-qual i t y water, b o i l e r chemical c lean ing waste, h i g h - q u a l i t y water

b o i l e r chemical c lean ing waste

deminera l i zer regeneran t

Numerous design v a r i a t i o n s may be associated w i t h each s p e c i f i c i n s t a l l a t i o n o f

these impoundments and tanks. The reader i s r e f e r r e d t o an EPRI Research r e p o r t

e n t i t l e d "Manual f o r Upgrading E x i s t i n g Disposal F a c i l i t i e s " (24) f o r d e t a i l e d

i n fo rma t ion on impoundment design and l i n e r se lec t i on . A few o f t h e p e r t i n e n t

f a c t o r s concern ing t h e impoundments inc luded i n Table 4-14 are discussed here.

w. Local s i l t y - c l a y s o i l s a re w ide ly used f o r impoundment cons t ruc t i on . The

pe rmeab i l i t y c o e f f i c i e n t s o f l o c a l c l a y s can be q u i t e low (lo-' cm/sec) i f

p roper l y compacted.

b e n t o n i t e can be used as an amendment t o l o c a l s o i l s f o r t h e l i n e r . Sodium

m o n t m o r i l l o n i t e i s t h e favored benton i te because it e x h i b i t s a h igh degree o f

swe l l ing , impermeabi l i ty . and h igh a t tenua t ing capac i ty f o r c a t i o n s and heavy

metals. Major canmercial ben ton i te deposi ts a r e l oca ted i n Wyoming.

If l o c a l s o i l s do n o t con ta in adequate l e v e l s o f c lays,

4-38

Clay l i n e r s can deform w i t h e a r t h se t t l emen t and movement. If these movements

exceed t h e p l a s t i c i t y o f t h e c lay, t h e l i n e r i n t e g r i t y can be breached, a l l ow ing

leakage. Clays should be kept wet a t a l l t imes t o p revent d r y i n g and subsequent

s h r i n k i n g and crack ing. Advantages o f c l a y l i n e r s i n c l u d e s imple i n s t a l l a t i o n

procedures. low permeab i l i t y , and long se rv i ce l i f e . Disadvantages i nc lude poor

weathering and chemical res is tance, and h igh t r a n s p o r t a t i o n c o s t s i f n o t l o c a l l y

ava i l ab le . A d d i t i o n a l l y , c l a y - l i n e d impoundments a r e n o t acceptable f o r s torage

o f wastes c l a s s i f i e d as RCRA hazardous.

F l e x i b l e Membrane I i n e r s (FML) . If proper l y se lec ted and i n s t a l l e d f o r s p e c i f i c app l i ca t i ons , these m a t e r i a l s o f f e r p r o t e c t i o n aga ins t permeation o f wastes. The

use of one or two l i n e r s i s dependent on t h e type o f waste i n t h e impoundment. A

double l i n e r design w i t h groundwater mon i to r i ng w e l l s and a leachate c o l l e c t i o n

system i s a requirement f o r RCRA hazardous wastes.

Two general types o f f l e x i b l e membrane m a t e r i a l s may be used i n t h e design of low

volume waste impoundments. These m a t e r i a l s a r e e i t h e r r e s i s t a n t o r non- res is tan t

t o ox idan ts such as ozone and u l t r a v i o l e t l i g h t . Among t h e r e s i s t a n t membranes

a r e ch lo rosu l fona ted po lye thy lene (Hypalon 1 and h igh dens i ty po lye thy lene

(HDPE). Examples of non - res i s tan t membranes a r e p o l y v i n y l c h l o r i d e (PVC) and low

dens i ty po lye thy lene (LDPE), The non- res is tan t membranes a r e covered w i t h a

l a y e r o f d i r t or c l a y a f t e r i n s t a l l a t i o n t o p revent UV degradation.

s e l e c t i o n o f a p a r t i c u l a r type of membrane i s dependent on t h e c o m p a t i b i l i t y of

t h e l i n e r w i t h i t s in tended serv ice . Many references f o r d isposal f a c i l i t y

design and upgrading p rov ide comprehensive check1 i s t s o f impor tan t f a c t o r s t o

consider i n l i n e r s e l e c t i o n (m).

The

Costs of l i n e r m a t e r i a l s a re dependent on t h e chemical fo rmula t ion and th i ckness

and s i z e o f t h e i n s t a l l a t i o n . Several common l i n e r m a t e r i a l s and u n i t p r i c e s are

Dresented i n Table 4-15.

4-3 9

Table 4-15

COSTS OF FLEXIBLE MEMBRANE LINERS - - W c h a s e Cost ( $ / f t 2 )

Hypalon 36 0.57

PVC 20 0.15 PVC 30 0.21

PV c 40 0.40 HDPE 40 0.24 HOPE 60 0.32

L;Qocrete. Steel . and FIT. Smaller impoundments a re o f t e n cons t ruc ted o f these

r i g i d m a t e r i a l s t o conform t o a v a i l a b l e space l i m t t a t i o n s , min imize sa fe ty

concerns, and meet regu la to ry requirements. Concrete bas ins have h ighe r volume

t o sur face area r a t i o s than ear then impoundments because of v e r t i c a l wa l l s .

waste temperatures j u s t i f y t h e use o f s t e e l tankage t o s t o r e b o i l e r chemical

c lean ing wastes. F ibe rg lass re in fo rced p l a s t i c tanks a re genera l l y used f o r

s t o r i n g small waste volumes o r f o r s to rage o f c o r r o s i v e wastes. I n t h e same

manner as l i n e r s e l e c t i o n v a r i e s f o r impoundments, t h e s e l e c t i o n o f a s p e c i f i c

r i g i d m a t e r i a l i s dependent on t h e waste and t h e purpose of t he tank.

C o m p a t i b i l i t y b e b e e n t h e m a t e r i a l s o f cons t ruc t i on and u t i l i t y wastes should be

determined p r i o r t o c o n s t r u c t i o n and use.

High

v The design data presented i n Table 4-1 were used t o d e f i n e t h e range o f capac-

i t i e s needed f o r each of t h e s l x conceptual impoundments. The methodology used

t o determine t h e d l r e c t i n s t a l l e d c o s t o f impoundments i s presented i n Appendix

E. ,

Impoundment c o s t s were developed fo r a capac i t y range from 0.1 t o 100 m i l l i o n

ga l l ons (0.3 t o 300 acre f e e t ) . Clay. s i n g l e f l e x i b l e membrane l i n e r , and double

l i n e d impoundments were costed. Concrete, s t e e l , and FRP tanks were cos ted over

slze ranges o f 0.001 t o 5 , 0.001 t o 0.1, and 0.001 t o 0.02 m i l l i o n gal lons,

respec t i ve l y . Cost curves i l l u s t r a t i n g t h e t o t a l c a p i t a l requirement f o r va r ious

impoundment and tank con f igu ra t i ons as a f u n c t i o n o f volume are presented on a

c o s t per g a l l o n bas is r a t h e r than i n terms o f t o t a l c a p i t a l requirement. Th is

4-40

approach was used because o f t h e f o u r o r d e r o f magnitude v a r i a t i o n i n s izes.

Th is a l s o makes t h e c o s t s e a s i e r t o apply t o user-speci f ic a p p l i c a t i o n s and bes t

i l l u s t r a t e s t h e f a c t t h a t as t h e volume increases, t h e c o s t p e r volume approaches

a cons tan t value. T h i s constant va lue a l l ows t h e user t o es t ima te t h e c o s t of

impoundments l a r g e r than those presented here. F i n a l l y , t h i s approach makes it

e a s i e r t o a l l o c a t e t h e incremental c o s t of a p o r t i o n of t h e volume o f an

impoundment t o a s p e c i f i c low volume waste stream.

Clav L i n e r. depths ( 5 and 15 f e e t ) over a volume range of four orders of magnitude us ing

several p r i c e s f o r d e l i v e r e d c lay.

s u i t a b l e for l i n i n g i s a v a i l a b l e on s i t e ; therefore, t h e on ly c o s t assoc iated

w i t h t h e c l a y was f o r e a r t h moving. The t h r e e remaining cases assumed an FOB

c o s t for b e n t o n i t e of $100 p e r t o n w i t h low, moderate, and h i g h t r a n s p o r t a t i o n

charges ($10, 50, and 100 p e r ton ) . Near ly a l l o f t h e l i ne r -g rade b e n t o n i t e

o r i g i n a t e s i n Wyoming, a l though t h e r e a r e l a r g e undeveloped resources i n Texas

and Georgia. Shipp ing cos ts t o some l o c a t i o n s can equal o r exceed t h e raw

m a t e r i a l c o s t of $100 p e r ton. Regional d i s t r i b u t o r s should be contacted t o

determine d e l i v e r e d c o s t s i n bu l k q u a n t i t i e s . The n a t u r a l l y occu r r i ng s o i l i s

assumed t o be d i sked and compacted i n t h e same manner as imported ben ton l te .

Other s p e c i f i c design cons ide ra t i ons f o r these ponds inc luded wa l l s lopes of 3:1,

a l i n e r t h i c k n e s s o f 18 inches ( b e n t o n i t e o r n a t i v e c l a y ) , a 2 - foo t freeboard

height , no l eacha te c o l l e c t i o n system, and no groundwater mon i to r i ng we l l s .

These design fea tu res a r e presented l a t e r and t h e c o s t s can be added t o these

est imates as des i red.

The c o s t s of c l a y - l i n e d impoundments were determined a t two water

One case assumed t h a t a s i l t y - c l a y s o i l

Table 4-16 presents est imated c a p i t a l cos ts f o r a vo lumet r i c s e r i e s of

impoundments w i t h a 5-foot l i q u i d depth and a d e l i v e r e d c l a y c o s t o f $110 per

ton.

impoundment. For t h e sma l les t impoundment (100,000 ga l l ons ) , t h e shal low depth

i s s l i g h t l y cheaper p e r g a l l o n than t h e deeper impoundment.

increases, t h e deeper impoundment becomes s i g n i f i c a n t l y more economical. Th i s i s

due t o a reduced acreage requirement ( 9 1 versus 26 acres f o r 100 m i l l i o n g a l l o n s

a t 5 and 15 f o o t water depths, r e s p e c t i v e l y ) and concurrent reduct ions i n t h e

amount o f c l a y requ i red f o r t h e l i n e r . Large, shal low impoundments a re t y p i c a l l y

used f o r evaporat ion s ince sur face area d i r e c t l y a f f e c t s evaporat ive capac i t y

(gpm evaporated p e r acre).

volumes of l i q u i d s and t o dispose o f ash and sludges, and a r e costed l a t e r i n

t h i s manual. The est imated t o t a l c a p i t a l requirements f w 5 and 15 f o o t deep

Table 4-17 presents t h e same t ype of in format ion f o r a 15 f o o t deep

As t h e s i z e

The deeper impoundments a r e used t o s t o r e l a r g e r

4-41

Table 4-16

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR CLAY-LINE0 IMPOUNDMENTS ( L i q u i d Depth = 5 ft, D e l i v e r e d Clay Cost = $110 per t o n )

Impoundment Capacity. Gal lons: uL!NQ 1.000.000 10.000.00Q 100,000.000

D i r e c t Pr0ci-s and O f f - s i t e C a p i t a l

.€Q.sb

Land S i t e P r e p a r a t i o n L i n e r - B e n t o n i t e On-s i te Costs

D i r e c t Process Cost

O f f - s i t e Costs

To ta l D i r e c t C a p i t a l

Engineer ing and Home Of f i ce Fees P r o j e c t Contingency Process Contingency

TOTAL PLANT COST (TPC)

Allowance f o r Funds Dur ing Const ruc t ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

$1,200 2,300 7.800 1,700

13,000

1,300

14,300

1,400 2,900

720

19,320

0

19,320

1,100

$20,420

$0.204

$5.100 9,800

31,000 6,100

52,000

5,200

57,200

59700 11,000 2,900

76,800

0

76.800

2,500

$79,300

$0.079

$3 7 9 000 71.000

210,000 36,000

350,000

35,000

385,000

39,000 78,000 19,000

525,000

___

0

525,000

14,000

$539,000

$0.054

$330.000 630,000

1.800,OOO 270.000

3 I 100,000

310,000

3t410,OOO

340,000 670,000 170,000

4,520,000

0

4,520,000

110,000

$4,630,000

$0.047

4-42

Table 4-17

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR CLAY-LINED IMPOUNDMENTS ( L i q u i d Depth = 15 feet , D e l i v e r e d Clay Cost = $110 per t o n )

Impoundment Capacity. Gal lons:

D i r e c t Process and O f f - s i t e C a p i t a l

.c.Q.sh

Land S i t e Prepara t ion L i n e r - B e n t o n i t e On-si te Costs

D i r e c t Process Cost

O f f - s i t e Costs

T o t a l D i r e c t C a p i t a l

Engineer ing and Home O f f i c e Fees P r o j e c t Contingency Process Contingency

TOTAL PLANT COST (TPC)

Allowance f o r Funds Dur ing Const ruc t ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

LQ.!U!a ldxQ&QQ 10. 000.000 1 0O.OOO.OOQ

$1,600 3,000 10,000 2,200

17,000

1.700

18,700

1,900 3,700 900

25,000

0

25,000

1,200

$26,200

$0.262

$3,300 6,300 21,000 4,300

35 9000

3 9500

38,500

3,800 7,600 1,900

51,700

0

51,700

1,900

$53,600

$0.054

$16.000 $120,000 30,000 230,000 93,000 660,000 17,000 110 9 000

160,000 1,100,000

16,000 110,000

176,000 1,210,000

17,000 120,000 250,000 34,000

8,600 61.000

231,600 1,661tOOO

0 0

231,600 1,661,000

6,300 42,000

$237,900 $l,O73tOOO

$0.024 $0.017

4-43

c l a y - l i n e d impoundments as a f u n c t i o n o f volume a r e shown i n F igures 4-14 and

4-15, r e s p e c t i v e l y . These f i g u r e s a l s o show t h e dependence of t h e u n i t c a p i t a l

requirement on t h e d e l i v e r e d c o s t of c l a y over a range of $0 t o $200 p e r ton.

both depths, t h e c o s t s of t h e impoundments cons t ruc ted w i t h $200 p e r t o n

d e l i v e r e d c l a y a r e double t h e p r i c e o f an impoundment b u i l t w i t h l o c a l l y

o c c u r r i n g m a t e r i a l .

A t

F l e x i b l e Me mbrane L i ' ne r (FMU . F l e x i b l e membrane-lined impoundments were a l s o

costed a t 5 and 15 f o o t l i q u i d depths. Costs were determined f o r volumes ranging

from 0.1 t o 100 m i l l i o n gal lons.

i nc luded w a l l s lopes of 3 : l . and a 2 - foo t f reeboard he igh t . Three c lasses of

impoundments were costed; a s i n g l e 1 i n e r impoundment w i t h o u t groundwater monitor-

i n g w e l l s o r l eacha te c o l l e c t i o n , a s i n g l e l i n e r impoundment w i t h w e l l s and a

leachate c o l l e c t i o n system, and a double l i n e r system w i t h w e l l s and leachate

c o l l e c t i o n . The t h i r d impoundment meets RCRA requirements f o r s t o r i n g hazardous

wastes.

i nc luded i n t h e TCR. It i s b a s i c a l l y independent o f t h e impoundment s i ze . An

est imated c o s t f o r a RCRA P a r t B perm i t i s about $200,000 (28) .

S p e c i f i c design cons ide ra t i ons f o r these ponds

The c o s t of o b t a i n i n g a pe rm i t f o r t h i s t h i r d impoundment was n o t

Table 4-18 p resen ts est imated c a p i t a l c o s t s f o r t h e vo lumet r i c s e r i e s of

impoundments a t t h e 5- foot depth f o r t h e double-1 i ned RCRA approved Impoundment.

Table 4-19 presents t h e same in fo rma t ion f o r t h e 15 f o o t deep impoundment.

F igures 4-16 and 4-17 present t h i s i n f o r m a t i o n g r a p h i c a l l y and a l s o show t h e

dependence o f c a p i t a l c o s t s on capac i t y f o r t h e s i n g l e l i n e r system w i t h and

w i thou t groundwater m o n i t o r i n g w e l l s and leachate c o l l e c t i o n systems. For t h e

sma l les t s i z e impoundment (100,000 ga l l ons ) , t h e c o s t o f a bas i c s i n g l e FML

system w i t h o u t w e l l s and leachate c o l l e c t i o n i s approximately 3 1 percent o f t h e

c o s t f o r a double FML system w i t h w e l l s and leacha te c o l l e c t i o n . S m a l l FML

impoundments w i t h w e l l s and leacha te c o l l e c t i o n c o s t approximately 10 t imes l e s s

than s i m i l a r l y s i z e d double FML systems. For l a r g e r capaci ty impoundments. cos ts

f o r these two s i n g l e FML systems a r e approximately 45 and 76 percent,

respec t i ve l y , o f those f o r double FML systems.

For both s i n g l e and double- l ined impoundments hav ing m o n i t o r i n g w e l l s and leach-

a t e c o l l e c t i o n , Figures 4-16 and 4-17 i l l u s t r a t e a very l a r g e u n i t c o s t i n t h e

sma l le r s i z e range.

w e l l s and l e a c h a t e c o l l e c t i o n c o s t s on t h e t o t a l cost .

cos ts remain r e l a t i v e l y cons tan t regard less of impoundment volume, t h e u n i t c o s t

( d o l l a r s p e r g a l l o n ) f o r designs t h a t i nc lude mon i to r i ng and leacha te c o l l e c t i o n

Th is i s t h e r e s u l t of t h e l a r g e c o n t r i b u t i o n o f m o n i t o r i n g

Because mon i to r i ng w e l l

4-44

0.40

0 : 1 I 1 I

- m 2 0.30

l

e c

0.40 - 0.35 -

0 , I 1 I

0.1 0.2 0.5 1 2 5 10 20 50 100

Pond Volume, Million Gallons

F i g u r e 4-15. Clay-Lined Impoundments w i t h a 15-Foot L i q u i d Depth

Effect of De l ivered Clay Cost on t h e C a p i t a l Requirement for

4-45

__ Table 4-18

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR FLEXIBLE MEMBRANE-LINED IMPOUNDMENTS ( L i q u i d Depth = 5 ft. Double FML w i t h Mon i to r i ng Wel ls and Leachate C o l l e c t i o n )

Impoundment Capacity, Gallons: l!xLQQQ

P i r e c t Process and O f f - s i t e CaDital

GQZb

Land $720 S i t e Prepara t ion 1,400 Under1 i n e r - G e o t e x t i l e 1,300 Liners-36 m i l Hypalon/20 m i l PVC 6,400 Groundwater Moni tor i nq 9,700 - Leachate C o l l e c t i o n On-si te Costs

D i r e c t Process Cost

O f f - s i t e Costs

To ta l D i r e c t Cap i ta l

Engineer ing and Home Of f i ce Fees P r o j e c t Cont 1 ngency Process Contingency

TOTAL PLANT COST (TPC)

Allowance f o r Funds During Const ruc t ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

9,800 4,300

34,000

3,400

37,400

3,700 7,400 1,900

50,020

0

50,020

2,200

$52,220

$0.52

1.000.00019.000.000100.000.000

$4,200 $34,000 $320,000 8,000 65.000 610.000 6,500 50.000 450,000

33,000 250,000 2,300,000 9,700 9.700 11.000

35,000 250,000 2,300,000 13,000 74,000 5 80 I 000

110,000 740,000 6,600,000

11,000 74,000 660.000

121,000 814,000 7J60,OOO

12,000 81,000 720,000 24 I 000 160,000 1,400,000

6,000 40,000 360,000

16294DO 1,087 9700 997 11 9 000

0 0 0

162,400 1,087,700 9,711,000

5,000 28,000 240,000

$167,400 $1 9 115.700 $9,951,000

$0.17 $0.11 $0.10

4-46

Table 4-19

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR FLEXIBLE MEMBRANE-LINED IMPOUNDMENTS ( L i q u i d Depth = 15 ft.. Oouble FML w i t h M o n i t o r i n g Wel ls and leachate C o l l e c t i o n )

Impoundment Capaci ty, Gal lons: Lcxu2QQ

D i r e c t Process and O f f - s i t e C a p i t a l

€Q&s

Land $880 S i t e Prepara t ion 1,700 U n d e r l i n e r - G e o t e x t i l e 1,500 L i n e r s - 36 m i l Hypalon/20 m i l PVC 7,700 Groundwater M o n i t o r i n g 9,700 Leachate C o l l e c t i o n 11,000 On-s i te Costs 4,800

D i r e c t Process Cost 37,000

Of f -s i te Costs

T o t a l D i r e c t C a p i t a l

3 I 700

40,700

Engineer ing and Home O f f i c e Fees 4,100 P r o j e c t Contingency 8,200 Process Contingency 2,000

TOTAL PLANT COST (TPC) 55,280

Allowance f o r Funds Dur ing Const ruc t ion 0

TOTAL PLANT INVESTMENT (TPI) 55,280

Preproduct ion Costs 2,300

TOTAL CAPITAL REQUIREMENT (TCR) $57,580

TCR, $/GALLON $0.58

k000.000

$2,800 5,300 4,500

23,000 9,700

25,000 9,500

80,000

8,000

88,000

8,700 17,000 4,300

117,800

0

117,800

4,000

$121,800

$0.12

10,000.000

$15,000 28,000 22,000

110,000 9,700

110,000 36.000

330,000

33,000

363,000

37.000 73.000 18,000

491,700

0

100,000.000

$120,000 220,000 170,000 840,000

9.700 840,000 230,000

2,400,000

240,000

2,640,000

270,000 530,000 130,000

3,599,700

0

491,700

13,000

3,599,700

90,000

$504,700 $3,689,700

$0.05 $0.037

4-47

o'60 I

0.50 - - m : i! E 0.40 - 2 F 0.30 - a m

._ 3

- = a 2 0.20 - - m I e

0.10 -

0

' "9"w"llE i:vd:ndwater monitoring

(with groundwater monitoring and leachate collection)

I I I I

and leachate collection)

._ Single FML 3 F 0.30

U (with groundwater monitoring and leachate collection)

1 0.1 0.2 0.5 1 2 5 10 20 50

Pond Volume, Million Gallons

3

F i g u r e 4-16. Membrane-Lined Impoundments w i t h a Five-Foot L iqu id Depth

Ef fec t of Various L i n e r Systems on t h e Cost o f F l e x i b l e

0

Pond Volume, Million Gallons

F igure 4-17. Membrane-Lined Impoundments w i t h a 15-Foot L iqu id Depth

E f f e c t o f Various L i n e r Systems on t h e Cost o f F l e x i b l e

4-48

decreases r a p i d l y w i t h i nc reas ing volume. Above t h e 10 m i l l i o n g a l l o n l e v e l , t he

u n i t capac i t y c o s t i s e s s e n t i a l l y cons tan t f o r t h e t h r e e f l e x i b l e membrane l i n e r

designs i l l u s t r a t e d . As w i t h t h e c lay - l i ned impoundments, t h e smal les t s i zes a re

more econanical a t t h e 5-fOOt depth.

econanical a t volumes g rea te r than about 300,000 ga l lons .

The deeper impoundments become more

E L g j d Wall Tanks. R ig id -wa l l tank c o s t s a re presented f o r t h r e e m a t e r i a l types:

f i b e r g l a s s r e i n f o r c e d p l a s t i c (FRP), concrete, and epoxy- l ined carbon s t e e l .

Vary ing s i z e ranges were examined based on the assumed a p p l i c a t i o n s of each t ype

o f tank.

FRP tanks were costed over a s i z e range o f 1,000 t o 20,000 gal lons, r e f l e c t i n g

the volume requ i red as an e q u a l i z a t i o n tank f o r deminera l i zer regenerant. An

a g i t a t o r i s inc luded i n t h e system cost. Table 4-20 presents a summary of t h e

estimated t o t a l c a p i t a l requirement f o r these tanks.

Costs f o r epoxy-l ined s t e e l tanks were determined over a s i z e range of 5,000 t o

100,000 gal lons.

o rgan ic b o i l e r c lean ing wastes, such as EDTA and c i t r i c acid. p r i o r t o i nc ine ra -

t i o n . A l l o f these cos ts a r e f o r f i e l d e rec ted tanks. One t o four a g i t a t o r s a re

inc luded i n t h e design, depending upon t h e tank s ize .

est imated t o t a l c a p i t a l requirement f o r these tanks.

Th is s i z e range was se lec ted based on temporary s torage o f

Table 4-21 presents t h e

Concrete tank cos ts (no roo fs ) a re presented i n Table 4-22 f o r a s i z e range o f

one thousand t o f i v e m i l l i o n gal lons.

maximum depth of 20 feet.

w i t h a b i tuminous mois tu re b a r r i e r ,

non-hazardous waste l i q u i d s be fore and a f t e r processing.

used as a decant s t r u c t u r e f o r b r i n e s l u r r i e s and f o r sumps.

These tanks a r e a cub ica l design up t o a

Wal ls and s labs a r e 1-foot t h i c k r e i n f o r c e d concre te

These tanks a re used p r i m a r i l y f o r h o l d i n g

This design can a l s o be

F igu re 4-18 i l l u s t r a t e s t h e u n i t c a p i t a l cos ts f o r a l l t h r e e types of r i g i d w a l l

tanks as a func t i on o f volume. Note t h a t f o r each mater ia l . t h e h ighes t volume

p l o t t e d represents t h e p o i n t where t h e u n i t c a p i t a l cos t i s n e a r l y cons tan t w i t h

i nc reas ing volume.

w i thou t s i g n i f i c a n t e r ro r , a l though cos ts f o r systems s i g n i f i c a n t l y l a r g e r than

those presented should be ob ta ined from c o n t r a c t o r s and vendors.

Some e x t r a p o l a t i o n of cos ts f o r l a r g e r tanks can be done

ODeratina and Maintenance Costs . fo r impoundments and tanks a re n o t presented here.

De ta i l ed annual opera t ing and maintenance cos ts

These c o s t s a re h i g h l y

4-49

Table 4-20

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR AGITATED FRP TANKS

Tank Capacity. Gallons:

D l r e c t Process and O f f - s i t e C a p i t a l

€QSb

Ho ld ing Tank A g i t a t o r On-s i te Costs

D i r e c t Process Costs

O f f - s i t e Costs

T o t a l D i r e c t C a p i t a l

Engineer ing and Home O f f i c e Fees P r o j e c t Contingency Process Contfngency

TOTAL PLANT COST (TPC)

Allowance f o r Funds Dur ing Const ruc t ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

$3,200 $5,600 4.600 9,800 1,600 2,900

9.400 18,300

900 1,800

10,000 20.000

1,000 2,000 2,000 4,000

5 00 1,000

13,800 27,100

0 0

13.800 27,100

800 900

$14,600 $28.000

$15.0 $5.6

L!LQ!L?

$9,000 11,000 3,000

23,000

2,300

25,000

2,500 5,000 1,200

34,000

0

34,000

1,000

$35,000

$3.5

.2!UQQ

$17,000 13,000 3 200

33,000

3,300

36,000

3,600 7.200 1,800

48,900

0

48,900

1,300

$50,200

$2.5

4-50

Table 4-21

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR AGITATED EPOXY-LINED STEEL TANKS

Tank Capacity, Gal lons:

D i r e c t Process and O f f - s i t e C a D i t a l

GQSLs

Ho ld ing Tank A g i t a t o r On-si te Costs

D i r e c t Process Costs

O f f - s i t e Costs

T o t a l D i r e c t Cap i ta l

Engineer ing and Home O f f i c e Fees P r o j e c t Cont i ngency Process Contingency

TOTAL PLANT COST (TPC)

Allowance f o r Funds Dur ing Cons t ruc t i on

TOTAL PLANT INVESTMENT (TPI)

Preproduc t ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

$8,700 $10,000 9,800 11,000 2,700 2,900

219000 249000

2.100 2.400

23,000 26,000

2,300 2,600 4,600 5,200 1,200 1,300

31,400 35.400

0 0

31,400 359400

1,000 1 t 100

$32,400 $36,500

$6.5 $3.6

ULMa

$19,000 26,000 3,200

48,000

4.800

53,000

5,300 11.000 2,700

72,000

0

72,000

1,400

$73,400

$1.5

lsnssn

$37,000 53,000 3,500

94,000

9,400

103.000

10,000 20,000 5,100

138,000

0

138,000

2,100

$140,100

$1.4

4-51

Table 4-22

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR CONCRETE TANKS

Tank Capacity, Gal lons:

D i r e c t Process and O f f - s i t e C-

c!asLs

Hold ing Tank On-slte Costs

D i r e c t Process Costs

O f f - s i t e Costs

To ta l D i r e c t Cap i ta l

Engineer ing and Home Of f ice Fees P r o j e c t Contingency Process Contingency

TOTAL PLANT COST (TPC)

Allowance f o r Funds During Construct ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct ion Costs

TOTAL CAPITAL REQUIREMENT (TCR)

TCR, $/GALLON

$6,800 $29.000 400 1,700

7,200 31,000

700 3,100

7.900 34,100

800 3.400 1,600 6,800 400 1.700

10.700 45,700

0 0

10,700 45,700

900 1,700

$11,600 $47,400

$1.16 $0.47

J,LQwJm

$130,000 2,100

130,000

13,000

1439000

14,000 29,000 7.100

195.200

0

1959200

5.400

$200,600

$0.20

5.000.000

$430,000 2.600

430,000

43,000

473,000

48,000 96,000 24,000

643 3 600

0

643 t 600

17.000

$660.600

$0.13

4-52

13 -

12 -

Epoxylined Carbon Steel (with agitator)

2

concrete (no agitator) 1 - 1

. . 0.001 0.005 0.01 0.05 0 1 05 i 5

Tank Volume. Million Gallons

F igure 4-18. Estimated T o t a l C a p i t a l Requirement for FRP. Steel and Concrete Tanks

4-53

var iab le . depending n o t on l y on t h e system con f igu ra t i on , b u t a l s o on t h e

s p e c i f i c app l i ca t i on . For example, i f s o l i d s a re deposi ted i n t h e impoundment,

they can be p e r i o d i c a l l y removed ( f o r an increase i n ope ra t i ng expense) or t h e

impoundment can be designed t o s t o r e t h e s o l i d s over t h e opera t i ng l i f e of t h e

p l a n t ( f o r an increase i n c a p i t a l expense). The f a i l u r e frequency f o r l i n e r s and

d i ke w a l l s a l s o a f f e c t s ObM cos ts . Many o f these major c o s t s a r e dependent on

t h e i n i t i a l design of t h e impoundment, t h e q u a l i t y c o n t r o l exerc ised d u r i n g

c o n s t r u c t i o n and i n s t a l l a t i o n , and t h e u l t i m a t e type of se rv i ce f o r t h e

i mp ou ndmen t . To prov ide an es t ima te of annual opera t ing costs, t h e EPRI Technical Assessment

Guide (U) methodology was used as discussed i n t h e Approach d iscuss ion o f t h i s

sec t i on (Table 4-3). Other than opera t i ng labor , which was est imated as 1 hour

da i l y , t h e o t h e r annual ope ra t i ng c o s t components were expressed as a percentage

o f t h e t o t a l c a p i t a l requirement. Mon i to r i ng w e l l s were assumed t o r e q u i r e t h r e e

manhours pe r sample a long w i t h a $500 sample ana lys i s fee. Using t h i s approach,

t h e r e l a t i o n s h i p between opera t i ng cos ts and t o t a l c a p i t a l requirement i s nea r l y

l i n e a r f o r each impoundment and tank con f igu ra t i on . Therefore. es t imated annual

ope ra t i ng c o s t s can be obta ined by m u l t i p l y i n g t h e t o t a l c a p i t a l requirement

determined from t h e prev ious graphs by s i x percent and adding a cons tan t of

$89000.

on ly an es t imate based almost e n t i r e l y on t h e f a c t o r s i n Table 4-3 (ObM c o s t

methodology).

i n ope ra t i ng c o s t s c a l c u l a t e d by t h i s method. This c o s t can be est imated as $130

per year pe r 1,000 ga l l ons of t ank volume (0.5 HP/1000 ga l l ons a t $O.O4/kWh).

However, it i s impor tan t t o remember t h a t t h i s ope ra t i ng c o s t represents

E l e c t r i c a l cos ts f o r those tanks us ing a g i t a t o r s a r e n o t inc luded

Two p a r t i c u l a r a l t e r n a t i v e impoundment app l i ca t i ons , coponding low volume wastes

i n ash ponds and t h e use of a g i t a t o r s i n impoundments. may be o f spec ia l i n t e r e s t

and were eval uated separate ly .

-. The c o s t s of d ispos ing low volume wastes i n an ash pond can be

es t imated by determin ing t h e u n i t c o s t o f t h e ash pond and t h e incremental

a d d i t i o n a l capac i t y requ i red due t o coponding. Using t h e approach p rev ious l y

developed f o r impoundments, t h e cos ts of ash ponds were est imated over a s i z e

range of 100 t o 10,000 acre-feet, p r o v i d i n g f o r 30 year ope ra t i on o f both small

and l a r g e p l a n t s (100 t o 1,000 W ) .

w i t h l o c a l l y a v a i l a b l e clay, c lay purchased and shipped a t $110 pe r ton, a s i n g l e

f l e x i b l e membrane, and a double f l e x i b l e membrane.

F igu re 4-19 shows cos ts f o r ash ponds l i n e d

The x-ax is represents t h e

4-54

.- On-site clay .- On-site clay

0.1 0.2 0.5 1 2 5 10

Ash Pond Volume, Thousand Acre-Ft

F i g u r e 4-19. Estimated Tota l Cap i ta l Requirement for Ponding So l id Wastes

4-55

t o t a l pond volume i n acre-feet, w h i l e t h e est imated t o t a l c a p i t a l requirement

(y-ax is) i s expressed i n d o l l a r s per cub ic yard o f so l i ds . These u n i t s were

chosen t o correspond w i t h those cmmonly used f o r measurement of sludge and ash

pond volumes.

phys ica l parameters l i s t e d p rev ious l y f o r o t h e r impoundments. As can be seen,

t h e u n i t cos ts approach constant values f o r t h e l a r g e r s i zed ponds.

The ponds a r e assumed t o have a 25- foot working depth and t h e same

To determine t h e volume reduc t i on r e s u l t i n g from coponding low volume wastes, it i s necessary t o es t ima te t h e s o l i d s generat ing p o t e n t i a l of each stream. For

example, coal p i l e runoff conta ins suspended s o l i d s which w i l l s e t t l e and reduce

t h e amount of space a v a i l a b l e f o r f l y ash.

d i sso l ved metals which w i l l p r e c i p i t a t e as hydroxide sludges, occupying space i n

t h e pond.

one m i l l i o n g a l l o n s of each l o w volume waste stream (assuming a sludge b u l k

dens i t y o f 75 pounds per cub ic f o o t ) . For several waste streams these est imates

should be confirmed w i t h ac tua l measurements, i f ava i l ab le . Since t h e ash pond

i s s i zed f o r 30 year operat ion, t h e s o l i d s generated by each stream over t h e l i f e

of t h e pond should be c a l c u l a t e d t o determine t h e volume requ i red f o r t h e low

volume wastes.

B o i l e r c lean ing wastes con ta in

Table 4-23 presents est imated values of t h e sludge volume generated by

S t a r t i n g w i th a known ash pond volume (expressed i n ac re fee t ) , t h e u n i t c o s t p e r

c u b i c yard o f d isposal volume can be obta ined from F igu re 4-19. For example, t h e

u n i t c o s t o f coponding i n a 1000 a c r e foo t s i n g l e FML pond i s $2.00 per cub ic

yard, as shown on F igu re 4-19.

produced by low volume wastes a l l ows t h e c o s t of coponding t o be determined.

t h e annual coal p i l e r u n o f f f l o w i s 100 m i l l i o n gal lons, over a 30 year per iod,

t h e pond capac i t y would be reduced by t h e a d d i t i o n of 2400 c u b i c yards o f coal

f i n e s (as a 75 pounds per c u b i c f o o t sludge). Th i s has an equ iva len t cost, a t

62.00 p e r c u b i c yard, of 44,800.

necessary t o i n c l u d e t h e c o s t o f an equivalency demonstrat ion t o show t h a t

coponding o f f i r e s i d e and b o i l e r chemical c lean ing wastes i s equ iva len t t o bes t

a v a i l ab1 e c o n t r o l techno1 ogy.

Using Table 4-23 t o determine t h e sludge volume

I f

If ash pond water i s discharged, it may be

4-56

Table 4-23

ESTIMATED SOLIDS VOLUME FOR LOW VOLUME WASTE SLUDGES

Low Volume Waste

Coal p i l e r u n o f f

Oem i nera l i z e r regeneran t

B o i l e r blowdown

F l o o r and yard d r a i n s

F i r e s i d e waste

B o i l e r chemical c l e a n i n g waste

Water o r wastewater t rea tmen t s1 udge - th ickened

Coo l ing tower s ludge

P y r i t e s - b i tuminous - subbituminous

Suspended P o t e n t i a1 %2ludwu Prec i o i t a t es ( m u S1 udae Vol ume

200 0 0.8 c u y d / K

10 0 0.04 c u y d / K

0 0 0 c u y d / K

50 0 0.2 cu y d / K

100 500 2 c u y d / f f i

50 10,000 42 c u y d / K

15,000 0 310 c u y d / K

350,000 0 1460 cu yd/MG

- - 0.02 c u yd/yr/MW

- 10 cu yd/yr/MW - 0.1 cu y d / y r / W

Ag.iL&m. Surface f l o a t i n g mixers can be used i n con junc t i on w i t h impoundments

and concre te tanks t o equa l i ze concen t ra t i ons o f d i sso l ved and suspended s o l i d s .

A 50-HP ni ixer has an area of i n f l uence of about 16.000 square f e e t and has an

es t imated t o t a l c a p i t a l requirement of $65,000. I f mixers a re used i n a s p e c i f i c

design, t h e number r e q u i r e d i s ob ta ined by d i v i d i n g t h e impoundment su r face area

by t h e area of inf luence. Impoundments sma l le r than one- th i rd acre use sma l le r

horsepower mixers. F igu re 4-20 presents d i r e c t i n s t a l l e d c a p i t a l c o s t s f o r

f l o a t i n g a g i t a t o r s as a f u n c t i o n of impoundment sur face area. Annual ope ra t i ng

cos ts f o r e l e c t r i c i t y can be est imated by m u l t i p l y i n g t h e t o t a l horsepower by

6260 ($0.04 p e r kWh e l e c t r i c i t y c o s t ) .

approximately 7 percen t o f t h e t o t a l c a p i t a l requirement.

Maintenance and l a b o r c o s t s a r e

Process S u m m u

Impoundments and tanks a r e v i t a l components i n low volume waste s to rage and

t rea tment schemes. Almost a l l low volume wastes pass th rough an impoundment or tank i n sane stage o f t reatment. The u n i t c o s t s f o r these vesse ls range from

several d o l l a r s per g a l l o n fo r small volume r i g i d - w a l l e d tanks t o approximately

$0.02 p e r g a l l o n f o r l a r g e impoundments l i n e d w i t h l o c a l l y a v a i l a b l e c lays .

Se lec t i on o f an impoundment or t ank design w i l l depend on u n i t costs, t h e

4-51

0 : 1 , , 1 , , 1 , , , , , , , , , , , ,

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

Impoundment Surface Area, Acres

F lgure 4-20. Estimated D i r e c t I n s t a l l e d Cost f o r Impoundment Agi tators

4-58

v a r i a t i o n i n these c o s t s w i t h capaci ty. stream composit ions, and t h e planned

usage (i.e., evaporation, sedimentation, equa l i za t i on , o r storage). Costs f o r

o p e r a t i o n o f impoundments and tanks a r e p r i m a r i l y a f u n c t i o n o f t h e i r usage.

These c o s t s w i l l be based on f a c t o r s such as a g i t a t i o n and s o l i d s hand l i ng

requirements.

cos ts presented i n t h i s s e c t i o n of t h e r e p o r t a re p rov ided i n Appendix E. Th i s

procedure can be a l t e r e d t o a l l ow t h e user t o develop c o s t s f o r v a r i o u s design

mod i f i ca t i ons .

D e t a i l s o f t h e design methodology used t o develop t h e impoundment

PHYSICAL /CHEM ICAL TREATMENT

I n low v o l m e waste management, physical /chemical t rea tment systems a r e used

p r i m a r i l y f o r reduc ing and removing d i sso l ved and suspended contaminants from

aqueous streams. Although several design v a r i a t i o n s can be used t o achieve these

ob jec t i ves , those most p reva len t i n low volume waste t rea tment i nco rpo ra te pH

adjustment, p r e c i p i t a t i o n . f l o c c u l a t i o n , c l a r i f i c a t i o n , f i l t r a t i o n . and s o l i d s

concent ra t ion . T h i s combinat ion i s a t r a d i t i o n a l approach f o r t r e a t i n g waste-

water contaminated w i t h d i sso l ved metals. Other processes such as reverse

osmosis. vapor compression evaporation, e l e c t r o d i a l y s i s , etc.. a r e employed l e s s

f requen t l y f o r t h e s o l e purpose of t r e a t i n g low volume wastes i n t h e u t i l i t y

i n d u s t r y and a r e n o t considered here.

ADD1 i c a b l e Stream s

Four low volume waste streams a re o f t e n processed i n physical /chemical t rea tment

systems. They are:

8 B o i l e r chemical c lean ing waste;

e F i r e s i d e c l e a n i n g waste;

e Deminera l i zer regenerant; and

8 F l o o r and yard dra ins .

The f i r s t two streams a r e produced i n t e r m i t t e n t l y . B o i l e r chemical c leaning5 a r e

performed every two t o f i v e years. F i r e s i d e waste may be generated monthly f o r

o i l - f i r e d u n i t s and several t imes a year f o r c o a l - f i r e d u n i t s . Deminera l i zer

regenerant and d r a i n s a r e f r e q u e n t l y produced, low volume waste stroams.

4-59

Treatm e n t E f f e c t i veness

The t rea tmen t e f fect iveness o f physical /chemical systems i s dependent on t h e

composi t ion of t h e waste stream, reagent dose rates, design o f t h e system, and

o p e r a t i n g procedures. I n general, most o f t h e low volume wastes can be success-

f u l l y processed w i t h o u t d i f f i c u l t y i n a physical /chemical t reatment system.

Some o f t h e b o i l e r chemical c lean ing wastes may be d i f f i c u l t t o t r e a t and can

r e q u i r e spec ia l procedures o r m u l t i p l e passes through t h e system. F i e l d data

concerning t h e e f fec t i veness o f t r e a t i n g va r ious b o i l e r chemical c lean ing wastes

and f i r e s i d e wastes were obta ined and l a b o r a t o r y s t u d i e s were performed t o

examine t h e t rea tmen t of b o i l e r chemical c lean ing wastes.

No data were obta ined f o r t reatment o f deminera l izer regenerant o r d ra ins i n

physical /chemical systems; however, these two streams should r e q u i r e o n l y pH

adjustment and suspended s o l i d s removal t o meet e f f l u e n t requirements (d ischarge

requirements f o r these streams do n o t i nc lude i r o n and copper l i m i t s ) . O i l and

grease l i m i t s may r e q u i r e t h e use o f a phys ica l o i l removal device.

B o i l e r Chemical C1 eanina Was- , I n general, phys ica l /chemical systems c o n s i s t

o f a r e a c t i o n tank where t h e pH i s increased w i t h c a u s t i c o r l i m e , a c l a r i f i e r

and f i l t e r vessel f o r s o l i d s removal and a s o l i d s dewater ing device. The Clean

Water Ac t (CWA) requ i res t h a t these streams be t r e a t e d t o one mg/L i r o n and

copper l e v e l s . Table 4-24 l i s t s t h e waste stre.am types and t h e reduc t i on i n i r o n

and copper concen t ra t i ons achieved by t reatment a t f i v e s i t e s . As can be seen,

n o t a l l o f t h e e f f l u e n t s meet t h e one mg/L discharge c r i t e r i a .

s i t e s . t r e a t e d e f f l u e n t was h e l d i n bas ins and n o t discharged u n t i l a n a l y s i s

i n d i c a t e d successfu l t reatment.

l i m i t s . t h e e f f l u e n t was routed back through t h e t reatment system.

A t f o u r o f t h e

I f i r o n o r copper l e v e l s d i d n o t meet discharge

The f i r s t EDTA waste, even though d i l u t e d w i t h r inses, r e q c i r e d reprocess ing t o

meet t h e discharge l i m i t . Hyd roch lo r i c a c i d and hydroxyacet ic- formic a c i d wastes

were s u c c e s s f u l l y t rea ted . Combined hyd roch lo r i c a c i d and ammonium bromate waste

was s l i g h t l y above t h e l i m i t f o r i r o n a t two s i t e s and copper a t one s i t e . These

f i e l d r e s u l t s demonstrate t h e d i f f i c u l t y i n c o n s i s t e n t l y t r e a t i n g b o i l e r chemical

c l e a n i n g wastes t o one mg/L i r o n and copper l e v e l s .

4-60

Table 4-24

FIELD RESULTS OF PHYSICAL/CHEMICAL TREATMENT OF BOILER CHEMICAL CLEANING WASTES

SFtr: - A EDTA

( l i m e and c a u s t i c )

B Hydroch lo r ic a c i d ( l i m e )

F Hydroxyacet ic- fo rmic a c i d ( l i m e )

G H y d r o c h l o r i c a c i d and ammonium bromate ( l i m e )

Parameter

PH I r o n (mg/L) Copper (mg/L )

I i-on Copper Chrmium

PH

PH I r o n Copper Chromium

PH I r o n Copper Ch rom i um

Untreated

6.7

1.5

1.8

150

4140 182

6

3.8

0.9 3.6

1.5

795

1030 19 3.5

LEated

12.5 1.2 2.7

5.51 0.03 0.08 0.008

10.9 0.7 0.1 0.01

11.0 1.2 0.24 0.11

H H y d r o c h l o r i c a c i d and PH 1.5', 10.83 12.0 ammonium bromate I r o n 6960, (0.1 5.5 ( a e r a t i o n / c a u s t i c ) Copper 10.5, 325 2.4

Ch rom i um 5.7, (0.05 C0.005

'pH a f t e r f i n a l a d d i t i o n of a c i d t o c l a r i f i e d e f f l u e n t

2Hydrochlor ic a c i d composi t ion

3Ammon i um bromate compos it i o n

4-61

Table 4-25 presents t h e r e s u l t s o f l a b o r a t o r y experiments us ing physical /chemical

methods t o t r e a t b o i l e r c lean ing wastes.

t e s t s where waste samples were s t i r r e d f o r 24 hours a t a s p e c i f i e d pH. A l l f i v e

o f t h e major types of b o i l e r c lean ing waste s o l u t i o n s were t e s t e d us ing e i t h e r

l i m e o r c a u s t i c as t h e reagent t o r a i s e pH.

c i t r a t e wastes were conducted us ing sodium s u l f i d e and l i m e as reagents.

These exper iments cons is ted o f j a r

Two a d d i t i o n a l t e s t s on EDTA and

I n t r e a t i n g t h e ammonium bromate so lu t i on . copper was n o t p r e c i p i t a t e d below a

concen t ra t i on of one mg/L w i thou t d i l u t i o n .

ammonium i o n concen t ra t i on t o a l e v e l where h y d r o l y s i s o f t h e copper i o n can

occur before p r e c i p i t a t i o n begins. Th is requirement was f i r s t observed when

research i n t o t h e t rea tment mechanisms of coponding was performed ( 3 ) .

It 1s necessary t o d i l u t e t h e

Hydroch lo r i c a c i d c lean ing waste was n o t success fu l l y t r e a t e d under any condi-

t i o n s . By a d j u s t i n g t h e wastewater pH t o 12 w i t h caus t i c , i r o n l e v e l s o f 1 mg/L

were achieved; however, copper l e v e l s remained high, r e f l e c t i n g t h e complexing

power o f t h iou rea and ammonia. D i l u t i o n w i t h b o i l e r r i n s e water would be

adequate t o meet t h e i r o n l i m i t .

success fu l l y t r e a t e d by pH adjustment w i t h l i m e a t pH l e v e l s of 7 t o 10.

Hydroxyacet ic/ formic a c i d c lean ing waste was

Although both t h e i r o n and copper concent ra t ions o f t h e o rgan ic c h e l a n t c lean ing

wastes ( c i t r a t e and EDTA) were reduced s i g n i f i c a n t l y by t rea tmen t w i t h lime,

caus t ic , and s u l f i d e . one mg/L l e v e l s were n o t achieved i n t h e l a b o r a t o r y exper i -

ments. Thermodynamic data p r e d i c t t h a t i n t h e presence o f excess chelant, copper

concen t ra t i ons a re r e l a t i v e l y independent o f pH. However. t h e l a b o r a t o r y exper i -

ments d i d show s u b s t a n t i a l reduc t i ons f o r low i n i t i a l l e v e l s o f copper. Th is may

be due t o chemical processes which a r e n o t accounted f o r by t h e thermodynamic

data, such as c o p r e c i p i t a t i o n o f copper w i t h i r o n oxyhydroxide (29). A t h i g h e r

copper l e v e l s (200 mg/L i n EDTA s o l u t i o n ) , t h e reduc t i on w i t h t rea tment was

minimal.

The i r o n concen t ra t i on i n t h e c i t r a t e c lean ing waste near l y achieved t h e one mg/L

c r i t e r i a . The i r o n concen t ra t i on was reduced i n t h e experiments t o 2.3 mg/L a t

pH 12.3; t h i s may have r e s u l t e d from f e r r o u s i r o n be ing ox id i zed t o t h e f e r r i c

s t a t e and then p r e c i p i t a t e d . A l onger t rea tment p e r i o d and a e r a t i o n o f t h e waste

may have been s u f f i c i e n t t o achieve a 1 mg/L i r o n concent ra t ion .

4-62

Table 4-25

RESULTS OF LABORATORY TESTS OF PHYSICAL/CHEVICAL TREATMENT METHODS

Treatment None Lime Lime Lime Lime Caust ic Caust ic NH Br03 t Caust ic 1

4

Treatment None Lime Lime Lime

Treatment None Lime Lime

Treatment None Lime Lime

Treatment None Lime Lime Sodium S u l f i d e

I r e a t m e n t None Lime Sodium S u l f i d e

Treatment None Caust ic

Hvdroch lo r ic Ac id Cleanina Waste Comer (nia/L)

160 1.0 2,930 6.0 1,180 72 8.0 11.7 57

r2H l -cwhuu

10.0 12.0 8.0

12.0 12.0

1.5 1.1 5.2 0.5 9.3

28.7 11.6 36.9 42.e 43.2

HAF Ac id Cleanina Waste a I r o n ( m a / u Comer (ma/L) 3.7 03 0 (0.5 7.1 e. 0

<0.5 C0.5

(0.5 (0.5

9.8 C0.5 (0.5

Ammonium Bromate Cleanina Waste I r o n (ma/L) Comer (ma/L1

(0.5 120 r2H 10.6 11.0 (0.5 12.3 (0.5

1 . 4 3.4

Ammonium Bromat e D i l u t e d 1 : l O QH ) Comer (ma/L) 10.3 (0. 5 12 10.8 (0.5 c(1.5 12.2 (0.5 <0.5

C i t r i c Ac id Cleanina Waste

10.0 4,200 4 I r o n (ma/L) Coo Der (ma / L 1

11.1 12.3 12.0

140 2.3 2.3

0.7 0.8 0.14

Low CoDDer EDTA Cleanina Waste

9.7 3,200 1.7 QH I r o n (ma/L) Comer (ma/L )

12.0 62.7 12.0 544

(0.5 1.2

Hiah CoDDer EDTA Clean ina Waste QH I r o n (ma/L) &DDer (ma/L)

9.7 3,010 200 12.0 1.7 160

'The h y d r o c h l o r i c a c i d waste was mixed w i t h ammonium bromate waste and subsequent ly t r e a t e d w i t h caus t ic .

4-63

The i r o n c o n c e n t r a t i o n o f t h e t r e a t e d EDTA waste v a r i e d s i g n i f i c a n t l y w i t h t h e

t y p e of reagent used. S u l f i d e and l i m e a d d i t i o n were i n e f f e c t i v e , w h i l e c a u s t i c

a d d i t i o n s i g n i f i c a n t l y reduced i r o n l e v e l s . The EPA e f f l u e n t g u i d e l i n e s (5) conf i rm t h a t che la ted wastes a r e d i f f i c u l t t o t r e a t t o 1 mg/L l e v e l s .

suggestions such as d i l u t i o n of concentrated wastes w i t h r i n s e water and o t h e r

waste streams, ox ida t ion , s u l f i d e add i t ion , f i l t r a t i o n . and carbon adsorpt ion.

Of these, t h e most cmmon i n d u s t r y p r a c t i c e s a r e m i x i n g t h e concentrated c lean ing

waste and r inses, and f i l t r a t i o n o f t h e t r e a t e d e f f l u e n t s .

It o f f e r s

F i r e s i d e Wastes . C o a l - f i r e d b o i l e r f i r e s i d e c l e a n i n g waste i s genera l l y s i m i l a r

t o ash s l u i c i n g water i n composi t ion (1). Oi l -generated f i r e s i d e wastes c o n t a i n

severa l t r a c e meta ls a t concent ra t ions above one mg/L, no tab ly copper, i ron ,

n i c k e l . vanadium, and z inc . Most o f these meta ls have low s o l u b i l i t i e s i n t h e

hydrox ide form a t h i g h pHs (8 t o 12). Vanadium can be p r e c i p i t a t e d t o i t s lowest

c o n c e n t r a t i o n a t a n e u t r a l pH u s i n g f e r r o u s s u l f a t e (311). Several u t i l i t i e s use

t h i s procedure and s e l l t h e recovered f e r r o u s metavanadate t o s t e e l producers.

Table 4-26 presents t h e concent ra t ions o f se lec ted meta ls found i n f i r e s i d e

c l e a n i n g wastes from o i l - f i r e d u n i t s and i n t h e e f f l u e n t s from phys ica l /chemical

t reatment . I n t h r e e of t h e f o u r systems, i r o n and copper l e v e l s were reduced t o

l e s s than 1 mg/L.

ConceDtual Desian

F i g u r e 4-21 presents a conceptual design f o r convent ional phys ica l /chemical

t reatment . I n t h i s system, l i m e i s used t o a d j u s t pH. The design inc ludes a

l i m e s i l o , s laker , and s l u r r y mix tank. A smal l r e a c t i o n tank mixes t h e reagents

and t h e waste stream. A c l a r i f i e r w i t h a polymer a d d i t i o n u n i t i s used t o

p r o v i d e i n i t i a l s o l i d s separat ion. C l a r i f i e r over f low i s pH adjusted t o between

6 and 9 p r i o r t o g r a v i t y f i l t r a t i o n and discharge. C l a r i f i e r underf low i s pumped

t o a g r a v i t y th ickener ; underflow s o l i d s from t h e t h i c k e n e r a r e routed t o a

r o t a r y vacuum f i l t e r . The s o l i d waste produced i s c o l l e c t e d i n drums o r t rucks,

depending on t h e q u a n t i t y . and s e n t t o a d isposal s i t e .

Other processes and equipment may be incorpora ted i n t o phys ica l /chemical

t rea tment systems. A t one p lan t , an a d d i t i o n a l chemical feed system was used t o

add fe r rous s u l f a t e f o r vanadium removal. Other f a c i l i t i e s may use a p l a t e and

frame o r vacuum b e l t f i l t e r f o r sludge dewatering. Diatomaceous e a r t h o r o t h e r

f i l t e r a ids can a l s o be used. Several vendors market patented equipment designs

which i n c o r p o r a t e reagent mixing, f l o c c u l a t i o n , c l a r i f i c a t i o n , and sedimentation.

4-64

Table 4-26

FIELD RESULTS FOR PHYSICAL/CHEMICAL TREATMENT OF FIRESIDE WASTES (mg/L unless otherwise noted)

Site/fuel/Treatment

P l a n t A

( o i l and gas- f i red) ( c a u s t i c )

P l a n t D ( o i 1-f i red) ( f e r r o u s s u l f a t e / l ime)

P l a n t K ( o i 1 - f i red) ( c a u s t i c )

P l a n t T ( o i l - f i r e d ) ( l i m e )

'pH a f t e r f i n a l a d d i t i o n o f a c i d t o c l a r i f i e d e f f l u e n t

earameter pH ( u n i t s )

Copper I r o n

pH ( u n i t s ) Copper I r o n N icke l Vanadium Z inc

pH ( u n i t s ) Copper I r o n N icke l Vanadium

pH ( u n i t s ) Copper I r o n Vanadium Z inc

Untreated

6.5

0.12 8.6

3.3 0.63

87. 89. 180 4.3

3.9 0.33

6.5 6.8

36.

- 7.1

510 19 25

Irented 6.61 0.13 4.2

8.21 0.03 0.69 0.1 8.2 0.019

9.5 0.09 0.17 (0.003 1.9

11.2 0.014 0.27 8.8 <0.003

4-65

I

4-66

Treatnw n t Costs

The design bases f o r es t ima t ing f l ows of b o i l e r chemical c lean ing and f i r e s i d e

c lean ing wastes, deminera l i zer regenerant. and f l o o r and yard d ra ins were

presented i n Table 4-1. These flow ra tes were used t o de f ine t h e range of

t rea tment system c a p a c i t i e s f o r which c o s t s were determined.

Cap i ta l and opera t i ng and maintenance c o s t s were developed f o r t h e conceptual

design shown i n F igu re 4-21 w i t h system f low ra tes o f 50. 250, and 500 gpm. The

phys ica l /chemical t rea tment system i s assumed t o opera te e i g h t hours p e r day and

t o have an impoundment or t ank l oca ted upstream t o s t o r e low volume wastes t h a t

a r e produced cont inuously . Operat ion of t h i s system f o r d a i l y e ight -hour s h i f t s

r a t h e r than 24-hour ope ra t i on reduces l a b o r cos ts s i g n i f i c a n t l y .

The assumptions used i n c o s t i n g these systems inc lude:

0 A b o i l e r chemical c lean ing occurs annually;

0 Four f i r e s i d e washes a r e performed pe r year ( these may inc lude f i r e s i d e and a i r preheater washes);

Deminera l i zer regenerant and f l o o r and yard d r a i n s r e q u i r e a l i m e dose r a t e of 0.75 pounds pe r thousand gal lons, wh i l e b o i l e r chemical c lean ing wastes may r e q u i r e dosages as h igh as 70 pounds per thousand ga l lons ; and

underf low 1s 10 percent so l i ds , and f i l t e r cake i s 35 percent s o l i d s .

e

0 C l a r i f i e r underflow i s 3 percent suspended so l i ds , t h i ckener

Because deminera l i zer regenerant and d r a i n s con ta in very low concent ra t ions of

d isso lved and suspended so l i ds . sludge produc t lon w i l l be minimal d u r i n g most o f

t h e year.

sodes.

Sludge generat ion w i l l =cur p r i m a r i l y du r ing b o i l e r c lean ing ep i -

The equipment inc luded i n t h e c a p i t a l c o s t es t ima t ion i s as fo l l ows :

1 - l i m e feed system i n c l u d i n g a s torage s i l o , b i n a c t i v a t o r . b lower and baghouse. screw feeder, s laker , s l u r r y tank, a g i t a t o r , and feed pump w i t h spare;

2 - wastewater feed pumps (1 spare);

1 - r e a c t i o n tank w i t h a g i t a t o r ;

1 - c l a r i f i e r w i t h underf low pump;

4-67

0 1 - polymer feed system w i t h drum mixer, letdown tank w i t h a g i t a t o r .

0 1 - pH adjustment tank w i t h a g i t a t o r :

0 1 - a c i d feed system w i t h FRP tank and meter ing pump:

0 2 - g r a v i t y dual-media f i l t e r s w i t h automatic backwash c a p a b i l i t y :

0 1 - th i ckener vessel w i t h underf low pump; and

1 - r o t a r y vacuum f i l t e r system w i t h l i q u i d separa tor tank, and

meter ing pump;

conveyor b e l t .

For systems r e q u i r i n g l e s s than 200 pounds per hour o f l i m e (as i s t h e case f o r

t h e 50 gpm design), hydrated l i m e i s more econanical t o use than qu ick l ime and a

s laker .

o f t h e l o w sludge produc t ion ra te .

scraper i n drums.

The 50 gpm design a l s o does no t i nc lude a sludge conveyor b e l t because

So l i ds a re c o l l e c t e d from t h e vacuum f i l t e r

The est imated c a p i t a l cos ts f o r t h e t h r e e phys ica l /chemical t rea tment systems a r 0

presented i n Table 4-27. These cos ts show an increase o f 70 percent i n t o t a l

c a p i t a l requirement over a 10 - fo ld s i z e (gpm) d i f f e r e n t i a l , from $776.000 t o

$19320r000. systems a re shown i n Table 4-28. These cos ts increase by 36 percent over t h e

s i z e range examined. F igures 4-22 and 4-23 present p l o t s o f t h e c a p i t a l and OM

cos ts f o r these systems, respec t i ve l y .

The estlmated annual ope ra t i ng and maintenance cos ts f o r these t h r e e

v Physical/chemical t rea tment i s used t o produce e f f l u e n t q u a l i t y water f o r d is-

charge under NPDES and o the r requ i red permits. The continuous waste streams,

deminera l i zer regenerant and drains, a re e a s i l y t r e a t e d t o acceptable l eve l s .

B o i l e r chemical c lean ing and f i r e s i d e c lean ing wastes r e q u i r e h igher reagent

doses and occas iona l l y add i t i ona l processing t o meet discharge l i m i t s f o r metals.

The c a p i t a l cos ts of these systems a re o n l y moderately s i z e sens i t i ve , w i t h a

capac i ty exponent r a t i o o f about 0.4. Consequently. t o op t im ize c a p i t a l and

opera t i ng costs. it i s canmon p r a c t i c e t o s i z e a system t o process t h e average

d a i l y f low du r ing an 8-hour per iod.

can be operated i n t e r m i t t e n t l y w i thou t i n t e r r u p t i n g performance e f fec t i veness .

To ensure compl lance w i t h discharge c r i t e r i a , most p l a n t designs i nco rpo ra te

ho ld ing bas ins f o r t h e t r e a t e d water: t h i s a l lows ana lys i s p r i o r t o discharge.

The water can then be reprocessed i f it does no t meet s p e c i f i c a t i o n s .

The process equipment inc luded i n t h e design

4-68

Table 4-27

TOTAL CAPITAL REQUIREMENT FOR PHYSICAL/CHEMICAL TREATMENT

System Throughput, gpm: 5.Q

D i r e c t Process and O f f s i t e C- 1 - Lime Storage System Lime Slaker Lime S l u r r y Mix System Lime S l u r r y Feed Pump Raw Wastewater Pump Polymer Feed System Flash M ix System C l a r i f i e r C l a r i f i e r Underflow Pump pH Adjustment System G r a v i t y F i l t e r G r a v i t y Thickener Thickener Underflow Pump Rotary Vacuum F i l t e r B e l t Conveyer Ins t rumen ta t i on On-si te Costs

$30,0002

9.300 4,200 4,800 5,300 3,800

29,000 4,200 5,800

50,000 35,000

6,000 54,0002

24,000 180.000

---

---

D i r e c t Process Costs 440,000

O f f - s i t e Costs

To ta l D i r e c t Cap i ta l Cost

110,000

560,000

Engineer ing and Home Of f ice Fees (101%) 56,000

Process Contingency (5%) 28,000

TOTAL PLANT COST (TPC) 749,400

0

TOTAL PLANT INVESTMENT (TPI) 749,400

Preproduct ion cos ts 24,000 Inven to ry Cap i ta l 270

P r o j e c t Contingency (20%) 110,000

Allowance fo r Funds Dur ing Construct ion

I n i t i a l Chemicals Charge 1,100

TOTAL CAPITAL REQUIREMENT (TCR) $7 74,7 7 0

21ia

$41,000 30,000 17,000 4,200 7,200 6.100 8,000

50,000 13,000 7,500

87.000 63,000

9,200 80,000 9,300

30,000 170,000

630,000

130,000

750,000

75,000 150,000 38,000

1,025,500

0

1,025,500

31,000 1,200 7,200

$1,064,900

LaQ

$72,000 34,000 23,000 139000 8,600 7,000

13,000 63,000 13.000 8,400

97,000 84,000

9,500 100,000

9,300 30,000

210,000

800,000

140,000

930,000

93,000 190,000 47,000

1264,800

0

1,264,800

38,000 2,300

15,000

81,320r100

- ‘Insta l l a t i o n , on -s i t e f a c i l i t i e s , and o f f - s i t e f a d l i t i e s c o s t s have been factored i n t o t h e d i r e c t c a p i t a l costs. See Appendix A f o r a d e t a i l e d breakdown of actua l purchase, i n s t a l l a t i o n , and o t h e r costs.

2The 50 gpm system does no t i nc lude a l i m e s laker, as it i s more econ- omical t o use hydrated l ime i n t h i s s i z e range. gpm system does no t i nc lude a b e l t conveyer: t h i s was excluded because of t h e low sludge product ion rate.

I n addi t ion, t h e 50 gpm

4-69

Table 4-28

ANNUAL DIRECT 0 8 M COSTS FOR PHYSICAL/CHEMICAL TREATMENT

System Throughput, gpm: - Operating Labor @ $15.25/hr Maintenance Labor Maintenance M a t e r i a l s Admin i s t ra t i ve 8 Support Labor

TOTAL FIXE0 0 8 M COS1

v Operating Labor B $15.25/hr Maintenance Labor Maintenance Ma te r ia l s Admin i s t ra t i ve 8 Support Labor

Consumables: 66 Be S u l f u r i c ac id @ $0.62/gal Polymer 0 $1.00/lb Pebble Qu ick l ime @ $55/ton Hydrated Lime @ $%/ton E l e c t r i c i t y @ $0.04/kWh

TOTAL VARIABLE 0 8 M COST

5 4

$29,000 10,000 15,000 12,000

66.000

16,000 5,400 8,200 6,300

300 loo1 ---

1,300 2,000

39,600

m

$299000 14,000 21,000 13,000

77,000

16,000 7,400

11,000 6,900

1,000 500

5,5001

5,700

54,000

---

m

$29,000 17,000 26,000 14,000

86,000

16,000 9,200

14,000 7,400

2,000 1,000

ll,oool -_- 8,500

69,100

TOTAL DIRECT 0 8 M COST' $105,600 $131,000 $155,100

'The 50 gpm system u t i l i z e s hydrated l i m e because it i s more economical f o r t h i s small u n i t .

21nd i rec t opera t ing costs, such as deprec iat ion, insurance, taxes, and general and a d m i n i s t r a t i v e cos ts a re no t included.

The 250 and 500 gpm systems use qu ick l ime and a s laker .

4-70

G

P 3 0.7-

0.6-

c

IO

System Throughput, gpm

Figure 4-22. Systems

Estimated Tota l Cap i ta l Requirement f o r Physica lKhemical Treatment

100 50 100 200 300 400

System Throughput, gpm

IO

F i g u r e 4-23. P h y s i c a l K h e n i c a l Treatment Systems

Estimated Annual Direct Operating and Malntenance Cost for

4-71

LANDFILLS

L a n d f i l l s a r e commonly used i n t h e u t i l i t y i ndus t r y f o r d isposal of bottom and

f l y ash, and s t a b i l i z e d f l u e gas d e s u l f u r i z a t i o n sludge.

can a l s o be disposed o f i n l a n d f i l l s . Th is may i n v o l v e c o n s t r u c t i o n of a dedi-

cated l a n d f i l l f o r low volume wastes, or codisposal o f these wastes w i t h ash

and/or FGD sludge.

low volume wastes i n an o f f - s i t e l a n d f i l l .

Low volume s o l i d wastes

A l t e r n a t i v e l y , u t i l i t i e s may h i r e con t rac to rs t o dispose of

Pending and f u t u r e regu la t ions , a t both t h e fede ra l and l o c a l l e v e l s may a f fec t

s o l i d waste d isposal p r a c t i c e s i n t h e u t i l i t y indus t ry . The in fo rma t ion

presented he re inc ludes design and c o s t data a p p l i c a b l e t o t h e c u r r e n t p r a c t i c e

o f codisposal. and a l s o designs and c o s t s fo r d isposal o f l o w volume s o l i d wastes

under RCRA hazardous waste d isposal requirements.

L a n d f i l l i n g i s commonly used f o r t h e f o l l o w i n g low volume waste streams i n F igu re

4-1:

e Pyr i t es ;

e

e Cool ing tower bas in sludge; and

e

Thickened makeup water so f ten ing sludge;

Thickened wastewater t rea tment s1 udge.

The occurrence and volume of each o f these streams i s dependent on p l a n t type and

loca t i on .

severa l o rders o f magnitude depending on coal c h a r a c t e r i s t i c s . Makeup water

s o f t e n i n g sludge w i l l n o t be produced a t p l a n t s where a h igh q u a l i t y raw water

source i s ava i l ab le . I n most u t i l i t y a p p l i c a t i o n s where raw water sludge i s

produced and i s l a n d f i l l e d , t h e sludge w i l l be th ickened p r i o r t o d isposa l . Very

small volumes o f c o o l i n g tower bas in sludge a r e generated du r ing p e r i o d i c

dredging o f t h e tower basins.

ment of aqueous low volume wastes p r i o r t o d ischarge o r reuse, and a l so d u r i n g

h igh volume wastewater t rea tment (i.e., sidestream s o f t e n i n g o f r e c i r c u l a t i n g

c o o l i n g water) . Again, p l a n t type and l o c a t i o n w i l l be pr imary f a c t o r s i n

de termin ing t h e q u a n t i t y o f t h i s waste stream.

sludges, wastewater t rea tment sludges may be th ickened p r i o r t o l a n d f i l l i n g .

The volume of p y r i t e s generated du r ing coal p repara t ion may vary over

Wastewater sludges may be produced du r ing t r e a t -

As w i t h raw water s o f t e n i n g

4-72

- Since many low volume wastes have h ighe r concen t ra t i ons o f regulated c o n s t i t u e n t s

than coal ash, l a b o r a t o r y s t u d i e s were conducted t o est imate t h e e f f e c t i v e n e s s o f

codisposing s e l e c t low volume wastes w i t h coal ash i n l a n d f i l l s . A b e n e f i c i a l

d isposal o p t i o n would be created i f codisposal can reduce t h e p o t e n t i a l f o r these

c o n s t i t u e n t s t o leach from t h e low volume wastes. On t h e o t h e r hand, codisposal

i s undes i rab le if t h e h i g h volume waste becomes hazardous.

The f o l l o w i n g samples o f low volume waste and coal f l y ash were used i n t h e

l a b o r a t o r y codisposal study:

Low volume waste --EDTA b o i l e r chemical c lean ing waste - - c i t r a t e b o i l e r chemical c l e a n i n g waste --general p l a n t wastewater; and

F l y ash --southeastern bi tuminous --mi dweste r n bi tuminous --western subbituminous.

Although b o i l e r chemical c lean ing wastes a r e n o t genera l l y c o l a n d f i l l e d , they

were used i n these experiments t o o b t a i n t h e h i g h e s t poss ib le response.

volume waste was mixed w i t h f l y ash t o produce a compact ib le m a t e r i a l f o r

s i m u l a t i n g l a n d f i l l codisposal . Approximately 20 percent mois ture supp l i ed by

t h e l i q u i d low volume waste was requ i red t o produce a compact ib le ash.

compacted codisposal m i x t u r e s were cured f o r seven days and were then subjected

t o l each ing us ing t h e RCRA EP t o x i c i t y t e s t .

produced from ash w i t h and w i t h o u t low volume waste were used t o evaluate t h e

e f f e c t s of codisposal .

Low

The

Comparisons o f t h e EP e x t r a c t s

Tables 4-29 and 4-30 present t h e EP t o x i c i t y r e s u l t s f o r t h e low volume wastes

and f l y ashes i n d i v i d u a l l y .

t h e e f fec t i veness f o r codisposing of t h e wastes.

4-30, t h e low volume wastes g e n e r a l l y have h i g h e r EP concentrat ions than t h e coal

ashes.

These r e s u l t s were used as t h e standards t o evaluate

As shown i n Tables 4-29 and

Tables 4-31 through 4-33 present t h e EP t o x i c i t y r e s u l t s on t h e codisposal mix-

tu res . A l l of t h e codisposal m ix tu res were we l l below t h e RCRA maximum concen-

t r a t i o n l i m i t s . Therefore, one c r i t e r i a f o r successful codisposal was met; i.e.,

m i x i n g t h e low volume and h i g h volume waste d i d n o t c rea te RCEA-hazardous

mixtures.

4-73

Table 4-29

EP TOXICITY TEST RESULTS ON LOW VOLUME WASTES USED I N CODISPOSAL LAB STUDY (mg/L)

RCRA Maximum &stewat C i t r a t e Wa Concentrat i o n L i m i t

Elemental General Ana lvs i s EDTA Waste er s t e

Arsen ic 0.006 (0.003 0.21 5.0 Barium 0.76 1.2 1.6 100.0 Cadmium 3.0 o.ooa 0.64 1.0 Chromium 4.1 0.11 3.9 5.0 Lead 3.6 <0.002 ( 0 .002 5.0 Mercury <0.0002 <0.0002 <0.0002 0.2 Selenium (0.002 10.003 (0.003 l..O S i l v e r (0 . 002 0.009 0.006 5.0

Table 4-30

EP TOXICITY TEST RESULTS ON COAL FLY ASHES USED I N CODISPOSAL LAB STUDY (mg/L)

Southeastern Midwestern Western Elemental Analvs i s Bi tum inous Bituminous Subbituminous

Arsenic Barium Cadmium Chrcmium Lead Mercury Selenium S i l v e r

0.037 0.006 0.006 NA (0.006 0.94

(0.02 (0.02 (0.02 0.036 (0.01 <0.01

(0 . 002 (0.002 <0.002 <0.0002 <0.0002 <0.0002 0.003 0.028 0.034

(0.02 (0.02 (0.02

4-74

Table 4-31

Elemental m 1 v s i . 5

Arsenic Barium Cadmium Ch ranium Lead Mercury Selenium Si1 ver

EP TOXICIN TEST RESULTS ON LOW VOLUME WASTES CODISPOSED W I T - SOUTHEASTERN BITUMINOUS COAL FLY ASH

(mg/L)

CodisDosed w i t h Ash' EDTA C i t r a t e General &&.e Aa.zk Wastewater

0.036 NA 0.042 0.33 (0.006 0.47 (0.02 (0.020 0.085 (0.01 0.15 (0.01 0.002 0.004 0.023

<0.0002 <0.0002 <0.0002 0.015 0.082 0.003

(0.02 (0.02 (0.02

RCRA Maximum

Concentrat ion L i m i t

5.0 100.0 1.0 5 .O 5.0 0.2 1.0 5.0

- 'Fly ash mixed w i t h 20 weight percent low volume waste.

Table 4-32

EP TOXICITY TEST RESULTS ON LOW VOLUME WASTES CODISPOSEO WITH MIDWESTERN BITlMINOUS COAL FLY ASH

(mg/L)

1 Codisposed w i t h Ash Elemental EDTA C i t r a t e General Anal vs i s uB.h? A!&% Wastewat e r

Arsenic 0.026 0.037 0.F31 Barium 0.23 (0.006 0.17 Cadmium (0.02 (0.02 (0.02 Ch ranium (0.01 (0.01 (0.01 Lead 0.008 <0.002 <0.002 Mercury <0.0002 <0.0002 <0.0002 Selenium 0.006 <0.002 <0.002 S i l v e r (0.02 (0.02 (0.02

RCRA Maximum

Concentrat ion L i m i t

5.0 100.0 1.0 5.0 5.0 0.2 1.0 5 .O

4-75

Table 4-33

EP TOXICITY TEST RESULTS ON LOW VOLUME WASTES CODISPOSEO WITH WESTERN SUBBITUMINOUS COAL FLY ASH

(mg/L)

E 1 ement a1 Analvsls Arsenic Bar i um Cadmium Chromium Lead Mercury Sel e n i urn S i l v e r

Codisoosed w i t h Ash' EDTA C i t r a t e General HFl%ts JYaiLe- M&twxtm

0.080 0.70

(0.02 (0.01 0.041

<0.0002 0.026

(0.02

0.045 0.005 0.43 0.80 (0.02 <0.02 (0.01 (0.01 0.002 0.002

<0.0002 <0.0002 0.031 0.030

(0.02 <0.02

RCRA Maximum

Concentrat ion Linllt

5.0 100.0

1.0 5.0 5.0 0.2 1.0 5.0

__

'Fly ash mixed w i t h 20 weight percent low volume waste.

Table 4-34

FIXATION FACTOR$ FOR LOW VOLUME WASTES CODISPOSED WITH SOUTHEASTERN BITUMINOUS COAL FLY ASH

Codisposed w i t h Ash EDTA C i t r a t e General

Arsenic Barium Cadmium Chronii um Lead Mercury Selenium S i l v e r

m W a s t e W a s t e w a t e r

0.88 NA 0.74 NA NA NA

30 7.2 96 5.3

0.21 5.0

360 <DL 0.50 tDL 0.04 <DL 0.19 0.04 (DL <DL <DL 0.89

'F ixa t ion f a c t o r i s t h e ca l cu la ted l e a c h a b i l i t y o f t h e two components i n t h e n i i x tu re d i v i d e d by t h e measured l e a c h a b i l i t y o f t h e mixture. f a c t o r s g rea te r than 1.0 i n d i c a t e enhanced f i x a t i o n .

NA-Not analyzed

<OL-A11 measured concent ra t ions were l e s s than t h e a n a l y t i c a l de tec t i on l i m i t .

F i x a t i o n

4-76

One way t o eva lua te t h e e f fec t i veness o f codisposal i s t o compare t h e

l e a c h a b i l i t y of t h e m ix tu res w i t h t h e c a l c u l a t e d l e a c h a b i l i t y of t h e i n d i v i d u a l

components. The l e a c h a b i l i t y of t h e mix tu res i s s imply t h e measured

concen t ra t i ons from t h e EP e x t r a c t i o n s (Tables 4-31 th rough 4-33). The

c a l c u l a t e d l e a c h a b i l i t y i s t h e weighted sum of t h e l eacha te concent ra t ions

measured i n t h e EP e x t r a c t s of t h e ash and t h e low volume waste compr is ing t h e

codisposal mix tu re . T h i s c a l c u l a t e d l e a c h a b i l i t y i s an es t imate of t h e EP

concen t ra t i on i n t h e codisposal m i x t u r e i f no i n t e r a c t i o n s between t h e low volume

waste and f l y ash occurred. The r a t i o o f t h e c a l c u l a t e d l e a c h a b i l i t y over t h e

measured l e a c h a b i l i t y i s one i n d i c a t i o n o f t h e e f fec t i veness o f codisposal , and

i s r e f e r r e d t o as t h e f i x a t i o n f a c t o r (11).

Tab le 4-34 (see prev ious page) and Tables 4-35 and 4-36 present t h e f i x a t i o n

f a c t o r s f o r t h e codisposal mix tu res . A f i x a t i o n f a c t o r o f 1.0 i n d i c a t e s t h a t

t h e r e was no change i n l e a c h a b i l i t y from codisposing t h e wastes.

f a c t o r s g r e a t e r t han 1.0 i n d i c a t e t h a t m ix ing t h e wastes reduced t h e l e a c h a b i l i t y

o f t h e codisposed wastes over t h a t expected from t h e i n d i v i d u a l leachate

concen t ra t i ons of t h e two wastes.

enhanced t h e l e a c h a b i l i t y over t h a t expected i f no i n t e r a c t i o n occurred.

F i x a t i o n

Fac to rs l e s s than 1.0 i n d i c a t e t h a t t h e m ix ing

The codisposal w i t h t h e southeastern coa l f l y ash g r e a t l y reduced t h e leach-

a b i l i t y o f cadmium, chromium. and l e a d from EDTA waste. Chromium l e a c h a b i l i t y

from the c i t r a t e and wastewater m ix tu res was a l s o reduced th rough codisposal w i t h

t h e southeastern coal f l y ash. I n a few cases enhanced l e a c h a b i l i t y was ob-

served: selenium i n t h e EDTA mix tu re , selenium i n t h e c i t r a t e mix tu re , and

cadmium i n t h e wastewater mixture.

Codisposal of t h e low volume wastes w i t h t h e midwestern bi tuminous coal f l y ash

reduced l e a c h a b i l i t y f o r most elements i n c l u d i n g cadmium, chromium, and l e a d i n

t h e EDTA mixture; arsenic, barium, cadmium, chromium, and selenium i n t h e c i t r a t e

mix tu re : and barium, chromium, and selenium i n t h e wastewater mix tu re . Arsenic

showed enhanced l e a c h a b i l i t y i n t h e EDTA and wastewater mixtures.

Codisposal w i t h western subbituminous ash reduced t h e l e a c h a b i l i t y o f most

c o n s t i t u e n t s for t h e low volume wastes.

a s i g n i f i c a n t enhanced l e a c h a b i l i t y . w i t h a f i x a t i o n f a c t o r of 0.08. Cadmium,

selenium and s i l v e r showed s l i g h t enhancements i n l e a c h a b i l i t y (0.889 0.92 and

0.89 r e s p e c t i v e l y ) b u t these f i x a t i o n f a c t o r s were very near u n i t y .

Only a rsen ic i n t h e EDTA m i x t u r e showed

4-77

Table 4-35

Arsenic Barium Cadmium Chromium Lead Mercury Selenium S i l v e r

FIXATION FACTORS~ FOR LOW VOLUME WASTES CODISPOSED WITH MIDWESTERN BITUMINOUS COAL FLY ASH

CodisDosed w i t h Ash EDTA C i t r a t e General - W a s t e -

0.23 1.3 0.17 0.68 54 1.9 30 7.2 94 78 90 <OL

0.88 3.0 <DL

<DL <OL <OL 3.0 1.3 11 <DL <DL 0.89

'F ixa t ion f a c t o r i s t h e c a l c u l a t e d l e a c h a b i l i t y o f t h e two components i n t h e m i x t u r e d i v i d e d by t h e measured l e a c h a b i l i t y o f t h e mixture. F i x a t i o n f a c t o r s g r e a t e r than 1.0 i n d i c a t e enhanced f i x a t i o n .

<DL-A11 measured concent ra t ions were l e s s than t h e a n a l y t i c a l d e t e c t i o n l i m i t .

Table 4-36

FIXATION FACTOR$ FOR LOW VOLUME WASTES COOISPOSED WITH WESTERN SUBBITUMINOUS COAL FLY ASH

CodirpPSed w i t h Ash EDTA C i t r a t e General

Arsenic Barium Cadmium Chromium Lead Mercury Selenium S i l v e r

J Y a 5 h W a s t e W a s t e w a t e r

0.08 1 1.2 1.2 2.5 1.3

30 1.2 0.88 94 78 3 17 <OL <OL

<DL <OL <DL 1.1 1 <DL <OL

0.92 0.89

' F i x a t i o n f a c t o r i s t h e c a l c u l a t e d l e a c h a b i l i t y o f t h e two components i n t h e m i x t u r e d i v i d e d by t h e measured l e a c h a b i l i t y o f t h e mixture. F i x a t i o n f a c t o r s g r e a t e r than 1.0 i n d i c a t e enhanced f i x a t i o n .

<DL-All measured concent ra t ions were l e s s t h a n t h e a n a l y t i c a l d e t e c t i o n 1 i m i t .

4-78

In' summary. codisposal ( f o r a t l e a s t these s e l e c t low volume l i q u i d wastes)

appears b e n e f i c i a l . Concentrat ions o f c o n s t i t u e n t s i n EP e x t r a c t s o f codisposal

m ix tu res were w e l l below RCRA l i m i t s . And, i n nlost cases, t h e f i x a t i o n o f

leachab le c o n s t i t u e n t s i n t h e low volume wastes was improved r e l a t i v e t o separate

d isposa l .

QnceDtua l Desian

Several l a n d f i l l c o n f i g u r a t i o n s a r e commonly used i n t h e u t i l i t y i ndus t r y ; i n

a d d i t i o n , several t ypes of l i n e r and cap systems may be used w i t h each conf igura-

t i o n . L a n d f i l l s may be cons t ruc ted above ground on l e v e l t e r r a i n (heaped fill),

along t h e contours of a h i l l , o r w i t h i n a va l l ey , o r may be dug below grade and

d i ked (26). L ine r , cap, and leacha te c o l l e c t i o n system design a r e dependent on

t h e c l a s s i f i c a t i o n o f t h e waste t o be stored.

t h e disposal o f wastes c l a s s i f i e d as hazardous under RCRA.

l i n e s have been pub l ished t o suggest p re fe r red methods f o r t h e design of

l a n d f i l l s f o r non-hazardous wastes ( E ) . hydrogeologic c o n d i t i o n s a t t h e l a n d f i l l s i t e .

S p e c i f i c designs a r e requ i red f o r

I n add i t i on , guide-

These gu ide l i nes vary according t o t h e

Two l a n d f i l l design cases a re presented here. A schematic o f t h e f i r s t design i s

presented i n F igu re 4-24. Th is i s a c l a y - l i n e d l a n d f i l l w i t h a s i n g l e leachate

c o l l e c t i o n l aye r , and a c l a y cap system w i thou t l eacha te c o l l e c t i o n . Groundwater

mon i to r i ng w e l l s a r e provided. Th is design i s a t y p i c a l example f o r t h e disposal

o f u t i l i t y h igh volume wastes (ashes and FGO sludge). and. therefore, c o s t s

est imated f o r t h i s design can be used t o develop incremental cos ts f o r

cod ispos ing low volume wastes i n l a r g e ash l a n d f i l l s . Th is design was based on a

below-grade, d iked i n s t a l l a t i o n w i t h 3 : l w a l l slopes. Because of excavat ion

costs, t h i s c o n f i g u r a t i o n i s s l i g h t l y more expensive than heaped. s i d e - h i l l , o r

v a l l e y f i l l designs. As a r e s u l t , codisposal c o s t s developed us ing t h i s

conceptual design w i l l be h igher .

The second conceptual l a n d f i l l design i s i l l u s t r a t e d i n F igu re 4-25. Th is

design, a doub le- l ined l a n d f i l l , meets t h e requirements f o r storage o f wastes

c l a s s i f i e d as hazardous under RCRA.

a re fe rence i n t h e event t h a t a u t i l i t y must meet s t r i n g e n t s t a t e o r l o c a l

regu la t i ons . The design shown i n F i g u r e 4-25 i s a l s o a below-grade. d i ked

i n s t a l l a t i o n w i t h 3 : l w a l l slopes.

o v e r l a i n w i t h a f l e x i b l e membrane l i n e r , a I - f o o t p iped g ranu la r l eacha te

c o l l e c t i o n layer . another f l e x i b l e membrane. and a second 1- foo t leachate

c o l l e c t i o n l a y e r . The cap system f o r t h i s l a n d f i l l design i nc ludes a 3-fOOt c l a y

m i s design o p t i o n was inc luded t o serve as

The l i n e r systenl i nc ludes a 3 - foo t c l a y l a y e r

4-19

r 7 .r c U c 2

D W c _I I >I

m

.r

m G

e

E

L

c m ?

O 7

m 3 + a a, U c 0 0

N I -I

a, L 3 m .- U

4-80

P

cn c

2 FT TOPSOIL

1 FT. LEACHATE COLLECTION

MEMBRANE LINER

1 FT. LEACHATE COLLECTION (SAND WITH PVC DRAINS)

F i g u r e 4-25. Conceptual Design f o r Double-Lined L a n d f i l l s

' I I

l aye r , a f l e x i b l e membrane l i n e r , a 1- foot leachate c o l l e c t i o n l a y e r , and 2 f e e t

of t o p s o i l . Groundwater mon i to r i ng w e l l s a re a l s o included. - The design bases used t o es t ima te t h e cos ts f o r l a n d f i l l c o n s t r u c t i o n were pre-

sented i n Table 4-1. These stream data were used t o d e f i n e t h e volume range o f

low volume s o l i d wastes t o be considered f o r l a n d f i l l d isposal .

L a n d f i l l s , u n l i k e t h e o t h e r t reatment and disposal methods discussed, i n c u r

c o n s t r u c t i o n c o s t s du r ing each year o f t h e i r ope ra t i ng l i f e . Therefore,

l a n d f i l l s a r e s i zed accord ing t o t h e y e a r l y s o l i d s s torage requi red.

c a p i t a l requirement f o r a l a n d f i l l inc ludes t h e c o s t o f l and requ i red f o r 30

years of operat ion, t h e c o s t of road cons t ruc t i on , and t h e c o s t o f p repar ing

s torage f o r a one-year s o l i d waste volume.

cos ts i n c l u d e haul ing, p lac ing, and compacting o f a one-year waste volume, and

t h e c o s t of p repar ing a c e l l f o r s torage of another one-year volume (s torage t o

be used i n t h e f o l l o w i n g year) . Because annual c o s t s i n c l u d e c e l l cons t ruc t i on ,

ope ra t i ng and maintenance c o s t s f o r l a r g e r l a n d f i l l s may exceed t h e i r t o t a l

c a p i t a l requirement.

The t o t a l

The annual ope ra t i ng and maintenance

For t h e c l a y - l i n e d l a n d f i l l design depic ted i n F i g u r e 4-24. a range o f volumes

were se lec ted t o est imate c o s t s f o r codisposal of low volume wastes w i t h coal ash

and/or s t a b i l i z e d FGD sludge. Codisposal c o s t s can be based on t h e c u b i c yards

per year of low volume s o l i d waste produced and t h e c o s t per c u b i c yard f o r

c o n s t r u c t i n g and o p e r a t i n g h i g h volume waste l a n d f i l l s .

computed us ing t h e data presented i n Table 4-23.

were developed for annual l a n d f i l l capac i t y requirements from 10,000 t o 2,000,000

c u b i c yards.

Waste volumes can be

U n i t c o s t s fo r c o l a n d f i l l i n g

The range o f c a p a c i t i e s f o r e s t i m a t i n g t h e c o s t of double- l ined l a n d f i l l s (shown

i n F igu re 4-25) was based on t h e c o n s t r u c t i o n of dedicated s i t e s f o r d isposal o f

low volume s o l i d wastes. For t h i s reason. t h e annual l a n d f i l l requirements a r e

much sma l le r than those considered f o r t h e c l a y - l i n e d l a n d f i l l s .

double- l ined l a n d f i l l s , which meet t h e RCRA s p e c i f i c a t i o n s f o r disposal o f

hazardous waste, were developed f o r annual capac i t y requirements o f 50 t o 5,000

c u b i c yards.

Costs f o r

The c o s t s of these l a n d f i l l c o n f i g u r a t i o n s a r e presented as a f u n c t i o n o f annual

capaci ty . For impoundments, these c o s t s a r e presented on a u n i t volume basis.

4-02

T h i s approach was used because t h e s i z e range examined covers severa l orders of

magnitude, and because it best i l l u s t r a t e s t h e p o i n t a t which u n i t volume c o s t s

become cons tan t w i t h i nc reas ing capaci ty . I n add i t i on , t h i s approach i s useful

f o r e s t i m a t i n g t h e c o s t s of codisposal , as it al lows t h e c o s t s f o r incremental

vo l tunes t o be e a s i l y d e t e n i n e d .

- d L a n d f i l l s . Costs were est imated f o r below-grade, diked, c l a y - l i n e d

l a n d f i l l s w i t h 3 : l wa l l slopes, over a s i z e range o f 10,000 t o 2,000,000 c u b i c

yards p e r year.

t o 50 f e e t deep f o r t h e l a r g e s t i n s t a l l a t i o n s .

developed; one s e t assumes t h a t c l a y i s a v a i l a b l e o n - s i t e (no c o s t f o r m a t e r i a l

o r t r a n s p o r t a t i o n ) , w h i l e t h e o t h e r s e t assumes a d e l i v e r e d c l a y c o s t of $110 per

ton. The est imated t o t a l c a p i t a l requirement f o r 10,000, 50,000, 500,000, and

1,000.000 c u b i c yard p e r year c l a y - l i n e d l a n d f i l l s (assuming o n - s i t e c l a y ) a r e

presented i n Table 4-37. The TCR inc ludes t h e c o s t o f land associated w i t h a

30-year o p e r a t i n g l i f e , t h e c o s t of a one-half m i l e road t o t h e s i t e , and t h e

m a t e r i a l s and c o n s t r u c t i o n c o s t of a one-year ope ra t i ng volume.

annual d i r e c t o p e r a t i n g and maintenance c o s t s f o r these l a n d f i l l s are presented

i n Table 4-38.

yard, f ac to red maintenance and a d m i n i s t r a t i v e costs, and m a t e r i a l s and

c o n s t r u c t i o n of a one-year ope ra t i ng volume.

c o n s t r u c t i o n i s e q u i v a l e n t t o t h e TCR t h a t would be c a l c u l a t e d a f t e r exc lud ing

t h e c o s t o f land and roads from t h e d i r e c t process c o s t i n Table 4-37.

P e r m i t t i n g and r e g u l a t o r y compliance c o s t s a r e n o t inc luded i n e i t h e r t h e c a p i t a l

o r OBM costs .

and a r e more than adequately covered by t h e cont ingencies i nc luded i n t h e

est imate.

These l a n d f i l l s ranged from 25 f e e t deep f o r t h e sma l les t volume

Two s e t s o f c o s t data were

The est imated

The annual OBM c o s t inc ludes sludge hand l i ng a t $4 p e r cub ic

Th is annual c o s t f o r m a t e r i a l s and

For non-hazardous waste d isposal these c o s t s a r e n o t s i g n i f i c a n t

The c a p i t a l and OAM c o s t s f o r t h i s c l a y - l i n e d l a n d f i l l design a re presented

g r a p h i c a l l y i n F igu res 4-26 and 4-27, respec t i ve l y . These p l o t s c l e a r l y i l l u s -

t r a t e t h e decreasing u n i t c o s t of s o l i d s d isposal w i t h i nc reas ing l a n d f i l l

capaci ty . As a r e s u l t , t h e incremental c o s t of codisposing low volume wastes

w i t h h igh volume wastes i s a f u n c t i o n of t h e s i z e of p l a n t ash l a n d f i l l . Co-

disposal cos ts can be obta ined from Figures 4-26 and 4-27 us ing a known ash

l a n d f i l l capac i t y and Table 4-23 t o es t ima te low volume waste s o l i d s q u a n t i t i e s .

For a power p l a n t w i t h a 10,000 c u b i c yard per year l a n d f i l l , t h e annual c o s t o f

codisposing low volume waste w i l l be $30-40 p e r c u b i c yard (assuming a waste bu lk

densi ty o f approximately 75 l b p e r f t

Th is es t ima te can vary depending on t h e c o s t and a v a i l a b i l i t y o f c lay .

3 so t h a t one c u b i c yard weighs one ton ) .

For a

4-03

Table 4-37

ESTIMATED TOTAL CAPITAL REQUIREMEM FOR CLAY-LINE0 LANDFILLS (Waste Depth = 25-50 ft, L o c a l l y A v a i l a b l e Clay)

L a n d f i l l Capacity, c u b i c yards: 10,000 Waste Depth, ft: 25

D i r e c t Process and O f f - s i t e C a p i t a l

I;pzts

Land S i t e P repara t l on L i n e r and Leachate C o l l e c t i o n L a n d f i l l Cap System Groundwater Mon i to r i ng Roads On-site Costs

D i r e c t Process Cost

$190,000 42,000 47,000 21,000

9,700 28,000 20,000

357,700

O f f - s i t e Costs 36,000

To ta l D i r e c t Cap i ta l 393,700

Engineer ing and Home O f f i c e Fees 39,000 P r o j e c t Contingency 79,000 Process Contingency 20,000

TOTAL PLANT COST (TPC) 531,700

Allowance f o r Funds During Construct lon 0

TOTAL PLANT INVESTMENT (TPI) 531,700

Preproduct ion Costs 11,000

100,000 50

$640,000 300,000 190,000 83,000 9,700

28,000 83,000

1,333.700

130,000

19463 9700

150,000 290,000

73.000

ln97 6,700

0

1,9769700

39,000

500,000 1,000,000 50 50

82,100,000 $3 9 600,000 1,300,000 2,600,000

5 60 P 000 950,000 300,000 53 0,000

9.700 9,700 28,000 28,000

290,000 510,000

4,587 9700 8.227,700

460,000 820,000

5r047r700 9,047,700

510.000 910,000 1.000,000 1,8009000

260,000 450,000

6.8179700 12,207>700

0 0

6,817,700 12,207,700

140,000 240,000

TOTAL CAPITAL REWIREMEM (TCR) $5429700 $29015,700 $6,957,700 $12,447,700

$/CUBIC YARD (on -s i t e c l a y ) $54.00 $20.00 $14.00 $12.00

4-84

Tab le 4-38

ANNUAL 0 8 M COST FOR CLAY-LINE0 LANDFILLS (Waste OeDth = 25-50 ft. L o c a l l y A v a i l a b l e Clay)

L a n d f i l l Capacity, c u b i c yards: Waste Depth, ft: - Construc t i on Labor Cons t ruc t i on M a t e r i a l s Operat ing Labor Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

ANNUAL FIXE0 0 8 M COST

Y a r i a b l e ODeratina Costs

Cons t ruc t i on Labor Cons t ruc t i on M a t e r i a l s Operat ing Labor Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

ANNUAL VARIABLE 0 A M COST

ANNUAL DIRECT 0 8 M COST

$/CUBIC YARD (on -s i t e c l a y )

10,000 25

$83,000 55,000 27,000 3,400 5.100 34,000

207,500

44,000 30,000 15,000 1,800 2,700 18.000

111,500

$319,000

100,000 50

$390,000 260,000 260,000 14,000 21,000 200,000

1,145,000

210.000 140,000 140,000 7,400 11,000 110,000

618,400

$11763 9400

$30.00 $17 .OO

500,000 50

$1 9500,000 980,000

1,300,000 51,000 76,000 85 0,000

4 9 757,000

790,000 530,000 7 10,000 27,000 41,000 460.000

2,558,000

$7 9 3 15 9 000

$14 .OO

1,000,000 50

$2,700,000 1,800,000 2,600,000

92,000 140.000

1,600,000

8,932,000

1,500,000 970.000

1,400,000 50,000 75,000 870,000

4,865,000

$13,797,000

$14 .OO

4-85

0 0.01 0.02 0.05 0.1 0.2 0.5 1

Landfill Capacity, Million Cubic Yards/Year

F igure 4-26. Estimated T o t a l C a p i t a l Requirements for Clay-Lined L a n d f i l l s

50

E ' 40 s u

3

2

3

g 30 0 0

0 + 20 e! 0

._ 0 m = - c 10 I

0

1 I

0.01 0.62 0.05 0.1 0.2 0.5 1 I I I

Landfill Capacity, Million Cubic Yardslyear

I

Figure 4-27. Estimated Annual D i r e c t Operating and Maintenance Cost f o r Clay-Lined L a n d f i l l s

4-56

p l a n t w i t h a 500,000 c u b i c yard p e r year ash l a n d f i l l , t h e codisposal c o s t i s

reduced t o $15-17 p e r ton. Note t h a t these annual c o s t s i n c l u d e both y e a r l y

c o n s t r u c t i o n m a t e r i a l s and labo r , as w e l l as o p e r a t i n g and maintenance l a b o r

assoc iated w i t h s o l i d waste hand' l ing.

Double - l i n e d La n d f i l l g . Th is design meets t h e requirements f o r s torage of wastes

c l a s s i f i e d as hazardous under RCRA. The est imated t o t a l c a p i t a l requirement and

annual d i r e c t ope ra t i ng and maintenance c o s t s f o r double- l ined l a n d f i l l s ranging

from 50 t o 5,000 c u b i c yards p e r year a r e presented i n Tables 4-39 and 4-40,

r e s p e c t i v e l y . These c o s t s a r e f o r below-grade, d iked i n s t a l l a t i o n s w i t h 3 : l w a l l

slopes, hav ing t h e l i n e r and cap system designs depic ted i n F igu re 4-25. The

depths o f these l a n d f i l l s range from 4 f e e t f o r t h e 50 c u b i c yard f a c i l i t y t o 10

f e e t fo r those w i t h c a p a c i t i e s of 1000 c u b i c yards o r greater . The c o s t s i n

Tables 4-39 and 4-40 assume t h a t no c o s t s a r e i n c u r r e d f o r c l a y purchase o r

f r e i g h t .

l i f e , a one-half m i l e mad, and t h e c o s t of c o n s t r u c t i n g a one-year ope ra t i ng

volume. The annual o p e r a t i n g and maintenance c o s t assumes a waste handl ing

charge of $4 p e r c u b i c yard and inc ludes t h e c o s t assoc iated w i t h c o n s t r u c t i o n of

a one-year o p e r a t i n g volume.

The TCR inc ludes t h e c o s t of acreage r e q u i r e d f o r a 30-year o p e r a t i n g

Cap i ta l and annual ope ra t i ng c o s t curves f o r t h e double- l ined l a n d f i l l s a r e shown

i n F igures 4-28 and 4-29, respec t i ve l y . The two curves i n each f i g u r e i l l u s t r a t e

s e n s i t i v i t y t o c l a y cost . The lower curve i n each case assumes t h a t c l a y i s

a v a i l a b l e o n - s i t e (no purchase o r f r e i g h t c o s t ) and t h e upper curve assumes a

d e l i v e r e d c l a y c o s t of $110 p e r ton. The s e n s i t i v i t y o f u n i t d isposal c o s t t o

l a n d f i l l volume t h a t was apparent f o r c l a y - l i n e d s i t e s i s even greater over t h i s

s i z e range of double- l ined i n s t a l l a t i o n s . The annual u n i t c o s t f o r a 50 c u b i c

yard p e r year double- l ined l a n d f i l l ranges from $1.500-$1,700 p e r cub ic yard

depending on c l a y a v a i l a b i l i t y . For 5,000 c u b i c yard p e r year l a n d f i l l s , t h i s

c o s t i s $90-$110 p e r c u b i c yard.

F igures 4-28 and 4-29 can be used t o es t ima te t h e cos ts f o r hazardous s o l i d waste

disposal ; however, several impor tan t f a c t o r s should be considered i n t h e i r use.

F i r s t , t h e requi r m e n t s f o r a RCRA hazardous waste d isposal f a c i l i t y are sub jec t

t o change. Furthermore, l o c a l r e g u l a t i o n s may impose d i f f e r e n t o r more s t r i n g e n t

design requi r m e n t s f o r hazardous waste l a n d f i l l i n g . Another impor tan t f a c t o r

t h a t must be considered i s t h a t p e r m i t t i n g c o s t s a r e n o t inc luded i n e i t h e r t h e

c a p i t a l o r o p e r a t i n g and maintenance c o s t s presented. For hazardous waste

d isposal s i t e s , t hese cos ts can be s i g n i f i c a n t . An est imated c o s t f o r p repar ing

4-87

Table 4-39

TOTAL CAPITAL REQUIREMENT FOR DOUBLE FML LANDFILLS (Waste Depth = 4-10 ft, L o c a l l y A v a i l a b l e Clay)

L a n d f i l l Capacity, c u b i c yards: Waste Depth, ft

D i r e c t P r o c w u n d O f f - s i t e C a p i t a l

cQ&i Land S i t e Prepara t ion L i n e r s and Leachate C o l l e c t i o n L a n d f i l l Cap System Groundwater Mon i to r i ng Fence Roads On-s i te Costs

D i r e c t Process Cost

O f f - s i t e Costs

To ta l D i r e c t Cap i ta l

Engineer ing and Home O f f i c e Fees P r o j e c t Contingency Process Contingency

TOTAL PLANT COST (TPC)

50 4

$38,000 2,500 9,700 8,900 9,700 4,500

28,000 5,300

106,600

11.000

1179600

12,000 24,000

5,900

159,500

Allowance of Funds Dur ing Const ruc t ion 0

TOTAL PLANT INVESTMENT (TPI) 159,5 00

Preproduct ion Costs 3.200

TOTAL CAPITAL REQUIREMENT (TCR) $162,700

$/CUBIC YARD ( o n - s i t e c l a y ) $3,200

500 -3

$67,000 6,500

21,000 21,000 9,700 5,600

28,000 9,000

167,800

17,000

184,800

18,000 37,000

9,200

249,000

0

249,000

5,000

$254,000

1,000 10

$84,000 9,500

29,000 28,000

9,700 6,100

28,000 11,000

205,300

21,000

2269300

23.000 45,000 11.000

305,300

0

305,300

6,100

$3 11 I 400

$510 $310

5,000 10

$190,000 29.000 71,000 78,000 9,700 8,600

28,000 25,000

439,300

44,000

483,300

48,000 96,000 24,000

651,300

0

65 1,300

13.000

$664 9300

$130

4-86

Table 4-40

ANNUAL DIRECT 0 8 M COSTS FOR DOUBLE FML LANDFILLS (Waste Depth = 4-10 ft, L o c a l l y A v a i l a b l e Clay)

L a n d f i l l Capacity, c u b i c yards: Waste Depth, f t

F ixed O D e r a t i w

Const ruc t ion Labor Const ruc t ion M a t e r i a1 s Operat ing Labor Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

ANNUAL FIXED 0 8 M COST

V a r i a b l e Operat ing Costs

Const ruc t ion Labor Const ruc t ion M a t e r i a l s Operat ing Labor Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

ANNUAL VARIABLE 0 8 M COST

ANNUAL DIRECT 0 8 M COST

$/CUBIC YARD ( o n - s i t e c l a y )

50 4

$24,000 16,000

100 800

1,200 7,500

49,600

13.000 8,600

100 400 700

4,000

26,800

$76,400

$1,500

5 00 A

$43,000 29,000

1,300 1,500 2,200

14,000

919000

23,000 15,000

700 800

1,200 7,400

48,100

$139,100

$280

1,000 5,000 10 10

$56,000 $130,000 37,000 87,000

2,600 13,000 1,900 4,400 2,800 6,600

18,000 44,000

118,300 285,000

30.000 70,000 20.000 47,000

1,000 7,000 1,000 2,400 1,500 3 9 600 9 I 700 24 9 000

63,200 154 9 000

$181,5 00 $439,000

$100 $88

4-89

3.5 ,

Landfill Capacity, Thousand Cubic YardslYeai

F igu re 4-28. To ta l Estimated Cap i ta l Requirement f o r Double-Lined L a n d f i l l s

o ! 1 I 1 I I

0.02 0.05 0.1 0.2 0.5 1 2 5

Landfill Capacity, Thousand Cubic Yardslyear

I

Figure 4-29. Est imated Annual D i r e c t Operat ing and Maintenance Cost f o r Doub l e - L i ned Landf i 11 s

4-90

a RCRA P a r t B p e r m i t i s $200,000 p e r s i t e (28); t h i s does n o t i n c l u d e t h e

p e r m i t t i n g c o s t s associated w i t h s a t i s f y i n g s t a t e and l o c a l r e g u l a t i o n s .

SDeci a1 Consi d e r a t i m

Cont rac tor disDosal.

s o l i d wastes t o o f f - s i t e l a n d f i l l s . Th is i s a common p r a c t i c e f o r o i l - f i r e d

u t i l i t i e s t h a t do n o t have l a r g e ash l a n d f i l l s f o r codisposal .

c o n t r a c t o r d isposa l a r e p r i m a r i l y a f u n c t i o n o f s o l i d s content, general

geographic l o c a t i o n . and p r o x i m i t y t o d isposal s i t e s . E s t i m t e d c o n t r a c t o r c o s t s

f o r o f f - s i t e l a n d f i l l d isposal ranged from $80 t o $350 p e r c u b i c yard; o f f - s i t e

i n c i n e r a t i o n c o s t s ranged from $500 t o $1,600 per c u b i c yard (3.2,31,2,35). Disposal c o s t s a t t h e low end o f these ranges apply t o sludges w i t h a very low

mois tu re c o n t e n t (i.e.. l e s s than 10 percent) ; as mois tu re conten t increases,

d isposa l c o s t s increase.

be added t o these d isposal cos ts .

c o s t s o f o n - s i t e d isposa l t o determine whether economlcs f a v o r c o n s t r u c t i o n of

o n - s i t e f a c i l i t i e s o r t h e use of con t rac ted o f f - s i t e d isposal .

Many u t i l i t i e s h i r e c o n t r a c t o r s t o t r a n s p o r t low vo l ufne

Costs f o r

T r a n s p o r t a t i o n costs, a t $3 t o $4 p e r loaded mi le , must

These u n i t c o s t s can be compared w i t h t h e

Under RCRA, a waste generator r e t a i n s r e s p o n s i b i l i t y f o r t h e waste whether it i s

disposed o f on s i t e or hauled t o an o f f - s i t e l o c a t i o n by a c o n t r a c t o r .

fore, l i a b i l i t y as w e l l as c o s t should be considered i n s e l e c t i n g d isposal

methods. U t i l i t i e s may be l i a b l e for mishandl ing o f wastes by a c o n t r a c t o r . I n

a d d i t i o n , o f f - s i t e f a c i l i t i e s may c o n t a i n wastes from severa l generators. Under

j o i n t and severa l l i a b i l i t y r u l i n g s , a l l generators of hazardous wastes s to red a t

a p a r t i c u l a r s i t e have been dec lared l i a b l e f o r remediat ion costs , These c o s t s

were d i s t r i b u t e d among a l l generators, regard less o f whether o r n o t t h e i r waste

was respons ib le f o r environmental damage.

There-

process Sum ma ry

The D i e t r i c h memorandum c u r r e n t l y a l lows codisposal o f a l l low volume wastes,

regard less of r e g u l a t o r y c l a s s i f i c a t i o n , i n l a n d f i l l s w i t h ash and/or FGD sludge

prov ided s t a t e and l o c a l s o l i d waste r e g u l a t i o n s permi t such p r a c t i c e s . Eecause

t h i s d isposal o p t i o n does n o t r e q u i r e c o n s t r u c t i o n o f a separate f a c i l i t y , and

because t h e volume occupied by these wastes i s small compared w i t h t h a t requ i red

f o r ash d isposal , codisposal i s very c o s t e f f e c t i v e . Codisposal can a l s o prov ide

environmental benef i t s . The a l k a l i n i t y i n h e r e n t i n some coal ash he lps t o

n e u t r a l i z e a c i d s formed from p y r i t e decomposition, and a lso a ids i n immobi l i z ing

heavy meta ls .

4-91

Several f a c t o r s may in f luence t h e dec i s ion t o c o n s t r u c t small, dedicated land-

f i l l s f o r low volume waste disposal . The t y p e of waste, t h e volume generated,

and t h e p rox in l i t y t o o f f - s i t e disposal f a c i l i t i e s w i l l a f f e c t t h e cos ts o f

on -s i t e c o n s t r u c t i o n r e l a t i v e t o c o n t r a c t o r disposal . I n add i t ion , l i a b i l i t y

issues must be considered.

d isposa l c o s t s i n c l u d e s i t e remediat ion, genera tors a r e respons ib le f o r these

costs.

Although n e i t h e r t h e es t imated o n - s i t e o r o f f - s i t e

EVAPORATION

ADD1 i c a b l e Wast e Streams

A l l f i v e t ypes o f b o i l e r chemical c lean ing wastes have been evaporated i n power

p l a n t b o i l e r s . The i r o n l e v e l s i n t h e t h r e e organ ic s o l u t i o n s and t h e

h y d r o c h l o r i c a c i d range f rom 5.000 t o 10,000 m g / L depending on the concen t ra t i on

o f t h e c lean ing agent. The ammonium bromate s o l u t i o n i s used e x c l u s i v e l y f o r

copper removal and con ta ins copper l e v e l s o f 300 t o 1,000 mg/L. Copper l e v e l s i n

t h e o the r s o l u t i o n s vary from a few mg/L t o several hundred.

p resent a t f a i r l y low l e v e l s ((10 mg/L). Nickel , vanadium, and z i n c a r e

occas iona l l y p resent a t h ighe r l e v e l s .

conipositton, they a l l possess. e leva ted concen t ra t i ons o f d i sso l ved heavy metals.

Other metals a r e

Although t h e c lean ing wastes vary i n

The major d i f f e r e n c e i n t h e waste composi t ion i s t h e anion o r solvent. C i t r a t e ,

EDTA. and HAF a r e a l l water s o l u b l e o rgan ic compounds con ta in ing carbon, hydro-

gen, and oxygen, which form carbon d i o x i d e and water upon combustion. T y p i c a l l y

t h e c lean ing wastes c o n t a i n 3 t o 5 percent o f t h e organ ic compound by weight.

The remainder o f t h e waste i s wate,r. The h y d r o c h l o r i c a c i d stream i s about 5

percent HC1. Dur ing evaporation. hyd roch lo r i c a c i d vapor i s 1 i be ra ted along

w i t h oxides o f t.he nietals p resent ( i r on , copper, etc.) The anin!onium bromate

waste produces both

EDTA and c i t r a t e wastes may a l so con ta in s u b s t a n t i a l l e v e l s o f ammonia. and NOx and copper compounds upon combustion. The

Treatment E f f e c t i v w

A recen t study (16) c a l c u l a t e d t h e e f f e c t o f evapora t ing EDTA, c i t r a t e , and HAF

wastes i n a u t i l i t y b o i l e r . The concen t ra t i on o f t h e e i g h t RCRA metals (a rsen ic .

barlum, cadmium, chromium, lead, niercury, selenium, and s i l v e r ) du r ing evapora-

t i o n were compared t o base l i ne l e v e l s .

basis, t h e a d d i t i o n a l metals c o n t r i b u t e d by evapora t ion were inconsequent ia l

compared t o t h e amount c o n t r i b u t e d by t h e coal . On an instantaneous basis, t h e

waste elemental pass r a t e s were measurable. No d iscuss ion o f t h e e f f e c t of

The f i n d i n g s showed t h a t on an annual ized

4-92

evapora t ion of HC l o r ammonium bromate s o l u t i o n s was presented.

po in ted o u t t h a t v a r i a b i l i t y i n t h e t r a c e element conten t of t h e f u e l was s i g n i f -

i c a n t l y g r e a t e r than t h e mass amount c o n t r i b u t e d by evaporat ion.

T h i s study a l s o

Another study b r i e f l y descr ibed t h e r e s u l t s of evapora t ing ammonium bromate and

HAF wastes (31). t e r e d du r ing t h e burn.

which was e i t h e r sorbed on to t h e f l y ash o r removed by a wet scrubber.

and i r o n l e v e l s were found t o be s l i g h t l y e leva ted i n t h e ash s l u i c e water. No free halogens were measured i n t h e s tack gas.

t h a t evapora t ion i s an opera t i on sinipla t o perform w i t h minimal environmental

impacts (18. 32, 411, 41).

T h i s paper i n d i c a t e d t h a t no opera t i ona l problems were encoun-

The bromate was e v i d e n t l y converted t o sodium bromide

Copper

Several o the r a r t i c l e s i n d i c a t e

B o i l e r chemical c lean ing wastes f rom t h r e e p l a n t s i n Appendix B were evaporated.

A c i t r a t e c l e a n i n g waste f rom P l a n t E and EDTA c lean ing wastes front P l a n t s L and

U were evaporated w i t h o u t any repo r ted opera t i ona l o r environmental problems.

P l a n t E i s a gas-f i red b o i l a r , w h i l e L and U a re c o a l - f i r e d u n i t s .

v Evaporat ion of b o i l e r c lean ing wastes i s an i n f requen t l y performed task.

i n - l i n e n e u t r a l i z a t i o n and o the r assoc ia ted procedures, it occurs Only when t h e

b o i l e r i s chemica l l y cleaned, t y p i c a l l y once every two t o f i v e years. Evapor-

a t i o n frequency inc reases a t m u l t i - u n i t s ta t i ons . Other than s to rage f a c i l i t i e s ,

t h e equipment r e q u i r e d f o r evapora t ing wastes i nc ludes a pump, piping, and a

nozz le r e t r o f i t t o an e x i s t i n g b o i l e r .

As w i t h

A t y p i c a l evapora t ion r a t e of about 10 gpm per 100,000 pounds per hour o f steam

f low r e q u i r e s a p e r i o d of 1-4 days f o r evapora t ion of t h e b o i l e r chemical

cleaning waste produced du r ing a s i n g l e b o i l e r c lean ing episode.

requ i red f o r s to rage o f t h e wastes p r i o r t o evapora t ion may range from 50,000 t o

200,000 gal lons, depending on b o i l e r s ize.

dedicated s to rage tank o r by r e n t a l tankage t h a t can be niade a v a i l a b l e f o r s h o r t

t in ,e pe r iods du r ing b o i l e r c lean ing episodes. I n e i t h e r case, a pump and p i p i n g

from t h e s to rage l o c a t i o n t o t h e b o i l e r a re required.

b o i l e r c lean ing waste must be considered i n t h e s e l e c t i o n o f me ta l l u rgy o r o the r

m a t e r i a l s o f c o n s t r u c t i o n f o r t h e tank, pump, and p ip ing .

The volume

T h i s volume niay be prov ided by a

The c o r r o s i v i t y o f t h e

B o i l e r evapora t ion r e q u i r e s tha t . t h e b o i l e r con ta in a s u i t a b l e a tomiz ing nozzle.

T h i s may r e q u i r e r e t r o f i t of a nozzle, o r rcay i n v o l v e t h e use o f an e x i s t i n g

4-93

b o i l e r nozzle. Nozzles used f o r atomizing b o i l e r c lean ing wastes i n a b o i l e r

must be capable of w i ths tand ing t h e combined e f fec ts of h i g h temperature and t h e

c o r r o s i v i t y of t h e spent s o l u t i o n .

m e n t Cos&

Est imated c a p i t a l and opera t i ng and maintenance cos ts f o r evapora t ing b o i l e r

c lean ing s o l u t i o n s a r e presented i n Tables 4-41 and 4-42, respec t i ve l y .

cos ts a r e i nc luded f o r a system con ta in ing a 200,000 g a l l o n conc re te sump, a punip

w i t h a capac i t y of 50 gpm, 300 f e e t of f l e x i b l e piping, and a nozzle, and a l s o

f o r t h e same system w i t h t h e s to rage tank. The c o s t f o r ope ra t i ng l a b o r i s based

on t h r e e manhours per day f o r f o u r days per b o i l e r c lean ing episode (one b o i l e r

c lean ing per year was assumed).

f ac to red from t h e c a p i t a l cost es t imate f o r t h e system c o n t a i n i n g t h e s to rage

tank.

inc luded (see Sec t ion 3 f o r r e g u l a t i o n s a f f e c t i n g evaporat ion).

C a p i t a l

Maintenance and a d m i n i s t r a t i v e cos ts were

Labor c o s t s assoc ia ted w i t h o b t a i n i n g any necessary pe rm i t s a r e n o t

The energy pena l t y assoc ia ted w i t h evapora t ing a b o i l e r c lean ing waste and a l s o

t h e energy c r e d i t assoc ia ted w i t h combustion o f t h e associated organ ic con ten t

a re inc luded as o p e r a t i n g costs. The hea t of combustion f o r wastes w i t h a f i v e

percent o rgan ic con ten t was es t imated a t 350 B tu / l b .

Btu/ lb. t h i s r e s u l t s i n a n e t energy pena l t y o f 650 B t u / l b f o r evapora t ion of

spent b o i l e r c lean ing wastes.

steam flow, t h i s i s equ iva len t t o approximately s i x m i l l i o n Btu/hr. T h i s pena l ty

was est imated a t $3 per m i l l i o n Btu; f o r a four day t rea tment i n t e r v a l a t 20 gpm

(approximately 125.000 ga l lons) , t h e n e t energy pena l t y c a l c u l a t e d us ing t h i s

method i s approximately $1,900.

Using a l a t e n t hea t o f 1000

A t a feed r a t e of 20 gpm per 100,000 l b / h r o f

The est imated c a p i t a l cos ts presented i n Tab le 4-41 show t h a t t h e s to rage vessel

accounts f o r a l a r g e percentage of t h e d i r e c t process c o s t f o r evapora t ing spent

c lean ing wastes i n a power p l a n t b o i l e r . Therefore, decreasing t h e s to rage

volume requ i red w i l l decrease t h e t o t a l c a p i t a l requirement f o r evapora t ion

p ropor t i ona te l y . Lesser volumes o f s o l u t i o n s w i l l a l s o decrease t h e energy

penal ty.

chemical wastes. I f t h e me ta l l u rgy i s compat ib le w i t h t h e waste, t h i s cou ld be

an economical a l t e r n a t i v e t o b u i l d i n g a ded ica ted tank. P o r t a b l e tanks, o f t e n

used i n t h e o i l f i e l d s e r v i c e and r e f i n i n g indus t ry , can ho ld up t o 20,000

g a l l o n s and may be ren ted on a weekly or monthly basis.

As an a l t e r n a t i v e , a u t i l i t y may cons ider l e a s i n g tankage t o s t o r e

4-94

Tab1 e 4-41

ESTIMATED TOTAL CAPITAL REQUIREMENT FOR EVAPORATION OF BOILER CLEANING WASTE

System Throughput: Storage:

and O f f - s i t e CaDi ta l C-1

Concrete Sump - 200,000 g a l l o n Feed Pump F l e x i b l e P i p e - 300 f e e t I n j e c t i o n Nozzle On-si t e Costs

D i r e c t Process Costs

O f f - s i t e Costs

T o t a l D i r e c t C a p i t a l Cost (TPC)

Engineer ing and Home O f f i c e Fees (10%) P r o j e c t Contingency (20%) Process Contingency (5%)

TOTAL PLANT COST

Allowance f o r Funds Dur ing Const ruc t ion

TOTAL PLANT INVESTMENT (TPI)

Preproduct i on c o s t s

TOTAL CAPITAL REOUIREMENT (TCR)

20 gpm a i t h s to raae

$72,000 3 I 000

900 500

7.600

84 9 000

8,400

92,000

9,200 18,000 4,600

124,200

0

124,200

2,500

$1269700

---2 $3,000

900 500 400

4,800

500

5,300

500 1,100

300

7,200

0

7,200

100

$7,300

1 I n s t a l l a t i o n . o n - s i t e f a c i l i t i e s , and o f f - s i t e f a c i l i t i e s c o s t s have been fac to red i n t o t h e d i r e c t c a p i t a l costs.

2This case excludes c o s t s f o r storage. f a c i l i t i e s i s assumed.

Use of a v a i l a b l e s torage

4-95

Tab le 4-42

ANNUAL DIRECT o a w COSTS FOR EVAPORATION OF BOILER CLEANING WASTE

Opera t ing Labor 6 $15.25/hr Maintenance Labor Maintenance M a t e r i a l s AdK, in i s t ra t i ve 8 Support Labor1

TOTAL FIXED 0 8 M COST

Y a r i a b l e Ouer-

Operat ing Labor @ $15.25/hr Maintenance Labor Maintenance M a t e r i a l s A d m i n i s t r a t i v e 8 Support Labor

Consumabl es: Energy Pena l ty

TOTAL VARIABLE 0 8 M COS1

$100 1,700 2,500

500

4,800

100 900

1.400 300

1,900

4,600

TOTAL OIRECT 0 8 W COST 2, 3 $9.400

-_ 1Labor cos ts f o r o b t a i n i n g any necessary pe rm i t s a re n o t included.

2 I r i d i r e c t upe ra t i ng costs, such as deprec ia t ion , insurance, taxes, and general and a d m i n i s t r a t i v e cos ts a re n o t n o t included.

3These c o s t s apply t o systenis w i t h or w i thou t dedicated s to rage f a c i l i t i e s . I n e i t h e r case, a s to rage area i s used and c o n t r i b u t e s t o ope ra t i ng and maintenance costs.

4-96

Specia l Consider-

Besides t h e u t i l i t i e s us ing evaporat ion i d e n t i f i e d i n Appendix B ( P l a n t s D, E,

and L ) , two b o i l e r manufacturers were a l s o contacted (42,U). One manufacturer

discouraged t h e evaporat ion of any substance i n a b o i l e r due t o t h e p o t e n t i a l

econoniic r i s k t o a u t i l i t y (i.e., inimediate and long-terni e f f e c t on b o i l e r l i f e ) .

He a l s o quest ioned whether a t y p i c a l b o i l e r design mee!ts requirements f o r c o n t a c t

tin,e, teniperature, and turbulence. A second manufacturer had t h e oppos i te

o p i n i o n and was a c t i v e l y working w i t h a u t i l i t y demonstrat ing t h e evaporat ion o f

h y d r o c h l o r i c a c i d chemical c lean ing wastes.

Other c o n s i d e r a t i o n s should a l s o be examined p r i o r t o evaporat ing a b o i l e r

chemical c l e a n i n g waste. Systems equipped w i t h wet scrubbers may i n c u r

a d d i t i o n a l r i s k s by evaporat ing b o i l e r c l e a n i n g wastes.

evaporated. t h e scrubber w i l l remove niost o f t h e acid. The c h l o r i d e i o n i s

capable o f caus ing s t r e s s c o r r o s i o n ( e s p e c i a l l y of s t a i n l e s s s tee ls ) . and

affects the "2 removal and t h e q u a l i t y o f market grade gypsun..

If h y d r o c h l o r i c a c i d i s

Other types of c l e a n i n g s o l u t i o n s c o u l d produce h igher t r a c e metal concent ra t ions i n

t h e scrubbing 1 i q u o r which may cause opera t ing and/or d isposal problems.

Process Sunimary

Evaporat ion i s an e f f e c t i v e means of d ispos ing of b o i l e r cheniical c lean ing wastes

and i s e s p e c i a l l y a t t r a c t i v e f o r EDTA and c i t r i c a c i d wastes. which a r e d i f f i c u l t

t o t r e a t w i t h convent ional physical /chemical systenis.

The energy l i b e r a t e d by evaporat ion of t h e organ ics i n b o i l e r c l e a n i n g wastes i s

overshadowed by t h e energy requ i red t o evaporate t h e i r water content, thereby

c r e a t i n g a n e t energy penal ty . T h i s energy pena l ty i s not, however, a niajor

disadvantage s i n c e evaporat ion of b o i l e r c l e a n i n g wastes i s performed i n f r e -

quent ly and f o r per iods of s h o r t durat ion.

w i t h evapora t ion o f p a r t i c u l a r types o f wastes.

evaporat ion has p o t e n t i a l r isks because of t h e p o s s i b i l i t y of downstrean, a c i d

condensation. A t reasonable i n j e c t i o n rates. however. vapor phase c h l c r i d e

concent ra t ion may n o t exceed those r e s u l t i n g from combustion of a fue l c o n t a i n i n g

moderate c h l o r i d e l e v e l s .

Other disadvantages a r e associated

For example, h y d r o c h l o r i c a c i d

ALT€RNATIVE/INNOVATIVE TECHNICUES

T h i s subsect ion b r i e f l y discusses severa l t rea tment and d isposal o p t i o n s f o r low

volume wastes which a r e under development o r n o t w ide ly used. Most o f these

4-97

processes a r e used f o r b o i l e r chemical c lean ing wastes, t h e most d i f f i c u l t t o

t r e a t low volume waste produced a t a u t i l i t y .

a p p l i c a b l e t o o the r low volume waste streams.

Other methods a r e p o t e n t i a l l y

- am B o i l e r Chemical Cleaning

Recent work by t h e Saskatchewan Power Corpora t ion has determined t h a t on-stream

c lean ing o f b o i l e r tubes w i t h sodium p o l y a c r y l a t e i s a c o s t - e f f e c t i v e a l t e r n a t i v e

t o t h e t r a d i t i o n a l c lean ing procedure (44). This procedure i nvo l ves i n j e c t i n g

s u f f i c i e n t sodium p o l y a c r y l a t e i n t o t h e b o i l e r feedwater t o o b t a i n a

concen t ra t i on of 400 mg/L.

pe r iod t o p revent sodium car ryover i n t o t h e dry stream.

The t e s t b o i l e r s were derated d u r i n g t h e c lean ing

Process DeSCriDtiOQ. The a d d i t i v e e v i d e n t l y removes t h e ou te r l a y e r s of l oose ly

bound magnet i te which causes t h e g rea tes t heat t r a n s f e r res is tance.

magnet i te l a y e r which p r o t e c t s t h e tube wa l l f r an co r ros ion i s n o t removed,

u n l i k e t h e t r a d i t i o n a l c lean ing methods. A d d i t i o n a l l y , t h e i r o n concen t ra t i on

does n o t inc rease i n t h e b o i l e r water, i n d i c a t i n g t h a t a p u r e l y phys ica l form of

removal i s occur r ing .

i r o n i s present i n a s o l i d phase.

The i n n e r

Th is s i m p l i f i e s t rea tment o f t h e blowdown stream s ince t h e

Measurements o f t h e e f fec t i veness ( i n terms o f weight removed) range from 14 t o

80 percent of t h e magnet i te present.

s t a b l e c a r b o x y l i c ac ids f a i r l y q u i c k l y and b o i l e r blowdown can be s t a r t e d w i t h i n

severa l hours o f t h e chemical add i t i on . Treatment t imes range from one t o two

days.

The p o l y a c r y l a t e begins decomposing t o

A ~ K L B & E and Disadvant-. On-stream c lean ing has severa l major advantages

r e l a t i v e t o t h e t r a d i t i o n a l method. Since t h e b o i l e r i s opera t iona l , a l though

perhaps derated, it i s s t i l l producing power d u r i n g a c leaning. It appears t h a t

t h e l eng th o f time requ i red fo r a c lean ing i s reduced also.

chemicals used a r e much l e s s hazardous t o personnel than t h e t r a d i t i o n a l

compounds. The b o i l e r blowdown i s much s imp le r t o t r e a t than o the r b o i l e r

chemical c lean ing wastes s ince it does n o t c o n t a i n h igh concent ra t ions o f

d isso lved i m n .

A d d i t i o n a l l y , t h e

The process i s n o t as e f f e c t i v e i n c lean ing depos i t s as t h e t r a d i t i o n a l methods.

The resu l t s , i n terms o f e f fect iveness, a re f a i r l y scat tered, although no

c o r r e l a t i o n w i t h u n i t heat r a t e versus c lean ing was presented i n t h e c i t a t i o n .

Also, t h e paper d i d n o t d iscuss t h e method's performance w i t h respect t o copper

4-98

removal. Another disadvantage i s t h e p o t e n t i a l f o r i n t r o d u c i n g contaminants i n t o

t h e tu rb ine .

Lhzkz. t r a d i t i o n a l method, a re $25,000 t o $30,000 on an annual basis. The paper

est imates t h e t r a d i t i o n a l method cos ts about $100.000 which i n d i c a t e s on-stream

c lean ing cos ts $10,000 t o $25,000 over t h r e e years.

Estimated savings f o r a 300 Mw u n i t . cleaned every t h r e e years by t h e

&&a1 Recovery

I n general, t h e concept of metal recovery i s no t cos t e f f e c t i v e f o r low volume

waste t reatment .

i r o n and 500 pounds o f copper. Since b o i l e r s a re cleaned in f requen t l y , annual

r a t e s a re o n l y f r a c t i o n a l q u a n t i t i e s o f these amounts. A d d i t i o n a l l y , t h e c o s t o f

conve r t i ng metal hydrox ide sludges ( t h e form produced du r ing water t rea tment )

i n t o a recyc lab le ma te r ia l i s p r o h i b i t i v e , based on t h e low salvage p r i ce .

B o i l e r chemical c lean ing wastes con ta in up t o 5,000 pounds of

The on ly metal recovery opera t ion p rac t i ced r e g u l a r l y i s done on f i r e s i d e wastes

from o i l - f i r e d p lan ts . Depending on t h e vanadium conten t of t h e fue l , f i r e s i d e

waste sludge may be economical ly recyc led as a s t e e l add i t i ve . Treated w i t h

fe r rous s u l f a t e , t h e s ludge formed con ta ins econanic l e v e l s o f f e r rous

metavanadate, used i n making s t a i n l e s s s t e e l . A t l e a s t one u t i l i t y disposes o f

i t s t rea tment s ludge i n t h i s manner (45).

Solidlflcatlon

S o l i d i f i c a t i o n o f low volume waste sludges has been inves t i ga ted p rev ious l y i n an EPRI s tudy (46). Th is work examined e i g h t s o l i d i f i c a t i o n processes w i t h e i g h t

s ludge or s o l i d low volume wastes.

i d e n t i f i e d a p p l i c a b l e processes f o r decreasing t h e l e a c h a b i l i t y o f t h e var ious

wastes. Organic polymers n o t based on urea-formaldehyde and sur face

encapsulat ion were deemed app l i cab le f o r a l l o f t h e wastes.

conducted before in fo rmat ion was a v a i l a b l e showing t h a t these wastes are no t RCRA

hazardous. Consequently, t h e r e i s l i t t l e j u s t i f i c a t i o n f o r implementing these

techn i q u es .

The r e s u l t s o f t h i s l i t e r a t u r e survey

Th is work was

Some s i m i l a r research described e a r l i e r ( c o l a n d f i l l i n g ) addressed mix ing f l y ash

w i t h l i q u i d low volume wastes. The a n a l y t i c a l r e s u l t s o f these t e s t s i n d i c a t e d

t h a t t h e r e s u l t a n t ma te r ia l was n o t a hazardous waste.

4-99

Bas.?

Reuse i s a common p r a c t i c e f o r many low volume wastes, e s p e c i a l l y i n water

l i m i t e d reg ions of t h e country .

blowdown, yard d ra ins ) can be used w i thou t t rea tment i n c o o l i n g towers, ash

hand l ing systems, and scrubbers. Other streams may r e q u i r e t reatment such as

sof ten ing, reverse osmosis, o r vapor compression evapora t ion before reuse. A

recent paper has examined t h e cos ts and b e n e f i t s of reus ing va r ious low volume

waste streams (a). This paper a l s o presents a methodology f o r determin ing i f

reuse i s economical.

blowdown was est imated a t $10,000 per megawatt.

Many of t h e l e s s contaminated streams ( b o i l e r

A present va lue c o s t pena l t y fo r n o t reus ing b o i l e r

Reuse may a l so be performed as an a l t e r n a t i v e t o t reatment .

chemical c lean ing wastes may be added t o f l u e gas d e s u l f u r i z a t i o n systems f o r

u l t i m a t e d isposa l .

Many o f t he b o i l e r

Research i n t h i s area i s being sponsored by EPRI.

I n n o v a t i v e Tre&ue& Methods

The che la ted b o i l e r chemical c lean ing wastes are o f t e n d i f f i c u l t t o t r e a t t o

requ i red l e v e l s w i t h convent ional l i m e p r e c i p i t a t i o n techniques. Several

d i f f e r e n t r e a c t i o n mechanisms may be a p p l i c a b l e f o r these s p e c i f i c wastes.

Processes suggested f o r f u r t h e r research inc lude:

e Decarboxy la t ion by - - e l e c t r o l y s i s --chemical o x i d a t i o n - - f ree r a d i c a l a t tack ;

Adsorpt ion on to a c t i v a t e d carbon o r o t h e r media; and

Biodegradation.

Techniques used i n o t h e r i n d u s t r i e s may be a p p l i c a b l e t o low volume waste t r e a t -

ment. EPRI i s a l so i n v e s t i g a t i n g t h i s t o p i c f u r t h e r .

J r r i a a t i o n and Land Treatme&

Other a l t e r n a t i v e s f o r d ispos ing of low volume wastes i nc lude i r r i g a t i o n and land

app l i ca t i on .

of o i l y wastes. Th is p r a c t i c e i s based on t h e m ic rob ia l s o i l organisms

conver t i ng t h e organ ic subs t ra te i n t o C02 and water.

aqueous, m i c r o b i a l a c t i o n would have no b e n e f i c i a l e f fec t . The metal

contaminants would n o t be immobi l ized t o any degree.

Land a p p l i c a t i o n has rece ived cons iderab le i n t e r e s t f o r t reatment

Since l o w volume wastes are

4-100

I r r i g a t i o n of grasses has been proposed f o r d ispos ing of wastewater from power

p lan ts . However, d i sso l ved s o l i d s concent ra t ions i n t h e water can cause

b i o l o g i c a l s t r e s s i n p lan ts , I n general. it has been found t h a t evaporat ion

ponds a r e more e f f e c t i v e on a c o s t pe r acre bas i s f o r d ispos ing of wastewater

(48). The p o t e n t i a l contaminat ion o f subsurface waters i s a l so a damaging

l i a b i l i t y f o r i r r i g a t i o n d isposal .

4-101

Sect ion 5

INTEGRATION OF LOW VOLUME WASTE TREATMENT WITH

PLANT WATER AND WASTE MANAGEMENT - CASE STUDIES

Several power p l a n t case s t u d i e s a r e presented i n t h i s sect ion. The purpose o f

these case s t u d i e s i s t o i l l u s t r a t e t h e use o f t h e in fo rmat ion presented i n t h e

prev ious s e c t i o n s t o develop e f f e c t i v e low volume waste management systems.

The case s t u d i e s presented a r e modeled a f t e r p l a n t s descr ibed i n Appendix A.

However, i n o r d e r t o i n c l u d e a v a r i e t y o f waste types and t rea tment approaches.

t h e case s t u d i e s of ten incorpora te features from severa l p lants . I n a l l cases,

t h e wastes and t rea tment systems se lec ted a r e c o n s i s t e n t w i t h c u r r e n t u t i l i t y

p r a c t i c e and e x i s t i n g environmental regu la t ions .

T h i s s e c t i o n a l s o serves t o i l l u s t r a t e s t r a t e g i e s f o r i n t e g r a t i n g t h e low volume

waste management system w i t h t h e o t h e r power p l a n t a i r , water. and waste

management systems.

volume wastes i n t h e p lan t . S t r a t e g i e s a r e a l s o presented t h a t w i l l a s s i s t

u t i l i t i e s i n avo id ing t h e c l a s s i f i c a t i o n of low volume wastes as hazardous under

RCRA guide1 ines.

These s t r a t e g i e s can h e l p reduce t h e c o s t o f t r e a t i n g low

APPROACH

The m a j o r i t y of u t i l i t y s t a t i o n s do n o t generate a l l o f t h e low volume waste

streams i d e n t i f i e d i n t h i s manual. P l a n t con f igura t ion , f u e l type, geographic

l o c a t i o n , age, and many o t h e r f a c t o r s in f luence t h e low volume wastes produced.

C h a r a c t e r i s t i c s of p l a n t s descr ibed i n Appendix A, the model p l a n t s i n t h e EPRI

Technical Assessment Guide (I&). and o t h e r l i t e r a t u r e were used t o s e l e c t speci-

f i c low volume wastes and t h e t rea tment techniques used f o r t h e case s tud ies.

The major f a c t o r s t h a t determine which wastes a r e generated and which t rea tment

op t ions a r e employed are:

e Al lowab le discharges;

e Fuel t y p e (coal , o i l o r gas);

5-1

F l y ash t r a n s p o r t method (wet o r d r y ) ;

0 Use o f f l u e gas desu l fu r iza t ion , and if so, t h e type of process; and

a Geographic l o c a t i o n .

Although o t h e r f a c t o r s may a l s o have a bear ing on t h e t y p e and volume of low

volume wastes produced a t a s t a t i o n , t h e f a c t o r s l i s t e d above a r e t h e most

impor tan t i n terms of s e l e c t i n g t rea tment opt ions.

p l a n t s a r e presented i n Table 5-1. These p l a n t c o n f i g u r a t i o n s were se lec ted t o

represent a v a r i e t y of common t rea tment opt ions. Two eastern and two western

c o a l - f i r e d p lants . and one eas tern o i l - f i r e d p l a n t were se lected. Two of t h e

c o a l - f i r e d p l a n t s were b u i l t p r i o r t o t h e promulgation o f t h e August 11. 1979 New

Source Performance Standards (NSPS) f o r s team-elect r ic power p l a n t s (49). The

o t h e r two c o a l - f i r e d s t a t i o n s a r e requ i red t o meet t h e 1979 NSPS us ing f l u e gas

d e s u l f u r i z a t i o n systems f o r SO2 c o n t r o l .

C h a r a c t e r i s t i c s of f i v e model

Table 5-1

MODEL PLANT CONFIGURATIONS

Model Pl.& 1

2

3

4

5

Approximate Locatlon F3e.l -LMl" FGD

Limestone W i s c o n s i n / I l l i n o l s Coal NPDES D r Y

W i s c o n s i n / I l l i n o i s Coal NPDES Wet (pond) None

Arizona/New Mexico Coal None D r Y Spray d r y e r

Arizona/New Mexico Coal None Wet (pond) None

Eastern Seaboard O i l NPDES None None

P l a n t l o c a t i o n may be t h e s i n g l e most impor tan t i n f l u e n c e on low volume waste

management, s i n c e it of ten determines f u e l c h a r a c t e r i s t i c s (low volume waste

composit ion). water q u a l i t y (pret reatment requi rements) and a v a i l a b i l i t y (water

recyc le/ reuse) , t rea tment technology s e l e c t i o n (evaporat ion ponds), l o c a l

by-product markets (d ry ash handl ing) , and environmental requirements (zero

discharge, FGD systems).

Model p l a n t s 1 and 2 a r e l o c a t e d i n t h e W i s c o n s i n / I l l i n o i s area (EPRI

East-Central data reg ion) . Model p l a n t 1 i s t h e base model p l a n t s p e c i f i e d i n

t h e EPRI Technica l Assessment Guide; t h i s p l a n t meets t h e 1979 NSPS (u). Model

5-2

p l a n t s 1 and 2 burn h i g h - s u l f u r I l l i n o i s No. 6 coal w i t h t h e f o l l o w i n g

c h a r a c t e r i s t i c s : heat ing va lue = 10,100 Btu/ lb , 16 percent ash, 4 percent

s u l f u r . Model p l a n t 2 i s t y p i c a l of many o l d e r p l a n t s i n t h i s reg ion which

s l u i c e f l y ash and do n o t have FGD systems. Model p l a n t s 3 and 4 a r e l o c a t e d i n

t h e Southwestern U.S. (Arizona/New Mexico) and burn subbituminous coal (heat ing

va lue = 8.020 Btu / lb , 6.4 percent ash, 0.48 percent s u l f u r ) . Model p l a n t 3 i s a

new p l a n t u s i n g a spray dryer and baghouse t o comply w i t h t h e 1979 NSPS.

p l a n t 4 i s an o l d e r western u n i t us ing an ash pond w i t h e i t h e r wet s l u i c i n g or a

scrubber f o r p a r t i c u l a t e c o n t r o l . Model p l a n t 5 i s an o i l - f i r e d u n i t loca ted on

t h e eastern seaboard t h a t employs once-through c o o l i n g water.

Model

The remainder of t h i s s e c t i o n discusses each case s tudy i n d e t a i l .

addressed i n c l u d e t h e major equipment and processes used, t h e low volume wastes

generated and t h e i r amount, and t h e t rea tment methods selected. Low volume waste

c h a r a c t e r i s t i c s presented i n Sec t ion 2 and r e g u l a t i o n s reviewed i n Sect ion 3 were

used as t h e bases f o r determin ing low volume waste t rea tment requirements.

c a p i t a l and annual opera t ing and maintenance ( O B M ) c o s t s f o r t h e low volume waste

t rea tment processes a r e developed u s i n g t h e in fo rmat ion presented i n Sect ion 4.

Areas

Both

CASE 1. EASTERN COAL PLANT WITH DRY ASH HANDLIM;

F i g u r e 5-1 i s a diagram of t h e Case 1 p l a n t . T h i s s t a t i o n has two 500 MW base

l o a d s u b c r i t i c a l b o i l e r s burn ing eas tern h igh-su l fu r b i tuminous coal . It i s

s u b j e c t t o t h e 1979 NSPS and c u r r e n t NPOES requirements f o r aqueous discharges.

Mechanical d r a f t c o o l i n g towers produce a blowdown stream a t four cyc les of

concent ra t ion t o meet M i s s i s s i p p i r i v e r e f f l u e n t g u i d e l i n e s f o r d isso lved s o l i d s

w i t h o u t f u r t h e r t reatment . An e l e c t r o s t a t i c p r e c i p i t a t o r i s used f o r p a r t i c u l a t e

removal and wet l imestone scrubbers a r e used f o r SO2 c o n t r o l .

chemica l l y f i x e d and disposed of w i t h f l y ash i n a l a n d f i l l . Coal p i l e runof f i s

d ischarged f o l l o w i n g sedimentat ion and n e u t r a l i z a t i o n , w h i l e t h e o ther aqueous

low volume wastes a r e routed through phys ica l /chemical t reatment . The s o l i d low

volume wastes are c o l a n d f i l l e d w i t h t h e h i g h volume wastes.

FGD sludge i s

Low Volume Wastes a nd T r &&?I&

F i g u r e 5-2 p resents t h e low volume waste streams, f low rates, and t rea tment

processes f o r t h i s case study. Nine low volume waste streams and n i n e t reatment

u n i t s a re inc luded.

The sedimentat ion impoundment i s designed t o h o l d 10 m i l l i o n g a l l o n s o f coal p i l e

runof f . The coa l p i l e r u n o f f f low i s based on a 10-year storm event o f 5.5

5-3

BLOWDOWN MECHANICAL

DRAFT COOLING TOWERS

WATER

GENERATOR

cn P

LIMESTONE -

F i g u r e 5-1. Handl ing and Limestone FGD

Block Diagram of t h e Case 1 Plan t : Eastern Coal-Fired S t a t i o n w i t h Dry Ash

1 t T ELECTROSTATIC FG D PRECIPITATOR SYSTEM COAL BOILER

1

I I I 1 '

IN-L INE 5M) GPM ~

SEDIMENTATION IMPOUNDMENT NEUTRALIZATION (MAXIMUM)

FLOOR AND YARD DRAINS

CONTINUOUS WASTE

IMPOUNDMENT NEUTRALIZATION REGENERANT

I

BOILER

INTERMIlTENT

IMPOUNDMENT WASTE IMPOUNDMENTS

20 CU YDS I TREATMENT

LANDFILL 10,000 cu YOS I

’ DISCHARGE

Figure 5-2. Low Volume Waste Flowsheet for t h e Case 1 P l a n t

inches per 24 hour pe r iod (U) . r e l a t i o n s h i p given i n Sec t ion 2, Coal P i l e Runoff. The coa l p i l e i s s i zed f o r

90-day opera t i on a t 100 percent load and covers 75 acres. A c l a y - l i n e d

impoundment w i t h a 15 f o o t water depth ( a l l impoundment designs i n c l u d e two fee t

of freeboard, i.e., t o t a l pond depth i s seventeen f e e t ) i s used t o s t o r e t h e

runo f f volume. Local s o i l i s adequate f o r use as l i n e r ma te r ia l . The pH o f t h e

r u n o f f i s ad jus ted as needed us ing a 500 g a l l o n s p e r minu te i n - l i n e

n e u t r a l i z a t i o n u n i t w i t h a c a u s t i c feed r a t e o f 0.02 g a l l o n s per thousand

ga l lons . Th is n e u t r a l i z a t i o n u n i t inc ludes o n l y one ( c a u s t i c ) chemical feed

system.

The r u n o f f volume was computed us ing t h e

A 55 gal lon-per-minute rapid-mix tank n e u t r a l i z a t i o n system i s used t o t r e a t

demine ra l i ze r regenerant t o avo id t h e s to rage of RCRA-corrosive wastes i n an

impoundment.

a f i l l -and-draw mode. T h i s ope ra t i on u t i l i z e s m i x i n g o f t h e c a t i o n and anion bed

regenera t ion wastes t o p rov ide t h e bu lk of t h e n e u t r a l i z a t i o n .

consumption r a t e o f 0.5 g a l l o n s per thousand g a l l o n s was assumed, and t h e system

inc ludes two chemical feed u n i t s .

Deminera l i zer regenerant i s pH ad jus ted i n a mix tank opera t i ng i n

A c a u s t i c

Because o f d i f f e r e n c e s i n t h e e f f l u e n t standards f o r s p e c i f i c low volume wastes,

two impoundments a r e used f o r temporary s to rage p r i o r t o physical /chemical

t reatment; one i s f o r h o l d i n g h ighe r q u a l i t y water (such as f l o o r and yard

d ra ins ) , and one i s f o r h o l d i n g b o i l e r c l e a n i n g wastes (waters ide and f i r e s i d e ) .

F l o o r and yard dra ins , a f t e r be ing t r e a t e d t o remove o i l , a re mixed w i t h

n e u t r a l i z e d demine ra l i ze r regenerant and b o i l e r blowdown i n t h e cont inuous waste

impoundment. ( O i l sepa ra t i on was n o t addressed i n t h i s manual ; however, c a p i t a l

and o p e r a t i n g c o s t es t imates were ob ta ined from a vendor f o r an a p p r o p r i a t e l y

s i zed coa lesc ing p l a t e separa tor (la).) Design f l ow r a t e s t o t h i s impoundment

t o t a l 180 g a l l o n s per minute. The impoundment i s s i zed f o r a 5-day r e t e n t i o n

t ime a t design f low f o r bo th u n i t s (1.3 m i l l i o n g a l l o n s ) . Th is provides a 10-day

ho ld ing t i m e when one b o i l e r i s o f f - l i n e f o r c lean ing .

f e e t deep. has a s i n g l e f l e x i b l e membrane l i n e r (FML). and does n o t have leacha te

c o l l e c t i o n o r a groundwater mon i to r i ng system.

The impoundment i s 15

The i n t e r m i t t e n t waste impoundment i s a conc re te sump w i t h a volume of 2 m i l l i o n

g a l l o n s f o r f i r e s i d e and b o i l e r chemical c l e a n i n g waste. F i r e s i d e washes

generate approximately 1.6 m i l l i o n g a l l o n s o f wastewater f o u r t imes a year.

B o i l e r chemical c l e a n i n g waste washes generate about 125,000 ga l l ons every year

and a ha l f . Th i s r i g i d - w a l l e d vessel meets t h e RCRA d e f i n i t i o n f o r a tank.

5-6

Ef f l uen ts from bo th t h e i n t e r m i t t e n t waste tank and cont inuous waste impoundment

a re processed i n t h e same physical /chemical t rea tment system. However, t h e

wastes a re t r e a t e d separately, s ince they must meet d i f f e r e n t NPDES l i m i t s and

r e q u i r e s u b s t a n t i a l l y d i f f e r e n t chemical doses. The wastewater f rom t h e

cont inuous waste impoundment r e q u i r e s o n l y minor pH adjustment and suspended

s o l i d s removal t o meet NPDES l i m i t s . The b o i l e r c lean ing wastes, however.

r e q u i r e s i g n i f i c a n t pH adjustment t o p r e c i p i t a t e i r o n and copper, fo l lowed by

s o l i d s separa t ion and a f i n a l a c i d a d d i t i o n f o r n e u t r a l i z a t i o n t o meet discharge

requirements.

of water; t h i s s i z e a l l ows t h e system t o operate an average o f 0 t o 10 hours per

day when t r e a t i n g t h e cont inuous waste streams, and a l l ows t rea tment o f t h e

volume generated du r ing b o i l e r c lean ing i n 2 t o 3 days. To ensure compliance

w i t h discharge requirements. t r e a t e d e f f l u e n t i s he ld i n one of two discharge

impoundments u n t i l a n a l y t i c a l measurements a re completed. These impoundments

have a s i n g l e f l e x i b l e membrane l i n e r and a l i q u i d depth o f 15 fee t ; each

impoundment has a volume o f 360,000 gal lons, equ iva len t t o a 24-hour f low.

Groundwater mon i to r i ng and leachate c o l l e c t i o n a re n o t provided.

Th is t rea tment system i s s ized t o t r e a t 500 g a l l o n s p e r minute

Wastewater t rea tment sludge, py r i t es , and c o o l i n g tower sludge are c o l a n d f i l l e d

w i t h h i g h volume wastes ( f l y ash and s t a b i l i z e d FGD sludge).

method complies w i t h codisposal c u r r e n t l y exempt from RCRA-hazardous c l a s s i f i c a -

t i o n , as d e t a i l e d by t h e EPA (2.31). The incremental c o s t associated w i t h

l a n d f i l l i n g these wastes i s based on t h e i r reduc t i on of t h e l a n d f i l l capac i t y by

10,500 cub ic yards per year. The ash l a n d f i l l capac i t y a t t h i s p l a n t i s 400,000

c u b i c yards p e r year.

Th i s t rea tment

sy&ac&&

Table 5-2 p resents t h e est imated cos ts associated w i t h t h e t rea tment processes

f o r low volume wastes i d e n t i f i e d i n F i g u r e 5-2. Cap i ta l and 08M cos ts were

ob ta ined us ing t h e design f low ra tes and system s izes presented above, and t h e

data i n Sec t i on 4. Approximately 55 pe rcen t of t h e t o t a l c a p i t a l c o s t f o r low

volume waste t rea tment equipment i n t h i s p l a n t i s f o r t h e physical /chemical

t rea tment system.

l a n d f i l l i n g a re n e a r l y equal, each being about one- th i rd of t h e t o t a l annual

ope ra t i ng cos t .

The c o s t f o r ope ra t i on o f t h i s t rea tment system and t h a t f o r

CASE 2. EASTERN COAL PLANT WIM WET ASH HANDLING

F i g u r e 5-3 i s a diagram o f t h e Case 2 p lan t .

l oad s u b c r i t i c a l b o i l e r s burn ing Eastern h igh s u l f u r b i tuminous coal . It i s

The s t a t i o n has two 500 MW base

5-7

Table 5-2

ESTIMATED TREATMENT SYSTEM COSTS FOR CASE 1 PLANT

Ln

m

Treatment U n i t

Sedimentation impoundment

In-1 i n e n e u t r a l i z a t i o n

O i l separat ion

Rapid-mix tank n e u t r a l i z a t i o n

Continuous waste impoundment

I n t e r m i t t e n t waste impoundment

Phys ica l /chemical t reatment

Discharge impoundments ( 2 )

L a n d f i l l

Tot a1

__

Waste Design' Stream Bas is

coal p i l e 10 MG, 15-f00t, c lay - runo f f 1 ined, 1 oca1 mater i a1

coal p i l e 500 gpm, one feed runo f f 0.02 ga1/1000 gal

f l o o r and yard 21 gpm d r a i n s

demine ra l i ze r 55 gpm, two feed regenerant 0.5 ga1/1000 gal

h igh q u a l i t y 1.3 ffi, 15- foot wastewater s i n g l e FML

b o i l e r clean- Z E conc re te sump i n g wastes

a l l wastewaters 500 gpm systan except runoff

t r e a t e d 2-360,000 g a l l o n water 15-foot. s i n g l e FML

1 ow v o l ume 400,000 c u y d / y r s o l ids, (10,500 c u yd /y r s1 udges i ncrenent )

To ta l Annual Reference Cap i ta l Operat ing 8

F i g u r e Reauirement Maintenance

4-15 $200.000 $20.000

4-89 4-9 $104,000 $47.000 4-10, 4-11

R e f (50) - $10,000 $1,000

4-4, 4-5 $80,000 $42.000

4-17 $52.000 $11.000

4-18 $400,000 $3 1,000

$150.000 4-22. 4-23 6 1 ~ 3 0 0 ~ 0 0 0

4-17 $58,000 $19,000

4-26, 4-27 $157.000 $157,000

$2,361,000 $478,000

l l h e design bas i s for each t reatment system was used w i t h t h e c o s t i n f o r m a t i o n i n Sect ion 4 t o est imate c a p i t a l requirement and OBM cos ts ( f i r s t q u a r t e r 1986 d o l l a r s ) .

I I I

BLOWDOWN DRAFT COOLING TOWERS

WATER

COAL BOILER

n PARTICULATE SCRUBBER

v FLY

f BOTTOM

ASH

POND

F igure 5-3. Block Diagram of t h e Case 2 Plant : Eastern Coal-Fired w i t h Wet Ash Handling

I I I I '

s u b j e c t t o t h e c u r r e n t NPDES requirements f o r aqueous discharges; however,

because t h e p l a n t i s n o t c l a s s i f i e d as a new source, f l y ash s l u i c e water

discharge i s a1 lowed.

a t f o u r cyc les o f concentrat ion, which meets M i s s i s s i p p i r i v e r e f f l u e n t

g u i d e l i n e s f o r d i sso l ved s o l i d s w i thou t t reatment.

system inc ludes a s l u i c i n g system t o t r a n s p o r t t h e f l y ash and bottom ash t o a

d isposa l pond. No water i s recyc led from t h e ash pond. Ash s l u i c e water i s

discharged w i thou t treatment, meet ing pH. suspended so l ids, and i r o n and copper

requirements.

ash pond.

Mechanical d r a f t c o o l i n g towers produce a blowdown stream

The p a r t i c u l a t e c o n t r o l

The low volume wastes produced a t t h i s p l a n t a re codisposed i n t h e

Low Volume Wastes and Treatmen i

F i g u r e 5-4 presents t h e low volume waste streams, flow rates, and t rea tment

processes fo r t h i s case. E i g h t streams were inc luded i n t h i s model p lan t . Use

o f coponding f o r disposal of low volume wastes i n t h e ash pond dominates t h e low

volume waste management plan.

Runoff from a 75 ac re coa l p i l e , s i zed for 90 days opera t i on a t 100 percent load,

i s coponded w i t h f l y ash. The runoff f low r a t e was based on an average annual

r a i n f a l l o f 35 inches. Coponding e l im ina tes t h e need f o r a sedimentat ion bas in

and f o r runoff n e u t r a l i z a t i o n . Assuming a runoff suspended s o l i d s l e v e l of

200 ppm and an ash pond sludge b u l k d e n s i t y o f 75 l b per cub ic foo t , approxi-

mately 1700 c u b i c yards o f a d d i t i o n a l ash pond s to rage are requ i red t o accommo-

da te s o l i d s from coal p i l e runof f over a 30-year p l a n t l i f e .

Deminera l i zer regenerant i s t r e a t e d i n a 55 g a l l o n s p e r minute rapid-mix tank

n e u t r a l i z a t i o n system opera t ing i n a f i l l -and-draw mode t o avo id r o u t i n g a

p o t e n t i a l l y RCRA- c o r r o s i v e waste t o t h e f l y ash pond.

m ix ing t h e c a t i o n and anion bed regenera t ion wastes t o p rov ide t h e bu lk of t h e

n e u t r a l i z a t i o n . Two chemical feed systems a r e provided; c a u s t i c and a c i d dose

r a t e s were assumed t o be 0.5 and 0.05 g a l l o n s per thousand gal lons, respec t i ve l y .

Th is ope ra t i on i nvo l ves

F l o o r and yard d r a i n s a re t r e a t e d i n o i l separators and a re then coponded w i t h

t h e f l y ash. B o i l e r blowdown, f i r e s i d e washes. c o o l i n g tower bas in sludge, and

p y r i t e s a re a l s o coponded w i t h t h e f l y ash i n accordance w i t h t h e EPA low volume

waste exemption (23). Using t h e sludge volumes presented i n Table 4-23 and t h e

stream f lows shown i n F igu re 5-4, t h e t o t a l volume o f sludge s to rage requ i red f o r

these streams over a 30-year p l a n t l i f e i s about 187,000 c u b i c yards.

coal p i l e runo f f so l i ds , t h e t o t a l coponded low volume waste s ludge volume f o r 30

I n c l u d i n g

5-10

M A L PILE (MAXIMUM) RUNOFF

21 GPM YARQ DRAINS SEPARATION

RAPID-MIX TANK 55 GPH REGENERANT

103 GPM

1.6 MILLION GALWNS 4 TIMESIYEAR

IN-LINE NELITRALlZPITlON

5m.W GALWNS TWICE I3 YEARS

BASIN SWDOE

l0.m CU. YQS. I YEAR

F igure 5-4. Low Volume Waste Flowsheet for t h e Case 2 P l a n t

I i I

years of ope ra t i on i s approximately 303,000 c u b i c yards ( p y r i t e s to rage accounts

f o r 300,000 c u b i c yards o r 99 percent of t h i s t o t a l ) . Th i s volume i s s to red i n a

25-footP 295 ac re (7380 a c r e - f t ) f l y ash pond, s ized f o r 30-year ope ra t i on o f t h e

1000 MW s t a t i o n .

Th is p l a n t uses hyd roch lo r i c a c i d and ammonium bromate f o r b o i l e r chemical

c leaning.

c l a s s i f i e d as a RCRA-corrosive waste. N e u t r a l i z a t i o n i s accomplished us ing

t e m p o r a r i l y i n s t a l l e d equipment p rov ided by t h e b o i l e r c lean ing con t rac to r . The

a d d i t i o n a l cost, ove r t h a t f o r a b o i l e r c lean ing episode n o t r e q u i r i n g n e u t r a l -

i z a t i o n , i s t h e c o s t o f c a u s t i c requ i red t o n e u t r a l i z e 62,500 ga l l ons /yea r (one

500 MW b o i l e r volume) of h y d r o c h l o r i c a c i d s o l u t i o n .

dosage requ i red was 30 g a l l o n s per thousand g a l l o n s o f spent acid.

The a c i d stream must be n e u t r a l i z e d p r i o r t o coponding t o avo id being

The est imated c a u s t i c

Svstem cos ts

Table 5-3 p resents t h e cos ts associated w i t h low volume wastes f o r each t rea tment

process shown i n F i g u r e 5-4. Cap i ta l and O&M cos ts were ob ta ined by us ing t h e

design f low ra tes and system s i zes presented above and t h e data i n Sec t ion 4.

The incremental c o s t f o r coponding i s t h e major p o r t i o n of t h e c a p i t a l c o s t s f o r

low volume waste t rea tment and disposal a t t h i s p lan t . Because a l l of t h e low

volume wastes a r e coponded, 08M cos ts a r e minimal.

CASE 3. WESTERN COAL PLANT WITH DRY ASH HANDLING

F igu re 5-5 i s a diagram o f t h e Case 3 p lan t .

l oad s u b c r i t i c a l b o i l e r s burn ing Western low-sul fur . subbituminous coa l , It i s

s u b j e c t t o t h e 1979 NSPS f o r a i r emissions.

Raw water requ i res so f ten ing p r i o r t o use as p l a n t makeup. Mechanical d r a f t

c o o l i n g towers opera te a t t e n c y c l e s o f concen t ra t i on t o reduce water consumption

and t h e degree o f blowdown t rea tment requ i red t o operate t h e zero discharge

system.

p a r t i c u l a t e c o n t r o l . A l a n d f i l l i s used f o r disposal o f h igh volume wastes and

s o l i d low volume wastes.

as makeup water. Deminera l i zer regenerant and f i r e s i d e c lean ing wastes a re

impounded w i t h c o o l i n g tower blowdown p r i o r t o t rea tment by vapor compression

evapora t ion (VCE).

b o i l e r chemical c l e a n i n g waste.

T h i s s t a t i o n has two 500 MW base

No aqueous discharges are permi t ted .

A l i m e spray d rye r w i t h a baghouse i s used f o r s u l f u r d i o x i d e and

High q u a l i t y low volume wastes a re impounded t o recyc le

Separate evapora t ion ponds a re prov ided f o r VCE b r i n e and f o r

5-12

Treatment U n i t

O i l separat ion

In-1 i ne n e u t r a l i z a t i o n

cn Rapid-mix tank r n e u t r a l i z a t i o n w

Copondi ng

Tota l

Table 5-3

ESTIMATED TREATMENT SYSTEM COSTS FOR CASE 2 PLANT

Waste Stream

f l o o r and yard d r a i n s

waterside waste

deminera l izer regener ant

a1 1 wastes

1 Design Basis

2 1 gpm

500 gpm; dose r a t e o f 30 ga1/1000 gal

55 gpm. two feed; dose r a t e o f 0.5 and 0.05 g a l / 1000 gal

7380 acre-f t c l a y - l i n e d ash pond ( l o c a l ma te r ia l 1 (303,000 cub ic yard low volume waste ( increment 1

Reference F i a u r e

Ref (So)

4-12

4-4, 4-5

4-19

To ta l Annual Cap i ta l Operat ing 8

Reauirement Maintenance

$10,000 $1,000

- $2,000

$80,000 $42.000

$379.000 522.000

$469,000 $67,000

'The design bas i s f o r each t reatment system was used w i t h t h e cos t in format ion i n Sect ion 4 t o est imate c a p i t a l requirement and 08M c o s t s ( f i r s t qua r te r 1986 d o l l a r s ) .

' I ~I

0)

c1 .- r m c I Lz u) U m

2

2

xi a

L:

3

L

U

I

.r

r

m

0" c

L

a, +

In a, 3

.. + c m

m

m

a' a, u)

0

a, r

+

u- 0

E L 0) m

a

.- Y

8 Ez;

ln I

VI

al L 11 0)

U

.r

5-14

Low Volume Wastes and Treatment

F i g u r e 5-6 presents t h e low volume waste streams, f low rates, and t rea tment

processes f o r t h i s case. Ten low volume waste streams a r e produced i n t h e p lan t .

The sedimentat ion impoundment bas in f o r coal p i l e runoff i s designed t o ho ld 5.5

m i l l i o n g a l l o n s based on a 10-year storm event of 3 inches per 24 hour p e r i o d

(U) . The coal p i l e i s s ized fo r 90-day opera t ion a t 100 percent load and covers

75 acres. A c l a y - l i n e d impoundment w i t h a 15-foot water depth i s used t o s t o r e

t h e 24-hour runoff volume.

l i n e r mater ia l . No pH adjustment i s performed on t h e runof f . When t h e s o l i d s

have s e t t l e d , t h e overf low i s routed t o a h i g h q u a l i t y impoundment along w i t h

b o i l e r blowdown, skimmed f l o o r and yard drains, and d i s t i l l a t e recovered from

vapor compression evaporat ion (VCE). Water from t h i s impoundment i s reused as

c o o l i n g tower makeup water.

l i n e r , does n o t r e q u i r e groundwater mon i to r ing o r leachate c o l l e c t i o n , and has a

15- foot water depth.

s torage o f coal p i l e runoff, b o i l e r blowdown, drains, and VCE product w i t h a

combined f low of 1600 g a l l o n s per minute. An increment o f 4.7 m i l l i o n g a l l o n s o f

t h i s t o t a l a r e used f o r low volume waste s torage (VCE product i s n o t considered a

low volume waste).

A d e l i v e r e d c o s t of $ l lO/ ton was assumed f o r t h e c l a y

Th is impoundment has a s i n g l e f l e x i b l e membrane

It has a volume o f 12 m i l l i o n gal lons, s ized f o r 5 days

The deminera l i zer regenerant e q u a l i z a t i o n tank i s an epoxy-1 ined carbon s t e e l

tank equipped w i t h an a g i t a t o r .

u t i l i z i n g t h e mix ing of c a t i o n and anion bed regenera t ion wastes t o p rov ide t h e

bulk of t h e n e u t r a l i z a t i o n necessary t o meet RCRA c o r r o s i v i t y requirements.

25,000 g a l l o n tank prov ides an 8-hour residence t ime based on an average flow of

55 g a l l o n s per minute. No chemical a d d i t i o n i s prov ided t o f u r t h e r a d j u s t pH

s ince t h e water i s blended f o r recyc le/ reuse i n t h e p l a n t and i s n o t discharged.

T h i s system operates i n a f i l l -and-draw mode,

T h i s

The in te rmed ia te q u a l i t y impoundment i s used t o s t o r e deminera l i zer regenerants

f i r e s i d e wash water, and c o o l i n g tower blowdown p r i o r t o processing i n a vapor

compression evaporator (VCE).

normal c o o l i n g tower blowdown and deminera l i zer regenerant f low (assumed t o be

1000 and 55 g a l l o n s per minute, r e s p e c t i v e l y ) . and an a d d i t i o n a l 1.6 m i l l i o n

g a l l o n s of f i r e s i d e c lean ing waste produced from a s i n g l e b o i l e r c lean ing

episode.

and does n o t i n c l u d e groundwater m o n i t o r i n g o r leachate c o l l e c t i o n systems.

volume wastes account f o r o n l y 2.4 m i l l i o n g a l l o n s of t h e t o t a l impoundment

T h i s impoundment i s s i z e d t o handle 10 days of

T h i s 17 m i l l i o n g a l l o n impoundment has a s i n g l e f l e x i b l e membrane l i n e r

Low

5-15

OIL SEPAPATION

COOLING TOWER BLOWOOWN 1.mO GPM

W

L 1.6 MILLION GALWNS

I TIMESIVEAR

HIGH QUALIN TO COOLING IMPOUNDMENT TOWERS

INTERMEDIATE QUALIN

125.mO GALLONS

CLEANING WASTES

EVAPOPATION POND

22 GPM

1M CU. YDS.IYEAR

1 LANDFILL

TOBRINE CONCENTRATOR

Figure 5-6. Low Volume Waste Flowsheet f o r the,Case 3 P l a n t

volume: the re fo re t h e c o s t of low volume waste s to rage i s based on t h e c o s t

assoc ia ted w i t h t h a t incremental volume (i.e., 14 percent o f t h e t o t a l

imoundment c o s t ) .

The b o i l e r c lean ing waste impoundment i s a double- l ined evapora t ion pond which

meets RCRA requirements f o r hazardous waste s to rage (groundwater mon i to r i ng and

leacha te c o l l e c t i o n a re provided). B o i l e r chemical c lean ing wastes generate

about 125,000 g a l l o n s o f spent s o l v e n t and r i n s e s o l u t i o n every year and a h a l f .

Th i s evapora t ion pond has a volume o f 200,000 gal lons, w i t h a water depth o f 5

f e e t and an area of approximately 0.12 acres. Assuming an average n e t

evapora t ion r a t e of 2 g a l l o n s per minute per acre (40 inches per year) , l e s s than

one year i s requ i red t o evaporate 125,000 g a l l o n s of b o i l e r chemical c lean ing

waste.

A second evapora t ion impoundment i s used f o r u l t i m a t e disposal of VCE b r ine .

Although samples (Appendix B ) i n d i c a t e t h i s t o be a nonhazardous waste according

t o RCRA; an impoundment w i t h a s i n g l e f l e x i b l e membrane l i n e r and groundwater

mon i to r i ng and leachate c o l l e c t i o n systems i s provided. The impoundment i s s i zed

f o r a h i g h l y s a l i n e flow of 22 ga l l ons per minute w i t h an evapora t ion r a t e o f 1.5

g a l l o n s per minu te per acre ( 2 g a l l o n s p e r minu te per acre reduced by 25 percent

because of s a l i n i t y ) . T h i s r e s u l t s i n a 15 ac re evapora t ion impoundment; us ing a

5 f o o t l i q u i d depth, approximately 24 m i l l i o n ga l l ons o f s to rage i s provided.

C o l a n d f i l l i n g i s used f o r d ispos ing o f t h e low volume s o l i d wastes ( p y r i t e s ,

th ickened l i m e so f ten ing sludge, and c o o l i n g tower basin s ludge) w i t h coa l ash

and FGD waste. The incremental c o s t assoc ia ted w i t h c o l a n d f i l l i n g these wastes

i s based on i n c r e a s i n g t h e volume of a 203,000 c u b i c yard per year ash l a n d f i l l

by 3620 cub ic yards p e r year.

Svstem Cost5

Table 5-4 p resents t h e est imated cos ts associated w i t h t h e t rea tment processes

i d e n t i f i e d i n F igu re 5-6.

for c o o l i n g tower blowdown which i s n o t a low volume waste. However, an

evapora t ion pond f o r t h e VCE b r i n e i s f o r a low volume waste and i s inc luded i n

t h e cost.

system s i z e s presented above and t h e data i n Sec t ion 4 .

both t h e c a p i t a l and opera t ing cos ts i s t h e evapora t ion impoundment f o r VCE

b r ine . Therefore, reduc t ions i n t h e f l o w r a t e of t h i s stream would s i g n i f i c a n t l y

VCE cos ts a re n o t inc luded because t h e VCE i s requ i red

Cap i ta l and OAM cos ts were obtained by us ing t h e design f l ow ra tes o r

The major element of

5-17

Ln

r m

Treatment U n i t

Sedimentation impoundment

O i l separa t ion

High q u a l i t y impoundment

In te rmed ia te qual - i t y impoundment

Equa l i za t i on tank

Evaporat ion impoundment

Evaporat ion impoundment

L a n d f i l l

To ta l

Table 5-4

ESTIMATED TREATMENT SYSTEM COSTS FOR CASE 3 PLANT

Waste Stream

coal p i l e r u n o f f

f l o o r and yard d r a i n s

h igh q u a l i t y wastewater

recoverab le wastewaters

deminera l i zer regenerant

waters ide wastes

VCE b r i n e

so l ids. s1 udges

1 Design Bas is

5.5 ff i . 15-fOOtt c lay- l i n e d ( $ l l O / t o n )

21 gpm

12 f f i , 15-fOOt (4.7 ff i increment) s i n g l e FML l i n e r

17 MG, 5-fOOt (2.4 ffi increment) s i n g l e FML

25,000 gal epoxy-1 i ned carbon s tee l tank

200,000 gal. 5-fOOt double FML

24 MG. 5 - f O O t s i n g l e FML ( w i t h GW mon i to r and leachate c o l l e c t i o n )

zo3.000 cu yd /y r (3620 cu yd /y r i nc ranen t )

Reference F iau re

4-15

Ref (a)

4-17

4-16

4-18

4-16

4-16

4-26, 4-27

Tota l Annual Cap i ta l Operat ing 8

Reauirement Maintenance

$165,000 $18,000

$10.000 $1,000

$94.000 $8.000

$120.000 $8.000

$62,000 $12.000

$67,000 $12,000

$1,680,000 $1 04,000

$72,000 872.000

$2~270.000 $235 9 000

‘The design bas i s fo r each t rea tment system was used w i t h t h e cos t in fo rmat ion i n Sec t ion 4 t o es t imate c a p i t a l requirement and OBM cos ts ( f i r s t qua r te r 1986 d o l l a r s ) .

impact t h e o v e r a l l c o s t o f low volume waste t rea tment and d isposa l f o r t h i s

p l a n t .

doub le- l ined evapora t ion impoundment would be requ i red and t h e c o s t would

If t h e VCE b r i n e i s determined t o be a RCRA hazardous waste, a

~ increase accord ing ly .

CAS€ 4. WESTERN COAL PLANT W I T H WET ASH HANDLING

F i g u r e 5-7 i s a diagram of t h e Case 4 p lan t . Th i s s t a t i o n has two 5@@-MW base

load s u b c r i t i c a l b o i l e r s burn ing low s u l f u r sub-bituminous coal . It was b u i l t

p r i o r t o t h e 1979 NSPS f o r a i r emissions, and c o n t r o l s p a r t i c u l a t e s w i t h a wet

scrubber. No aqueous discharges a re permit ted. Raw water requ i res so f ten ing

p r i o r t o use as makeup.

stream a t t e n cyc les o f concen t ra t i on t o reduce water consumption and t h e degree

o f blowdown t rea tment requ i red t o opera te t h e ze ro discharge system. An impound-

ment i s used f o r disposal o f t h e ash and most o f t h e low volume wastes. High

q u a l i t y low volume wastes a re impounded t o r e c y c l e as makeup water. S u f f i c i e n t

area i s a v a i l a b l e f o r ponding; t he re fo re , water recovery processes, such as VCE

o r reverse osmosis, a r e n o t used. S o l i d and aqueous low volume wastes, and

c o o l i n g tower blowdown, a r e routed t o t h e f l y ash pond. An evapora t ion

impoundment i s p rov ided as u l t i m a t e d isposa l f o r wastewaters n o t consumed i n t h e

ash hand l i ng or wet p a r t i c u l a t e scrubber processes.

Mechanical d r a f t c o o l i n g towers produce a blowdown

I ow Vol u me Wast es and Treat-

F igu re 5-8 presents t h e low volume waste streams, f l o w rates, and t rea tment

processes se lec ted f o r t h i s case. Nine low volume waste streams a re produced i n

t h i s p lan t .

The sedimentat ion impoundment f o r coa l p i l e r u n o f f i s designed t o ho ld 5.5

m i l l i o n g a l l o n s based on a 10-year storm event o f 3 inches per 24-hour pe r iod

( l l z ) . The coa l p i l e i s s ized f o r 90-day opera t i on a t 100 percent load and covers

75 acres. A c l a y - l i n e d impoundment w i t h a 15- foo t water depth i s used t o s t o r e

t h e 24-hour r u n o f f volume. A d e l i v e r e d c o s t of $ l lO / ton was assumed f o r t h e

l i n e r ma te r ia l . No pH adjustment i s performed on t h e runo f f . When t h e s o l i d s

have s e t t l e d , t h e over f low i s rou ted t o a h i g h q u a l i t y impoundment along w i t h

b o i l e r blowdown, and skimmed f l o o r and yard drains. Water from t h i s impoundment

i s reused as c o o l i n g tower makeup water. Th is impoundment has a s i n g l e f l e x i b l e

membrane l i n e r , does n o t r e q u i r e groundwater mon i to r i ng or l eachate c o l l e c t i o n ,

and has a 15- foo t water depth. Sized f o r 10 days storage o f coal p i l e runof f ,

b o i l e r blowdown, and d r a i n s w i t h a combined f low of 624 g a l l o n s per minute, it

has a volume o f 9 m i l l i o n gal lons.

5-19

DRAFT COOLING BLOWDOWN

TURBINE/

WATER

n I I I \

ELECTROSTATIC PRECIPITATOR COAL BOILER I

1 BO+OM

ASH

1 FLY ASH

+ DISCHARGE

STACK

F i g u r e 5-7. Block Diagram of t h e Case 4 P l a n t : Western Coa l -F i red w i t h Wet Ash Handl ing

The deminera l i zer regenerant e q u a l i z a t i o n tank i s an epoxy-1 ined carbon s t e e l

t ank equipped w i t h an a g i t a t o r . Th i s system operates i n a f i l l -and-draw mode,

u t i l i z i n g t h e m i x i n g o f c a t i o n and anion bed regenera t ion wastes t o p rov ide t h e

bu lk o f t h e n e u t r a l i z a t i o n necessary t o meet RCRP c o r r o s i v i t y requirements. Th is

25,000 g a l l o n tank prov ides an eight-hour residence t i m e based on an average f l o w

of 55 g a l l o n s per minute. No chemical a d d i t i o n i s p rov ided t o f u r t h e r a d j u s t pH

s ince t h e water i s coponded and i s n o t discharged.

Deminera l i zer regenerant, f i r e s i d e and b o i l e r chemical c lean ing waste wash

waters, p y r i t e s , c o o l i n g tower bas in sludge, and s o f t e n i n g sludge a re coponded i n

a 25-fOOt deep. 150 ac re (3750 a c r e - f t ) f l y ash pond. The ash pond s i z e was

based on 30-year ope ra t i on of t h e 1000 Mw s t a t i o n w i t h 6.4 percent ash

subbituminous coa l . Coo l ing tower blowdown i s a l s o routed t o t h e ash pond.

Assuming a c o o l i n g tower blowdown f l ow o f 1000 g a l l o n s per minute, and

annua l i z ing t h e f i r e s i d e and b o i l e r chemical c lean ing waste wash volumes

produced, t h e t o t a l wastewater f low t o t h e f l y ash pond was est imated t o be 1100

g a l l o n s per minute. Using Tab le 4-23 and t h e stream f lows shown I n F i g u r e 5-8, t h e ash pond s to rage requ i red f o r t h e s o l i d s deposi ted by t h e low volume wastes

over a 30-year p l a n t l i f e i s about 115,000 c u b i c yards.

An evapora t ion impoundment i s p rov ided f o r u l t i m a t e d isposa l o f t he wastewater

n o t consumed by t h e ash hand l ing and wet scrubber systems (over f low from t h e f l y

ash pond).

impoundment. Based on a 2 g a l l o n s per minute per acre evapora t ion rate, a

30-acre impoundment was selected. Th is impoundment i s 5 f ee t deep w i t h a s i n g l e

f l e x i b l e wmbrane l i n e r and does n o t have groundwater mon i to r i ng o r l eacha te

c o l l e c t i o n systems.

low volume waste streams ( t h e remainder be ing c o o l i n g tower blowdown); therefore,

10 pe rcen t of t h e cos t of t h i s 30-acre evapora t ion impoundment was a t t r i b u t e d t o

low volume wastes.

A f l o w of 60 g a l l o n s p e r minu te was assumed as t h e i n f l u e n t t o t h i s

Ten percent of t h e f l o w t o t h e f l y ash pond i s made up of

Svstem Costs

Table 5-5 p resents t h e est imated c o s t s associated w i t h t h e low volume waste

management scheme shown i n F igu re 5-0. Cap i ta l and 0BM cos ts were obtained by

us ing t h e design flow ra tes o r system s i zes presented above and data i n Sec t ion

4. I n t h i s p lan t , t h e c o s t of impoundments make up t h e e n t i r e c a p i t a l and OBM

c o s t s assoc ia ted w i t h low volume waste t rea tment and d isposa l .

5-22

vl

N w

Treatment U n i t

Sedimentation impoundment

O i l seDaration

High q u a l i t y impoundment

Equa l i za t i on tank

Evaporat ion impoundment

Copondi ng

Tot a1

Table 5-5

ESTIMATED TREATMENT SYSTEM COSTS FOR CASE 4 PLANT

Waste Stream

coal p i l e r u n o f f

f l o o r and yard d ra ins

h igh q u a l i t y water

deminera l izer regener an t

excess s1 u i ce water

a l l o ther low volume wastes

1 Oesi gn Bas is

5.5 ffi, 15-f00t, c lay- l i n e d ( $ l l G / t o n )

2 1 SPm

9 ffis 15-foot s i n g l e FML

25.000 gal epoxy-1 ined carbon s tee l tank

49 m, 5-fOOt (4.9 MG increment) s i n g l e FML

3750 a c r e - f t pond (115.000 cub ic yard increment)

Reference F iau re

4-15

Ref (N)

4-17

4-18

4-16

4-19

To ta l Annual Cap i ta l Operat ing &

pea u i rement Maintenance

$165,000 $18,000

$10,000 $1.000

$180,000 $19,000

$62.000 $12,000

$245.000 $15.000

$144,000 $8,000

$806,000 $73,000

'The design bas i s f o r each t reatment system was used w i t h t h e cos t i n fo rma t ion i n Sec t ion 4 t o est imate c a p i t a l requirement and O&M cos ts ( f i r s t qua r te r 1986 d o l l a r s ) .

' I i I 1 '

CASE 5. EASTERN OIL PLANT

F igu re 5-9 i s a diagram o f t h e Case 5 p lan t .

l oad s u b c r i t i c a l b o i l e r s burn ing res idua l f u e l o i l . It i s sub jec t t o t h e c u r r e n t

NPOES requirements fo r aqueous discharges.

c o o l i n g water. An e l e c t r o s t a t i c p r e c i p i t a t o r i s used f o r p a r t i c u l a t e removal.

A l l aqueous low volume wastes are processed i n a phys ica l /chemical t rea tment

system. S o l i d wastes are disposed o f by a c o n t r a c t o r i n an o f f - s i t e l a n d f i l l .

Th is s t a t i o n has two, 250-MW base

Seawater i s used f o r once-through

Low Volume Wastes and T r e m

F igu re 5-10 presents t h e low volume waste streams, f low rates. and t rea tment

processes f o r t h i s p lan t .

s i x t rea tmen t u n i t s .

The p l a n t inc ludes s i x low volume waste streams and

An e q u a l i z a t i o n tank i s prov ided for f l o o r and yard drains, deminera l i zer

regenerant. and b o i l e r blowdown. One 2 m i l l i o n g a l l o n concre te sump i s designed

t o handle a f l ow o f 250 g a l l o n s per minute w i t h a res idence t ime o f 5 days.

E f f l u e n t from t h i s tank i s rou ted t o a 500 g a l l o n s per minute phys ica l /chemical

t reatment system; these streams r e q u i r e on ly minor pH adjustment and suspended

s o l i d s removal t o meet NPDES l i m i t s .

8-10 hours per day; however. ope ra t i ng t imes can be va r ied (which a f f e c t s

opera t ing l a b o r c o s t s and chemical i nven to r ies ) . E f f l u e n t from t h e t rea tment

system i s s to red i n one of two d ischarge impoundments u n t i l analyses i n d i c a t e

t h a t it meets pe rm i t requirements.

360,000 g a l l o n s w i t h a s i n g l e f l e x i b l e membrane l i n e r .

water depth of 15 fee t and are n o t equipped w i t h groundwater mon i to r i ng o r

leachate c o l l e c t i o n systems.

The t reatment system i s designed t o operate

Each d ischarge impoundment has a volume of

These impoundments have a

F i r e s i d e c lean ing wastes a r e s to red i n a separate e q u a l i z a t i o n tank p r i o r t o

phys ica l /chemical t reatment . These wastes r e q u i r e s i g n i f i c a n t pH adjustment and

s o l i d s separation, and must meet a s t r i c t e r s e t o f d ischarge requirements;

therefore, they a r e rou ted through t rea tment separately. The tank i s a 600,000

g a l l o n concre te sump. Spent chemical c lean ing wastes a r e a l s o s to red i n t h i s

impoundment p r i o r t o evaporat ion i n t h e b o i l e r . Operating c o s t s associated w i t h

t h i s tank were based on one-half of t h e normal annual expense because t h e systenl

i s used on ly du r ing b o i l e r c lean ing episodes.

Wastewater t rea tment sludge, produced by phys ica l /chemical t reatment of t h e low

volume wastes, i s c o l l e c t e d by a c o n t r a c t o r and taken t o an o f f - s i t e l a n d f i l l .

5-24

TURBINE I GENERATOR

1 t

I LANDFILL I

-

F i g u r e 5 4 . Block Diagram of t h e Case 5 P l a n t : Eastern O i l - F i r e d w i t h Once-Through Cool ing

ELECTROSTATIC OIL BOILER PRECIPITATOR -

I i I I I

EOUALIZATION TANK

BOILER BLOWDOWN -

FIRESIDE 4500W GALLONS WASTES 10 TIMES1 YEAR 1 W I

DISCHARGE PHYSICAL1

CHEMICAL IMPOUNDMENTS DISCHARGE TREATMENT

I

EVAPORATION 4-TzT-l

Figure 5-10. Low Volume Waste Flowsheet f o r the Case 5 Plant

I I I I I

Approximately 440 c u b i c yards per year of t h i s 35 percent s o l i d s sludge i s

generated: d isposal cos ts were est imated t o be $100 per cub ic yard.

& $ e m Cos&

Table 5-6 presents t h e estimated cos ts associated w i t h each low volume waste

t rea tment process i d e n t i f i e d i n F igu re 5-10. Cap i ta l and OAM cos ts were obta ined

by us ing t h e design f low ra tes o r system s izes presented above and i n Sec t ion 4.

The phys ica l /chamical t rea tment system i s t h e major c o s t component a t t h i s p lan t .

SUMMARY

A summary o f t h e est imated low volume waste management cos ts fo r t h e f i v e case

study p l a n t s i s presented i n Table 5-7. Th is t a b l e inc ludes t h e t o t a l c a p i t a l

requirement and annual d i r e c t opera t ing and maintenance cos ts fo r treatment,

storage. and d isposa l of t h e low volumes wastes generated a t each p lant . The

t o t a l c a p i t a l c o s t i s a l s o shown on a c o s t per k i l o w a t t bas is t o r e f l e c t t h e

generat ing capac i t y of t h e model p lants .

(Cases 1 through 4 ) a r e 1000-MW s t a t i o n s (two, 500-MW u n i t s ) , w h i l e t h e eastern

o i l - f i r e d s t a t i o n (Case 5) i s a 500-W s t a t i o n (two, 250-MW u n i t s ) . Annual

ope ra t i ng cos ts a re n o t presented on a per k i lowat t -hour bas is because t o t a l

annual c o s t s a r e l e s s than 0.1 mil/kWh i n a l l f i v e cases.

Note t h a t t h e four c o a l - f i r e d p l a n t s

Cases 1 and 2 a r e p l a n t s t h a t use a h igh-su l fu r Eastern b i tuminous coal and have

NPDES discharge pe rm i t s f o r aqueous wastes. The two western p lants , Cases 3 and

4, burn subbituminous coal and a r e zero discharge un i t s . The f i n a l model p lant .

Case 5, i s an eas te rn o i l - f i r e d s t a t i o n t h a t uses seawater as once-through

c o o l i n g water.

S i m i l a r i t i e s i n low volume waste management cos ts f o r these models. as shown i n

Table 5-7. are n o t a f u n c t i o n of pe rm i t requirements (NPDES versus zero d i s -

charge).

low volume waste management costs. The two ze ro d ischarge cases show a three-

f o l d cos t d i f f e rence . For these model cases, t h e pr imary fac to r a f f e c t i n g low

volume waste management cos ts i s t h e t ype of ash hand l ing employed.

procedures a f f e c t t h e cos ts because o f t h e a b i l i t y t o use coponding as a t r e a t -

ment/disposal o p t i o n f o r p l a n t s w i t h wet s l u i c i n g systems. The c a p i t a l and OAM

cos ts fo r t h e p l a n t s us ing coponding. Cases 2 and 4, were s i g n i f i c a n t l y lower

than those f o r t h e remain ing p lan ts . I n t h e t h r e e o the r p l a n t s t e i t h e r

phys ica l /chemical t rea tment p r i o r t o discharge o r ex tens ive evaporat ion pond area

was requi red.

The two discharge p lants , Cases 1 and 2. show a f i ve - fo ld d i f f e r e n c e i n

Ash hand l ing

5-27

Table 5-6

ESTIVATED TEEfiTVEhT SYSTEM COSTS FOR CASE 5 PLANT

L n

N m

T r e a t m n t . .

O i l separat ion

E q u a l i z a t i o n tank

Equal i z a t i c n waste impoundment

Fhysical /chen, ical t reatment

Discharge impoundmnt

L a n d f i l l

Evaporat ion

Tot61

Ir!aste Stream f l o o r and yard d r a i n s

cont inuous streams

b o i l e r c lsan- i n g wastes

a l l except waters ide

t r e a t e d water

so l ids, 51 udges

waters ide wastes

1 Design Gasis

2 1 gpn

2 kP. concrete sunp

600.000 g a l concrete sump

500 gpm system

two-360.000 g a l

s i n g l e FNL

440 cu yd/yr o f f - s i t e . %100/ton

15-foCt

20 gpN. (no storage)

Reference F i m

Ref EQ)

4-18

4-18

4-22, 4-23

4-11

4-26, 4-27

Table 4-42 Table 4-43

T o t a l Annual C a p i t a l Operat ing 8

Reouirement Maintenance

$10,000 $1,000

$400,000 531.000

%132.000 68,000

$1,300,000 $150.000

$58,000 $20.000

- $44,000

57.000 $5,000

$1,907,000 $262,00Q

'The design bas i s f o r each t reatment systenl was used w i t h t h e c o s t i n fo rma t ion i n Sec t i on 4 t o est imate c a p i t a l requiren,ent and O W cos ts ( f i r s t q u a r t e r 1986 d o l l a r s ) .

Ln I N (D

Table 5-7

SUMMARY OF ESTIMATED LOW VOLUME WASTE MANAGEMENT COSTS FOR FIVE CASE STUDY PLANTS

Model P l a n t

No. 1. Eastern Coal

- Two 500-Md u n i t s - Wet l imestone FGD system - Dry ash-handling - Nine LVW streams - NPDES discharge

No. 2. Eastern Coal - Two 500-Mw u n i t s

- Wet ash s l u i c i n g - E i g h t LVW streams - NPDES discharge

No. 3. Western Coal - Two 500-Mw u n i t s - Spray dryer/baghouse - Ten LVW streams - Zero discharge

No. 4. Western Coal - Two 500-Mw u n i t s - Wet p a r t i c u l a t e scrubber

- Nine LVW streams - Zero discharge

No. 5. Eastern O i l

- No FGD system

- NO FGD system

- Two 250-Mw u n i t s - ESP p a r t i c u l a t e c o n t r o l - once-through c o o l i n g - NPDES discharge

T o t a l Cap i ta l To ta l C a p i t a l Operat ing and

$ 2,360,000 2.4 $ 478,000

Reuui rement Reauirement ($/kw) Maintenance Cost

$ 4 7 0 ~ 0 0 0

$ 2,270,000

$ 806,000

$ 1.900,000

0.47

2.3

0.87

3.8

$ 67.000

$ 235,000

$ 73.000

$ 262.000

Since c u r r e n t Federal e f f l u e n t g u i d e l i n e d ischarge l i m i t s r e q u i r e zero d ischarge

o f f l y ash s l u i c e water, most new p l a n t s use dry f l y ash hand l ing systems.

Because t h e c o s t o f t h e f l y ash hand l ing system must be considered i n t h e

s e l e c t i o n o f t h e o v e r a l l p l a n t waste management system, savings represented by

u s i n g a wet ash hand l ing system a t a new p l a n t must be balanced by t h e r e s u l t i n g

c o s t s t o meet e i t h e r e f f l u e n t or zero discharge requirements f o r f l y ash s l u i c e

water.

The f i v e case s tud ies presented i l l u s t r a t e t h e use o f t h e desigh and economic

data inc luded i n Sec t ion 4. I n add i t ion . however, they i l l u s t r a t e two d i s t i n c t

approaches f o r low volume waste management. The f i r s t o f these invo lves con-

s t r u c t i o n of dedicated t rea tment o r d isposal f a c i l i t i e s f o r t h e low volume wastes

(as r e f l e c t e d i n cases 1, 3, and 5).

The second method employs codisposal o f low volume wastes w i t h h i g h volume

wastes.

aqueous wastes (such as c o o l i n g tower blowdown) o r c o l a n d f i l l i n g low volume

s o l i d s w i t h ash and/or s t a b i l i z e d FGD sludge.

c o s t s associated w i t h low volume waste management a r e assumed t o be an increment

o f those r e q u i r e d f o r c o n s t r u c t i o n and o p e r a t i o n of t h e h i g h volume waste t r e a t -

ment o r d isposal f a c i l i t i e s . Th is increment i s based on t h e f r a c t i o n of t h e

t o t a l volume or f low r a t e a t t r i b u t e d t o t h e low volume wastes. As a r e s u l t o f

t h e economies o f sca le and t h e small increments a t t r i b u t a b l e t o low volume

wastes, codisposal c o s t s a r e g e n e r a l l y much lower than t h e c o s t s f o r dedicated

t rea tment o r d lsposal . Consequently, t h i s approach i s economical ly a t t r a c t i v e i n

s i t u a t i o n s where h i g h volume waste d isposal methods a r e a p p l i c a b l e and codisposal

meets r e g u l a t o r y requirements.

T h i s may i n v o l v e coponding w i t h f l y ash, evaporat ion w i t h h igh volume

When t h i s approach i s used, t h e

The i n f o r m a t i o n i n t h i s s e c t i o n i s inc luded p r i m a r i l y as a gu ide t o t h e use o f

Sec t ion 4 and t o i l l u s t r a t e t h e two low volume waste management approaches

addressed above. I n add i t ion , s u f f i c i e n t d e t a i l i s prov ided i n Appendix E t o

a l low t h e user t o eva lua te a l t e r n a t i v e s t o t h e designs presented i n Sec t ion 4.

The o v e r a l l c o s t s presented f o r these model p l a n t s should n o t be used t o

determine t h e low vol ume waste t rea tment c o s t s associated w i t h s p e c i f i c p l a n t

types (e.g.. l o c a t i o n , f u e l supplies, d ischarge requirements, FGD requirements).

Rather, t h e c o s t e s t i m a t i n g methods i l l u s t r a t e d i n t h i s s e c t i o n should be used as

a gu ide t o e s t i m a t i n g c o s t s f o r i n d i v i d u a l s i t e - s p e c i f i c low volume waste

management c o n f i g u r a t i o n s .

5-30

Sect ion 6

GLOSSARY OF TEFW

Bppendix V I I I - - L i s t o f t larardous C o n s t w e n t s i n t h e

Regulat ions f o r I d e n t i f y i ng Hazardous Waste.

Ivironmental P r o t e c t i o n Agency

m - - E f f l u e n t l i m i t a t i o n s g u i d e l i n e s represent ing t h e degree o f e f f l u e n t reduc t ion

a t t a i n a b l e by t h e a p p l i c a t i o n of t h e bes t a v a i l a b l e technology economical ly

achievable.

CodisDoSt--Disposal o f two o r more s o l i d wastes i n t h e same f a c i l i t y . I n t h i s

repor t , t y p i c a l l y r e f e r r i n g t o codisposal of low volume waste and h i g h volume waste.

.€QI andf 11 1--Codisposal i n a 1 andf 11 1 . b p m l - - C o d i s p o s a l i n an impoundment (pond o r lagoon).

Corros iv i ty- -One o f t h e c h a r a c t e r i s t i c s f o r i d e n t i f y i n g a hazardous waste. A s o l i d

waste i s c o r r o s i v e i f it i s aqueous and has a pH l e s s than or equal t o 2 o r g r e a t e r

than o r equal t o 12.5.

GKA--Clean Water Act.

i o n unit--A dev ice used f o r n e u t r a l i z i n g wastes t h a t a r e

hazardous o n l y because they e x h i b i t t h e c h a r a c t e r i s t i c of c o r r o s i v i t y , and meets t h e

RCRA d e f i n i t i o n of tank, t r a n s p o r t v e h i c l e or vessel.

E h x M i y - - O n e of t h e c h a r a c t e r i s t i c s f o r i d e n t i f y i n g hazardous waste.

waste i s EP t o x i c if it i s ex t rac ted accord ing t o t h e procedure descr ibed i n

Appendix I1 of P a r t 261 of t h e Environmental P r o t e c t i o n Agency Regulat ions f o r

I d e n t i f y i n g Hazardous Waste, and t h e e x t r a c t c o n t a i n s contaminants l i s t e d i n Table 1

of P a r t 261 i n excess of t h e maximum concent ra t ion .

A s o l i d

EHKA--Federal Water P o l l u t i o n Contro l Act.

6-1

-dous waste--As defined i n Sect ion 261.3 of t h e Environmental P r o t e c t i o n Agency

Regulat ions f o r I d e n t i f y i n g Hazardous Waste.

L g n i t a b i l ity--One o f t h e c h a r a c t e r i s t i c s f o r i d e n t i f y i n g hazardous waste. A s o l i d

waste i s i g n i t a b l e i f it i s aqueous s o l u t i o n c o n t a i n i n g l e s s than 24 percent a lcoho l

by volume and has a f l a s h p o i n t l e s s than 60 degrees Cels ius, o r it i s a s o l i d and

capable of causing f i r e o r burn ing spontaneously.

- n---A p i p e i n which a c i d i c waste i s n e u t r a l i z e d . T h i s m e t s t h e

d e f i n i t i o n o f t o t a l l y enclosed t rea tment f a c i l i t y under t h e Environmental P r o t e c t i o n

Agency General Regulat ions f o r Hazardous Waste Management.

low volume w a s t e - - U t i l i t y wastes which a r e t reated, s t o r e d o r disposed o f and a r e

n o t h igh volume wastes such as ash (coal o r o i l ) o r sludges o r s o l i d s r e s u l t i n g from

f l u e gas c leaning.

L-me waste lre&oei&-The t rea tment descr ibed i n t h i s manual c o n s i s t i n g o f

methods t r e a t i n g low volume wastes i n an env i ronmenta l l y acceptable manner as

de f ined by c u r r e n t regu la t ions . The r e g u l a t o r y c r i t e r i a t h a t def ine environmental

a c c e p t a b i l i t y i n c l u d e e f f l u e n t l i m i t a t i o n s f o r t h e steam e l e c t r i c p o i n t source

category. federa l hazardous waste regu la t ions , and s t a t e s o l i d waste regu la t ions .

E R E - - N a t i o n a l P o l l u t a n t Discharge E l i m i n a t i o n System.

---A s o l i d waste d isposal f a c i l i t y t h a t does n o t p r o t e c t t h e environment

and which does n o t comply w i t h t h e Environmental P r o t e c t i o n Agency C r i t e r i a f o r

C l a s s i f i c a t i o n of S o l i d Waste Disposal F a c i l i t i e s and P r a c t i c e s (40 CFR P a r t 257).

.&&-Resource Conservation and Recovery Act.

React iv i ty - -One of t h e c h a r a c t e r i s t i c s f o r i d e n t i f y i n g hazardous waste.

waste i s r e a c t i v e i f it i s unstable and can undergo v i o l e n t change, r e a c t s v i o l e n t l y

w i t h water, generates t o x i c gases when mixed w i t h water i n a q u a n t i t y s u f f i c i e n t t o

present a danger t o human heal th . o r i s explos ive.

A s o l i d

- ~~

Santhry 1andfULcr-A s o l i d waste d isposa l f a c i l i t y which poses no reasonable - p r o b a b i l i t y o f adverse e f f e c t s on h e a l t h and t h e environment as def ined by t h e

Environmental P r o t e c t i o n Agency C r i t e r i a f o r C l a s s i f i c a t i o n o f S o l i d Waste Disposal

F a c i l i t i e s and P r a c t i c e s (40 CFR P a r t 257).

6-2

S o l i d wasts--As de f ined i n Sect ion 261.2 o f t h e Environmental P r o t e c t i o n Agency

Regulat ions f o r I d e n t i f y i n g Hazardous Waste.

S u b t i t l e C--Statutes on Hazardous Waste Management under RCRA.

S u b t i t l e D--Statutes on Sta te or Regional S o l i d Waste Plans under RCRA.

X E - - T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure.

!da.b--A m a t e r i a l which i s discarded, served i t s intended purpose, or i s a

manufactur ing o r min ing by-product.

i n wastewater e f f l u e n t s .

Does n o t i n c l u d e s o l i d s or d isso lved m a t e r i a l s

W a t e r - - A q u e o u s waste: t y p i c a l l y r e f e r r e d t o when t h e waste i s t r e a t e d i n a

wastewater t rea tment u n i t f o r discharge.

i k & w a t e r s l u & ~ - The semi-so l id m a t e r i a l s r e s u l t i n g from t rea tment o f wastewaters

i n a wastewater t rea tment u n i t ,

6 - 3

Sect ion 7

REFERENCES

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

12.

13.

E l e c t r i c Power Research I n s t i t u t e . o f U t i l i t v Low Volunw &&a?. CS-3737, Radian Corporation, May 1985.

L.J. Holcombe. G.P. Behrens, and R. Komai. "Treatment and Disposal of Low Volume U t i l i t y Wastes." F o s s i l Power P l a n t Water Management. Orlando, F lo r ida . February 1986.

G.P. Behrens, J.E. Harwood. and D.P. Roche. "Ash Pond Equivalency fo r Trea t ing B o i l e r Cleaning Wastes." Presented a t t h e EPRI Symposium on Advances i n F o s s i l Power P l a n t Water Management. Orlando, F lo r ida , February 1986.

L.J. Holcombe, G.P. Eehrens, and W.C. M i c h e l e t t i . "Comparison of Treatment Methods f o r U t i l i t y Metal Cleaning Wastes." Summer Nat ional Meeting, Boston, Massachusetts, August 1986.

Environmental P r o t e c t i o n Agency. D-

w. EPA 440/1-80/029-br September 1980.

Code o f Federal Regulat ions, 40 CFR P a r t 261. Hazardous Waste. J u l y 1. 1985.

TRW. Inc. from Steam - F l e c t r i c Power P l a n k - I b B P r e c i s i o n and B ias of MethQds f o r Cheuical Andy.&.. CS-3744. E l e c t r i c Power Research I n s t i t u t e , November 1984.

J.K. Rice and S.D. Strauss. "Water-Pol lut ion Contro l i n Steam Plants. l f m. 120 (4). A p r i l 1977.

Babcock and Wilcox Company. York: The Babcock and Wilcox Company, 1972.

Code of Federal Regulat ions, 40 CFR P a r t 423. Generating P o i n t Source Category. Revised as o f J u l y 1, 1985.

E l e c t r i c Power Research I n s t i t u t e . M a w a l on C h S ! & a l Cleaning-Qf F o s s i l - Fueled Shxa G e n e r v . CS-3289, Sheppard T. Powell Associates. January 1984.

Code o f Federal Regulat ions, 40 CFR P a r t 261. Hazardous Waste. P a r t 261.4, Exclusions.

Presented a t t h e EPRI Symposium on Advances i n

Presented a t the AIChE 1986

t i o n s Guidel ines a n d a r d s f o r t h e Steam F k L r i c P-

I d e n t i f i c a t i o n and L i s t l n g of Appendix II - EP T o x i c i t y Test Procedure, Revised as o f

Stsam/Its Generation ami.!kQ . New York, New

Steam E l e c t r i c Power

I d e n t i f i c a t i o n and L i s t i n g o f

, Gary D i e t r i c h . L e t t e r addressed t o Mr . Paul Emler o f t h e U t i l i t y S o l i d Waste A c t i v i t i e s Group on January 13, 1981.

7-1

14. Environmental P r o t e c t i o n Agency. T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure

Th is procedure i s a l s o presented (TCLP). Revised d r a f t procedure dated October 4, 1985, Method 13xx ( i nc ludes cho ice o f two e x t r a c t i o n media). i n t h e January 14, 1986 Federal Register.

=CT P e r m i k . SW-966, Prepared by t h e O f f i c e o f S o l i d Waste and M i t r e Corp., J u l y 1983.

15. Environmental P r o t e c t i o n Agency. G u i d a n c e u a l f o r Hazardcu%U&

16. E l e c t r i c Power Research I n s t i t u t e . I s c h i c a l . P-2410-SR9 1981 E d i t i o n .

17. Uni ted S ta tes Department o f Commerce. " R a i n f a l l Frequency A t l a s of t h e Uni ted States." Technical Paper No. 40, May 1961.

18. Richardson Engineer ing Services, Inc. Process P l a n t C o m l z u t i o n Fs- Standards. Vol 1-4, Richardson Engineer ing Services, Inc., 1986.

19. R.S. Means Company, Inc. i$?.ms S i t e WQrk Cost Data 1986 . R.S. Means Company, Inc., 1985.

. Solana 20. K.M. Guthr ie . m c e s s P l a n t F s t w Fval- and C W Beach, C a l i f o r n i a : Craftsman Book Company of America. 1974.

21. M.S. Peters and K.D. Timmerhaus. -anics for C h e m i d b a i n e e r s . New York, New York: McGraw-Hill Book Company. 1980.

22. h i c a l . Schnel l Pub l i sh ing Company. February, 1986.

23. Memorandum from S t e f f e n W . Olehn, Deputy Ass i s tan t EPA Admin i s t ra to r f o r S o l i d Waste, and R. Sarah Compton, Deputy A s s i s t a n t EPA Admin i s t ra to r f o r Water Enforcement t o Regional D i r e c t o r s - A i r and Hazardous M a t e r i a l s D iv i s ion , "EPA Regulat ion of U t i l i t y Wastestt, February 189 1981.

F a c i l i t i e s . CS-2557, SCS Engineers, August 1982. 24. E l e c t r i c Power Research I n s t i t u t e . M a u a l f o r UD~.L&&!. F x i s t i n g Disoosal

. . 25. W.B. Kayes. € c u h & t i o n of L i n i w f o r Reservoirs. T a m and P o l l u t i a n

Con t ro l F a c i l i t i e s . Wiley, 1977.

26. E l e c t r i c Power Research I n s t i t u t e . &l Ash R m o s a l Manud. . FP-1257. G A I Consultants, Inc.. December 1979.

27. J . Rossof and R.C. Rossi. Disposal o f By-Products from Non-Regenerable F lue Gas D e s u l f u r i z a t i o n Systems. EPA-650/2-74-037-a, The Aerospace Corporation, May 1974.

28. Personal Communication w i t h L.L. Zimmerman, Radian Corp., September 3, 1986.

29. E l e c t r i c Power Research I n s t i t u t e . -ion of Trace s w i t h Iron. CF-1513, Brown and Caldwell , September

1980.

30. R.G. Kunz, J.F. G ianne l l i , and H.D. Stensel. Vanadium Removal from I n d u s t r i a1 Wastewaters." Presented a t t h e 30 th I n d u s t r i a l Waste Conference, Purdue Un ive rs i t y , May 1975.

7-2

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

4 4 .

45.

46.

41.

Nor th Dakota M in ing and Minera l Resources Research I n s t i t u t e . S o l i d Wastc &disposal Screening-5t& . D r a f t r e p o r t for Gas Research I n s t i t u t e , May 1986.

Personal Communication, S.J. Galegher (Radian Corpora t ion) w i t h CECOS I n t e r n a t i o n a l , June 16, 1986.

Personal Communication. S.J. Galegher (Radian Corpora t ion) w i t h American Waste Processing (Chicago), June 16, 1986.

Personal Communication, S.J. Galegher (Radian Corpora t ion) w i t h ENSCO ( L i t t l e Rock, Arkansas), June 16, 1986.

Personal Communication. S.J. Galegher (Radian Corpora t ion) w i t h Chem-Met Services (Michigan). June 16, 1986.

Report and Technical S tud ies on t h e Disposal and U t i l i z a t i o n o f F o s s i l Fuel Combustion By-Products. Submitted by t h e U t i 1 i t i e s Sol i d Waste A c t i v i t i e s Group, t h e Edison E l e c t r i c I n s t i t u t e , and t h e Na t iona l Rural E l e c t r i c Cooperat ive Assoc ia t ion t o t h e Un i ted Sta tes Environmental P r o t e c t i o n Agency, Volume 11, Appendix E. October 26, 1982.

C.W. Jones, e t . a l . "Disposal of Waste Ammoniacal Bromate and Ammonium B i f l u o r i d e So lu t i ons by Evaporation." Presented a t t h e 3 7 t h Annual Meeting. I n t e r n a t i o n a l Water Conference, P i t t sburgh, PA, October 1976.

A.V. Sisson and G.V. Lee. " I n c i n e r a t i o n Safely Disposes o f Chemical Cleaning Solvents." Proc. Am. Power Conf . 34, Chicago, IL, 1972.

E.C. Wackenhuth, e t a l . "Use and Disposal o f B o i l e r Cleaning Solvent." Power Fngine 77(11), November 1973.

A.J. OfNeal. Jr., e t a l . "Experimental I n c i n e r a t i o n o f B o i l e r I n t e r n a l Cleaning So lvent a t Long I s l a n d L i g h t i n g Co." 1971.

T.F. Ha l l a ren . " I n c i n e r a t i o n o f B o i l e r Cleaning Chelate Wastes." Materials Per formane, NACE 21(4) , A p r i l 1982.

Personal Communication, G.P. Behrens (Radian Corpora t ion) w i t h Ambrose Selker, Combustion Engineering, Nov. 21, 1985.

Personal Communication. G.P. Behrens (Radian Corpora t ion) w i t h A1 Banweg, Babcock and Wilcox, Nov. 12, 1985.

P.J. Champange and B.K. Faker. "On-Stream Chemical Cleaning of B o i l e r Tubes." Presented a t t h e EPRI Symposium on Advances i n F o s s i l Power P l a n t Water Management, Orlando, F lo r i da , February 1986.

P.P. Lalena. "Waste Treatment f o r a P r o f i t . " Water - 1971 . AICHE Symposium Series, 178, Vol. 74, Gary F. Bennett. e d i t o r , 1978.

- Power P l a n t S l u d w . N.E. B e l l , e t a l . S o l i d i f i c a t i o n o f Low Volume CS-2171, RP 1260-20, December 1981.

R. Chiesa and D. Sloat. "Recycle and Reuse o f Power P l a n t Low-Volume Wastewaters." Presented a t t h e EPRI Symposium on Advances i n F o s s i l Power P l a n t Water Management, Orlando. F lo r i da . February 1986.

49(4). October

. . .

7-3

48. S.J. Galegher and G.P. Behrens. h a p o r a t i o n F n h u e m e n t Study . Prepared

49. Code of Federal Regulat ions, 40 CFR P a r t 60. New S ta t i ona ry Sources Performance Standards; E l e c t r i c U t i l i t y Steam Generating Un i t s . o f June 11, 1979.

for WEST Associates, Radian Corp., May 23, 1986.

Revised as

50. Personal Communication, G.P. Behrens (Radian Corpora t ion) w i t h John Davis, Rowan and Associates, r e : Coalescing P l a t e Separator c a p i t a l and opera t i ng costs, Aug. 22, 1986.

.

7-4

Appendix A

SAMPLING AND ANALYSIS OF LOW

VOLUME WASTES AT FOSSIL FUEL-FIRED POWER PLANTS

i

CONTENTS

Summary Table A-1

P l a n t : A

Plant : 8

P lan t : C

P l a n t : D

P lan t : E

P l a n t : F

P l a n t : G

P l a n t : H

P lan t : I Plant : J

Plant : K

P lan t : L

P lan t : M P l a n t : N

P lan t : 0

P l a n t : P

P l a n t : Q

Plant : R Plant : S P l a n t : T

P l a n t : U

Ease A-2

A-6

A-11

A-15

A-19

A-24

A-26

A-30

A-35

A-39

A-44

A-49

A-53

A-56

A-59

A-62

A-64

A-67

A-68

A-69

A-70

A-74

A-iii

SAMPLING AND ANALYSIS OF LOW VOLUME

WASTES AT FOSSIL FUEL-FIRED POWER PLANTS

Dur ing 1985 and 1986, 21 e l e c t r i c - g e n e r a t i n g s t a t i o n s were v i s i t e d .

waste samples were c o l l e c t e d and analyzed. and i n s i g h t i n t o t h e management o f low

volume wastes was s o l i c i t e d from p l a n t personnel. The a n a l y t i c a l r e s u l t s and

in fo rma t ion ob ta ined from i n t e r v i e w s w i t h p l a n t personnel were compiled i n t o

sampling and a n a l y s i s r e p o r t s f o r each p lan t . Table A-1 summarizes t h e waste

streams cha rac te r i zed d u r i n g these v i s i t s .

p rov ides d e t a i l s f o r each p l a n t concerning t h e low volume waste management plan,

sampling and a n a l y s i s r e s u l t s and b r i e f d iscuss ions o f t h e r e s u l t s .

con ta ins a complete t a b u l a t i o n o f t h e a n a l y t i c a l resu l t s .

Low volume

The remainder o f t h l s appendix

Appendix B

A- 1

EFRI Data m Rec i on

A West

B

C

D

E

F

Northeast

Table A-1

Lmi VOLUKE WASTES COLLECTED AND ANALYZED

w Gas

O i l

West Gas

Nor theast O i l

South Cent ra l Gas

West. O i l

SaKiDl€

f i r e s i d e waste t r e a t e d f i r e s i d e e f f l u e n t EDTA waste t r e a t e a EDTA e f f l u e n t combined s o l i d s

H C l waste n e u t r a l i z e d HC1 r i n s e water soda ash r i n s e sludbe from bas in t r e a t e d HC1 e f f l u e n t

ammonium broclate waste HC1 waste pond water pond s o l i &

f i r e s i d e waste c l a r i f i e r supernate sludge s o l i d s c l a r i f i e r underflow

c i t r a t e waste

HAF composite waste t r e e t e d HAF e f f l u e n t c l a r i f i e r under f low

.I&$!!?

A- F A-F A-V A-V A-S

E-HC1 B-HC1 6-R €-SA 6-S E-Ef

C-E r C-HC1 c-P c-s

E-F 0-TkO E-S D-TkU

E-C

F-HAF F-Ef F-S

Comments

c a u s t i c t rea tment p reopera t iona l c l e a n i n g 1 ime and c a u s t i c t rea tment from t rea tments

b o i l e r cherrical c l e a n i n g pH 6 f i r s t water r i n s e

taken a f t e r l a s t waste f i l t e r e d e f f l u e n t

t o i l e r chemical c l e a n i n g b o i l e r c h e s i c a l c l e a n i n g combined washwaters sludge from pond

f e r r o u s s u l f a t e , 1 ime t reat tvent vaccurli f i l t e r percent s o l i d s on ly

evaporated

hydroxyacet ic / fo rmic and r i n s e s l i m e a d d i t i o n t rea tment s ludge

Table A-1 (Continued)

LOW VOLUME WASTES COLLECTED AND ANALYZED

EPRI Data EEiLLL Reoion €!El Samole G West

J

O i l composite waste t r e a t e d e f f l u e n t t rea tment sludge HC1 waste ammonium bromate waste water r i n s e hydraz ine r i n s e

Southeast Coal ammonium bromate waste HC1 waste n e u t r a l i z e d HC1 pond water

Southeast Coal HC1 waste HC1 waste t r i s o d i u m phosphate r i n s e coal p i l e r u n o f f ash pond water ash pond water ash pond water ash pond water ash pond water ash pond water

Coal EDTA waste t h i c k e n e r be fore th i ckener a f t e r pond be fore pond a f t e r coal p i l e r u n o f f

West Cent ra l

€Q&

G-Cmp G-E f G-S G-HC1 G-Br G-R G-Hy

H-Br H-HC1 H-HC1 -N H-P

I-HC11 I-HC13 I-TSP

I-CPR I-P-1 I - P t .2 I - P t l I -P t2 I-P+3 I -P t4

J-V J-TkU-1 J-TkUt1 J-P-1 J - P t l J-CPR

Comments Bromate, HC1 and r i n s e s l ime a d d i t i o n

b o i l e r chemical c lean ing b o i l e r chemical c lean ing

p a s s i v i z a t i o n step

b o i l e r chemical c lean ing b o i l e r chemical c lean ing i n - l i n e c a u s t i c a d d i t i o n mixed wastes and r i nses

from u n i t 1 from u n i t 3 from u n i t 1

from c o l l e c t i o n bas in p r i o r t o a c i d waste 2 hours a f t e r discharge 1 day a f t e r d ischarge 2 days a f t e r discharge 3 days a f t e r discharge 4 days a f t e r discharge

b o i l e r chemical c lean ing p r i o r t o EDTA a d d i t i o n a f t e r EDTA a d d i t i o n be fo re EDTA a d d i t i o n one week a f t e r EDTA a d d i t i o n from c o l l e c t i o n bas in

EhKt

K

L

M

N

0

P

EPRI Data Reoion

Nor theas t

East Cent ra l

West

West

West

East Cent ra l

Table A-1 (Continued)

LW VOLUME WASTES COLLECTED AND ANALYZED

w O i l

Coal

Coal

Coal

Coal

Coal

-- a i r preheater waste’ K-APr t r e a t e d a i r preheater K-TkO pond e f f l u e n t K-P th i ckener underf low K-TkU ESP wash s o l i d s K-ESP

EDTA waste L-V coa l p i l e r u n o f f L-CPR

b r i n e concent ra te r e j e c t M-BCR evaporat ion pond l i q u i d M-P evaporat ion pond s o l i d s M-S

wastewater N-WW product water N-Prod b r i n e concent ra te r e j e c t N-BCR b r i n e concent ra te r e j e c t N-S p y r i t e s N-Py

b r i n e concent ra te r e j e c t GBCR evaporat ion pond l i q u i d 0-P evaporat ion pond s o l i d s 0-S p y r i t e s 0-PY

c i t r a t e waste P-c f i r s t r i n s e P-R ash pond water P-P-1 ash pond water P-P+2 ash pond water P-P+4 ash pond water P-P+7 ash pond water P-F+14

- f i l t e r e d and u n f i l t e r e d c a u s t i c a d d i t i o n th i ckener over f 1 ow

evaporated Powder R i v e r coa l

l i q u i d phase

feed t o b r i n e concent ra to r b r i n e concent ra to r product l i q u i d phase concent ra to r s o l i d s

s l u r r y

b o i l e r chemical c lean ing waters ide p r i o r t o c i t r a t e waste 2 days a f t e r d ischarge 4 days a f t e r d ischarge 7 days a f t e r d ischarge 14 days a f t e r d ischarge

I I I

EPRI Data ElaZ EUel Q Northeast Coal

R Nor theast Coal

Table A - 1 (Continued)

LCW VOLUME KASTES COLLECTED AND ANALYZED

S Nor theast Coal

T Nor theast Gas/o i l

U East Cent ra l Coal

S a m o l e G Q L k

moistened f l y ash (1-FA p y r i t e s from p u l v e r i z e r Q-Py

f l y ash from pond R-FA bottom ash from pond R-BA p y r i t e s from p u l v e r i z e r R-Py

f l y ash from s i l o s S-FA p y r i t e s from p u l v e r i z e r S-Py

Comments

f i r e s i d e waste T-F+I c o l l e c t e d a f t e r 1 hour f i r e s i d e waste T-F+16 c o l l e c t e d a f t e r 16 hours c l a r i f i e r over f low T-TkO 16 hour sample f i l t e r so l i d s T-S

EDTA waste u-v evaporated r i n s e water U-R waters ide r i n s e hydroxy a c e t i c / f ormic U-HAF b o i l e r chemical c lean ing

' I I / I , I

PLANT A

Samples o f raw and t r e a t e d f i r e s i d e wastewater, e thy lene d iam ine te t raac id i c a c i d

(EDTA) s o l u t i o n (raw and t r e a t e d ) f rom b o i l e r chemical cleaning, and a combined

sludge from t h e t rea tment process were ob ta ined i n March o f 1985 o f P l a n t A.

PLANT OESCRIPTIOM

The u t i l i t y s i t e i s l o c a t e d i n t h e West EPRI Data Region and has f o u r o i l and gas

b o i l e r s which c u r r e n t l y burn gas. Low volume wastes a re t r e a t e d on s i t e us ing

c a u s t i c and l i m e i n a u t i l i t y owned f a c i l i t y .

f i r e s i d e wastewater was being processed.

an EDTA b o i l e r c lean ing s o l u t i o n from another p l a n t which does n o t have a t r e a t -

ment f a c i l i t y .

Dur ing t h e sampling period,

One o f t h e f o u r h o l d i n g ponds contained

F i r e s i d e washing occurs about t w i c e a year, producing up t o 150,000 g a l l o n s per

100 MI cleaned. The waters ide o f t h e b o i l e r tubes a r e cleaned every f o u r years

and generate approximately 80,000 g a l l o n s o f wastewater per b o i l e r .

WASTE MANAGEMENT

F igu re A-1 p resents a general schematic of t h e t rea tment system a t P l a n t A.

i n d i c a t e d i n t h e f i g u r e a re t h e sampling p o i n t s around t h e system. The gas s i d e

of t h e b o l l e r and t h e a i r preheater a re washed w i t h h igh pressure water which i s

c o l l e c t e d i n t renches around t h e furnace bottom, and conveyed v i a i n t e r n a l and

ex te rna l sumps t o h o l d i n g ponds. There are f o u r ponds: two dedicated t o metal

c lean ing wastes and two f o r o t h e r low volume wastes.

l y 700,000 g a l l o n s each and have a s p h a l t i c l i n e r s .

A l so

The ponds ho ld approximate-

Wastewater f rom t h e ponds i s pumped t o t h e t rea tment system where t h e pH i s

ad jus ted i n a r a p i d mix tank. The pH i s ra i sed t o 10.5 w i t h c a u s t i c f o r gas s ide

washes, and t o 13 w i t h c a u s t i c and l i m e f o r waterside chemical washes. The

e leva ted pH p r e c i p i t a t e s d i sso l ved metals as hydroxides.

chelates, an a d d i t i v e may be used t o break t h e metal-chelate bond. WL 1218 frcm

Dowel1 i s c u r r e n t l y be ing used. The pH-adjusted stream en te rs t h e r e a c t i v a t o r

where t h e p r e c i p i t a t i o n r e a c t i o n s occur fo l l owed by polymer a d d i t i o n t o e f fec t

f l o c c u l a t i o n and then c l a r i f i c a t i o n . The r e a c t i v a t o r volume i s approximately

30.000 g a l l o n s w i t h a f l o w r a t e between 25 and 40 gpm.

For wastes w i t h

Excess sludge i s pumped from t h e r e a c t i v a t o r t o t h e th i ckener and then f i l t e r e d

i n a press p r i o r t o disposal . The sludge i n t h e system i s a r e s u l t o f numerous

A-6

CAUSTIC

ANTHRACITE

BOILER CLEANING

WASTE

LOW VOLUME WASTE

E THICKENER

SAMPLING -0 POINT

FILTER PRESS

80% F I L T E ~ CAKE TO HAZARDOUS LANDFlLl

F igure A - I . P l a n t A Low Volume Waste Treatment System

I i I

cleansings. I n d i v i d u a l c leansings do no t war ran t opera t ing t h e th i ckener o r

f i l t e r press.

t h e l i q u i d waste being processed.

con t rac to r as a s t a t e hazardous waste.

Consequently, t h e s o l i d s composit ion i s n o t d i r e c t l y comparable t o

The sludge i s drummed and disposed o f by

The overf low from t h e r e a c t i v a t o r i s pH ad jus ted t o near neut ra l , f i l t e r e d

through a n t h r a c i t e t o a t u r b i d i t y of l e s s than 1 NTU, and then routed t o a

ho ld ing pond.

l e s s than one m i l l i g r a m per l i t e r (mg/L), t o t a l suspended s o l i d s (TSS) l e s s than

30 mg/L. and o i l and grease l e s s than 20 mg/L), t h e water I s reprocessed. When

t h e l i m i t s a r e met, t h e water i s discharged i n t o t h e ocean. For wastes w i t h

chelates, an a d d i t i v e MY be used t o break t h e meta l -chelate bond. DWL 1218 from

Dowel1 is c u r r e n t l y be ing used.

If t h e q u a l i t y does no t meet t h e discharge l i m i t s ( i r o n and copper

SAMPLES COLLECTED

Samples were c o l l e c t e d on March 15. 1985. A t t h a t time, f i r e s i d e wastewater was

being processed from t h e c lean ing of a gas u n l t .

p o i n t s 2, 3, 4, and 5 as shown i n F igu re 1. Samples 2, 4, and 5 were analyzed

ex tens i ve l y as they represent t h e raw waste, t rea tment sludge. and t r e a t e d

discharge, respec t i ve l y . They were coded as A-F2. A-F4, and A-F5, fo r P l a n t A.

Sample 3 was n o t analyzed.

Samples were obta ined f rom

A separate ho ld ing pond conta ined approx imate ly 700,000 g a l l o n s o f waters ide

wastewater from another p lan t .

c lean ing o f a b o i l e r and had a h igh o i l and grease l e v e l along w i t h che la ted

meta ls i n an EDTA s o l u t i o n . A sample o f t h e un t rea ted waste was c o l l e c t e d from

t h e ho ld ing pond. sampling p o i n t 1. A t a l a t e r date, p l a n t personnel c o l l e c t e d a

t r e a t e d sample a t p o i n t 3.

The wastewater was from t h e preopera t iona l

DISCUSSION OF RESULTS

The sample r e s u l t s from t h e P l a n t A t rea tment system are presented i n Appendix B.

It should be emphasized t h a t a l l o f these samples were taken as grabs; therefore,

t hey do n o t represent an average e f f l u e n t q u a l i t y .

e f f l u e n t i n t h e f i n a l ho ld ing bas in t o check on t h e water q u a l i t y before d is -

charge.

The u t i l i t y moni tors t h e

Samples A-F2 and A-F5 a r e t h e raw and t r e a t e d f i r e s i d e wastewaters. The raw

f i r e s i d e wastewater conta ins i r o n and n i c k e l a t l e v e l s above one mg/L. Most o f

t h e t r a c e meta ls a re removed. t o sane extent, by t h e c a u s t i c treatment. S l i g h t

A-8

increases o f vanadium, lead, and molybdenum concentrat ions i n t h e t r e a t e d water

may be due t o t h e nature o f t h e grab samples s ince they were obta ined near t h e end o f t h e t reatment process; o r t h e increase may be due t o imprec is ion i n t h e

a n a l y t i c a l procedures. The sodium l e v e l increase i s due t o c a u s t i c add i t i on ,

w h i l e h igher s u l f a t e l e v e l s a r i s e from pH n e u t r a l i z a t i o n .

The i r o n concen t ra t i on i n t h e t r e a t e d f i r e s i d e waste (A-F5) i s above t h e d i s -

charge l i m i t . T h i s cou ld be due t o an upset i n t h e t reatment system; however,

t h e r e a c t i v a t o r overf low, t h e f i r s t sampling p o i n t f o l l o w i n g c a u s t i c add i t i on ,

had a pH o f 10.6 which i s adequate f o r e f f e c t i v e i r o n removal. The h igh i r o n

l e v e l c o u l d a l s o be due t o s o l i d s c a r r y over from t h e r e a c t i v a t o r and a n t h r a c i t e

f i l t e r . The copper l e v e l i n both samples i s q u i t e low. N icke l hydroxide i s

f a i r l y s o l u b l e as evidenced by t h e r e l a t i v e l y poor n i c k e l removal.

Samples A-V1 and A-V3 a re t h e raw and p a r t i a l l y t r e a t e d EDTA c lean ing so lu t i ons .

Fu r the r t reatment o f t h i s stream occurs when t h e pH i s ad justed t o near n e u t r a l

p r i o r t o discharge. Dur ing pr imary t reatment o f these wastes, l i m e and c a u s t i c

a r e both used t o ma in ta in a h i g h pH (12-13). The t r e a t e d sample has a g r e a t l y

reduced i r o n l e v e l . The copper concen t ra t i on shows an increase w i t h t reatment

and i s above t h e discharge l i m i t . T h i s i s probably due t o d i s s o l u t i o n o f copper

s o l i d s i n t h e r e a c t i v a t o r sludge as a r e s u l t of t h e h igh l e v e l o f f ree EDTA l e f t

a f t e r t h e i r o n has been removed.

The t o t a l organic carbon (TOC) and chemical oxygen demand (COD1 of t h e t r e a t e d

EDTA decreased by 80 percent, i n d i c a t i n g e i t h e r a s i g n i f i c a n t reduc t i on i n o i l

and grease and/or EDTA l e v e l s . Since t h i s waste was produced du r ing t h e pre-

ope ra t i ona l c l e a n i n g o f a new b o i l e r , it i s probable t h a t t h i s reduc t i on i s due

t o o i l and grease removal r a t h e r than EDTA degradat ion. Molar charge balances

a l s o suppor t t h i s conclusion.

SOLID WASTE

The s o l i d wastes sampled inc lude r e a c t i v a t o r sludge, f i r e s i d e wastewater, and

EDTA wastewater.

discharge, t hey are def ined as s o l i d wastes under RCRA (40 CFR P a r t 261.2.

D e f i n i t i o n o f s o l i d waste).

Al though t h e l a t t e r two samples are l i q u i d s and a re t r e a t e d f o r

The ana lys i s o f t h e sludge from t h e bottom of t h e r e a c t i v a t o r (A-S4) i s shown i n

Appendix 6. Conversat ions w i t h p l a n t personnel i n d i c a t e t h a t t h i s sludge i s a

m i x t u r e o f several past t reatments. Due t o t h e r e l a t i v e l y low volume of metals

A-9

removed i n any s i n g l e c leaning, t h e s ludge produced does not war ran t immediate

processing.

concent ra t ion . As needed, sludge i s pumped t o t h e th ickener , where it i s e i t h e r

s to red f o r r e c y c l e t o t h e r e a c t i v a t o r , o r e v e n t u a l l y processed i n t h e p l a n t

f i l t e r presses. Th is f i n a l f i l t e r i n g and sludge d isposa l s tep i s u s u a l l y per-

formed annual ly. As seen i n the analysis, t h e s ludge c o n s i s t s p r i m a r i l y of

calcium. magnesium. and i r o n .

The sludge b lanke t i s maintained w i t h i n a s p e c i f i e d suspended s o l i d s

Three types of e x t r a c t i o n procedures were performed on t h e sludge: t h e EPA

E x t r a c t i o n Procedure (EP), t h e proposed T o x i c i t y C h a r a c t e r i s t i c Leaching Proce-

dure (TCLP), and t h e C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n Test.

The TCLP was a s l i g h t l y modif ied ve rs ion i n t h a t a l l o f t h e QA/W requirements

were n o t performed s ince these t e s t s were n o t f o r r e g u l a t o r y compliance.

The r e s u l t s of t h e EP, TCLP. and CAM So lub le Threshold L i m i t concen t ra t i ons

(STLC) a n a l y s i s a r e presented i n Appendix C along w i t h t h e RCRA and CAM maximum

a l l owab le concent ra t ions . None of t h e e x t r a c t s exceed t h e RCFA l i m i t s . N i c k e l

exceeded t h e STLC va lue f o r t h e CAM t e s t . General ly, t h e CAM e x t r a c t i o n i s much

more aggressive than t h e o t h e r two procedures. Fo r several of t h e metals, t h e

CAM e x t r a c t d i sso l ved c l o s e t o 100 percent o f t h e metal present.

ness o f t h e CAM t e s t i s due t o t h e c i t r a t e b u f f e r . t h e l eng th o f t h e e x t r a c t i o n

and t h e r e l a t i v e l y low l i q u i d - t o - s o l i d r a t i o . The TCLP e x t r a c t i o n r e s u l t s a re

t y p i c a l l y o n l y 10 percent of t h e EP values. T h i s cou ld be due t o l e s s v igorous

a g i t a t i o n i n t h e TCLP than i s used i n t h e EP: r o t a t i o n as opposed t o s t i r r i n g .

The lower values ob ta ined from t h e TCLP compared t o t h e EP cou ld a l s o be a r e s u l t

of t h e way a c i d i s in t roduced i n t h e t e s t . I n t h e TCLP, t h e a c i d i s d i l u t e d

w i t h i n t h e e x t r a c t s o l u t i o n p r i o r t o c o n t a c t w i t h t h e s o l i d s . Dur ing t h e EP

e x t r a c t i o n t h e a c i d i s added d i r e c t l y t o t h e so l id -water mixture. c r e a t i n g

l o c a l i z e d low pH reg ions u n t i l t h e a c i d i s f u l l y dispersed.

The aggressive-

A l so presented i n Appendix C i s a comparison of t h e f i r e s i d e and waters ide washes

t o s o l i d waste r e g u l a t o r y l i m i t s . I n bo th cases. s ince t h e wastes a re l i q u i d s

w i t h l e s s than 0.5 percent so l i ds , they a re analyzed d i r e c t l y and compared t o

RCRA o r s t a t e concen t ra t i on l eve l s . As shown. bo th streams a re below t h e

a l l owab le concen t ra t i on l i m i t s . It should be noted t h a t t h e EDTA s o l u t i o n sample

represents t h e composite of t h e i n i t i a l waste. and a l l t h e associated d ra ins and

r i nses . The EDTA waste by i t s e l f would be more concentrated.

A-10

PLANT B

Samples were ob ta ined i n A p r i l 1985 du r ing d r a i n i n g and t rea tment o f an HC1 a c i d

c lean ing o f a b o i l e r a t P l a n t B. Samples of raw and n e u t r a l i z e d so lu t i ons , a

water and soda ash r i n s e and sludge s o l i d s were analyzed.

PLANT DESCRIPTION

The o i l - f i r e d b o i l e r , l o c a t e d i n t h e Nor theas t EPRI Data Region, generates 300 MW

and i s cleaned every four years f o r t u b e deposi ts. The b o i l e r volume i s about

30,000 ga l lons . The c lean ing procedure i nvo l ved an i n i t i a l wash w i t h hydro-

c h l o r i c a c i d (HC1) maintained a t a f i n a l concen t ra t i on of f i v e percent. Th i s i s

an i n h i b i t e d s o l u t i o n con ta in ing Cutain, ammonium b i f l u o r i d e (0.25%), and Rodine

(0.2%). Th is f o r m u l a t i o n i s s p e c i f i e d by t h e u t i l i t y . The s o l u t i o n temperature

i s kep t a t 15OoF.

o f i r o n and copper removed by t h e acid.

The e f f i c i e n c y of c lean ing i s c a l c u l a t e d based on t h e amount

The f i r s t stage o f c lean ing i nvo l ved soaking t h e b o i l e r w i t h HC1 f o r f o u r hours.

A f t e r soaking, t h e a c i d was dra ined t o a conc re te p i t and simultaneously n e u t r a l -

i zed w i t h c a u s t i c . The b o i l e r was r e f i l l e d w i t h s e r v i c e water, which was a l s o

dra ined and n e u t r a l i z e d . Two more r i n s e s a re u s u a l l y conducted, f o l l owed by a

5-10 percent soda ash soak t o n e u t r a l i z e any pockets of a c i d remaining i n t h e

b o i 1 e r . WASTE MANAGEMENT

F igu re A-2 presents a general schematic of t h e t rea tment system a t P l a n t E f o r

a l l p l a n t wastewaters.

A c i d i c b o i l e r d r a i n s a re rou ted f i r s t t o t h e concre te ash p i t where i n i t i a l

n e u t r a l i z a t i o n occurs ( t o pH 5-6). When t h e d r a i n i s complete, t h e s o l u t i o n i s

pumped t o a r a p i d mix tank where l i m e and c a u s t i c a re used t o r a i s e t h e pH.

stream i s sent t o a dedicated p o r t i o n o f t h e s e t t l i n g basin which i s used f o r

metal c lean ing wastes. A l l o f t h e r i nses and t h e soda ash s o l u t i o n a re sent t o

t h i s basin.

A lso i n d i c a t e d on t h e f i g u r e a re t h e sampling l oca t i ons .

Th is

The b o i l e r c lean ing wastewaters are al lowed t o reac t and s e t t l e i n t h e bas in f o r

one-two weeks. Polymers may be added t o promote s e t t l i n g . The supernate from

t h e bas in i s then pumped back th rough t h e r a p i d mix tank where t h e pH i s lowered

t o 6-9 w i t h acid. T h i s stream i s sent th rough a g r a v i t y sand f i l t e r (100-150

gpm) and s to red i n an e f f l u e n t h o l d i n g tank. I f t h e i r o n and copper l e v e l s a re

A- 11

P

A - 1 2

below 1 mg/L, t h e water i s discharged. If not, it i s reprocessed i n t h e

t rea tment system.

SAMPLES COLLECTED

Samples were c o l l e c t e d on A p r i l 2, 3, and 4, 1985 a t t h e p o i n t s i d e n t i f i e d i n

F igu re A-2. Table A-2 l i s t s t h e samples taken and t h e i r desc r ip t i on .

Table A-2

SAMPLES FROM PLANT B BOILER CLEANING

2CaQ.Le

8-HC11

B-HC12

B-1R1

B-SA1

B-S3

B-Ef4

DISCUSSION OF RESULTS

Sample €TAL&

1

2

4

Sample Descr iDt ion

Composite sample taken over 1 hr . d r a i n per iod o f i n i t i a l a c i d waste

Grab sample taken a t feed t o s e t t - l i n g bas in du r ing d r a i n of i n i t i a l a c i d waste. L ime/caust ic added t o pH about 6

Grab sample from d r a i n o f f i r s t water r i n s e

Composite sample taken over 1 h r . d r a i n pe r iod o f soda ash waste

Grab sample o f sludge on s e t t l i n g bas in bottom. Taken a f t e r soda ash d r a i n

F i n a l discharge o f t r e a t e d water- s ide wastewater a f t e r f i l t e r s

A n a l y t i c a l r e s u l t s o f t h e samples obta ined from t h e P l a n t B t reatment system are

presented i n Appendix B. The unt rea ted HC1 dra ined from t h e b o i l e r (B-HC11)

con ta ins t h e f o l l o w i n g meta ls a t l e v e l s above 1 nig/ l : A l , Cot Cr, Cut Fe, Mn,

N i , Pb. Sb, and Zn. Due t o p r e c i p i t a t i o n and d i l u t i o n . t h e p a r t i a l l y neu t ra l i zed

waste HC1 (B-HC12) conta ined fewer meta ls above 1 mg/L: now only A l , Cu, Fe, Mn,

N i . Sb and Zn. The t a p water r i n s e o f t h e b o i l e r ( E - R l ) conta ins on ly copper and

i ron . While t h e soda ash r i n s e o f t h e b o i l e r (B -SA l ) has on ly an i r o n l e v e l

above 1 mg/L. Sample B-Ef4 i s t h e t r e a t e d e f f l u e n t which was obta ined by p l a n t

A-I3

personnel approximately two weeks a f t e r t h e c lean ing . A l l o f t h e t r a c e meta ls

a r e below 1 mg/L.

The sludge from t h e bottom o f t h e s e t t l i n g bas in (6-53) i s p r i m a r i l y ca l c ium and

i ron , w i t h sodium and s i l i c a a t lower l e v e l s . Almost a l l o f t h e metals analyzed

were detected a t some low l e v e l . Due t o t h e t rea tment process employed, most of

t h e metals a r e p resent as hydroxides. The low pH o f t h i s sample (5.5) i s a

r e s u l t of a c i d a d d i t i o n t o t h e bas in supernate t o lower t h e pH p r i o r t o discharge

and i s n o t t h e ac tua l pH o f t h e s e t t l i n g basin.

SOLID WASTE

The s t a t u t o r y s o l i d wastes i nc lude t h e s e t t l i n g bas in sludge and t h e n e u t r a l i z e d

feed streams t o t h e basin.

t r e a t e d f o r discharge. t hey a re de f ined as s o l i d wastes under RCRA (40 CFR P a r t

261.2, D e f i n i t i o n o f a s o l i d waste). The n e u t r a l i z a t i o n o f t h e HC1 d r a i n i n t h e

ash p i t i s n o t considered t o be hazardous waste t rea tmen t under RCRA.

Even though these l a t t e r streams a re l i q u i d s be ing

The sludge s o l i d s were t e s t e d us ing t h e EPA E x t r a c t i o n Procedure.

q u a n t i t i e s of sample were a v a i l a b l e t o perform t h e TCLP and CAM t e s t s on P l a n t B

s o l i d s . The r e s u l t s of t he EP analyses f o r t h e sludge a re presented i n Appendix

C. The four RCRA l i q u i d stream analyses a r e a l s o shown: s ince these streams a re

l i q u i d s w i t h l e s s than 0.5 percent suspended s o l i d s t h e i r analyses a re compared

d i r e c t l y t o t h e RCRA l i m i t s .

EP l e v e l s f o r t o t a l chromium.

a p p l i c a b l e EP l e v e l s .

I n s u f f i c i e n t

The waste h y d r o c h l o r i c a c i d stream exceeded RCRA's

The sludge and t h r e e o t h e r wastes were below a l l

A-14

PLAE!T C

Samples c o l l e c t e d by p l a n t personnel i n A p r i l and June o f 1985 a t P l a n t C

inc luded ammoniated bromate b o i l e r c l e a n i n g wastewater, i n h i b i t e d h y d r o c h l o r i c

a c i d wastewater, pond supernate a f t e r i n i t . i a 1 t rea tment o f t h e combined

wastewaters, and sediment from t h e h o l d i n g pond.

PLANT DESCRIPTION

P l a n t C i s l o c a t e d i n t h e West EPRI Data Region and has s i x g a s - f i r e d b o i l e r s .

Low volume wastes a r e h e l d i n ponds on s i t e f o r t rea tment o r evaporat ion.

Chemical c l e a n i n g wastes, such as t h e ammoniated bromate and h y d r o c h l o r i c a c i d

wastewaters, a r e h e l d i n a dedicated pond f o r separate t reatment. As t h e b o i l e r

i s d ra ined t o t h e pond d u r i n g a chemical c leaning, c a u s t i c i s added simultane-

ous ly t o r a i s e t h e pH above 2. T h i s s o l u t i o n i s s t o r e d i n t h e pond u n t i l it can

be t rea ted , e i t h e r by t h e u t i l i t y o r by an o u t s i d e cont rac tor .

WASTE MANAGEMENT

F i g u r e A-3 presents a s i m p l i f i e d schematic of t h e chemical c leaning, hand l ing and

s to rage system a t P l a n t C.

waters from b o i l e r c l e a n i n g a r e h e l d i n a separate bas in from t h e r i n s e s and

o t h e r p l a n t low volume was-te. Whi le t h e h y d r o c h l o r i c a c i d i s be ing dra ined t o

t h e pond, c a u s t i c i s added t o keep t h e PI-i of t h e pond l i q u o r above 2. Dur ing

t h i s p a r t i c u l a r c lean ing episode, two t a n k t r u c k s o f c a u s t i c were added t o t h e

pond.

p r i o r t o discharge.

The animoniated bromate and h y d r o c h l o r i c a c i d waste-

The s l i g h t l y a c i d i c wastewaters a r e h e l d on s i t e f o r f u r t h e r t rea tment

SAMPLES COLLECTED

The bromate and h y d r o c h l o r i c a c i d samples were c o l l e c t e d from t h e d r a i n l i n e

l e a d i n g from t h e b o i l e r t o t h e h o l d i n g pond,

s ludge frooi t h e pond bottoni were c o l l e c t e d one week a f t e r t h e wastewzters were

dra.ined t o t h e pond. The week interva.1 al lowed f o r m i x i n g o f t h e wastewaters and

c a u s t i c and f o r chemical r e a c t i o n s t o occur i n t h e pond.

Supernate from .the ho ld ing pond anti

A-15

t 6 I-' In A v)

cn C

v C

1 m I-' w r 0 C

c

.r r

m

m

c

m m 6 L m

0

0 I-' C

r.- .r

m

m z

a: m

0 L

0 .- LL

A-16

DISCUSSION OF RESULTS

Resu l t s o f t h e analyses a r e presented i n Appendix B f o r t h e waste bromate and

waste HC1. The

waste HC1 c o n t a i n s h i g h concentrat ions o f i r o n (5,100 mg/L) and copper (290 mg/L)

and e levated concen t ra t i ons o f several o t h e r elements, i n c l u d i n g chromium,

manganese, n i c k e l and z inc. The pH o f t h e bromate d r a i n was 10.4 and t h e ac id

d r a i n had a pH of 1.05.

The waste bromate conta ins h i g h d i sso l ved copper a t 1.050 mg/L.

The concen t ra t i on o f metals and water q u a l i t y parameters i n t h e pond supernate

one week a f t e r t h e wastewater and c a u s t i c were commingled i n t h e pond were a l s o

determined. The purpose o f adding c a u s t i c t o t h e pond was t o r a i s e t h e pH above

t h e r e g u l a t o r y t h r e s h o l d o f 2. T h i s was accomplished w i t h a measured pH o f 3.5.

A t t h e s l i g h t l y h ighe r pH. severa l metals a r e l e s s s o l u b l e than they a r e i n t h e

hyd roch lo r i c ac id s o l u t i o n , a l though t h e d i l u t i o n e f f e c t o f t h e a d d i t i o n a l b o i l e r

r i n s e s i s probably respons ib le f o r most of t h e concen t ra t i on decrease.

whose concen t ra t i ons were s i g n i f i c a n t l y reduced i n c l u d e aluminum, antimony,

barium, chromium, coba l t , copper, i r on . manganese, n i cke l , and z inc. A c i d i t y ,

c h l o r i d e , and f l u o r i d e were a l s o s i g n i f i c a n t l y reduced from t h e ac id drainage

composit ion. The a c i d i t y was reduced by a d d i t i o n of t h e caus t i c . Both c h l o r i d e

and f l u o r i d e reduc t i ons a r e probably a r e s u l t o f d i l u t i o n o f t h e hyd roch lo r i c

a c i d d r a i n by t h e bromate d ra in . Cadmium, calcium. hexavalent chromium, magna-

sium, molybdenum, potassium, s i l i c o n , and vanadium a l l have concentrat ions h ighe r

i n t h e pond than e i t h e r o f t h e b o i l e r dra ins. These r e s u l t s may be due t o wastes

i n t h e pond b e f o r e t h e d r a i n s were added.

Metals

SOLID WASTE

The o n l y s o l i d sample c o l l e c t e d was t h e pond sediment.

d e f i n i t i o n s , t h e two wastewater d r a i n s a r e a l s o considered as s o l i d wastes. The

pond sludge was ex t rac ted t o determine t o x i c i t y us ing t h r e e separate procedures:

t h e EPA E x t r a c t i o n Procedure (EP), t h e proposed T o x i c i t y C h a r a c t e r i s t i c Leaching

Procedure (TCLP), and t h e C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n

Test. The analyses o f t h e t h r e e e x t r a c t i o n s a r e presented i n Appendix C, a long

w i t h t h e RCRA maximum a l l owab le concen t ra t i ons and t h e CAM Soluble Threshold

L i m i t Concentrat ions (STLC). Ne i the r t h e EP n o r TCLP e x t r a c t has concentrat ions

above t h e RCRA l i m i t s . Cadmium and n i c k e l exceed t h e STLC f o r t h e CAM t e s t .

Concentrat ions of a r s e n i c and chromium a r e h i g h e r i n t h e EP than i n t h e TCLP

e x t r a c t s . The concen t ra t i ons of t h e o the r RCRA meta ls a r e comparable i n t h e two

e x t r a c t s .

However. under RCRA

A-17

Appendix C a l s o presents a comparison of t h e elemental concent ra t ions found i n

t h e bromate and hyd roch lo r i c a c i d wastewaters t o so l i d waste regu la to ry l i m i t s .

I n bo th cases. s ince t h e wastes a re l i q u i d s w i t h l e s s than 0.5 percent s o l i d s .

they a re analyzed d i r e c t l y and compared t o RCRA o r s t a t e concen t ra t i on l e v e l s .

Both streams exceed t h e CAM l i m i t s fo r copper, and t h e hyd roch lo r i c ac id d r a i n

exceeds t h e CAM l i m i t f o r n i c k e l . The hyd roch lo r i c ac id d r a i n a l s o exceeds t h e

EP t o x i c i t y l i m i t f o r t o t a l chromium.

A-18

PLANT D

Samples o f raw and t r e a t e d f i r e s i d e wastewater and sludge were ob ta ined from

P l a n t D.

PLANT DE SCRIPTION

P l a n t tJ has f o u r o i l - f i r e d 385 W u n i t s and i s l o c a t e d i n t h e Nor theast EPRI Data

Region. The f i r e s i d e of each u n i t i s genera l l y c leaned every spr ing. U n i t 2 was

be ing cleaned d u r i n g t h e sampling per iod. The b o i l e r . a i r heater. ductwork.

p r e c i p i t a t o r s , and s tack were c leaned on t h i s u n i t .

day of c lean ing were p r i m a r i l y from t h e b o i l e r and a i r heater.

Samples taken on t h e f i r s t

Washing i s done by spray ing a s o l u t i o n of soda ash over t h e equipment surfaces

us ing t h e soot blowers. Th is takes about s i x hours and i s fo l lowed by a water

r inse . The s tack and duc ts a r e sprayed w i t h f i r e hoses. Washwater f a l l s t o t h e

b o t t a n of t h e b o i l e r and f lows through f l o o r t renches t o a c o l l e c t i o n sump. The

water i s pumped t o a Hypalon l i n e d h o l d i n g pond p r i o r t o t reatment.

WASTE MANAGEMENT

F i g u r e A-4 presents a general schematfc of the f i r e s i d e washwater t reatment

system a t P l a n t D. e s s e n t i a l l y no l i q u i d .

r e s i d u a l s o l i d s from prev ious cleanings.

f u t u r e t o make r e p a i r s on t h e l i n e r .

c u b i c yards o f s o l i d s accumulate i n two years o f c leaning.

A t t h e s t a r t o f t h i s wash t h e h o l d i n g pond conta ined

However, it d i d c o n t a i n about 5000 c u b i c yards of The pond i s t o be dredged i n t h e near

P l a n t personnel i n d i c a t e d t h a t about 9000

From t h e h o l d i n g pond t h e wastewater i s pumped t o t h e t rea tment system.

major c o n s t i t u e n t o f t h e o i l ash i s washed from t h e bo i le rs , fer rous s u l f a t e i s

i n j e c t e d i n t h e l i n e between t h e h o l d i n g pond and t h e t rea tment system t o

p r e c i p i t a t e fe r rous metavanadate. Lime i s added t o r a i s e t h e pH and p r e c i p i t a t e

a d d i t i o n a l metals. Lime i s used r a t h e r than c a u s t i c because it i s more econmi -

c a l and it prov ides p a r t i c l e sur faces f o r p r e c i p i t a t i o n .

Since a

Lime i s added i n t h e r e a c t i o n tank, which prov ides a b r i e f residence t i m e p r i o r

t o s o l i d s separa t ion i n t h e c l a r i f i e r .

i n vacuum f i l t e r s t o 17.4 percent s o l i d s and s t o r e d i n a concrete basin.

s o l i d s a r e s o l d f o r t h e vanadium conten t which i s used i n t h e produc t ion of

s t a i n l e s s s t e e l s . Due t o t h e reduced demand f o r s t a i n l e s s s t e e l and h i g h

Underflow from t h e c l a r i f i e r i s dewatered

The

A-19

-LINE IN-LINE PH r i m nF AnnmnM ns ADJUSTMENT

IN ADD I'..... -. . . . -, . -, FeSOI R LIME POLYMER

900

GRAVITY SAND FILTERS (4)

SUMP LINED 1 m 1 HOLDING POND

2 25 MMG r L) DISCHARGE 30-40 I 5.7:

VACUUM SLUDGE HOLDING PIT

_ _ _ _ _ )NCRETE-LINED

I -0 SAMPLING POINT - . cc ' FILTERS (2)

F igure A-4. P l a n t D F i r e s i d e Washwater Treatment System

I ~l I I

t r a n s p o r t a t i o n costs, t h e u t i l i t y does n o t make a p r o f i t on t h i s t ransac t ion , b u t

does n o t i n c u r any d isposal costs .

C l a r i f i e r over f low i s s t o r e d i n a surge pond. When a s u f f i c i e n t q u a n t i t y i s

accumulated, t h e supernate i s pH adjusted, f i l t e r e d , and discharged.

SAMPLES COLLECTED

Sarilpling was performed on May 28, 1985. Washwater accumulated d u r i n g t h e

prev ious 24 hours was being t reated. Sampling p o i n t s (See F i g u r e A-4) and

d e s c r i p t i o n s a r e g iven i n Table A-3.

Table A-3

PLANT D SAMPLING POINTS AND DESCRIPTIONS

Sample D e s c r i p t i o n . . Sample

sr7mFle eeint

0-F1 1 F i r e s i d e wastewater c o l l e c t e d from a g i t a t e d h o l d i n g pond. Represents c l e a n i n g o f f i r e s i d e o f b o i l e r , a i r heater, and ductwork.

D-F2 2

D-S3 3

C l a r i f i e r supernate c o l l e c t e d from end o f p i p e i n t o surge pond.

Vacuum f i l t e r sludge from conveyor b e l t l e a d i n g t o s ludge s to rage basin.

D-F4 4 C l a r i f i e r underflow from zero-point o f u n i t .

SUMMP.RY

The un t rea ted f i r e s i d e wastewater i s a RCRA nontox ic waste because t h e d isso lved

metal concent ra t ions a r e below t h e maximum al lowed l i m i t s f o r t h e RCRA E x t r a c t i o n

Procedure (EP). The s o l i d s generated by t h e t rea tment process a r e nontox ic based

on t h e RCRA EP t e s t .

The t rea tment process adequately removes vanadium as fe r rous metavanadate and t h e

o t h e r meta ls present.

operat ion: f e r r o u s s u l f a t e a d d i t i o n a t a neut ra l pH w i t h s o l i d s separa t ion

f o l l o w e d by l ime a d d i t i o n t o remove t h e remaining metals.

f e r r o u s s u l f a t e i s enhanced a t a n e u t r a l pH, w h i l e a l k a l i n e pH reduces t h e

c o n c e n t r a t i o n o f f e r r o u s i o n because of hydrox ide s o l u b i l i t y cons t ra in ts .

The vanadium removal cou ld be increased by a two stage

Vanadium removal w i t h

A-21

DISCUSSION OF RESULTS

A n a l y t i c a l r e s u l t s o f t h e samples obta ined from t h e P l a n t D t rea tment system are

presented i n Appendix B. Sample D-F1 i s t h e raw f i r e s i d e wastewater p r i o r t o any

treatment. It conta ins t h e f o l l o w i n g heavy meta ls a t concent ra t ions above 1

mg/L: A l , Fe, Mo, Ni, T1, V, and Zn. As descr ibed e a r l i e r . t h e u t i l i t y s e l l s t h e

t r e a t e d waste sludge for i t s vanadium content. D-FZ i s t h e supernate from t h e

c l a r i f i e r . A l l of t h e above l i s t e d metals, except aluminum and vanadium, have

been reduced i n c o n c e n t r a t i o n t o l e s s than 1 mg/L by t h e f e r r o u s s u l f a t e and l i m e

treatment. The sludge cake from t h e vacuum f i l t e r (D-S3) i s composed l a r g e l y o f

i r o n and vanadium from t h e waste, ca lc ium from t h e l ime, and magnesium from a

fue l a d d i t i v e . The c l a r i f i e r underflow was n o t analyzed i n d e t a i l s ince it

should be i d e n t i c a l i n l i q u i d phase composi t ion t o t h e over f low. It had a f a i r l y

low suspended s o l i d s concent ra t ion o f 3 weight percent.

SOLID WASTE

The s o l i d wastes i n c l u d e t h e vacuum f i l t e r sludge and t h e f i r e s i d e wastewater.

Although t h e wastewater i s a l i q u i d and t r e a t e d f o r discharge, it i s de f ined as a

s o l i d waste under RCRA (40 CFR P a r t 261.2, D e f i n i t i o n of s o l i d waste).

Appendix B presented t h e analyses o f t h e f i l t e r cake s o l i d s .

e x t r a c t i o n procedures were performed on t h e sludge; t h e EPA E x t r a c t i o n Procedure

(Et'). t h e proposed T o x i c i t y C h a r a c t e r i z a t i o n Leaching Procedure (TCLP), and t h e

C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n Test. The r e s u l t s of these

analyses a r e presented i n Appendix C a long w i t h t h e RCRA maximum a l lowab le

concent ra t ions and t h e CAM Soluble Threshold L i m i t Concentrat ions. N e i t h e r t h e

EP nor t h e TCLP y i e l d e d va lues above t h e regu la ted l i m i t f o r t h e e i g h t RCRA

regu la ted metals. Under t h e CAM procedure, cadmium, n icke l , and vanadium were

above t h e STLC values.

Three types of

A lso shown i n Appendix C i s t h e comparison o f t h e f i r e s i d e wastewater t o t h e

r e g u l a t o r y l i m i t s .

it i s analyzed d i r e c t l y and compared t o RCRA or s t a t e concent ra t ion l i m i t s .

of t h e elemental concent ra t ions exceeds t h e RCRA l i m i t s .

S ince t h e waste i s l i q u i d w i t h l e s s than 0.5 percent s o l i d s ,

None

CHEMICAL PRECIPITATION OF VANADIUM

The removal of vanadium from t h e l i q u i d phase r e q u i r e s a d i f f e r e n t approach

compared t o most o t h e r metals. S ince vanadium can e x i s t i n f o u r valence s tates,

t h e r e a r e numerous r e a c t i o n p o s s i b i l i t i e s . I n t h e o x i d i z i n g atmosphere o f a

A-22

b o i l e r , most vanadium should be present i n t h e t5 o x i d a t i o n s ta te . Th is forms

t h e s o l i d vanadium pentoxide (V205) and t h e an ion V03

hydroxide compound which can be p r e c i p i t a t e d i s i n a +4 s ta te , (VO(OH)2).

compound i s f a i r l y i n s o l u b l e ( K

t o t5 i n water f a i r l y q u i c k l y .

- i n s o l u t i o n . The o n l y

Th is

= 7 .4~10- ’~ ) ; however, t h e +4 s t a t e i s ox id i zed SP

Kunz e t a l . determined t h e s o l u b i l i t y cons tan t f o r f e r r o u s metavanadate i n a

s tudy examining t r e a t m n t methods o f vanadium-containing waters (1). r e s u l t s i n d i c a t e t h a t a 4:l weight r a t i o o f f e r r o u s i r o n t o vanadium a t a pH o f

6-10 reduces t h e vanadium l e v e l t o l e s s than 5 mg/L. Above pH 7. f e r r o u s

hydroxide can beg in p r e c i p i t a t i n g , which increases t rea tment costs. As t h e pH

r i s e s f u r t h e r , t h e f r e e fe r rous i r o n concen t ra t i on begins dropping r a p i d l y ,

reduc ing t h e t rea tmen t e f fec t i veness .

i o n which i s r a p i d l y p r e c i p i t a t e d .

T h e i r

The f e r r o u s i o n can a l s o o x i d i z e t o f e r r i c

Untreated f i r e s i d e wastewater samples a t P l a n t D contained 180 and 87 mg/L o f

vanadium and i ron , r e s p e c t i v e l y . When t h e f e r r o u s s u l f a t e i s i n j e c t e d p r i o r t o

l i m e t reatment. t h e i r o n l e v e l i s much h igher . The low pH and t h e presence of

f ree f e r r o u s i r o n reduces t h e vanadium s o l u b i l i t y l e v e l t o about 2 mg/L, based on

e q u i l i b r i u m c a l c u l a t i o n s .

hydroxide pe rm i t s a h i g h e r l e v e l of vanadium i n s o l u t i o n .

supernate pH of 8.2 produces a c a l c u l a t e d e q u i l i b r i u m vanadium concen t ra t i on of

7.5 mg/L. T h i s i s very c l o s e t o t h e measured vanadium concen t ra t i on i n t h e

c l a r i f i e r supernate (8.2 mg/L).

a l s o i s about 8 mg/L.

i s p robab ly due t o o x i d a t i o n o f i r o n t o t h e f e r r i c s t a t e and p r e c i p i t a t i o n .

As t h e pH increases, t h e lower s o l u b i l i t y o f fe r rous

Using t h e c l a r i f i e r

The e q u i l i b r i u m l e v e l of f e r r o u s i r o n a t t h i s pH

The measured i r o n va lue was 0.69 mg/L. T h i s discrepancy

A s l i g h t l y lower vanadium l e v e l m igh t be achieved us ing a two stage process.

Under c u r r e n t operat ion. f e r r o u s s u l f a t e i s added t o t h e water i n a t r a n s f e r l i n e

p r i o r t o e n t e r i n g t h e c l a r i f i e r where l i m e i s added.

t h e pH, which i s de t r imen ta l t o t h e vanadium removal. An in te rmed ia te c l a r i f i c a -

t i o n s tep would a l l o w the f e r r o u s metavanadate t o s e t t l e p r i o r t o the pH ad jus t -

ment needed t o remove t h e o t h e r metals.

The l i m e a d d i t i o n r a i s e s

REFERENCE

1. R.G. Kunz, J.F. G i a n n e l l i , and H.D. Stensel . - t r i a l Wastewaters. Presented a t t h e 3 0 t h I n d u s t r i a l Waste Conference, Purdue U n i v e r s i t y , May 1975, Ann Arbor Science.

A-23

PLANT E

A composite sample of t h e f i r s t d r a i n from a c i t r i c a c i d c lean ing o f t h e b o i l e r

was ob ta ined i n May 1985 from P l a n t E.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e South Cent ra l EPRI da ta region.

ob ta ined from t h e c lean ing o f a gas- f i red b o i l e r .

The sample was

WASTE MANAGEMEN1

The u t i 1 i t y c u r r e n t l y evaporates t h e b o i l e r c lean ing s o l u t i o n .

t rea tment f a c i l i t i e s a re used. The waste i s s to red i n a tank and pumped t o an

opera t i ng b o i l e r f o r d isposal a t 20-100 g a l l o n s p e r minute.

observed any inc rease i n p a r t i c u l a t e l e v e l s d u r i n g evaporation.

Consequently. no

The u t i l i t y has n o t

SAMPLES COLLECTED

Four samples of t h e d r a i n were c o l l e c t e d by u t i l i t y personnel and composited

equa l l y p r i o r t o ana lys is . The b o i l e r c lean ing was performed on A p r i l 24, 1985.

SUMMARY

The a n a l y s i s o f t h e c i t r i c a c i d c lean ing s o l u t i o n i n d i c a t e s t h a t it i s n o t a

hazardous waste. based on RCRA. Even though t h i s i s a l i q u i d stream, it i s

considered an RCRA s o l i d waste (40 CFR P a r t 261.2, D e f i n i t i o n o f a s o l i d waste).

Since t h i s waste i s a l i q u i d w i t h l e s s than 0.5 percent s o l i d s , it i s canpared

d i r e c t l y t o t h e maximum a l l owab le meta ls concen t ra t i ons r a t h e r than performing

t h e EPA E x t r a c t i o n Procedure (EP). The a n a l y t i c a l r e s u l t s and t h e RCRA l i m i t s

f o r s p e c i f i c me ta l s a re shown i n Appendix E.

EVAPORATION OF CITRIC A C I D

The c i t r i c a c i d waste has predominant ly i r o n and copper i n s o l u t i o n w i t h sane

zinc, n i cke l , and vanadium. Other metals a re p resent a t f a i r l y low concentra-

t i o n s . Typ ica l volumes of b o i l e r wastes range from 30,000 t o 100,000 ga l lons .

If t h i s c lean ing produced 50,000 g a l l o n s of waste, evaporat ion would

t h e o r e t i c a l l y l i b e r a t e 950 pounds o f i ron , 93 pounds of copper. 25 pounds of

z inc, 5 pounds of n i c k e l and 5 pounds o f vanadium. respec t i ve l y . Since these a re

r e l a t i v e l y h i g h b o i l i n g p o i n t metals, they may condense o r c o l l e c t on downstream

equipment. An es t imate of t h e hea t ing va lue of t h e so lu t i on , based on t h e TOC

A-24

l e v e l and t h e s t r u c t u r e o f c i t r i c acid, i n d i c a t e s a va lue of about 700 B t u per

ga l lon . Th is i s a minimal c o n t r f b u t i o n to the p l a n t heat ra te .

A-25

PLANT F

Samples of hydroxyacet ic / fo rmic a c i d b o i l e r c l e a n i n g waste and t r e a t e d e f f l u e n t

were ob ta ined from P l a n t F d u r i n g May 1905.

PLANT DESCRIPTION

The p l a n t i s 1ocat.ed i n t h e EPRI West Data Region and has s i x u n i t s w i t h a n e t

genera t ing capac i t y of 1,620 &I. O i l i s t h e pr imary fuel , b u t na tu ra l gas i s

a l s o used.

The volume o f t h e u n i t cleaned was 125,000 ga l lons . A c o n t r a c t o r cleaned t h e

b o i l e r w i t h a four s-tep procedure. The f i r s t s tep was i n j e c t i o n of hydroxy-

a c e t i c f f o r m i c a c i d w i t h a f o u r - s i x hour r e c i r c u l a t i o n . The b o i l e r was dra ined

i n t o a demine ra l i ze r sump and c a u s t i c was added as needed t o r a i s e t h e pH above

2.

The second s tep was a c i t r i c a c i d c i r c u l a t i o n f o r one hour.

ammonia,/hydrazine r i n s e s were conducted as t h e f i n a l two s teps f o r pass iva t ion .

A l l r i n s e s were c o l l e c t e d i n t h e s m e ho ld ing basin.

The waste was then pumped t o an aspha l t - l i ned metal c lean ing waste basin.

Hydrazine and

WASTE MANAGEMENT

F i g u r e A-5 presents a general schematic of t h e -treatment system at, P l a n t F. The

t rea tment o f t h e f o u r b o i l e r c l e a n i n g d r a i n s occurred on s i t e by an o u t s i d e

vendor us ing a p c r t a b l e l ime/polymer t rea tment u n i t .

70,000 gal lons/day. Lime s l u r r y was i n j e c t e d i n t o t h e waste l i q u i d i n t h e

r e a c t i o n tank.

f l o c c u l a t o r .

l i q u i d was t r a n s f e r r e d th rough a surge tank t o a mult i -media f i l t e r composed of

sand. gravel, and diatomaceous earth. The e f f l u e n t w2s pumped i o a s e t t l i n g

bas in where t h e pH and i r o n concen t ra t i ons were nioni tored be fo re discharge t o t h e

ocean. Sludge from t h e c l a r i f i e r was t rucked t o a Class I l a n d f i l l f o r d isposal .

The u n i t can t r e a t up t o

L iqu ic l #as f l a s h n:ixed, mixed w i t l i polymer and t r a n s f e r r e d t o t h e

The waste was pumped t o a c l a r i f i e r where t h e s o l i d s s e t t l e d . The

SAMPLES COLLECTED

Samples were c o l l e c t e d on h y 6 and 7, 1985 a i t h e p o i n t s shown on F i g u r e A-5.

They a re descr ibed i n Tab le A-4.

A-26

i 0

0

5s x: a -

4 v)

P

A-27

Table A-4

PLANT F SAMPLES FROM MAY 6-7, 1985

F-HAF1 1

F-Ef2 3

F-S3 L

Composite sample taken o f each of t h e f o u r b o i l e r d r a i n s (5 gal. each).

Post- t reatment e f f l u e n t .

Post- t reatment sludge.

'See F i g u r e A-5 . for sampl ing p o i n t l o c a t i o n

SUMMARY

The un t rea ted waters ide wastewater i s a RCRA nontox ic waste because t h e d isso lved

metal concentratTons a r e below t h e rnaxinium a l lowed l i m i t s f o r t h e E x t r a c t i o n

Frocedure (EP).

wastewater were nontox ic by t h e RCRA EP. The proposed T o x i c i t y C h a r a c t e r i s t i c

Leaching Procedure (TCLP) was a l s o perforoied on t h e s o l i d s and t h e r e s u l t a n t

e x t r a c t showed concent ra t ion l e v e l s we1 1 below t h e curren.t RCRA t o x i c i t y 1 i m i t s .

When subjected t o a more aggressive s t a t e e x t r a c t i o n procedure ( C a l i f o r n i a

Assessment Manual, o r CAM. t e s t ) . none o f t h e regu la ted c o n s t i t u e n t s exceeded t h e

s o l u b l e t h r e s h o l d l i n i i t concentrat ions.

The so l i d s generated d u r i n g t reatment. of t h e waters ide

The mob i le t rea tment u n i t used a t P l a n t F reduced a l l metal concent ra t ions below

1 mg/L.

hydroxyacet ic a c i d complex w i t h i ron . However, t h e o p e r a t i n g pH of t h e t rea tment

system (10.9) was s u f i i c i e n l t o p r e c i p i t a t e i ron hydroxide.

Other RCRA meta ls were a l s o reduced i n concentrat ion. Both formic and

DISCUSSION OF RESULTS

Appendix B p resents r e s u l t s of t h e samples obta ined from t h e mobi le system used

a t P l a n t F. SarnFle F-HAF1 i s a composite o f t h e c lean ing s o l u t i o n s and r i n s e s

dra ined from t h e b o i l e r . Th is sample represents t h e average composi t ion of t h e

l i q u i d i n t h e h o l d i n g basin. Several meta ls a r e present i n t h e composite waste

i n concent ra t ions over 1 mg/L, i n c l u d i n g aluminum, boron, chromiurn ( t o t a l 1, i ron ,

mancanese, and z inc . Sample F-Ef2 i s t h e e f f l u e n t f o l l o w i n g t reatment of t h e

A-za

wastewater. A l l o f t h e metals have been reduced t o below 1 mg/L. The sludge

from t h e c l a r i f i e r underflow (Sample F-S3) was composed l a r g e l y o f i r o n and

calcium.

SOLID WASTE

The RCRA s o l i d wastes i n c l u d e t h e sludge from t h e l i m e t rea tment process and t h e

i n d i v i d u a l b o i l e r drains.

f o r discharge, they a re def ined as s o l i d wastes under RCRA (40 CFR P a r t 261,

D e f i n i t i o n o f s o l i d waste).

Al though t h e h o l l e r d ra ins a r e l i q u i d s and a re t r e a t e d

Three t ypes o f waste e x t r a c t i o n procedures were performed on t h e t rea tment

sludge: t h e EPA E x t r a c t i o n Procedure (EP), t h e proposed T o x i c i t y C h a r a c t e r i s t i c

Leaching Procedure (TCLP), and t h e C a l i f o r n i a Assessment Manua.1 (CAM) Waste

E x t r a c t i o n Test. The r e s u l t s o f t h e EP and TCLP e x t r a c t i o n s a re presented i n

Appendix C a long w i t h t h e RCRA niaxlnium a l l owab le concent ra t ions .

produce values above t h e l i m i t f o r t h e e i g h t regu la ted metals.

been proposed y e t for t h e TCLP.

above t h e So lub le Threshold L i m i t Concentrat ions (STLC).

The EP d i d n o t

No standards have

None o f t he c o n s t i t u e n t s i n t h e CAM e x t r a c t were

Appendix C a l s o compares t h e analyses o f t h e wastewater t o RCRA l i m i t s .

t h i s waste i s a l i q u i d w i t h l e s s than 0.5 percents so l i ds . it i s analyzed d i -

r e c t l y and compared t o RCRA o r s t a t e concen t ra t i on l i m i t s .

concen t ra t i ons exceed t h e RCRA 1iniit.s.

Since

None of t h e elemental

A-29

PLANT G

Samples o f un t rea ted and t r e a t e d b o i l e r chemical c l e a n i n g waste (ammonium brornzte

and hyd roch lo r i c a c i d c lean ing s o l u t i o n s ) and sludge froni t h e t rea tment process

were ob ta ined i n May 1985 from P l a n t C.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e West EPRI Data Region and has t h r e e u n i t s w i t h a n e t

genera t ing capac i t y o f 760 Mw. O i l i s t h e priniary fue l , b u t n a t u r a l gas i s also used.

Uni t . #1 was cleaned du r ing t h e sampling event.

ga l lons , which i nc ludes 2,000 ga l l ons i n t h e economizer. A c o n t r a c t o r c leaned

t h e b o i l e r w i t h a four step procedure:

Th is u n i t has a volume of 30,000

1. B o i l e r f i l l e d w i t h a bromate s o l u t i o n and al lowed t o

soak for f o u r hours;

2. B o i l e r r i n s e d f o r 30 minutes w i t h water;

3. B o i l e r f i l l e d w i t h an hyd roch lo r i c a c i d s o l u t i o n and al lowed

t o soak s i x hours,

and

4. F i n a l n e u t r a l i z a t i o n w i t h soda ash and DIS-132 s o l u t i o n . Th is

n e u t r a l i z i n g s o l u t i o n rerr!ained i n t h e b o i l e r u n t i l a 'hydro'

' t e s t was completed.

WASTE MANAGEMENT

F igu re P-6 presents a general schematic o f t h e t rea tment system a t P l a n t G. A l l

c l e a n i n g s o l u t i o n s were dra ined through a 7,000 g a l l o n condenser p i t sump before

go ing t o an a s p h a l t - l i n e d h o l d i n g bas in (145,000 g a l l o n s ) f o r t reatment.

The t rea tment o f t h e f o u r b o i l e r c lean ing d ra ins occurred on s i t e by an ou ts ide

vendor us ing a p o r t a b l e l ime/polymer t rea tment u n i t . The u n i t can t r e a t up t o

70,000 gal lons/day. Lime s l u r r y was added t o t h e waste l i q u i d i n t h e r e a c t i o n

tank. L i q u i d was f l a s h mixed, polymer added and t r a n s f e r r e d t o t h e f l o c c u l a t o r .

The waste was pumped t o a c l a r i f i e r where t h e s o l i d s se t t l ed .

t r a n s f e r r e d t o a mult i -media f i l t e r composed of sand, gravel , and diatomaceous

The l i q u i d was

A-30

-. .. WASTE

SAMPLING -0 POINT

LIME FEED

I32 REACTION TANK

POLYMER FEED

SLUDGE TO CLASS I LANDFILL

FILTER

ASPHALT~LINED HOLDING BASIN FOR DISCHARGE

F igure A-6. P l a n t G Low Volume Waste Treatment System

I I I 1 1

earth.

concen t ra t i ons were monitored before discharge t o t h e ocean.

c l a r i f i e r was t rucked t o a Class I l a n d f i l l f o r d isposal .

The e f f l u e n t was pumped t o a s e t t l i n g bas in where t h e pH and i r o n

Sludge from t h e

SAMPLES COLLECTED

Sampled were c o l l e c t e d on May 1-8. 1985, as descr ibed i n Table A-5, w i t h sampling

p o i n t s i d e n t i f i e d on F igu re A-6.

Table A-5

PLANT G SAMPLES FROM MAY 1-8, 1985

SnmPLc G-Cmpl

G-Ef2

G-S3

G-Brl

G-R1

G-IiC1 1

G-Hyl1

Sample Eeint

I

-- Sample D e s c r i p t i o n

Composite sample taken f o r each of t h e four b o i l e r d ra ins (5 gal . each).

Post- t reatment e f f l u e n t .

Post- t reatment s1 udge.

Bromate d r a i n composite.

Rinse d r a i n composite.

HC1 d r a i n composite.

N e u t r a l i z i n g s o l u t i o n d r a i n composite.

'See F i g u r e A-6 f o r sampling p o i n t l o c a t i o n

SUMMAEY

The un t rea ted waters ide wastewater i s a RCRA non tox i c waste because t h e d i sso l ved

metal concen t ra t i ons a r e below t h e maximum al lowed l i m i t s f o r t h e E x t r a c t i o n

Procedure (EP). However, t h e wastewater i s a RCRA c o r r o s i v e waste because t h e pH

i s below 2. Th is c l a s s i f i c a t i o n as c o r r o s i v e cou ld be avoided if t h e wastewater

d r a i n s were n e u t r a l i z e d " in-1 ine" o r i n an "elementary n e u t r a l i z a t i o n u n i t " p r i o r

t o r o u t i n g t o t h e h o l d i n g bas in (40 CFR P a r t 260.10, D e f i n i t i o n s ) .

The s o l i d s generated du r ing t rea tment of t h e waters ide wastewater were nontox ic

by t h e RCRA EP. The proposed T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure (TCLP)

A-32

was a l s o performed on t h e s o l i d s and t h e r e s u l t a n t e x t r a c t showed concent ra t ion

l e v e l s w e l l below t h e c u r r e n t RCRA t o x i c i t y l i m i t s . When subjected t o a more

aggressive s t a t e e x t r a c t i o n procedure ( C a l i f o r n i a Assessment Manual, o r CAM,

t e s t ) , t h e s o l i d s exceeded t h e s o l u b i l i t y t h resho ld l i m i t concen t ra t i on f o r

n i c k e l .

The mobi le t rea tment u n i t used a t P l a n t G reduced a l l metal concent ra t ions below

1 mg/L, except f o r i ron . I r o n was reduced i n concent ra t ion from 1,030 t o 1.2

mg/L.

t h e t r e a t e d e f f l u e n t .

Th is s i n g l e sample may no t accura te ly represent t h e average composi t ion o f

DISCUSSION OF RESULTS

Appendix B presents r e s u l t s of t h e samples obta ined from t h e mobi le system used

a t P l a n t G.

dra ined from t h e b o i l e r .

waste sent t o t h e h o l d i n g basin. Several meta ls a r e present i n t h e composite

waste i n concent ra t ions over 1 mg/L, i n c l u d i n g aluminum, boron. chromium ( t o t a l ),

copper, i ron, manganese. n i cke l . and z inc. The a l k a l i meta ls ca lc ium and magne-

sium a r e a l s o w e l l above 1 mg/L. Sample G-Ef2 i s t h e e f f l u e n t f o l l o w i n g t r e a t -

ment o f t h e wastewater.

except f o r i r o n which was measured a t 1.2 mg/L. Th is i r o n va lue i s s u r p r i s i n g

s ince i r o n i s very i n s o l u b l e a t t h e h igh pH measured i n t h e e f f l u e n t (pH 11). i s poss ib le t h a t sane c o l l o i d a l i r o n passed through t h e f i l t e r i n g system on t h e

t rea tment u n i t and was subsequently red i sso l ved i n t h e sample p rese rva t i on and

ana lys i s steps.

Sample G-Cmpl i s a composite o f t h e c lean ing s o l u t i o n s and r i n s e s

Th is sample represents t h e average composi t ion of t h e

A l l o f t h e meta ls have been reduced t o below 1 mg/L

It

F l u o r i d e was a l s o reduced i n concen t ra t i on du r ing treatment, due t o p r e c i p i t a t i o n

o f t h e s l i g h t l y s o l u b l e ca lc ium f l uo r ide .

a d d i t i o n used t o r a i s e t h e pH i n t h e t rea tment process . Calcium l e v e l s increased due t o l i m e

The sludge from t h e c l a r i f i e r underf low (Sample G-S3) was composed l a r g e l y o f

i r o n and calcium, w i t h l e s s e r amounts o f copper, magnesium, sodium, n i cke l , and

z inc .

I n d i v i d u a l analyses o f t h e c lean ing s o l u t i o n s and r i nses t h a t made up t h e compos-

i t e waste are a l so presented. The bromate d r a i n conta ins copper a t 450 mg/L and

t h e hyd roch lo r i c a c i d d r a i n conta ins i r o n a t 5,900 and copper a t 320 mg/L.

r i n s e water does n o t con ta in any meta ls above 1 mg/L. I r o n and n i c k e l a r e

p resent a t 120 and 3 mg/L, respec t ive ly , i n t h e f i n a l hydraz ine dra in .

The

A-33

SOLID WASTE

The RCRA s o l i d wastes i nc lude t h e sludge from t h e l i m e t rea tment process and t h e

i n d i v i d u a l b o i l e r drains.

f o r discharge, they a re de f i ned as s o l i d wastes under RCRA (40 CFR P a r t 261,

D e f i n i t i o n o f s o l i d waste).

Although t h e b o i l e r d ra ins a re l i q u i d s and a re t r e a t e d

Three t ypes of waste e x t r a c t i o n procedures were performed on t h e t rea tment

sludge: t h e EPA E x t r a c t i o n Procedure (EP), the proposed T o x i c i t y C h a r a c t e r i s t i c

Leaching Procedure (TCLP), and t h e C a l i f o r n i a Assessment Manual (CAM) Waste

E x t r a c t i o n Test. The r e s u l t s o f t h e EP and TCLP analyses a r e presented i n

Appendix C a long w i t h t h e RCRA maximum a l l owab le concentrat ions.

produce values above t h e l i m i t f o r t h e e i g h t regu la ted metals.

were a l s o below t h e l i m i t s es tab l i shed f o r t h e EP t e s t . The n i c k e l concen t ra t i on

i n t h e CAM e x t r a c t was above t h e So lub le Threshold L i m i t Concent ra t ion (STLC).

Chromium, a t 6.5 mg/L i n t h e ex t rac t . i s above t h e STLC f o r hexavalent chromium,

b u t w e l l below t h e l i m i t f o r t o t a l chromium.

The EP d i d no t

The TCLP r e s u l t s

Appendix C a l s o compares t h e analyses o f t h e wastewaters t o RCRA l i m i t s .

these wastes a re l i q u i d s w i t h l e s s than 0.5 percent so l i ds , they a re analyzed

d i r e c t l y and compared t o RCRA o r s t a t e concen t ra t i on l i m i t s .

t a l concen t ra t i ons exceed t h e RCRA l i m i t s .

Since

None o f t h e elemen-

A-34

PLANT H

Low volume wastes obta ined from P l a n t H were taken on May 29 and 30, 1985 du r ing

d ra in ing and t rea tment of a hyd roch lo r i c a c i d and ammoniated bromate c lean ing of

t h e b o i l e r . Samples o f t h e bromate, acid, n e u t r a l i z e d acid, and ho ld ing pond

l i q u i d s were analyzed.

PLANT DESCRIPTION

P l a n t H i s l oca ted i n t h e Southeast EPRI data reg ion and burns b i tuminous coal.

The s t a t i o n has seven bo i le rs , t h r e e gas un i t s , and four coal b o i l e r s . The gas

u n i t s are operated i n f requen t l y . The coal b o i l e r s range i n s i z e from 75 t o 500

MW. U n i t 6 (350 MW) was being cleaned d u r i n g t h e sampling t r l p .

A t P l a n t H, b o i l e r s fo r u n i t s 4 and 5 are cleaned once every f o u r t o f i v e years.

B o i l e r s fo r u n i t s 6 and 7 are cleaned every 18 months.

500 pounds o f copper and 1500 - 2000 pounds of i r o n depos i ts a re removed.

c o n t r a c t o r performed t h i s cledning.

re rcer i t s o l u t i o n o f ammonium bromate t o s o l u b i l i z e copper. Th is requ i res

fou r -s i x hours p lus a two-hour d ra in per iod.

percent HC1 s o l u t i o n w i t h an i n h i b i t o r (Rodine 213) was used f o r i r o n removal.

Caust ic was i n j e c t e d i n t o t h e d r a i n p ipe t o r a i s e t h e pH from 1 t o 10 - 12 as

t h i s waste was dra ined from t h e b o i l e r .

Typ ica l l y , about 300 - A

The tubes were f i r s t soaked w i t h a one

Fo l low ing a r i n s e and a i r blow. a 5

WASTE MANAGEMENT

U n i t 6 requ i res about 50,000 g a l l o n s t o fill t h e b o i l e r tubes.

t h r e e r i n s e volumes are pumped t o a rubber - l ined 1.5 m i l l i o n g a l l o n pond.

i n t h e pond i s ad jus ted w i t h c a u s t i c t o 11 - 12 and t h e pond aerated t o o x i d i z e

and p r e c i p i t a t e t h e metals.

i r o n and copper l e v e l s a re below 1 mg/L.

drummed and disposed of i n a hazardous l a n d f i l l .

sample o f t h e l i q u i d when t h e t rea tment was f in ished.

The two waste and

The pH

The supernate i s pumped t o t h e ash pond once t h e

The s o l i d s i n t h e pond are p e r i o d i c a l l y

U t i l i t y personnel c o l l e c t e d a

SAMPLES COLLECTED

Samples of waste and n e u t r a l i z e d waste were c o l l e c t e d on May 29 and 30, 1985.

T h e i r d e s c r i p t i o n and l o c a t i o n a r e presented i n Table A-6 and F igure A-7, a

general schematic o f t h e t rea tment process a t P l a n t H.

A-35

IN. LIN E CAUSTIC CAUSTIC ADDITION ADDITION & AERATION -

FUEL- Q&Q LINED HOLDING 7 ASH POND

2

CHEMICAL CLEANING-

c--__)

I POND BOILER

F igure A-7. P l a n t H Waterside Waste Treatment System

Table A-6

SAMPLES FROM PLANT H UNIT 6

SamDle

H-Brl

H-HCll

H-HC12

H-S2

H-P3

Sample eeint

1

1

2

2

3

Samole D e s c r i o t i o n

Ammoniated bromate waste (no c a u s t i c in jec ted . pH 11)

HC1 waste (pH 1)

HC1 waste a f t e r c a u s t i c i n j e c t i o n (pH 12)

Sol ids ' p r e c i p i t a t e d from HC1 waste a f t e r c a u s t i c i n j e c t i o n

Aerated. t r e a t e d l i q u i d p r i o r t o d ischarge t o ash pond

SUMMARY

The unneut ra l i zed HC1 d r a i n exceeded t h e EP t o x i c i t y l i m i t f o r t o t a l chromium,

and t h e r e f o r e may be s u b j e c t t o hazardous waste r e g u l a t i o n .

d u r i n g t h e n e u t r a l i z a t i o n of t h e a c i d a r e n o t hazardous according t o t h e EP

t o x i c i t y t e s t .

The s o l i d s generated

The a n a l y s i s of t h e h o l d i n g pond sample d i d n o t show i r o n and copper l e v e l s below

1 mg/L as des i red. A d d i t i o n a l a e r a t i o n and pH adjustment ( r e d u c t i o n ) should

achieve these l e v e l s by reducing t h e c o n c e n t r a t i o n o f metal hydrox ide complexes.

DISCUSSION OF RESULTS

Appendix B p resents t h e analyses of t h e samples from P l a n t H.

bromate sample was used t o remove copper depos i ts from t h e b o i l e r .

stream c o n t a i n s a h i g h l e v e l of d isso lved i ron . Aluminum. boron, copper,

manganese, n i c k e l , and z i n c a r e a l s o present a t l e v e l s above 10 mg/L.

n e u t r a l i z a t i o n w i t h c a u s t i c e f f e c t i v e l y reduces t h e concent ra t ion of a l l of t h e

m t a l s except z inc, which e x h i b i t s amphoteric behavior ( h i g h s o l u b i l i t y a t a c i d

and a1 k a l i n e pH).

The ammoniated

The a c i d

I n - l i n e

The h o l d i n g pond sample (H-P3) has aluminum. copper, and z inc a t l e v e l s above 1 mg/L. The copper i s i n s o l u t i o n as an ammonia complex and would be expected t o

decrease w i t h t i m e as more ammonia v o l a t i l i z e s . The i r o n and aluminum g r e a t l y

A-37

exceed t h e i r s o l u b i l i t y l i m i t s . i n d i c a t i n g t h e probable presence o f c o l l o i d a l

s o l i d s i n t h e sample analyzed.

SOLID WASTE

The s o l i d waste streams, as def ined by RCRA, i n c l u d e t h e sludge produced by

t rea tment and t h e c l e a n i n g s o l u t i o n s .

l i q u i d s and a r e t r e a t e d f o r discharge, t h e y a r e de f ined as s o l i d wastes ( 4 0 CFR

P a r t 261.2. D e f i n i t i o n o f s o l i d waste).

Although t h e c l e a n i n g s o l u t i o n s a r e

No s o l i d s were ob ta ined from t h e t rea tment impoundment due t o i n a c c e s s i b i l i t y .

However, as mentioned e a r l i e r , t h e a c i d d r a i n was n e u t r a l i z e d by c a u s t i c a d d i t i o n

b e f o r e being pumped t o t h e impoundment.

s u f f i c i e n t amount of s o l i d s t o perform t h e EPA E x t r a c t i o n Procedure (EP) t e s t f o r

t o x i c i t y .

The sample of t h i s waste conta inbd a

The r e s u l t s o f t h e EP t e s t on t h e n e u t r a l i z e d HC1 s o l i d s a r e presented i n Appen-

d i x C. None of t h e RCRA metals exceed t h e t o x i c i t y l i m i t . The z i n c l e v e l i s

very high, again due t o t h e h igh s o l u t i o n pH.

hydrox ide species l e v e l s o f caus t ic . The h y d r o c h l o r i c a c i d d r a i n (H-HC11)

exceeded t h e EP t o x i c i t y l i m i t f o r t o t a l chromium and there fore may be

s u b j e c t t o hazardous waste r e g u l a t i o n .

The sludge s o l i d s c o n t a i n res idua l

A-38

PLANT I

Several low volume wastes were c o l l e c t e d a t P l a n t I d u r i n g June, 1985. Hydro-

c h l o r i c a c i d wastes from two separate b o i l e r s ( u n i t s 1 and 31, a t r i s o d i u m

phosphate r inse, and coal p i l e runof f were obtained. A d d i t i o n a l l y , severa l pond

water e f f l u e n t samples were analyzed t o determine t h e e f f e c t i v e n e s s o f coponding

as a t rea tment method.

PLANT DESCRIPTION

P l a n t I i s l o c a t e d i n t h e South East EPRI Data Region and has f o u r c o a l - f i r e d

b o i l e r s . Low volume wastes a r e t r e a t e d on s i t e by coponding i n t h e ash pond.

The s t a t i o n has a t o t a l c a p a c i t y of 2,030 MW. Uni t 1 i s 350 MW and Un i t 3 i s a

650 MW s u p e r c r i t i c a l b o i l e r .

U n i t 1 had severa l b o i l e r tubes replaced, w h i l e U n i t 3 was being serv iced based

on a three-year c lean ing cyc le .

Both were being cleaned d u r i n g t h e sampling e f f o r t .

WASTE MANAGEMENT

I n 1976, t h e u t i l i t y t h a t owns P l a n t I obta ined a permi t from t h e s t a t e f o r us ing

t h e i r ash bas ins system-wide as waters ide wastewater t rea tment systems. To ge t

t h e permi t t h e u t i l i t y demonstrated t h a t coponding i n t h e bas ins i s equ iva len t t o

l i m e t reatment . A schematic o f t h e i r t rea tment system i s presented i n F i g u r e

A-8. The coponding procedure c o n s i s t s o f sending d i l u t e d ( a t most a 6:l d i l u -

t i o n ) wastewater t o t h e ash basin. I n t h e ash basin, t h e waste must be d i l u t e d

1OO:l; t h i s l e v e l o f d i l u t i o n i s requ i red t o reduce t h e complexing power o f t h e

aqueous ammonia species wi th copper.

p r e c i p i t a t e heavy metal ions, such as i r o n and copper. as hydroxides.

Immediately a f t e r t h e waters ide wastewater i s dra ined t o t h e basin, and f o r four

days t h e r e a f t e r , t h e e f f l u e n t from t h e bas in i s stopped t o a l l o w these chemical

r e a c t i o n s t o occur. Once e f f l u e n t i s re leased t o t h e r i v e r . it i s monitored

d a i l y for f o u r days. and t w i c e monthly as a check on t h e q u a l i t y of t h e

discharge.

Ash prov ides t h e necessary a l k a l i n i t y t o

I n t h i s p a r t i c u l a r cleaning, t h e ash pond was low s ince t h e p l a n t was i n t h e

process o f c o n v e r t i n g t o a d ry ash hand l ing system.

was supp l ied from t h e r i v e r .

Therefore. d i l u t i o n water

SAMPLES COLLECTED

Runoff from t h e coal p i l e i s d i v e r t e d by a per imeter drainage d i t c h t o a bas in

and from t h e r e t o t h e ash basin. There had been heavy r a i n s d u r i n g t h e week

A-39

7 P 0

r- 6:l DILUTION OF

WASHWATER REQUIRED N

WATER HELD UP 3 DAYS

TO OCCUR PRIOR TO DISCHARGE. FOR CHEMICAL REACTIONS

ASH BASIN 450,Mx) TONS ASH

PER YEAR DURING USE.

t DISCHARGE

p r i o r t o t h e sampling (approx imate ly 3 inches over t h e week) and t h e bas in had

water cover ing an area about 100 by 80 yards.

u n i t s 1 and 3 were sampled by u t i l i t y personnel. as was t h e e f f l u e n t f rom t h e ash

basin. Table A-7 summarizes t h e samples co l l ec ted .

The waters ide wastewaters f rom

Table A-7

SAMPLES COLLECTED AT PLANT I I N JUNE 1985

LaJwJ-e I-HC13

I-HC1 1

Sampl el enint

1

1

Sample D e s c r w o n

Hydroch lo r ic a c i d waste from U n i t 3

Hydroch lo r ic a c i d waste f rom U n i t 1 ( f o l l o w s phosphate wash)

I-TSP1 1 The sodium phosphate d r a i n f rom U n i t 1

I-P-1

I-Pt .2

I -P+l

I-P+2

I -P t3

I-P+4

I-CRP3

2

2

2

2

3

'See F igu re A-8 f o r l o c a t i o n o f sampling po in ts .

'Discharge from ash pond t o r e c e i v i n g water.

Ash bas in e f f l u e n t c o l l e c t e d from d ischarge s t r u c t u r e p r i o r t o c lean ing

Ash bas in+? hours a f t e r s t a r t i n g d ischarge

Ash bas in 1 day a f t e r s t a r t i n g d ischarge

Ash bas in 2 days a f t e r s t a r t i n g d ischarge

Ash bas in 3 days a f t e r s t a r t i n g d ischarge

Ash bas in 4 days a f t e r s t a r t i n g d ischarge

Coal p i l e runof f from c o l l e c t i o n bas in a t base of coal p i l e

SUMMARY

The two a c i d d r a i n streams a t P l a n t I may be considered c o r r o s i v e and t o x i c under

t h e EP due t o t o t a l chromium leve ls . The t r i s o d i u m phosphate d r a i n and t h e coa l

p i l e r u n o f f a r e n o t RCRA t o x i c o r co r ros i ve .

The pond water e f f l u e n t samples demonstrate o n l y a minor e f f e c t of t h e a d d i t i o n

o f t h e low volume wastes.

l e v e l were seen f o r barium and potassium and 20 percent f o r molybdenum and

sodium. Copper and z i n c increased s i g n i f i c a n t l y , however o n l y t o very low

l e v e l s . No heavy metal concent ra t ions above 1 mg/L were measured i n any o f t h e

pond samples.

Increases of 10 percent or less ove r t h e background

DISCUSSION OF RESULTS

Appendix B p resents t h e composi t ions o f t h e f o u r low volume waste streams

c o l l e c t e d and t h e a n a l y s i s of t h e ash pond e f f l u e n t f o r f o u r days f o l l o w i n g t h e

resumption of d ischarges.

t o t h e ash pond f o r d isposa l . Sample I-HC11 i s a hyd roch lo r i c a c i d waste from

U n i t 1. It con ta ins h igh l e v e l s of i ron , c h l o r i d e . and f l u o r i d e . Sample I-TSP1

i s a t r i s o d i u m phosphate r i n s e from t h e U n i t 1 b o i l e r and con ta ins low l e v e l s o f

metals.

t h e replacement of several tubes. As such, t h e waste a c i d would be r e l a t i v e l y

easy t o t r e a t w i t h o n l y n e u t r a l i z a t i o n requ i red t o p r e c i p i t a t e t h e i r o n .

A l l o f t h e b o i l e r c lean ing wastes a t P l a n t I a r e sent

The c l e a n i n g o f U n i t 1 was performed t o remove m i l l s ca le and o i l due t o

Sample I-HC13 i s t h e a c i d d r a i n from U n i t 3. It has h i g h metal concen t ra t i ons o f

aluminum. boron. copper, i ron , manganese, and zinc. Ammonia. c h l o r i d e and

f l u o r i d e a r e t h e major anions present. T h i s waste r e q u i r e s bo th n e u t r a l i z a t i o n

and d i l u t i o n f o r t reatment. The ammonia l e v e l w i l l keep copper complexed i f it

i s n o t d i l u t e d o r removed by a i r s t r i p p i n g . The f l u o r i d e i o n i s a l s o a good

complexat ion agent f o r i r o n i n t h e a c i d i c pH range.

The coa l p i l e r u n o f f sample shows an a c i d i c pH (3.1) and s l i g h t l y e leva ted i r o n

and s u l f a t e concent ra t ions , i n d i c a t i o n s o f p y r i t e weathering.

The pond water samples show o n l y a s l i g h t e f f e c t of t h e waste a d d i t i o n on t h e

e f f l u e n t q u a l i t y .

discharge, however it q u i c k l y drops. The i r o n concen t ra t i on shows a gradual drop

over t h e sampling pe r iod w i t h t h e h ighes t value occu r r i ng p r i o r t o t h e waste

a d d i t i o n .

and subsequent decrease i n e q u i l i b r a t i o n t ime between t h e pond l i q u i d and t h e

The copper concen t ra t i on shows a sp i ke r i g h t a t t h e s t a r t of

The s l i g h t inc rease i n pH i s p o s s i b l y due t o the resumption of f l o w

A-42

atmosphere.

g r e a t e r C02 absorpt ion, t h u s lower ing t h e pH of t h e pond water.

Longer e q u i l i b r a t i o n t imes dur ing per iods o f no f low would a l low

SOLID WASTE

Although no s o l i d wastes were analyzed, f o r r e g u l a t i o n purposes, t h e l i q u i d

b o i l e r wastes a r e c l a s s i f i e d as s o l i d waste under RCRA (40 CFR P a r t 261.2.

D e f i n i t i o n of s o l i d waste).

t h e RCRA standards. To ta l chranium exceeds t h e EP l i m i t . The low pH o f t h e

d r a i n s a l s o makes them RCRA cor ros ive .

Appendix C p resents t h e sample a n a l y s i s compared t o

A-43

PLANT J

Samples o f EDTA wastes and pond l i q u i d , be fo re and a f t e r treatment, ash pond

so l i ds , and coal p i l e r u n o f f l i q u o r and s o l i d s were ob ta ined i n A p r i l 1985 front

P1 a n t J . PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e West Cent ra l EPRI Data Region and has two 750 W

u n i t s t h a t f i r e a l ow-su l fu r Montana coal . Low volume wastes a re t r e a t e d on s i t e

i n an ash pond, w i t h t h e u l t i m a t e t rea tment of EDTA b o i l e r c lean ing waste be ing

s u n l i g h t degradat ion (UV r a d i a t i o n ) .

Waterside washing o f t h e b o i l e r s occurs every t h r e e years.

low volume wastes produced a t t h e p l a n t cou ld n o t be determined.

The t o t a l volume of

WASTE MANAGEMENT

A general schematic o f t h e t rea tment system a t P l a n t J i s presented i n F i g r e

A-9. A lso shown i n t h e f i g u r e a re t h e sampling p o i n t s around t h e system. A

p r i v a t e cont rac tor , Dowell, i s h i r e d t o perform t h e c lean ing operat ion. A

p o r t i o n of t h e 85,050 ga l l ons of water i n t h e b o i l e r i s drained t o p rov ide space

f o r EDTI! add i t i on .

o f EDTA i s added. The i r o n and EDTA concent ra t ions i n t h e wastewater a re

monitored; t h e c lean ing cont inues u n t i l t h e i r o n concen t ra t i on i s cons tan t (12-16

hottrs).

hydrazine and s u f f i c i e n t ammonia t o p rov ide a systeni pH g rea te r than 10 i s made.

An a i r p a s s i v a t i o n s tep i s included. A l l c l ean ing wastewaters are then dra ined

t o an i d l e FGD t h i c k e n e r c o n t a i n i n g 500,000 ga l l ons (1/3 f u l l ) o f water. The

e n t i r e con ten ts o f t h e FGD t h i c k e n e r a re then discharged t o t h e ash pond.

ash pond has 65 acres of surfa,ce area, i s 50 f ee t deep and i s l i n e d w i t h 18 inches o f compacted c lay . The pond i s non-evaporative; water i s re tu rned t o t h e

p l a n t f o r use as makeup water t o t h e FGD system.

w i t h i n one f o o t o f i t s riiarinium l e v e l and a second ash pond (100 acres x 50 f e e t

deep) has r e c e n t l y been constructed.

The b o i l e r i s preheated t o 3OO0F and a t o t a l of 9,500 g a l l o n s

The b o i l e r i s then cooled t o 180°F and drained. One r i n s e o f 200 mg/L

The

C u r r e n t l y t h e ash pond i s

A l l o the r low volume wastes a re codisposed i n a small pond used f o r bot.trmi ash

disposal . The coal p i l e runoff goes d i r e c t l y t o t h e bottom ash pond. C-ther l w

volume wastes, such as a i r p reheater r i n s e water and p y r i t e s a re sent t o t h e

bo-t tmi ash pond. Deminera l i zer regenera t ion wastes go t o t h e n e u t r a l i z a t i o n

basin. T h i s bas in overf lows t o t h e bottom ash pond. Water from t h e bottom ash

A-44

THICKENER 1,500,OW GAL.

EDTA

BOILER

COAL PILE RUNOFF

w BOTrOM ASH POND

(LINED WITH 18 IN. CLAY)

%--.-- UNDERFLOW

TO FGD L& SYSTEM

ASH POND (LINED WITH 18 IN. CLAY) 65 ACRES x 50 FT. DEEP

TO FGD SYSTEM

ASH POND (LINED WITH 18 IN. CLAY) 65 ACRES x 50 FT. DEEP

Figure A-9. P l a n t J Waterside Waste Treatment System and Coal P i l e Runoff Col lect ion System

I i I I '

pond decants t o t h e r e c y c l e pond and i s reused f o r bottom ash s l u i c i n g and. t o a

l e s s e r degree. as pump seal water. The o n l y waste c u r r e n t l y p e r m i t t e d f o r

o f f - s i t e d isposal i s c o o l i n g tower blowdown.

SAMPLES COLLECTED

Samples were c o l l e c t e d on A p r i l 23-25, 1985. A t t h a t time, t h e o n l y wastewater

be ing t r e a t e d was t h e waters ide waste o f U n i t 1.

o f t h e waters ide wastewater and t r e a t e d water a r e i n d i c a t e d i n F i g u r e A-9.

Sampling p o i n t s r e p r e s e n t a t i v e

An ammoniated EDTA c leaner was used a t P l a n t J f o r t h e b o i l e r c leaning.

Wastewater was discharged t o t h e ash pond. A sample o f t h e un t rea ted wastewater

was c o l l e c t e d from sampl ing p o i n t 1 i n F i g u r e A-9. A t a l a t e r date (approx i -

l r a t e l y one week), p l a n t personnel c o l l e c t e d a sample o f t h e pond water a t p o i n t

3 , a f t e r p a r t i a l t rea tment by UV s u n l i g h t . Table A-8 l i s t s t h e samples taken and

t h e i r descr iD t ions .

T h i s

Table A-8

SAMPLES FRO4 PLANT J

Sample Point ’

J -CPR4 4

J-CPS4 4

J -P-1 3

J-PS 3

J-TkU-1 2

J-V1 1

J-TkUt1 2

J-P+1 3

- ’See F i g u r e P.-9 f o r sample p o i n t l o c a t i o n .

A-46

. . SamDle Description

Coal p i l e r u n o f f l i q u o r c o l l e c t e d a t coal p i l e runof f bas in

Coal p i l e r u n o f f s o l i d s c o l l e c t e d a t coal p i l e r u n o f f bas in

Ash pond supernate c o l l e c t e d b e f o r e EDTA a d d i t i o n

Ash pond s o l i d s c o l l e c t e d before EUTA a d d i t i o n

Thickener underf low 1 iquor c o l l e c t e d b e f o r e EDTA a d d i t i o n

Composite o f t h e EDTA waste co l - l e c t e d from t h e b o i l e r c lean ing

Thickener underflow 1 iquor c o l l e c t e d a f t e r EDTA a d d i t i o n

-

Ash pond supernate c o l l e c t e d a f t e r EDTA a d d i t i o n

SUMMARY

Both t h e coal p i l e runo f f l i q u i d and raw EDTA s o l u t i o n a re RCRA non tox i c waste

because t h e d i sso l ved metal concent ra t ions a re below t h e RCRA maximum l i m i t s .

D i l u t i o n of t h e waters ide wastewater i n t h e th i ckener and ash pond. fo l l owed by

t h e breakdown of t h e EDTA by sun l i gh t , e f f e c t i v e l y reduces t h e i r o n concen t ra t i on

t o near i n i t i a l ash pond l e v e l s a f t e r a one week per iod. Copper and z i n c a re

reduced below 1 mg/L.

DISCUSSION OF RESULTS

Appendix B p resents sample r e s u l t s f rom t h e P l a n t J t rea tment system. Samples

J-V1, J-TkU-1, and J-TkUt1 are t h e raw EDTA s o l u t i o n d i r e c t l y from t h e b o i l e r

c leaning, and t h e t h i c k e n e r underf low be fo re and a f t e r a d d i t i o n o f t h e EDTA

s o l u t i o n , respec t i ve l y . High l e v e l s of boron and magnesium were present i n t h e

t h i c k e n e r underf low be fo re t h e EDTA d ra in . These h igh l e v e l s a re present because

t h e water l e f t i n t h e t h i c k e n e r was from t h e combinat ion part iculate/FGD process.

After the EDTA dra in , t h e i r o n concen t ra t i on i n t h e waters ide wastewater i s

reduced t o 5 pe rcen t of i t s former value. The pH i s ra i sed from s l i g h t l y above 7 t o 8.5. Aluminum and i r o n reniain above 1 mg/L. S u l f a t e l e v e l s a re a l s o high.

Samples J-P-1 and J-Pt1 a re t h e ash pond water before t h e EDTA d r a i n and one week

a f tek t h e EDTA dra in .

s i m i l a r t o t h a t o f t h e th i ckener ; boron and magnesium l e v e l s a r e high. One week

a f t e r t h e EDTA has been dra ined t o t h e pond, t h e i r o n concen t ra t i on i s l e s s than

5 mg/L.

c h e l a t e by s u n l i g h t (UV r a d i a t i o n ) . As t h e c h e l a t e i s broken, t h e hydroxide

s o l u b i l i t y l i m i t i s exceeded. causing t h e i r o n t o p r e c i p i t a t e as f e r r i c

hydroxide. The i r o n l e v e l can be expected t o drop f u r t h e r w i t h t ime as o x i d a t i o n

and h y d r o l y s i s t a k e s place. The copper and z i n c l e v e l s a re q u i t e low. High

magnesium and s u l f a t e l e v e l s a re due t o t h e ash/FGD scrubber systems.

The composi t ion of t h e pond water i n i t i a l l y p resent i s

Th is i s due t o t h e combined e f f e c t s of d i l u t i o n and break ing o f t h e EDTA

Sample J-CPR4 i s t h e coa l p i l e runoff l i q u o r c o l l e c t e d a t t h e coa l p i l e r u n o f f

basin. A l l of t h e t r a c e meta ls a re below 1 mq/L. The water from t h i s pond i s

re.turried t o t t i e p l a n t fw use as pump sea'l water and i s no t discharged.

A-47

SOLID WASTE

The s o l i d waste streams, as de f ined by RCRA, i n c l u d e t h e EDTA wastewater and coal

p i l e runof f . Although both are l i q u i d , they a r e de f ined as s o l i d waste (40 CFR

261.2, D e f i n i t i o n of s o l i d waste).

elemental concent ra t ions found i n t h e coal p i l e runof f and t h e raw EDTA s o l u t i o n .

I n both cases, s ince t h e wastes are l i q u i d w i t h l e s s than 0.5 percent so l i ds ,

they a r e analyzed d i r e c t l y and compared t o RCRA l e v e l s .

t h e RCRA maxlmum 1 fmi ts .

Appendix C presents a comparison o f t h e

Both samples a r e below

A-48

PLANT K

Samples o f raw and t r e a t e d f i r e s i d e wastewater, p o l i s h i n g pond water, and a

combined sludge fran t h e t reatment process were obta ined i n June 1985 from P lan t

K.

PLANT DESCRIPTION

The p l a n t s i t e i s l oca ted i n t h e Nor theast EPRI Data Region. There are two

o i l - f i r e d b o i l e r s , 180 tW each. t h a t burn No. 6 o i l . Low volume wastes a r e

t r e a t e d on-site. us ing c a u s t i c and lime, i n a u t i l i t y owned f a c i l i t y . Dur ing t h e

sampling period. f i r e s i d e wastewater was being processed.

The f i r e s i d e o f t h e b o i l e r i s cleaned du r ing annual two week outages. Approx-

imate ly 1.6 m i l l i o n ga l l ons o f a i r preheater waste a r e generated. Every f o u r

years t h e r e i s a major outage when bo th t h e f i r e s i d e and waters ide of t h e b o i l e r s

a r e cleaned.

WASTE MANAGEMENT

F igu re A-10 presents a general schematic o f t h e t rea tment system a t P l a n t K.

Also i n d i c a t e d i n t h e f i g u r e are t h e sampling p o i n t s around t h e system. The a i r

preheater was washed w i t h h igh pressure water, and t h e waste water c o l l e c t e d and

sent v i a sumps t o e q u a l i z a t i o n bas in 2. The bas in i s l l n e d w i t h a membrane and

ho lds 2.6 m i l l i o n g a l l o n s of wastes.

Wastewater from t h e bas in i s pumped t o t h e t rea tment system where t h e pH i s

ad jus ted i n a 9000 g a l l o n tank. The pH i s ra i sed t o between 9 and 11 us ing

caus t ic , which p r e c i p i t a t e s t h e d isso lved meta ls as hydroxides. The pH-adjusted

stream i s sent t o t h e c l a r i f i e r where polymer i s added t o e f f e c t f l o c c u l a t i o n and

c l a r i f i c a t i o n .

mate ly 600 gpm. Underflow frm t h e c l a r i f i e r i s recyc led back t o t h e c l a r i f i e r

as seed mate r ia l . Since i n d i v i d u a l c lean ings do n o t war ran t ope ra t i ng t h e vacuum

f i l t e r . t h e under f low i s o n l y p e r i o d i c a l l y dewatered i n t h e vacuum f i l t e r . The

sludge i s drummed and cont rac ted ou t f o r l and d isposal .

c l a r i f i e r goes t o a 90,000 g a l l o n p o l i s h i n g pond where f u r t h e r reac t i ons and

s e t t l i n g may occur. A p o r t i o n of t h e over f low from t h e p o l i s h i n g pond i s r e c i r -

c u l a t e d t o t h e power p lan t . The r e s t o f t h e pond over f low i s ad justed t o near

neu t ra l pH w i t h a c i d before subsequent ocean discharge.

The c l a r i f i e r volume i s 20,000 g a l l o n s w i t h a f l o w r a t e o f approxi-

Overflow from t h e

? cn 0

EQUALIZATION BASIN 2 CAUSTIC

FEED

POLYMER

LINED POND POWER 2 6 MILLION G

EQUALIZATION

(FLY ASH) BASIN 1 pH ADJUSTMENT

TANK %OW G

20,OWG 900,WOG CONCRETE TANK

250,WO G

SLUDGE TO CONTRACTED

DISPOSAL

L RECIRCULATION

ACID FEED

ADJUSTMENT TANK

a SAMPLING POIN1

F igure A-10. P l a n t K Low Volume Waste Treatment System

I ~l

SAMPLES COLLECTED

Samples were c o l l e c t e d on June 9, 1985. A t t h a t time, f i r e s i d e wastewater from

t h e c l e a n i n g of t h e a i r preheater was being t rea ted .

p o i n t s 1. 2 , 3, 4. and 5 as shown i n F i g u r e A-10.

were c o l l e c t e d from p o i n t s 1 and 2 , represent ing t h e sump and e q u a l i z a t i o n basin,

respec t ive ly .

should have t h e same composit ion.

Samples were c o l l e c t e d from

A i r preheater waste samples

Only samples from p o i n t 1 were analyzed s ince bo th o f t h e samples

Sample p o i n t 3 represents t h e water q u a l i t y a f t e r p r imary treatment, and sample

p o i n t 4 represents t h e f i n a l water q u a l i t y . Sample p o i n t 5 i s t h e t h i c k e n e r

underflow and was taken f o r s o l i d waste ana lys is . The vacuum f i l t e r was n o t i n

o p e r a t i o n a t t h e t i m e o f sampling.

Samples of waste from t h e s tack wash and p r e c i p i t a t o r wash were c o l l e c t e d w i t h i n

t h e f o l l o w i n g two weeks by p l a n t personnel. These samples represent composites

of t h r e e grab samples taken one hour a f t e r s t a r t o f washing, a t t h e m i d p o i n t of t h e wash, and near t h e end o f washing.

SUMMARY

The s o l i d wastes present a t P l a n t K a r e c l a r i f i e r sludge and e l e c t r o s t a t i c

p r e c i p i t a t o r and s tack wash s o l i d s . The e l e c t r o s t a t i c p r e c i p i t a t o r waste was

t o x i c by RCRA procedure; cadmium l i m i t s were exceeded i n bo th t h e EP and

TCLP/Liquid t e s t s (under t h e proposed procedure f o r t h e TCLP, any l i q u i d p resent

i n a sludge i s analyzed separa te ly from t h e s o l i d e x t r a c t ) .

s o l i d wastes were found t o be t o x i c by RCRA procedures.

None o f t h e o t h e r

Ana lys is o f t h e e f f l u e n t from t rea tment of t h e a i r preheater waste showed t h a t

a l l o f t h e meta ls concentrat ions, except vanadium. were reduced below 1 mg/L.

The vanadium c o n c e n t r a t i o n i n t h e e f f l u e n t was under 2 mg/L.

DISCUSSION OF RESULTS

Appendix B p resents sample r e s u l t s from t h e P l a n t K t rea tment system.

samples were taken as grabs and do n o t represent an average e f f l u e n t q u a l i t y .

Samples K-APrl. K-Tk03, and K-P4 were taken a t t h e a i r preheater wastewater,

t h i c k e n e r overf low and p o l i s h i n g basin, r e s p e c t i v e l y . The raw f i r e s i d e

wastewater c o n t a i n s i ron , n icke l , and vanadium above 1 mg/L. The c a u s t i c

t rea tment removes most o f these metals. b u t vanadium i s s t i l l s l i g h t l y above 1

These

A - 5 1

mg/L.

same, except f o r lower vanadium l e v e l s i n t h e f i l t e r e d sample. Th is suggests

t h a t f i n e s o o t and ash p a r t i c l e s may be respons ib le f o r t h e vanadium present.

The f i l t e r e d and u n f i l t e r e d raw f i r e s i d e wastewater a r e e s s e n t i a l l y t h e

The composi t ions o f t h e t r e a t e d f i r e s i d e wastewater from t h e c l a r i f i e r and

p o l i s h i n g pond a r e a l s o very s i m i l a r . Th is i n d i c a t e s t h a t f u r t h e r r e a c t i o n s

w i t h i n t h e p o l i s h i n g pond a r e minimal, as expected. The s l i g h t increases i n

aluminum, magnesium, and vanadium concent ra t ions i n t h e p o l i s h i n g pond over those

found i n t h e c l a r i f i e r overf low may be due t o p rev ious wastes conta ined i n t h e

pond.

SOLID WASTES

The s o l i d waste samples i n c l u d e c l a r i f i e r sludge. s tack wash so l ids. e l e c t r o -

s t a t i c p r e c i p i t a t o r wash s o l i d s , and t h e a i r preheater l i q u i d . Although t h e

l a t t e r sample i s a l i q u i d and t r e a t e d f o r discharge, it i s defined as a s o l i d

waste under RCRA (40 CFR P a r t 261.2, D e f i n i t i o n of s o l i d waste).

Appendix B p resents t h e a n a l y s i s of t h e c l a r i f i e r sludge and t h e e l e c t r o s t a t i c

p r e c i p i t a t o r wash s o l i d s . The sludge c o n s i s t s p r i m a r i l y of calcium, i ron,

magnesium, and vanadium. Due t o t h e o p e r a t i n g pH o f t h e c l a r i f i e r , these species

would presumably be present as hydroxides, except f o r vanadium, which i s probably

found i n t h e pentox ide form. The e l e c t r o s t a t i c p r e c i p i t a t o r wash s o l i d s a l s o

c o n s i s t p r i m a r i l y of calcium, i r o n , magnesium, and vanadium.

Three types o f e x t r a c t i o n procedures were performed on t h e sludge; t h e EPA

E x t r a c t i o n Procedure (EP), t h e proposed T o x i c i t y C h a r a c t e r i s t i c Leaching Proce-

dure (TCLP), and t h e C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n Test.

The EP, TCLP and CAM t e s t r e s u l t s a r e presented i n Appendix C a long w i t h t h e RCRA

maximum c o n c e n t r a t i o n l i m i t s . As shown i n Appendix C, t h e e l e c t r o s t a t i c p r e c i p i -

t a t o r wash exceeded t h e RCRA l i m i t s f o r cadmium i n both t h e EP and TCLP/Liquid

t e s t s . I n t h e CAM t e s t s , t h e STLC l i m i t s fo r cadmium, n i c k e l , and vanadium were

exceeded by t h e e l e c t r o s t a t i c p r e c i p i t a t o r s o l i d s .

more aggress ive than t h e o t h e r two procedures due t o t h e use o f a c i t r a t e b u f f e r

and a l a r g e r e x t r a c t i o n t ime.

values.

The CAM t e s t i s genera l l y

The TCLP r e s u l t s a r e t y p i c a l l y lower than t h e EP

Appendix C a l s o presents a comparison of t h e f i l t e r e d and u n f i l t e r e d f i r e s i d e

wastewater t o RCRA s o l i d waste r e g u l a t o r y l i m i t s .

w i t h l e s s t h a n 0.5 percent so l ids , they a r e analyzed d i r e c t l y and compared t o t h e

RCRA l i m i t s . Both samples a r e w e l l below t h e maximum a l lowab le l i m i t s .

Since t h e wastes a r e l i q u i d s

A-52

PLANT L

Samples of EDTA b o i l e r chemical c lean ing waste and coa l p i l e runo f f were obta ined

i n June 1985 from P l a n t L.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e East Centra l EPRI Data Region and has t h r e e u n i t s

w i t h a t o t a l capac i t y o f about 780 W. The p l a n t burns subbituminous coal from

t h e Powder R i v e r Basin. Dur ing t h e sampling period, one 317 MW u n i t was being

cleaned. Other low volume wastes ( coa l p i l e runof f , f l o o r drains, etc.) a re

t r e a t e d on s i t e and sent t o ash basins.

Waterside washing occurs every t h r e e years and generates about 80,000 g a l l o n s of

wastewater per u n i t .

WASTE MANAGEMENT

F i g u r e A-11 presents a general schematlc of t h e coa l p i l e runoff t reatment system

a t P l a n t L. b o i l e r . The steam drum, round drum, and w a l l tubes were cleaned us ing c i r c u l a t e d

Vertan 675, which con ta ins ammoniated EDTA. The s o l u t i o n was c i r c u l a t e d i n t h e

b o i l e r a t a temperature between 200 and 3000F f o r i r o n sca le removal.

est imated i r o n removal was achieved, a i r was added t o supply t h e oxygen necessary

for copper removal. When t h e des i red copper removal was achieved, t h e s o l u t i o n

wa5 dra ined from t h e b o i l e r t o h o l d i n g tanks.

s o l u t i o n had been h e l d i n t h e b o i l e r f o r t h r e e days.

usual due t o problems w i t h t h e c i r c u l a t i o n pumps.

The EDTA s o l u t i o n from t h e b o i l e r c lean ing i s i n c i n e r a t e d i n a

A f te r t h e

A t t h e t in ie o f sampling, t h e EDTA

T h i s time was longer than

The wastewater h e l d i n t h e s torage tanks i s evaporated i n one o f t h e b o i l e r s by

i n j e c t i o n through 4 nozz les a t f lows o f 20 gpm per nozzle.

t o 50 p s i a r e mainta ined a t t h e nozz le heads.

F l u i d pressures o f 40

Coal p i l e r u n o f f i s c o l l e c t e d around t h e per imeter of t h e coal p i l e and dra ined

t o t h e c o l l e c t i o n basin. From t h e basin. t h e water normal ly proceeds t o a

coalescer, where so l i ds , o i l , and water a re separated. A t t h e t in ie o f sanlpling,

t h e coalescer was n o t i n operat ion. The water i s then pumped froni t h e coalescer

( o r basin. when t h e coalescer i s n o t i n use) t o one of two ash ponds. The ash

bas ins a r e a c o l l e c t i o n o f bot tom ash, p y r i t e s , and miscel laneous p l a n t waters.

A -53

Q

A-54

SAMPLES COLLECTED

Samples were c o l l e c t e d on June 15, 1985. A t t h a t time, waters ide washing o f t h e

b o i l e r s was being conducted.

composite from a s l i p stream dur ing d r a i n i n g of t h e b o i l e r . The sample was w e l l

mixed and smal le r a l i q u o t s were taken f o r ana lys is .

c o l l e c t e d from t h e dra inage t rench f low ing from t h e coa l p i l e t o t h e c o l l e c t i o n

bas in ( p o i n t 1 i n F igu re A-11).

A sample of t h e EDTA waste was c o l l e c t e d as a

Coal p i l e runof f was

DISCUSSION OF RESULTS

Appendix B presents sample r e s u l t s from t h e P l a n t L waste system.

t h e spent EDTA so lu t ion .

by copper, n icke l . and z inc. Other t r a c e metals, such as aluminum, chromium,

manganese, and lead a r e present above 1 mg/L. As s ta ted prev icus ly , t h i s waste

i s evaporated i n a b o i l e r .

w i t h t h e d isposal method.

Sample L-V1 i s

,The EDTA waste con ta ins h igh l e v e l s of i ron, fo l lowed

Th is p l a n t s i t e c u r r e n t l y has no regu la to ry problems

Sample L-CPRZ i s t h e coal p i l e runof f . Th i s waste con ta ins moderate amounts o f

iron, along w i t h low amounts (above 1 mg/L) o f manganese and n i cke l .

SOLID WASTE

The EDTA waste and coa l p i l e runoff a re de f ined as s o l i d wastes under RCKA (40

CFR, P a r t 261.2, D e f i n i t i o n o f s o l i d waste) even though both samples a r e l i q u i d

streams. Appendix C presents a comparison o f t h e EDTA waste and coa l p i l e runof f

t o s o l i d waste regu la to ry l i m i t s . I n bo th cases. s ince t h e wastes a r e l i q u i d s

w i t h l e s s than 0.5 percent so l ids , they are analyzed d i r e c t l y and compared t o

RCRA concen t ra t i on l i m i t s . Based upon t h e t o t a l chromium concentrat ion, t h e EDTA

stream may be c l a s s i f i e d as a hazardous waste.

A-55

PLANT M

Waste samples obta ined i n J u l y 1985 from P l a n t M inc luded b r i n e concentrator

r e j e c t 1 iqu id, evaporat ion pond 1 iqu id, and evaporat ion pond s o l i d s .

PLANT DESCRIPTION

The p l a n t i s l oca ted i n t h e West EPRI Data Region and has four c o a l - f i r e d u n i t s

genera t ing a t o t a l of 1900 Mw. B r i n e concent ra to r r e j e c t i s sent t o one o f e i g h t

l i n e d evapora t ion ponds f o r u l t i m a t e d isposal .

WASTE MANAGEMENT

P l a n t M has a zero discharge permi t and i s l oca ted i an a r i d regi.c Recycl i ng

of recovered water i s t h e r e f o r e essen t ia l t o p l a n t operation. Large q u a n t i t i e s

of process water a re recovered us ing reverse osmosis systems and b r i n e

concentrators . The f i n a l r e j e c t water fran t h e b r i n e concent ra to rs i s sent t o

evapora t ion ponds f o r disposal. A t o t a l of e i g h t l i n e d ponds have been i n s t a l l e d

t o handle t h e wastewater fran t h e e n t i r e p lant . L i q u i d l e v e l s of 3-6 f e e t a re

kep t i n each pond t o g i v e a maximum evaporat ion r a t e w i t h minimum volume. Low

l i q u i d l e v e l s decrease t h e evaporat ion r a t e because h igh d isso lved s o l i d s depress

t h e water vapor pressure.

The u t i l i t y has t h r e e b r i n e concent ra to rs i n operat ion.

p l a n t wastewater (which inc ludes l o w volume waste).

system blowdown.

One i s used f o r general

The o the r two process FGD

SAMPLES COLLECTED

Samples were c o l l e c t e d on J u l y 10, 1985 a t p o i n t s l i s t e d i n Table A-9.

sample o f b r i n e concent ra to r r e j e c t was taken from t h e general wastewater system.

The samples o f evapora t lon pond l i q u i d s and s o l i d s were obta ined from pond S-4,

which has o n l y rece ived general wastewater b r i n e concentrate s ince s ta r tup .

The

A-56

Tab le A-9

SAMPLES FROM PLANT SITE M, JULY 10, 1985

SamDle.

M-BC1

M-P2

M-S2

SamDle D e s c r m n

B r i n e concent ra te r e j e c t l i q u i d

Evapora t ion pond l i q u i d

Evaporat ion pond s o l i d s

SUMMARY

The evapora t ion pond s o l i d s were found t o be a RCRA nontox ic waste. The t o x i c i t y

t e s t i n g us ing bo th t h e c u r r e n t E x t r a c t i o n Procedure (EP) and t h e T o x i c i t y Charac-

t e r i s t i c Leaching Procedure (TCLP), under development, showed e x t r a c t a b l e concen-

t r a t i o n s of metal w e l l below t h e RCRA maximum a l l owab le concent ra t ions . The pond

l i q u i d , however, d i d exceed t h e RCRA s o l i d waste r e g u l a t o r y l i m i t f o r selenium.

The b r i n e concent ra to r r e j e c t l i q u i d con ta ins aluminum, i ron . copper, and z i n c a t

l e v e l s above 1 mg/L. Both t h e r e j e c t and pond l i q u i d s c o n t a i n h igh l e v e l s o f

sodium, su l fa te , and c h l o r i d e . The pond l i q u i d does con ta in h ighe r l e v e l s o f

d i sso l ved metals than t h e b r i n e concen t ra to r r e j e c t due t o concen t ra t i on by

evaporat ion.

DISCUSSION OF RESULTS

Appendix B p resents sample r e s u l t s from t h e P l a n t M t rea tment system.

concent ra to r r e j e c t con ta ins very h i g h l e v e l s of sodium, ch lo r i de , and su l fa te .

Aluminum, copper, i ron , manganese, and z i n c a re p resent above 1 mg/L. The l e v e l

of d i sso l ved s o l i d s i s 104,000 mg/L o r 10.4 percent t o t a l d i sso l ved s o l i d s .

The b r i n e

The pond water a l s o con ta ins h igh l e v e l s of sodium and s u l f a t e . b u t has a lower

c h l o r i d e l e v e l . I n a d d i t i o n t o aluminum, copper, i ron , manganese, and zinc. t h e

pond water a l s o con ta ins c o b a l t and selenium above 1 mg/L.

between t h e pond water and b r i n e r e j e c t a r e probably due t o t h e na ture o f p rev i -

ous general wastes t r e a t e d and disposed i n t h e pond, and t o evaporat ion. Evapora-

t i o n o f t h e pond l i q u i d w i l l concent ra te t h e metals a l ready present, and over

tire, lead t o an inc rease i n t h e o v e r a l l metals concent ra t ion .

The d i f f e r e n c e s

A-57

SOLID WASTE

The s o l i d waste samples i nc lude t h e evapora t ion pond so l ids , b r i n e concen t ra to r

r e j e c t l i q u i d , and evapora t ion pond l i q u i d .

streams, bo th a re de f ined as s o l i d waste (40 CFR 261.2. D e f i n i t i o n o f s o l i d

waste).

Al though t h e l a s t two a r e l i q u i d

Three t ypes o f e x t r a c t i o n procedures were performed on t h e pond s o l i d s :

E x t r a c t i o n Procedure (EP), t h e proposed T o x i c i t y C h a r a c t e r i s t i c Leaching Proce-

dure (TCLP), and t h e C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n Test.

The r e s u l t s o f t h e EP and TCLP, along w i t h t h e RCRA maximum a l l owab le

concentrat ions, a re presented i n Appendix C. The r e s u l t s of t h e CAM t e s t and t h e

CAM So lub le Threshold L i n l i t Concentrat ions a r e shown i n Appendix C also.

pond s o l i d s d i d n o t exceed t h e l i m i t s on any o f t h e tes ts .

g e n e r a l l y more aggress ive than t h e o t h e r two, s ince a c i t r a t e b u f f e r and longer

e x t r a c t i o n t i m e a r e used.

t h e EPA

The

The CAM e x t r a c t i o n i s

Appendix C also presents a comparison o f t h e l i q u i d samples t o RCRA s o l i d waste

r e g u l a t o r y l i m i t s .

and compared t o RCRA maximum concen t ra t i on l i m i t s .

l i q u i d d i d n o t exceed t h e RCRA l i m i t s . The pond water. however, d i d exceed t h e

t o x i c i t y concen t ra t i on l i m i t f o r selenium.

Since t h e samples a r e l i q u i d s , they were analyzed d i r e c t l y

The b r i n e concent ra to r r e j e c t

A-58

PLANT N

Samples were c o l l e c t e d a t P l a n t N i n August 1985 f o r general p l a n t wastewater

( b r i n e concent ra to r feed), product water, r e j e c t l i q u i d . and r e j e c t s o l i d s f rom

P l a n t N.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e West EPRI Data Region and has 3 c o a l - f i r e d b o i l e r s

w i t h a genera t i ng ou tpu t of over 1,300 W .

p l a n t has a dry ash hand l i ng system and wet and dry FGD systems.

A nearby mine supp l i es t h e coal. The

WASTE F/ANAGEMEb!T

P l a n t N i s a z e r o discharge f a c i l i t y i n a water l i m i t e d region. Consequently, a

maximum e f f o r t i s made t o r e c y c l e a l l o f t h e water. B r i n e concent rd to rs a re key

process u n i t s i n t h e water management scheme, a long w i t h t h r e e types o f ponds.

General p l a n t wastewater ( c o o l i n g tower blowdown, FGD l i q u o r , etc.) i s sen t t o

t h e medium q u a l i t y pond. Th is pond feeds t h e b r i n e concent ra to rs . Product water

i s s to red i n t h e h i g h q u a l i t y pond f o r use as system makeup. Re jec t s l u r r y i s

sent t o a nearby decant bas in where t h e b u l k o f t h e s o l i d s a re removed. Re jec t

l i q u i d then f l ows t o t h e low q u a l i t y evapora t ion pond f o r u l t i m a t e disposal . The

s o l i d s i n t h e decant bas in a re removed semiannually and disposed o f w i t h t h e h igh

volume wastes i n t h e coa l mine.

SAMPLES COLLECTED

Several samples were c o l l e c t e d on August 21, 1905. The samples a re l i s t e d i n

Table A-10. Th is s t a t i o n i s o n i y several years old. Dur ing st:artup, t h e water

bala.nce was o f t e n overloaded, which caused a l l of t h e ponds t o rece ive r e l a t i v e l y

h i g h q u a l i t y water.

however, t h e low q u a l i t y evapora t ion pond s t i l l has a r e l a t i v e l y low d i sso l ved

s o l i d s concent ra t ion . Consequently. no pond samples were obtained. Samples were

taken of t h e feed, p roduc t and ' r e j e c t f rom t h e b r i n e concent ra to r . A d d i t i o n a l l y ,

a sample of p y r i t e s was ob ta ined f o r ana lys i s and l a b o r a t o r y t e s t s .

I n t h e l a s t few years t h i s circumstance has been corrected;

A-59

SamDle.

N-WW1

N-Prod2

N-BCFU

N-S3

Table A-10

SAMPLES COLLECTED AT PLANT N AUGUST 1985

D n s c r i o t i o n

Wastewater fed t o t h e b r i n e concent ra to r

Product water f rom t h e b r i n e concent ra to r

B r i n e concent ra to r r e j e c t l i q u i d

Sludge from decant bas in

. .

SUMMARY

A l l o f t h e streams sampled were found t.o be RCRA non tox i c s o l i d wastes.

t o x i c i t y t e s t i n g us ing t h e c u r r e n t E x t r a c t i o n Procedure (EP) and two v a r i a t i o n s

of t h e T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure (TCLP), under development,

showed e x t r a c t a b l e concent ra t ions o f meta ls w e l l below t h e RCRA maximum a l l owab le

l i m i t s f o r t h e r e j e c t so l ids . t h e r e j e c t l i q u i d . and t h e p l a n t wastewater.

The

The b r i n e concent ra to r r e j e c t l i q u i d contained boron and z i n c a t 20 mg/L.

low q u a l i t y pond increases i n s a l i n i t y . o the r elements may become more concen-

t r a t e d .

As the

DISCUSSION OF RESULTS

Appendix B p resents t h e a n a l y t i c a l r e s u l t s f o r t h e th ree l i q u i d streams and one

s o l i d stream sampled. The wastewater con ta ins p r i m a r i l y calcium, magnesium.

sodium, su l fa te , and c h l o r i d e , a l l species commonly p resent i n c o o l i n g tower

blowdown and FGD l i q u i d . No t r a c e metals a r e present a t s i g n i f i c a n t l eve l s .

Approximately 98 percent of t h e wastewater i s recovered as product water o f very

h i g h q u a l i t y .

t o i t s v o l a t i l i t y .

Only boron i s n o t s i g n i f i c a n t l y renioved from t h e feed stream due

The r e j e c t l i q u i d con ta ins h igh l e v e l s of t h e f i v e major species mentioned above

an$ lower l e v e l s of boron and zinc.

a rsen ic a t 0.5 rog/L.

The o n l y o t h e r element o f poss ib le no te i s

The r e j e c t s o l i d s a re p r i n i a r i l y ca lc ium su l fa te .

A-60

SOLID WASTE

S o l i d waste samples, according t o 40 CFR, Subpart B 260.10, i n c l u d e bo th l i q u i d

and s o l i d streams. These streams a r e t h e wastewater and t h e r e j e c t l i q u i d and

so l i ds . The r e j e c t s o l i d s were processed us ing f o u r types o f e x t r a c t i o n proce-

dures; t h e EP i n Appendix I1 of 40 CFR P a r t 261. t h e o r i g i n a l l y proposed TCLP

( o l d ) , a newer proposed TCLP (new) and t h e C a l l f o r n i a Assessment Manual (CAM)

Waste E x t r a c t i o n Test. The CAM t e s t represents a s t a t e procedure more s t r i n g e n t

than t h e fede ra l methods and i s i nc luded f o r t h a t reason. Appendix C presents

t h e p e r t i n e n t c r i t e r i a rega rd ing t h e methodology of each procedure.

procedures d i f f e r i n t h e l each ing f l u i d and i t s method o f i n t roduc t i on .

The two TCLP

Appendix C presents t h e r e s u l t s of t h e EP, TCLP, and CAM e x t r a c t i o n s of t h e b r i n e

concen t ra to r so l i ds . None of t h e analyses produced a t o x i c metal concent ra t ion .

A-61

PLANT 0

Low volume waste samples of b r i n e concent ra to r r e j e c t , t h e pond so l i ds , and t h e

pond l i q u i d were ob ta ined i n August 1985 Prwn P l a n t 0.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e West EPRI Data Region and has two c o a l - f i r e d b o i l e r s

w i t h a genera t ing ou tpu t over 500 Mw. A nearby mine supp l i es t h e coal. The

p l a n t i ises a d ry f l y ash hand l i ng system.

WASTE MANACEMEI’IT

P l a n t 0 is a ze ro discharge f a c i l i t y i n a water l i m i t e d region. Consequently, a

maximum e f f o r t i s made t o r e c y c l e a l l o f t h e water. The b r i n e concent ra to r i s a

key process u n i t i n t h e water management scheme, a long w i t h t h r e e types of ponds.

General p l a n t wastewater ( c o o l i n g tower blowdown, o t h e r drains, e t c . ) i s sen t t o

t h e medium q u a l i t y pond. Th is pond feeds t h e b r i n e concent ra to r . Product water

i s s to red i n t h e h i g h q u a l i t y pond f o r use as system makeup and r e j e c t s l u r r y i s

sent t o an evapora t ion pond.

SAMPLES COLLECTED

On August 21 several samples were c o l l e c t e d a t P l a n t 0, as shown i n Table A-11.

Samples o f t h e b r i n e concent ra to r r e j e c t , pond water, and s o l i d s were obtained.

The pond water sample was taken across t h e pond from t h e r e j e c t entrance.

sample o f p y r i t e s was a l s o ob ta ined f o r a n a l y s i s and labo ra to ry tes ts .

A

Table A-11

SAMPLES COLLECTED AT PLANT 0, AUGUST 1985

s - a w k l h

0-BCR1

0-P2

0-52

0-Py

D e s c r i o t i o n

B r i n e concent ra to r r e j e c t

Evaporat ion pond water

Sludge s o l i d s from pond

P y r i t e s frm p u l v e r i z e r

. .

A-62

SUMMARY

A l l of t h e streams sampled were found t o be RCRA non tox i c s o l i d wastes. The pond

s o l I d s were t e s t e d u s i n g t h e c u r r e n t E x t r a c t i o n Procedure. two a l t e r n a t e T o x i c i t y

C h a r a c t e r i s t i c Leaching Procedures and t h e CAM Waste E x t r a c t i o n Test.

e x t r a c t a b l e metal concent ra t ions were above t h e l i m i t s f o r any of those

p roced ures.

No

DISlXlSSION OF RESULTS

Appendix B p resents t h e a n a l y t i c a l r e s u l t s f o r t h e two l i q u i d streams and one

s o l i d stream sampled. The r e j e c t s l u r r y and pond water con ta in p r i m a r i l y c a l c i -

um, magnesium, sodium. su l fa te , and ch lo r ide , a l l species commonly present i n

c o o l i n g tower blowdown and makeup water.

c a n t l e v e l s . The r e j e c t s o l i d s a re p r i i n a r i l y ca lc ium su l fa te .

No t r a c e metals a re present a t s i g n i f i -

S O L l D WASTE

S o l i d waste samples, according t o 40 CFR, Subpart B 260.10, i nc lude bo th l i q u i d

and s o l i d streams. These streams a re t h e r e j e c t s l u r r y , and pond s o l i d s and

l i q u i d . The pond s o l i d s were processed us ing f o u r t ypes of e x t r a c t i o n proce-

dures; t h e EP i n Appendix I1 o f 40 CFR P a r t 261, t h e o r i g i n a l l y proposed TCLP

( o l d ) , a newer proposed TCLP (new) and t h e C a l i f o r n i a Assessment. Manual (CAM)

Waste E x t r a c t i o n Test. The CAM t e s t represents a sta. te procedure more s t r i n g e n t

than t h e fede ra l methods and i s i nc luded f o r t h a t reason. Appendix C prEsents

t h e p e r t i n e n t c r i t e r i a rega rd ing t h e methodology o f each procedure. The two TCLP

procedures d i f f e r i n t h e l each ing f l u i d and i t s method o f i n t r o d u c t i o n .

Appendix C a l s o presents t h e r e s u l t s of t h e EP, TCLP, and CAM e x t r a c t i o n s o f t h e

s o l i d s . None o f t h e m a l y s e s produced a t o x i c metal concentrat ion.

A-63

PLANT P

Samples of c i t r a t e b o i l e r chemical c lean ing waste. waters ide r i n s e water, and ash

pond e f f l u e n t before and a f t e r a d d i t i o n of t h e waters ide wastewater were ob ta ined

i n J u l y 1985 from P l a n t P.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e Eas t Cen t ra l EPRI Data Region and has two 535 Fki u n i t s t h a t burn Ind iana coal .

ponds.

The pr imary ash pond ho lds the m a j o r i t y of t h e f l y ash and b o t t m ash.

Low volume wastes a r e t r e a t e d on s i t e us ing ash

Dur ing t h e sampling period, waters ide wastewater was be ing processed.

B o i l e r chemical c lean ing i s conducted every f i v e years. Approximately 190,000

g a l l o n s o f waste and r i n s e waters a re produced every f i v e years for each o f t h e

two un i t s .

WATER MANAGEMENT

F igu re A-12 presents a schematic o f t h e ash pond t rea tment system a t P l a n t P. Also i n d i c a t e d i n t h e f f g u r e a r e t h e sampling po in ts . The b o i l e r t h a t was

cleaned d u r i n g t h e sampling pe r iod has a t o t a l fill volume o f 63,000 gal lons.

Dur ing c leaning, about 5,000 ga l l ons o f water were drained and rep laced w i t h

c i t r a t e s o l u t i o n s u f f i c i e n t t o produce an o v e r a l l 3 percent c i t r a t e

concent ra t ion .

i r o n and copper; 5.000 l b s i r o n (as Fe30q) and 50 l b s copper.

heated i n t h e b o i l e r t o about 392% and c i r c u l a t e d w i t h pumps. Dur ing t h e f i r s t

stage, i r o n i s removed w i t h t h e s o l u t i o n a t pH 3.5. When t h e des i red i r o n

removal i s achieved, t h e pH i s r a i s e d t o between 9 and 9.5 w i t h ammonia. Sodium

n i t r i t e i s added as an o x i d i z i n g agent t o s o l u b i l i z e copper deposits. The e n t i r e

process takes about 12 hours, a f t e r which t h e c i t r a t e s o l u t i o n i s d ra ined under a

s l i g h t head of n i t r o g e n gas (about 10 pounds per square inch) .

t hen r i nsed t w i c e w i t h water.

pr imary ash pond hold5 n1os.t of t h e f l y ash and bottom ash. The main o u t l e t of

water. from t h e pr imary pond i s by seepage under t h e d i k e t o t h e secondary pond.

An over f low w e i r a t t h e u n l i n e d secondary pond c o n t r o l s t h e f low o f e f f l u e n t t o

t h e r i v e r .

T h i s concen t ra t i on was se lec ted t o remove t h e des i red weight of

The s o l u t i o n i s

The b o i l e r i s

A l l of t h e d r a i n s a re sent t o t h e ash pond. The

SAMPLES COLLECTED

Samples were c o l l e c t e d on J u l y 6, 1985.

be ing dra ined and sent t o t h e ash pond.

A t t h a t t ime waters ide wastewater was

Samples o f t h e b o i l e r c lean ing drain,

A-64

CLEANING SOLUTION

OVERFLOW TO RIVER

PRIMARY SECONDARY BOILER ASH POND POND

F igure A-12. P l a n t P Ash Pond Treatment o f Boiler Cleaning Waste

I ~I I '

t h e f i r s t r inse, and t h e secondary pond e f f l u e n t b e f o r e waste entered t h e pond

were c o l l e c t e d from p o i n t s 1 and 2 as shown i n F i g u r e A-12.

P l a n t personnel c o l l e c t e d samples o f t h e secondary pond e f f l u e n t 2 , 4, 7, and 14

days a f t e r t h e c i t r a t e s o l u t i o n was dra ined i n t o t h e pond. These samples were

ob ta ined from p o i n t 2.

DISCUSSION OF RESULTS

Appendix B presents sample r e s u l t s from t h e P l a n t P t rea tment system.

be noted t h a t t h e pond e f f l u e n t samples were taken as grabs, and as such do n o t

represent an average e f f l u e n t q u a l i t y .

It should

Samples P-C1 and P-R1 a r e t h e c i t r a t e waste and f i r s t r inse . The c i t r a t e waste

conta ins h i g h l e v e l s of i r o n . Aluminum, chromium. copper, manganese, n i c k e l , and

z i n c a r e p resent above 1 mg/L. The r i n s e water c o n t a i n s copper, i ron, and

manganese above 1 mg/L.

Samples P-PI, P-Pt2, P-Pt4, P-Pt7, and P-Pt14 a r e t h e pond e f f l u e n t before t h e

dra in , and 2, 4, 7. and 14 days a f t e r t h e dra in . The pond e f f l u e n t b e f o r e t h e

d r a i n o n l y c o n t a i n s i r o n above 1 mg/L; a l l o t h e r meta ls a r e below 1 mg/L. The

f i r s t sample a f t e r r e s t a r t i n g f low shows a h i g h e r i r o n l e v e l . 4.1 mg/L. A l l of

t h e subsequent pond e f f l u e n t samples a r e very s i m i l a r i n composition.

concent ra t ions a r e below 1 mg/L. The m t a l complexes i n t h e wastewater a r e most

l i k e l y broken down upon a d d i t i o n t o t h e ash pond due t o t h e combined e f f e c t s o f

biodegradation, UV r a d i a t i o n and d i l u t i o n .

The metals

SOLID WASTE

The s o l i d waste streams. as def ined by RCRA. a r e t h e c i t r a t e and r i n s e water.

Although bo th a r e l i q u i d streams and a r e e v e n t u a l l y discharged, they a r e de f ined

as s o l i d wastes (40 CFR P a r t 261.2. Def in i t ion o f s o l i d waste).

Appendix C p resents a comparison o f t h e c i t r a t e waste and r i n s e water t o RCRA

s o l i d waste a l l o w a b l e c o n c e n t r a t i o n l i m i t s . I n bo th cases, s ince t h e wastes a r e

l i q u i d s w i t h l e s s than 0.5 percent s o l i d s , they a r e analyzed d i r e c t l y and

compared t o t h e RCRA l e v e l s .

chranium.

The c i t r a t e stream exceeded t h e EP l i m i t f o r t o t a l

A-66

PLANT Q

Samples o f p y r i t e s and f l y ash were obta ined i n September 1985 from P l a n t Q i n

o r d e r t o perform 1 aboratory s t u d i e s on codisposal.

PLANT DE SCR I PT I ON

P l a n t Q i s l o c a t e d i n t h e Nor theast EPRI data r e g i o n and i s composed o f two u n i t s

w i t h a t o t a l capac i ty o f 200 W . Pennsylvania coal i s burned a t t h e s t a t i o n .

WASTE MANAGEMENT

P l a n t Q i s i n a s t a t e t h a t cons iders a l l u t i l i t y wastes t o be hazardous and which

determines d isposal requi rements on a case by case basis. A t P l a n t Q, f l y ash i s

l a n d f i l l e d . A Hypalon l i n e r i s used t o p revent leachate contamination. The ash

i s wetted t o 15 t o 20 percent mo is tu re p r i o r t o disposal. P y r i t e s a r e codisposed

w i t h t h e f l y ash i n t h e l a n d f i l l .

year o f f l y ash and about 2,050 t o n s per year of p y r i t e s , roughly two percent o f

t h e ash volume.

The s t a t i o n generates about 110,000 t o n s p e r

SAMPLES COLLECTED

Samples o f moistened f l y ash and p y r i t e s were ob ta ined from t h e p l a n t d u r i n g

September 1985. These samples were used i n a l a b o r a t o r y codisposal study.

Analyses a r e presented i n Appendix 6.

A-67

PLANT R

Samples o f py r i t es , bottom ash and f l y ash were ob ta ined i n September 1985 from

P l a n t R i n o rder t o perform labo ra to ry s tud ies on codisposal.

PLANT DESCRIPTION

P l a n t R i s l oca ted i n t h e Nor theast EPRI data reg ion and i s composed o f two u n i t s

w i t h a t o t a l capac i ty of 160 M. Pennsylvania coal from severa l mines i s burned

a t t h e s t a t i o n .

WASTE MANAGEMENT

P l a n t R i s i n a s t a t e t h a t cons iders a l l u t i l i t y wastes t o be hazardous and which

determines d isposal requirements on a case by case basis. A t P l a n t R, f l y ash

and bottom ash a r e disposed of i n impoundments. P y r i t e s from U n i t 3 a r e

codisposed w i t h t h e f l y ash, w h i l e U n i t 4 p y r i t e s a re sent t o t h e bottom ash

pond. The s t a t i o n generates an est imated 1,000 tons per year o f py r i t es .

SAMPLES COLLECTED

Samples o f f l y ash, bottcm ash and p y r i t e s from each u n i t were obta ined from t h e

p l a n t d u r i n g September 1985. These samples were used i n a l abo ra to ry codisposal

study. Analyses a r e presented i n Appendix B.

A-68

PLANT S

Samples o f p y r i t e s and f l y ash were obta ined i n September 1985 from P l a n t S i n

o r d e r t o perform l a b o r a t o r y s t u d i e s on codisposal.

PLANT DESCRIPTION

P l a n t S i s l o c a t e d i n t h e Nor theast EPRI data r e g i o n and i s cmposed of t h r e e

u n i t s w i t h a t o t a l capac i ty of 1,884 MW. Pennsylvania coal from two mines i s

burned a t t h e s t a t i o n .

WASTE MANAGEMENT

A t p l a n t S, f l y ash and bottom ash a r e disposed o f Tn separate l a n d f i l l s .

P y r i t e s a r e codisposed w i t h t h e bottom ash. The s t a t i o n generates an est imated

1,500 t o n s per month o f p y r i t e s , and 50,000 t o n s per month of f l y ash.

u t i l i t y r o u t i n e l y performs dens i ty and h e a t l n g va lue measurements on t h e p y r i t e s .

Dens i ty v a r i e s from 70 t o 90 pounds per cub ic foot , w i t h heat ing va lues o f 6,000

t o 7,000 B t u per pound.

The

SAElFi E S COLLECTED

Samples o f f l y ash and p y r i t e s from each u n i t were ob ta ined from t h e p l a n t d u r i n g

September 1985.

Analyses a r e presented i n Appendix B.

These samples were used i n a l a b o r a t o r y codisposal study.

A-69

PLANT T

Samples of f i r e s i d e wastewater, t h i c k e n e r overflow, and sludge s o l i d s were ob-

t a i n e d i n September 1985 a t P l a n t T.

PLANT DESCRIPTION

The p l a n t i s l o c a t e d i n t h e Nor theast EPRI Data Region.

of 350 Md each and burns o i l and gas. They have been burn ing predominantly gas

(80 t o 90 percent ) s ince February o f 1985.

The p l a n t has two u n i t s

WASTE MANAGEMENT

The f i r e s i d e s of t h e b o i l e r s a r e cleaned two t o t h r e e t imes per year. The

u t i l i t y does i t s own washing u s i n g two percent soda ash i n water. which i s

sprayed over t h e b o i l e r through spray mani fo lds.

t h e b o i l e r a f t e r t h e soda ash wash f o r a thorough cleaning.

F i r e hoses are used t o r i n s e

Wastewater d r a i n s from t h e b o i l e r through t h e econwnizer i n l e t i n t o a c o l l e c t i o n

sump. From t h e sump, t h e wastewater 1s routed t o a h o l d i n g pond f o r l a t e r t r e a t -

ment i n t h e p l a n t wastewater t rea tment system, o r i s s e n t d i r e c t l y t o t reatment .

For t h e present wash, t h e water was sent d i r e c t l y t o t h e t rea tment system.

F i g u r e A-I3 p resents a s l m p l i f i e d schematic of t h e wastewater t rea tment system.

The wastewater was pumped from t h e c o l l e c t i o n sump d i r e c t l y t o t h e m i x well where

l i m e was added t o r a i s e t h e pH t o about 11 ( t h e pH o f t h e un t rea ted wastewater

was near 5 d u r i n g t h e i n i t i a l hours of cleaning. and near 11 a f t e r 16 hours o f

c lean ing) . A f t e r t h e mix we l l , t h e s l u r r y i s sen t t o t h e c l a r i f i e r where t h e

chemical p r e c i p i t a t i o n r e a c t i o n s occur and t h e s o l i d s s e t t l e out. Discharge from

t h e c l a r i f i e r i s sen t t o a p o l i s h i n g pond where f u r t h e r p r e c i p i t a t i o n may occur.

The water i n t h e p o l i s h i n g pond i s checked t o see t h a t it meets t h e discharge

l i m i t s f o r i ron, copper, and o i l and grease, be fore it i s pH ad jus ted t o between

s i x and n i n e and discharged.

Sludge from t h e c l a r i f i e r underflow i s dewatered t o 15 t o 20 percent s o l i d s by a

b e l t f i l t e r . About 30 c u b i c yards per week o f sludge i s generated and t r a n s -

p o r t e d t o a l i c e n s e d d isposal f a c i l i t y i n t h e nor theast . Cost f o r disposal i s

$55 per c u b i c yard.

A-70

LIME

r - - - FIRESIDE

WASTE

HOLDING POND 400,WO G

DISCHARGE

-0 SAMPLING POlNl SLUDGE TO

OFF-SITE DISPOSAL CU. YDS I WK

BELT FILTER

Figure A-13. P l a n t T Wastewater Treatment System

I i I I '

SAMPLES COLLECTED

Samples were c o l l e c t e d on Septanber 14 and 15, 1985. and are descr ibed i n Table

A-12.

t rea tmen t e f f l u e n t s a r e i n d i c a t e d by p o i n t s 1, 2, and 3 i n F i g u r e A-13.

Sampling p o i n t s used t o c o l l e c t samples o f t h e f i r e s i d e wastewater and

Table A-12

SAMRES FROM FIRESIDE WASHING AT PLANT T, SEPTEMBER 14 AND 159 1985

5adLUL - D e s c u t 1 . . Qn

T-F+l

T-F+16

T-Tk02

T- S3

1

1

2

3

F i r e s i d e wastewater c o l l e c t e d from economizer hopper a f t e r 1 hour of washing

F i r e s i d e wastewater c o l l e c t e d from economizer hopper a f t e r 16 hours o f washing

C l a r i f i e r overf low c o l l e c t e d a f t e r 16 hours o f washing

Sludge from b e l t f i l t e r . Only f i r e s i d e wastewater was being t r e a t e d (16 hours i n t o wash)

See F igu re A-13 f o r sampling p o i n t loca t ions .

SUMMARY

None of t h e samples analyzed are t o x i c accord ing t o t h e EP o r TCLP tes ts .

sludge s o l i d s exceed t h e l i m i t s e t f o r vanadium i n t h e C a l i f o r n i a Assessment

Manual Waste E x t r a c t i o n Test.

The

The l i q u i d f rom t h e f i r s t hours of washing conta ins much h igher l e v e l s o f t r a c e

meta ls than t h a t found a t t h e end o f t h e cleaning. Concentrat ions above 5 mg/L

were found f o r aluminun. cobal t , copper, i ron, and z inc. I n t h e sample c o l l e c t e d

near t h e end o f cleaning, on l y vanadium was present above 5 mg/L.

A-72

DISCUSSION OF RESULTS

The t h r e e l i q u i d streams show progress ive improvement i n water q u a l i t y .

hour f i r e s i d e waste sample con ta ins many t r a c e metals a t h i g h concentrat ions.

t h e end of t h e wash period, o n l y vanadium i s s t i l l present. I n t h e t h i c k e n e r

overf low, t h e on ly metal above 5 my/L i n concen t ra t i on i s vanadrum.

The one

A t

The sludge s o l i d s a re comprised p r i m a r i l y o f magnesium and ca lc ium compounds,

presumably as carbonates s ince soda ash i s used i n t h e wash.

SOLID WASTE

S o l i d waste samples, accord ing t o 40 CFR. Subpart B 260.14, i nc lude bo th l i q u i d

and s o l i d streams. These streams a re t h e wastewater. t h e overf low, and t h e

f i l t e r s o l i d s .

procedures: t h e EP i n Appendix I1 of 40 CFR P a r t 261, t h e o r i g i n a l l y proposed

T o x i c i t y C h a r a c t e r i z a t i o n Leaching Procedure TCLP ( o l d ) . a newer proposed TCLP

(new) and t h e C a l i f o r n i a Assessment Manual (CAM) Waste E x t r a c t i o n Test. The CAM

t e s t represents a s t a t e procedure more s t r i n g e n t than t h e federal methods, and i s

inc luded f o r t h a t reason.

t h e methodology o f each procedure.

i n g f l u i d and i t s method o f i n t r o d u c t i o n .

The f i l t e r s o l i d s were processed us ing f o u r types o f e x t r a c t i o n

Appendix C presents t h e p e r t i n e n t c r i t e r i a rega rd ing

The two TCLP procedures d i f f e r i n t h e leach-

Appendix C p resents t h e r e s u l t s o f t h e EP, TCLP and CAM e x t r a c t i o n s o f t h e

s o l i d s . As seen, t h e new TCLP concen t ra t i on l e v e l s a r e very s i m i l a r t o those

found i n t h e c u r r e n t l y used EP. Th is i s due t o t h e changes made i n t h e TCLP

which r e s u l t e d i n a f i n a l e x t r a c t a c i d i t y very c lose t o t h e a c i d i t y found i n an

EP e x t r a c t . Only t h e vanadium l e v e l i n t h e CAM procedure exceeded a regu la to ry

l i m i t , which would make t h e waste hazardous i n C a l i f o r n i a .

Appendix C a l s o presents t h e a n a l y s i s o f t h e two wastewater samples compared t o

t h e RCRA l i m i t s .

t h e regu la ted metals.

N e i t h e r o f theses samples exceeds t h e RCRA t o x i c i - t y l i m i t s for

A-73

PLANT U

Samples of two b o i l e r chemical c lean ing wastes were ob ta ined i n October 1985 from

P l a n t U: an EDTA s o l u t i o n and an hydroxyacet ic / fo rmic a c i d (HAF) waste.

PLANT DESCRIPTION

The EDTA sample was ob ta ined from one o f f o u r small c o a l - f i r e d b o i l e r s which

power a 60 MW t u rb ine . The HAF sample was ob ta ined from t h e c lean ing o f an 800 M W s u p e r c r i t i c a l c o a l - f i r e d u n i t . Both b o i l e r s a r e l o c a t e d i n t h e East Cen t ra l

EPRI data region.

WASTE MANAGEMENT

The EDTA waste i s evaporated i n one of t h e opera t i ng b o i l e r s .

verba l perni ission f o r t h i s procedure from t h e county a i r q u a l i t y c o n t r o l

personnel.

observable de t r imen ta l effects, according t o t h e p l a n t con tac t .

The u t i l i t y has

Gas sampling conducted du r ing t h e f i r s t evapora t ion revealed no

Spent HAF i s c o l l e c t e d i n a t rea tment bas in and n e u t r a l i z e d w i t h l ime. A f t e r t h e

s o l i d s have p rec ip i t a ted , t h e supernate i s discharged i n accordance w i t h t h e

NPDES requirements.

SAMPLES COLLECTED

U t i l i t y personnel c o l l e c t e d t h e EDTP, waste, t h e f i r s t EDTA rinse, and t h e HAF

waste i n October, 1985.

SUKbIARY

The EDTA waste sample con ta ins l ead above t h e EP t o x i c i t y l i m i t , making it an EP

t o x i c waste according t o 40 CFR P a r t 261.24.

chromium above t h e EP t o x i c i t y l i m i t . and t h e r e f o r e may be sub jec t t o hazardous

waste regu la t i on .

The HAF waste con ta ins t o t a l

The EDTA r i n s e i s n o t hazardous.

The a n a l y s i s o f t h e t h r e e samples i s presented i n Appendix E. The EDTA waste

a l s o c o n t a i n s i g n i f i c a n t l e v e l s of copper, i ron. n i cke l , and zinc. The smal l

s i z e and age of t h i s b o i l e r i n d i c a t e s an o l d e r n te ta l lu rgy fo rmu la t i on than seen

i n o t h e r samples c o l l e c t e d i n t h i s prograa.

waste which has had a h i g h l e a d l e v e l .

b o i l e r con ta ins on ly i r o n and smal l amounts of n icke l , molybdenuni, and chromium.

T h i s i s t h e on ly b o i l e r c lean ing

The HAF waste f rom t h e s u p e r c r i t i c a l

A-74

Appendix B

TABULATION OF RESULTS FOR

SAMPLING AND ANALYSIS OF LOW

VOLUME WASTES AT FOSSIL FUEL-FIRED POWER PLANTS -

!

!

~

j

,

CONTENTS

8- 1

8-2

8-3

8-4

8-5

8-6

8- 7

8-8

8-9

8-10

8-11

8-12

8-13

8- 14

8-15

8-16

8-17

8-16 8-19

8-20

8-21

8-22

Low Volume Wastes Collected and Analyzed Analytical Resul ts -- Plan t A

Analytical Resul ts -- Plan t B

Analytical Resul ts -- Plan t C Analyt ical Result's -- Plan t D Analytical Resul ts -- Plan t E

Analytical Resul t s -- Plan t F

Analytical Results -- Plant G

Analytical Resul t s -- Plan t H

Analytical Resul t s -- Plan t I Analytical Resul t s -- Plan t J

Analytical Resul t s -- Plant K

Analytical Resul t s -- Plant L

Analytical Resul ts -- Plan t M

Analytical Resul t s -- Plan t N

Analytical Resul t s -- Plan t 0 Analytical Resul t s -- Plan t P Analytical Resul t s -- Plan t Q

Analytical Resul t s -- Plan t R Analytical Resul ts -- Plan t S

Analytical Resul t s -- Plan t T

Analytical Resul t s -- Plant U

8-2

8-6

8-7

8-6 8-9 8-10

8-11

8-12

8-14

8-15

8-17

8-18

8-19

8-20

8-21

8-22

8-23

8-25

8-26

6-27

8-28

8-29

6 - i i i

TAENJLATION OF RESULTS FOR SAMPLING AND ANALYSIS

OF LOW VOLUME WASTES

The r e s u l t s o f a n a l y s i s conducted d u r i n g RP2215-1 a r e t a b u l a t e d i n t h i s appendix.

I n general. t h e data a r e ordered by p lant , A through U. The d iscuss fon o f

r e s u l t s f a r each p l a n t i s conta ined i n Appendix A.

, -

I -

I

,

Ela.@z A

EPRI Data Reaion

west

Tab le B-1

LOW VOLUME WASTES COLLECTED AND ANALYZED

E!dd

Gas

B Northeast O i l

W

N

C

D

E

F

West

Nor theast

South Cent ra l

West

Gas

O i l

Gas

C i l

Sanlole f i r e s i d e waste t r e a t e d f i r e s i d e e f f l u e n t EDTA waste t r e a t e d ECTA e f f l u e n t combined s o l i d s

HC1 waste n e u t r a l i ze6 HC1 r i n s e water soda ash r i n s e sludge from bas in t r e a t e d HC1 e f f l u e n t

ammonium bromate waste HC1 k a s t e pond water pond s o l i d s

f i r e s i d e waste c l a r i f i e r supernate sludge s o l i d s c l a r i f i e r underflow

c i t r a t e waste

HAF composite waste t r e a t e d HAF e f f l u w t c l a r i f i e r underflow

T;n9f

A-F A- F A-V A-V A-S

B-HC1 e-HC1 e-R e-SA

B-Ef e-s

c-er C-HCl c-P c-s

D-F D-TkO D-S E-TkU

E-C

F-HAF F-Ef F-S

c a u s t i c t rea tment p reopera t iona l c l e a n i n g l i n e and c a u s t i c t r e a t n e n t f ran t rea tments

waters ide wash PH 6 f i r s t water r i n s e

taken a f t e r l a s t waste f i l t e r e d e f f l u e n t

waters ide wash watersicis wash combined washwaters s ludge from pond

fe r rous s u l f a t e , l i m e t rea tment vacuum f i l t e r percent s o l i d s o n l y

evaporated

hydroxyacet ic / fo rmic and r i n s e s 1 ime a d d i t i o n t rea tment sludge

' I ~I I ' 1

Table B-1 (Continued)

LOW VOLUME WASTES COLLECTED AND ANALYZED

EPRI Data m Realon G West

€u?l Samole O i l composite waste

t r e a t e d e f f l u e n t t rea tment sludge HC1 waste ammonium bromate waste water r i n s e hydraz ine r i n s e

H Southeast

m I w

I Southeast

Coal ammonium bromate waste HC1 waste n e u t r a l i z e d HC1 pond water

Coal HC1 waste HC1 waste t r i s o d i u m phosphate r i n s e coal p i l e runof f ash pond water ash pond water ash pond water ash pond water ash pond water ash pond water

th i ckener be fo re th i ckener a f t e r pond be fo re pond a f t e r coal v i l e runoff

J West Cent ra l Coal EDTA waste

s G-Cmp G-Ef G-S G-HC1 G-Br G-R G-Hy

H-Br H-HC1 H-HC1 -N H-P

I-HC11 I-HC13 I-TSP

I-CPR I-P-1 I-P+.2 I -P+ l I-P+2 I-P+3 I-P+4

J-V J-TkU-1 J-TkU+l J-P-1 J-P+l J -CPR

Come n t s

Bromate, HC1 and r i n s e s l i m e a d d i t i o n

waters ide wash waters ide wash

p a s s i v i z a t i o n step

waters ide wash waters ide wash i n - l i n e c a u s t i c a d d i t i o n mixed wastes and r i n s e s

from u n i t 1 from u n i t 3 from u n i t 1

from c o l l e c t i o n bas in p r i o r t o a c i d waste 2 hours a f t e r discharge 1 day a f t e r d ischarge 2 days a f t e r discharge 3 days a f t e r discharge 4 days a f t e r discharge

waters ide wash p r i o r t o EDTA a d d i t i o n a f t e r EDTA a d d i t i o n be fo re EDTA a d d i t i o n one week a f t e r EDTA a d d l t i o n from c o l l e c t i o n basin

I I I 1 I

EPRI Data EL& Reaion K Nor theest

L

F: m a

N

Table B-1 (Continued)

LCh' VOLUME WASTES COLLECTED AND ANALYZED

Euel O i 1

East Cent ra l Coal

West Coal

West Coal

West Coal

East Cent ra l Coal

L Q k , I

a i r preheater waste K-APr t r e a t e d a i r preheater K-TkO pond e f f l u e n t K-P th i ckener underf low K-TkU ESP wash s o l i d s K-ESP

EDTA waste L-V coal p i l e runo f f L-CPR

b r i n e concent ra te r e j e c t K-BCR evaporat ion pond l i q u i d M-P evaporat ion pond s o l i d s M-S

wastewater N-WW product water N-Prod b r i n e concent ra te r e j e c t N-BCR b r i n e concent ra te r e j e c t N-S p y r i t e s N-Py

b r i n e concent ra te r e j e c t 0-BCR evaporat ion pond l i q u i d 0-P evaporat ion pond s c l i d s 0-5 p y r i t e s 0-PY

c i t r a t e waste P-c f i r s t r i n s e P-R ash pond water P-P-1 ash pond water P-P+2 ash pond water P-P+4 ash pond water P-P+7 ash pond water P-P+14

Comments f l l t e r e d and u n f i l t e r e d c a u s t l c a d d i t i o n t h i c k e n e r over f 1 ow

evaporated Powder R ive r coa l

l i q u i d phase

fed t o b r i n e concent ra to r b r i n e concent ra to r p roduc t l i q u i d phase s o l i d phase

s l u r r y

waters ide wash waters ide p r i o r t o c i t r a t e waste 2 days a f t e r d ischarge 4 days a f t e r d ischarge 7 days a f t e r d ischarge 14 days a f t e r d ischarge

Tab le 6-1 (Continued)

LCM VCLUME WP.STES COLLECTED AND ANALYZEC

EPRI Cata Phl! i Rea i cn

Q Nor theas t

R Nor theas t

S Nor theas t

m cn T Nor theas t

U East Cen t ra l

-L!sJ--* Comments

Coal moistened f l y ash Q-FA p y r i t e s from p u l v e r i z e r 0-Py

Coal f l y ash from pond R-FA bottom ash from pond E-BA p y r i t e s from p u l v e r i z e r R-Fy

Coal f l y ash from s i l o s S-FA p y r i t e s from p u l v e r i z e r S-Py

Gas/o i l f i r e s i d e waste T-F+l c o l l e c t e d a f t e r 1 hour f i r e s i d e waste T-F+16 c o l l e c t e d a f t e r 16 hours c l a r i f i e r over f low T-TkO 16 hour sample f i 1 t e r s o l i d s T-S

Coal EDTA waste u-v evaporated

Coal hydroxyacet ic / fo rmic U-HAF waters ide wash r i n s e water U-R waters ide r i n s e

Table 8-2

ANALYTICAL RESULTS - PLANT A

Sample:

Desc r ip t i on :

Elemental Analys is A1 um inum A n t i mony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Chromium Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium S i 1 i c o n Si1 ve r Sodium Thal 1 i um Vanadium Zinc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as Cam 1 A l k a l i n i t y (as dC03) Ammonia (as N) coo Ch lo r ide F l u o r i d e N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

A-F2

F i res ide Wash

mg/L 0.66

<0.021 <0.002 0.083

(0.001 (0.02 0.004

89 (0.005

0.26 0.12 8.6 0.007

47 0.84

<0.0002 0,003 5.7 4.4

<0.002 2.9 0.0022

160 (0.09 0.14 0.45

6.5 23 35

23 0 130

2.1 (0.1 (0. 1

560 1040

A-F5

Treated Wash

mg/L 0.26

(0.021 <0.002 (0.07 < O . O O l (0.05 0.006

85 0.007

0.15 0.13 4.2 0.033 9.1 0.15

<0.0002 0.008 4.3 5.7

<o. 002 3 0.0072

430 (0.09 0.29 0.073

6.6 23 65

25 0 120

2.6 (0.1 (0.1

900 1700

106

A - V 1

EDTA €!LaiQ

mg/L 3.6 0.089 0.21 0.34

(0.001 0.16 0.061

0.55

0.41 1.52

1.1

1.8

0.2 8.3 7.3

<0.002 7.4 0.012

240

15 0

66

<0.0002

1100 10.09 12

1.4

6.7 300 440 520

6200 280

2.3 (0. 1

1.01 2100 9400 2500

A-V3

Treated S L G L

mglL 1.4 0.11 0.099 0.018

(0.001 CO .05 0.076

0.32

0.25 2.7 1.2 0.325 0.11 0.004 0.0004 0.14 5.6 9.7

(0.002 5.5 0.007

390

4400 <o .09 7.5 0.13

12.5

5200 3 20

1300 3 20 31.4 (0.1 0.87

7200 18000

527

S1 udge &Li..&

Ngls 570

6.1 65

110 (0.86 57 15

12000 27

63 300

76 15000

290 32000

4.2 1000

(4.3 18 (1.7 0.41

2400

680 210

(7.8

5-6

Table 8-3

ANALYTICAL RESULTS - PLANT B

Sample:

D e s c r i p t i o n :

8-HC1 1

HC1 Waste

B-HC12

Feed t o Basln

B-R1

Waste -Binsk

6-SA1

Waste SQdUwL

B-Ef4

Treated Effluent

6 4 3

Sludge Solids

mg/L 0.48

mg/L 0.51

mg/L 0.51

(0.02 (0.002

u9/9 8900

200 330

Elemental Ana lys is A 1 uminum Antimony Arsenic Barium Bery 11 i um Boron Cadmium Calcium C h rom i um Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Pot ass i urn Selenium Si1 icon S i l v e r Sodium Thal 1 i um Vanadium Zinc

mg/L 25

mg/L 34

0.5 <0.002 0.47

(0.1 12 0.78

29 6 0.47

1.7 (0.6

1.3 (0.01 (0.5

0.077 (0.002 0.051

10.001 (0 .05 0.002

21 0.045

10.02 (0.002 0.019

(0.001 (0.05 0.022 0.64

(0.005

(0.006 0.39 4.6 0.64

(0.03 0.01

<0.0002 0.022

(0.003 1.9

(0.02 0.94 0.011

2200 (0.09 (0.003 0.09

~. ~

0.14 (0.001 0.08 0.11

0.008

(0.006 0.03 0.078 <0.08 32

300

0.005 0.0009

73 4.1

5 10 57 0.62

8960 118900 35 0

130 6800

255400 610

6000 65 0

0.85

0.56 32

1450

0.013 1.7

1.5 182

4140 86 0.7 5 0.9 0.0003 0.007 0.25 2.4

(0.002

0.51 14 27

0.0003 0.45

1.4 48 11 0.0025 0.041 9.8 2

(0.8

8 1 2700

0.019 0.006 26

(0.5 ~~

13 (0.002 4.1 0.032

880 <0.09 0.27

(0.003

(50 <0.002 250

17400 (2

15

390 0.098

71

1180 0.68

2.2 0.0038

13 15400 (90

3500 1900

(0. 9 (0.9 1.1 6.4

(0.09 (0.003 0.14

0.094 30

Water Q u a l i t y Values pH ( u n i t s ) 1.8 5.5

17

29 <2

120

A c i d i t y (as CaCO-) 52000

A1 k a l i n i t y 3 (as CaCO 1 (1

Ammonia (a2 N) COD 8000 C h l o r i d e 33000 F1 uor 1 de 2100 N i t r a t e 19 N i t r i t e (as N) (0.02 S u l f a t e 50 TDS 12000 TOC 890

1600 2.6 7 0.17

960 3600

3 1

B-7

Sample

D e s c r i p t i o n :

Elemental Ana lys is A1 uminum Antimony Arsenic Barium Bery l 1 i um Boron Cadmium Calcium Ch rami um Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nickel Pot ass i um Selenium S i 1 icon S i l v e r Sod i um Thal l ium Vanad i um Zinc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C&03) Amnonia (as N) COD Ch lor ide F l uor i de N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

Table 8-4

ANALYTICAL RESULTS - PLANT C

C-Br l

Bromate Waste

mg/L (0.5 (0.2 (0.002 0.015 (0.01 (0.5 0.021 0.53 (0.05

10.06 1050 87 0.17 2.2

<0.01 <0.0002 0.058 2.3 (0.5 (0.002 0.32

(0.02

(0.9 (0.03 7.9

200

10.4 (10

15000 3840 2900 33 15 (10 0.57 8

2600 1

C-HC1 1

HC1 Waste

mg/L 15 10 0.015 1.6 (0.1 (5 0.24 8.8 8.3 0.51 1

290 5 100

4.2 3.6

0.0005 0.1

37

410 (5 <0.002 27 0.11

130 (9 (0.3

24 0

1.1 64000

il

7400 43000

(10

34 24000 1400

0.01

C-E f

Treated Effluent

mg/L 3.9

<0.2 <0.002 0.23 (0.01 (0.5 1.5

35 4.4 1.8 0.49 14

980 2 33 11 0.0005 0.89 63 24 <0.002 45 0.16

10100 (0.9 1.1

47

3.5 3600

(1 1250 8000 19000 920 <1

2000 32000 1200

0.01

c-s3

Sludge &lids

ug/g 19000 670 870 150 (10 (500 160 7100 1400

150 44600 305500

(800 6300 1600

160 11000 (500 1200 6400 73

88700 (900 620

10700

6-8

9 \ o o m o ~ o o o o oooooo o o o o o ' ~ o o o 0 m o o m r - "03 domo mom r - o m m o 3 O m o m I N 0 m V 3 m 3 r l d ' D m v ' u , 3 r l V N I O

I

3 0 m P n - 0 m v) m P - J rl m r - U

'9 I:

In 7J

0 u)

Be m

... r

n

a N

m -J N 5 L

1 9 N

J a. I

m o r - ~ o m o ~ o o o - 3 u v 3 v V N o o v m m m m m U

a 3 r V ) n w m r r t-

m 0 2 s m w N O

2 N P 0 - 4 N N m m o

N . N . 1 1 2 o

5- N.9??".? 1 7'9 9 '491 5 9 9 m m o o o o o o o o 0 0 - o o m o ~ m o o m o o ~ o u m o d m r - o m o o o m m v E 3 V V v v P m v m m m v v r r ID N 00 -Jm

' D m 0 e 2 N

2

lL

.. c 0 .r .. ::

a, .- F L n u € I n m a , v ) n

In ._

m m

Sample:

Oescri p t i o n :

Elemental Ana lys is Aluminum Antimony Arsenic Barium Bery l 1 i um Boron Cadmium Cal c 1 um Chromium Chranium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Sel en I um S i 1 Icon S i 1 ve r Sodium Thal 1 i um Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C$C03) k n i a (as N ) COD Ch 1 o r 1 de F1 u o r i de N i t r a t e N i t r i t e (as N) Su l fa te

Table 6-6

ANALYTICAL RESULTS -- PLANT E

E-C1

C i t r i c Waste

v9/9 11 (2.1 0.031 1.1

(0.1 (5 0.19

32 3.4 3 1.2

223 2270

1.6 15 16 <0.0002 2.2

13 6.8

(0.002 8.5 0.37

1800 19 13 6 1

9.8 (10

19000 7380

14000 (10

120 0.06

1.2 23

TDS TOC

17000 6900

6-10

Table 8-7

ANALYTICAL RESULTS - PLANT F

Sample:

Oescr i p t i o n :

Elemental Ana lys i s A 1 umi num Antimony Arsen ic Bar i urn B e r y l 1 i um Boron Cadmium Calcium Chromium Chranium V I Coba l t Copper I r o n Lead Magnesium Manganese Me rcu r y Molybdenum N i c k e l Pot as sium Selenium S i 1 i con S i l v e r Sod i urn Thal 1 i urn Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaC03) A l k a l i n i t y (as CaC03) Ammonia (as N) coo C h l o r i d e F1 uor i de N i t r a t e N i t r i t e (as N ) S u l f a t e TOS TOC

F-HAF1

HAF Wasts

mg/L 2.6 0.69

<0.002 0.097

(0.01 1.3 0.19 3.1 3.6 0.06 0.13 0.91

0.88 1.4 4.7 0.076 1.6 0.031

(0.5 <o .002 2.7 0.11

795

22 <0.9 0.27 0.23

3.8 1800 <1

IS00 13

<10 NO 19

2300 1000

0.15

F-EfZ

Treated Effluent

mg/L <0.05 0.23

<o. 002 0.03 <0.001 0.086 0.27

0.01

C0.006 0.11 0.67

<O .004 0.39 <0.001 <0.0002 0.072 0.007 90 <o. 002 0.31 0.09

<o .09 <O .003 <0.003

1100

2300

10.9 <IO 450

600 3700

(100 NO 640

11000 480

1.2

F- 53

Sludge Solids

lJg/g 2590 36 170

<1 610 12

49100 780

27 500

200000 36

128000 1100

340 290 (50 150 3670

26200 18 63 120

7.9

2.9

6-11

Table E-8

ANALYTICAL RESULTS - PLANT G

Sample:

Oescri p t i o n :

Elemental Ana lys is A1 um inum Antimony Arsenic Barium B e r y l 1 i um Boron Cadmium Cal c i urn Chromium Chromium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Pot ass i um Selenium S i 1 icon S i l v e r Sodium Thal 1 i urn Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C&03) Ammonia (as N) coo C h l o r i d e F l u o r i d e N i t r a t e N i t r i t e (as N ) S u l f a t e TOS TOC

G-Cmpl

Composite Waste

mg/L 1.7 0.62 0.008 0.17

<0.01 2.6 0.15

1.1 0.12 0.35

23

19 1030

0.032 12 7.1

<o. 0002 0.25

47 3.8

<0.002 7.6 0.055

75 0 CO.9 0.23 6.2

1.5 8700

<1

2300 9300

5 25 (100

190 6000

610

0.1

G-Ef2

Treated Effluent

mg/L 0.68 0.98

<0.002 0.16

<0.01 (0.5 0.088

0.11

<0.06 0.24 1.2

<o .002 1.7

<0.01 <o. 0002 0.12 0.4 3.6

<0.002 1.3 0.24

1710

390 <0.9 0.12

C0.03

11.0 < l o 880 229

8300 2400

13 (10

NO 28

6700 200

G-S3

S1 udge ami!&

l.lg/g 3310

88 120 36

220 99

144900 430

62 11900

186900

1.6

290 10100 2740

31 6880 ~~~

<50 210

11600 <2

7410 189 280

4440

8-12

Sample:

Descr ip t ion :

Elemental Ana lys is A1 umi num A n t i mo ny Arsenic Barium Bery l 1 i um Boron Cadmium Calcium Chromium Chrmium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nicke l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z i n c

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO 1 A l k a l i n i t y (as C&03) Ammonia (as N) COD Ch l o r i de F l u o r i d e N i t r a t e N i t r i t e (as N ) S u l f a t e TDS TOC

Table B-8 (Continued)

ANALYTICAL RESULTS - PLANT G

G-Brl

Broniate A!asL%

mg/L (5 5.8

<o .002 (0.1 (0. 1 (5 0.006 6.3 0.5

(0.6

(0.8 <o ,002 5.4

<0.1

450

0.59 1.5

(5 <0.002 3.2 0.26

190 (9 (0.3 3

G-R1

Water SLnre

mg/L (0.05 0.075 0.004 0.006

<0.001 0.23 0.007

0.011

(0. 006 0.31 0.14

<0.002 6.2 0.004

0.033 0.031 3.2

<o .002 6.7 0.0063

18

35 (0.09 0.009 0.006

G-HC1 1

HC1 r(aste

mg/L (5 5.6 0.004 1

(0.1 6.2 0.18

74 . . 3.5 0.24 1.6

320 5900

1.6 42 3 1

0.72 210 (5 <o .002 22

0.17 160

(9 (0.3 30

G-Hyl

Hydrazine Dra in

mg/L (0.5 <0.2

(0.01 (0.01 (0.5

0.015

0.041 6.9 0.07 0.064

<0.06 0.98

(0.002 120

0.5 0.86

0.49 3

C0.5 (0.002 1.1 0.028

1900 (0.9 (0.03 0.11

8-13

Table 6-9

ANALYTICAL RESULTS - PLANT H

Sample:

Oescr ip t ion:

Elemental Ana lys is A1 umi num Antimony Arsenic Barium Bery l 1 i um Boron Cadmium Calcium Ch romi um Chromium V I Cobal t Copper Iron Lead Magnesium Manganese Mercury Molybdenum Nicke l Pot as slum Selenium S i 1 i con S i l v e r Sod i um Thal 1 i um Vanadium Zinc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C$C03) Ammonia (as N) coo Ch lor ide F1 uor i de N i t r a t e N i t r i t e (as N ) S u l f a t e TDS TOC

H-Brl

Bromate Waste

mg/L (0.5 (0.2 (0 .002 0.022

(0.01 (0.5

(0.5 10.05

10.06

(0.08

0.007

3 25

0.016 1

(0.01 <0.0002 0.031 0.098 2.1

(0.002 (0.2 0.069

320 (0.9 (0.03 3.1

10.8 (10

13000 3980

160 310

0.08

0.2 (2

( 2 1200

4

H-HC11

HC1 Waste

mg/L 29 0.89 0.007 2.6 (0.1 18

27 0.019

5.7 2.4 0.78 10.5

6960

(3 52 <0.0002 0.43

0.33

180 (0.5 <0.002 16 0.001

190 (0.9 (0.3

100

1.5 59000

(1

340 38000

2300 (10 (0.02 26

18600 110

H-HC2

HC1 neu Waste

mg/L (0.5 0.077

<0.002 (0.001 (0. 001 (0.05

(0.05 0.002

0.02

(0.006 0.58 1

10.03 C0.03 <0.001 0.0039 0.25 0.015 6.1

(0.002 4.3

(0.001 50800

(0.09

26 0.016

12.1 (10

56000

590 33000

2800

0.21

100000 75

H-P3

Pond Water

mg/L 4.3

(0.02 0.007 0.001

<0;001 (0.05 0.23 0.31

(0.005

(0.006 2.4 5.5

(0.009 (0.03 (0.001 0.0004 0.068 0.036 3.2

(0 .002 1.8 0.068

5460 (0.09 0.005 0.12

12.0 (10

3800 1 25 240

5400 15 0 (10 0.11

4 20 12000

61

r

6-14

Table B-10

ANALYTICAL RESULTS - PLANT I

Sample:

Descr ip t ion :

Elemental Ana lys is A 1 urn i n um Antimony Arsenic Barium Bery l 1 i um Boron Cadnii um Calcium Chromium Chranium V I Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potass i urn Selenium S i l i c o n S i l v e r Sod i um Thal 1 i um Vanadium Zinc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C b 3 ) Ammonia (as N ) coo Ch lo r lde F l u o r i d e N i t r a t e N i t r i t e (as N ) S u l f a t e TDS TOC

I-HC11

HC1 Waste U n i t 3

mg/L 36

0.91 0.12 0.87

(0. 1 22

13 0.13

6.4 0.2 0.83

287 7060

0.008 4.5

0.0003 1.1 4 3.4

(0.002 25 ~

0.2

(0.9

32

360

0.32 170

1.0 76000

(1

8300 48000

3400 (10

390 14000

1800

I-HCl 1

HC1 Waste - mg/L 33

1.4 0.011 0.31

(0.1 22

0.066 3.7

1.1 0.64 1.7

35

10500

5.4

0.0008 8.5 7.4

(0.5 10.002 32

0.044 390

58

(0.9 0.5 0.56

1.1 52000

(1

3400 33000

2100 (10

53 14000

270

6.5

I-TSP1

Na3P04 - mg/L

0.85 <0.02 0.01 0.009

(0.001 (0.05 a. 002 0.17 0.028 0.007

'(0.006 0.29 0.24

(0.08 10.03 (0.001 <0.0002 0.018

(0.003 0.34

(0 .002 2.9

<0.002

CO.09 1530

0.012 0.013

9.4 (10

2800

480 11 1.3

(2 (0.02 10

5600 53

I-CPR3

Coal P i l e Runoff

mg/L 14 (0.02 (0.002 0.04 0.007

10.05 0.004

72 0.005

0.17 0.06 2.6

(0.08 19 3.2 0.0003 0.005 0.21 1.8

(0.002 4.4 0.0018

12 (0.09 (0 .003 0.59

3.1 180 ( 1

(5 20 0.61 2

(0.02 480 660

2

6-15

Table E-10 (Continued)

ANALYTICAL RESULTS - PLANT I

Sample: I-P-1 I-P+.2 I-P+l I-Pt2 I-P+3 i-p+4

D e s c r i p t i o n : Ash Pond Before

Ash Pond Ash Pond AlAL

mg/L 0.44 10.02 10.06

Ash Pond a h Y . L

Ash Pond L % A Y L

Ash Pond - mg/L 0.41 10.02 0.024

Elemental Ana lys is Alumlnum Antimony Arsenic Barium Bery l 11 um Boron Cadmium Calcium Chromium Chranium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nicke l Potass i um Selenium S i l i c o n S i l v e r Sodium Thal 1 i um Vanadium Zinc

pH ( u n i t s )

mg/L 0.62

mg/L 0.47

mg/L 0.59

mg/L 0.5

10.02 0.016 0.16 (0.001

10 * 02 (0.06 0.16

<0.001 0.26 10.001 26 10 .005

10. 006 0.61 0.3 10 .08 4.2 0.23

0.04 0.005 4

<0.08 6.6 0.0009 13 10.09 <O .003 0.014

7.0

<o .02 10.06

<0;02 <O .06

0.17 10.001

0.18 10.001

0.18 10.001

0.18 <0.001

0.43 (0.001 27 <0.005

0.28 <0.001

0.37 10.001 26 C0.005

10.006

0.38 10.001

0.3 <0.001 25 <0.005 <O. 005 (0.006

25 <o. 005

26 10.005

10.005 <0.006 0.002 0.39 10.08 4.3 0.42 10.0002 0.037 0.006 3.9 0.01 6.2 0.0009 11 <0.09 0.012 0.004

7.0

(0.006 <O. 006 0.01 0.23

0.03 0.25

0.01 0.22

0.02 0.19 10 .08 10. 08

4.1 0.22

0.046 0.007 4 10.08 6.5 0.0006

(0.08 4.1 0.25

0.045 0.006

<o 1 08 4.1 0.25

0.043 0.008 4.1

<o .08 6.8 0.0003 13 <0.09 0.009 0.013

7.2

4 0.23 10.0002 0.043 0.005 A 4.2

<0.08 6.7

0.02 6.7

0.0006 13 10.09 0.012 0.015

7.2

0.0004 13 <0.09

14 10.09

0.009 0.013

1.2

0.009 0.012

7.2

8-16

Table 6-11

ANALYTICAL RESULTS - PLANT J

Sample: J -CPR4

Oescr ip t ion: Coal P i l e .Bunoff

Elemental Ana lys is A1 umlnum Antimony Arsen ic Barium B e r y l 1 i um Boron Cadmi urn Calcium Chromium Chranium YI Coba l t Copper I r o n Lead Magnes i um Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l i urn Vanadium Z inc

mg/L 0.15

(0.02 <0.002 0.078

<0.001 0.8 (0.001 45 (0 .005

(0. 006 0.002 0.38

(0 .002 18 0.023 0.0003

(0 .002 (0 .003 0.76

<0.002 1.8 0.0023 85 (0.09 (0.003 (0.003

Water Q u a l i t y Values pH ( u n i t s ) 9.3 A c i d i t y

A l k a l i n i t y

Ammonia (as N ) coo ( 5 C h l o r i d e 8 F l u o r i d e 0.24 N i t r a t e 6 N i t r i t e (as N ) 0.03

(as CaC03) (10

(as CaC03) 93

S u l f a t e TOS

420 970

TOC 2

J-V1 J-TkU-1 J-TkU+1 J-P-1 J-P+l

EDTA Thickener Thickener Pond Pond Waste Before After Before A f t e r

mg/L 15 0.72 0.043 0.2

(0. 1 19 0.21 5.6 2.4 0.02 <0.6 282 5430

(3 51 <0.0002 0.71 1.4 (0.5 (0. 002 6.8 0.031

0.024

1660 (0.9 (0.3 3.3

9.6

(10

17000 6600 15000

0.19

840

29000 16000

mg/L 60 (0.2 <0.002 0.14

<0.01

0.18

0.45

0.22 0.03 4.3

300

490

7660 59 0.0003 3.4 0.69 (0.5 0.19 42 0.031 65 (0.9 0.75 0.73

mg/L 59 0.34

0.17 (0. 01

0.07 23 0

470 <0?5

0.19 0.21

294

5250 50

1.9 <0.3 (0.5

32

680 0.023

(0.9 (0.3 0.78

8.5

(10

1400

1800 390

250 82

8.2

19000 32000 1600

mg/L 24 0.29

<0.002 0.18 (0.01 170

450 0.054

0.037

0.17 0.01 2.7

4590 34 0.0002 2.3 0.35 (0.05

19

420 0.071

(0.09 0.69 0.46

mg/L 24 (0.2 <0.002 0.3

(0.01 177

460 0.046

0.3

0.13 0.18 4.8

(0 .004 4270 32 0.0003 2.3 0.31 (0.5 0.062 20 0.014

390 (0.9 0.52 0.41

7.6

160

216

190 350

220

14.8

7.6

2.1 17000 24000

52

8-17

Table 6-12

ANALYTICAL RESULTS - PLANT h

Sample: K-APrl

Oescr i p t i o n : F i l t e r e d AirDreheater

Elemental Analys is A1 um i num Antimony Arsenic Barium Bery l 1 i um Boron Cadmium Calcium Chromi urn Cobal t Copper Iron Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Selenium S i l i c o n S i l v e r Sodium Tha l l i um Vanadium Z inc

mg/L 0.6

<o .02 (0.002 0.076

(0.001 0.14 0.011

10 (0.005 0.19 0.12

32 (0.002 68 1

<0.0002 0.006 5.5 9

<0.002 0.31 0.021

420 10.09

0.006 0.36

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO A l k a l i n i t y (as C$.C03) coo Ch lo r ide F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

K - A P r l

U n f i l t e r e d Washwater

mg/L 2.8

(0.02 <o. 002 0.061

10.001 0.2 0.017

0.21 0.22 0.33

0.082 0.008 1.1

<0.0002 0.036 6.5 8.8

10.002 0.49 0.019

10

36

420 (0.09 6.8 0.71

3.9 170 (1 (5

35 0 0.21

10 (0 .02

990 2000

4

K-Tk03

Thickener Overflow

mg/L 0.2

(0.02 <0.002 0.092

<0.001 (0.5

9.7 <0.005 <O .006

0.03 0.11

10.002 19 <0.001 <0.0002 0.37

(0.003 9.7

<0.002 0.28 0.015

390 (0.09

1.2 0.003

9.5 (10 220

300 0.41

<2 <o .02

320 15 00

2

K-P4

Pond Effluent

mg/L 0.34

<0.002 <0.002 0.12

(0.001 <0.05 0.011 8.5

(0.005 (0.006 0.09 0.17

<0.002 34 <O.OOl <o ,0002 0.32

<O. 003 9.8

10.002 0.29 0.013

400 (0.09

1.9 10.003

K-TkU5

Thickener Underflow

P9/g 2940

92 1020 160

<1 180 11

14800 170 23 0 72 0

77500 360

126000 450

110 7040 <50 (80

6310

3770 (90

13100 1350

2.5

K-ESP1

Waste 35QIi.k

v9/g 2900

47 1830 750 < 1 <50 50

5380 130 110 160

26800 1400

19000 47

470 3540

(5 0 (80

1140

4550 <go

26500 260

2.7

8-18

Sample:

Oescr i p t i o n :

Elemental Analys is Aluminum Antimony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Chromium C h r a i u m V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Selenium S i 1 i c o n S i l v e r Sod i um Thal 1 i um Vanadium Zinc

Table 8-13

ANALYTICAL RESULTS - PLANT L

L-v1

EDTA Waste

mg/L 18

1.3 0.36 0.65 (0. 1 <5

14 0 0.78

7.7 0.89 1.8

321 7000

1.8 23 42

0.0004 2.4

(0.5 160

<0.002 17

15 0 0.057

(0.9 C0.3 64

Water Qual i t y Values pH ( u n i t s ) 10.3 A c i d i t y (as C a m 1 (10 A l k a l i n i t y (as C k X 3 ) 19000 Ammonia (as N) 7560 COD 32000 Ch lo r ide F l u o r i d e 0.67 N l t r a t e N i t r i t e (as N) 0.21 S u l f a t e TDS 730 TOC 23000

L-CPR2

Coal P i l e Bunoff

m d L - 0.54 (0.02 0.006 0.043 <0.001 0.95 0.001

(0.005 270

(0.006 0.002

13.3 0.015

68 1.2

<0.0002 <0.002 3 4.1

(0.002 11 0.0012

48 (0.09 (0.003 0.01

8.4 a 0 310

<5 34 0.24

(2 <0.02

740 1500

4

6-19

Sample:

Descr ip t ion :

Elemental Ana lys ls Aluminum Ant i mony Atse n i c Barium Bery l 11 um Boron Cadmium Cal c i um Chromium Chranium V I Cobal t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nicke l Pot ass1 um Selenium S i l i c o n S i 1 ver Sod i um Thal 1 i um Vanadium Zinc

Water Qual i t y Values pH ( u n i t s ) A c i d i t y (as Cam ) A l k a l i n i t y (as C%X13) Ammonia (as N) COD Ch lor ide F l u o r i d e N i t r a t e N i t r i t e (as N) S u l f a t e TDS TOC

Table 6-14

ANALYTICAL RESULT5 - PLANT M

M-BCR1

Reject Llouid

mg/L 3.9 0.28 0.27 0.1 0.003

(0.05 0.03

0.31

0.05

452

b 1;.4

<o .ow 1.7 0.0003 1.5 0.37

3 100

710

69

25800

0.027

0.03

0.19 0.51 4.1

4.9 570 440

4400 36000

170 (500

40 63000

104000 710

M-P2

Pond Water

mg/L 4.6 0.22 0.019 0.1 0.02

(0.05 0.04

0.26

3.5 1.8

42 (0.002

630 3.1 0.025 0.68 1.3

1.5

0.01

0.12 0.41 4.4

3 96

165

99

49300

4.6 5100

15

7400 4100

40 6400

43000 107000

180

0.02

6-20

Sample:

Desc r ip t i on :

Elemental Analys is A 1 uminum A n t i mony Arsenic Barium B e r y l l i u m Boron Cadmium Calcium Chromium Cobal t Copper I r o n Lead Ma gn es i um Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z i n c

Water Qual i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as Ck03) COD C h l o r i d e F l u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TDS TOC

Table B-15

ANALYTICAL RESULTS - PLANT N

N-WWl

Waste Water

mg/L 0.25

(0.02 0.01 0.38 (0.001 5.9

<o. 002

0.006 (0.006 0.03 0.08

<0.002

0.13 <0.0002 0.03 0.005 29 0.006 16 co.002

5 10 (0.09 0.037 0.31

460

248

8.2 (10 140 110 300 3.4 5 6

2600 4400 42

N-Prod2

Product Water

mg/L (0.05 (0.02 (0.002 0.006 (0.001 1.2

<0.002 0.15 (0.005 (0.006 (0.001 (0.008 (0. 002 0.44 0.001

(0. 0002 <0.002 <O. 003 0.11

(0.002 0.074

(0.002 0.52 (0.09 0.005 (0.003

5.5

3.2 10

50 (1 (0.1

<1 ( 2 120 (1

0.04

N-BCR3

Re jec t _Uauid

mg/L (0.5 0.33 0.52 0.14 0.008 19 a. 02

420 0.14 0.1 0.33 2.6 (0.002

10900 16 <0.0002 0.87 0.84

<0.002 0.68 0.022

0.54 0.68

1000

14800

20

7.0 97 240 1300 3700

20

40 23000 47000 490

0.06

N-S3

Sludge Solids

vg/g 72 (21 (6 169 (0.1 146 (0.2

247000 11

33 95 (8

2010

0.75

3.9

0.73 4

292 11 186

4160 (9

42

1.7

5.4

6-21

Table B-16

ANALYTICAL RESULTS - PLANT 0

Sample:

Oescr i p t i on :

Elemental Analys is A1 uminum Antimony Arsenic Barium Bery l 1 ium Boron Cadm i um Calcium Ch ranium Cobalt Copper I r o n Lead Magnesium Manganese Mercury Molybdenum Nickel Potassium Selenium S i1 i con S i l v e r Sodium Thal 1 i um Vanadium Zinc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO A l k a l i n i t y (as CjCO,) Ammonla (as N) coo Ch lor ide F1 uor ide N i t r a t e N i t r i t e (as N) S u l f a t e TOS TCC

0-BCRl

Reject

mg/L (0.05 0.036 0.02 0.18 0.001

12 <0.002

620 (0.005 0.018 0.011 0.34 (0.002

1.8 <0.0002 0.039 0.28

(0,002 3.6

(0.002

0.1 0.14

<0.003

Slurrv

1510

214

2780

7.2 29

170

5 10 1900

15 <1

11000 20000

230

0.07

0-P2

Pond Water

mg/L CO.05 0.12 0.14 0.15 0.003

0.003

0.025 0.047 0.076 0.39

<0.002

1.8 <0.0002 0.33 0.32

380 0.037

45 <0.002

7110 0.21 0.27 2.2

56

353

3620

6.2 140 3 10

4200 7600 100 (1

66000 122000

1800

3.9

0 4 2

S1 udge Scllds

W g 705 (20

(6 165

(0.09 5 1 (0.19

226500 3.5

(0.6 14

478 (8

1840 16

(0.02 0.98

220 <8

3226

1450 (0

55

0.96

3.2

6-22

Table B-17

ANALYTICAL RESULTS - PLANT P

Sample:

Oescr ip t i o n :

Elemental Analys is A1 umi num Antimony Arsenic Barium Bery l1 i um Boron Cadmium Cal c i um Chromium Cobal t Copper I ron Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l i u m Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C k V 3 ) Ammonia (as N) COD ,Ch lo r ide F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TDS TOC

P-c1

C i t r a t e

mg/L 12 0.71 0.17 0.32

< O i l 80 (0.2 26 5.7 0.95 3.8

0.19 695 0

7.9 47 (0 .0002 1.1 4.9 (0.05 (0 .002 (0.02 (0.02

2110 0.41 0.29 2.7

9.8 (10

21000 8410 15000 (10 620 11

370 (20

25000 7050

P-RI

F i r s t Jun.s€L

mg/L 1.2 0.15 0.018 0.097 . . ~ ~ (0.01 4 0.04 6.3 0.77 0.09 8.5

<0.002 0.91 3.4

(0. 0002 0.19 0.49 (0.05 (0 .002 1.2 (0.02 85 (0.09 0.03 0.49

520

9.3 (10 1050

24 150 <1 12 (5

1700

8-23

Sample:

Oesc r ip t ion:

Elemental Ana lys i s A1 um i n um Antimony Arsen ic Barium B e r y l 1 i um Boron Cadmium Calcium Ch rom i um Coba l t Copper I r o n Lead Magnes i urn Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z inc

Table 6-17 (Continued)

ANALYTlCAL RESULTS - PLANT P

P-P-1

Pond E f f . Before

mg/L 0.54 0.12

<o. 002 0.07

<0.001 8.5

<o. 002

0.03 <0.006 0.02 1.1

<o. 002 8.4 0.16 0.0025 0.13 0.02 8.3 0.008 2.7 0.02

29 10.09 0.02 0.01

139

P-Pt2

Pond E f f . t 2 Oavs

mg/L 0.58 0.09

<0.002 0.08

<0.001 9.4 0.003

0.03 0.009 0.02 4.1

<0.002 8.4 0.13

<o. 0002 0.14 0.02 8.5 0.009 2.8 0.02

28 (0.09 0.04 0.01

140

P-Pt4

Pond E f f . t 4 Oavs

mg/L 0.66 0.07

<0.002 0.07

<0.001 8.4

<o .002

0.02 <0.006 0.01 0.81

<0.002 8 0.18

<0.0002 0.12 0.01 8.5 0.009 2.9 0.01

25 <o .09 0.01 0.01

130

P-Pt7

Pond E f f . t 7 Oavs

mg/L 0.46 0.1

<0.002 0.08

<0.001 9.1

<0.002

0.02 <O .006 0.01 0.47

<o. 002 0.31 0.14

<o ,0002 0.13 0.01 8.5

<o .002 2.7 0.01

27 (0.09 0.03 0.007

136

P-Pt14

Pond E f f . t 1 4 Oavs

mg/L 0.61 0.11 0.006 0.08

(0.001 9.2 0.002

0.03 0.007 0.01 0.71

<o. 002 8.2 0.15

<0.0002 0.13 0.01 8.7 0.007 3 0.01

27 (0.09 0.04 0.009

139

6-24

Elemental Ana lys is A1 um i num Antimony Arsen ic Barium Bery l 1 i um Boron Cadmium Calcium Chromium Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Potassium Selenium S i l i c o n S i l v e r Sod i um Thal 1 i um Vanadium Z inc

S u l f u r ( 9 6 ) Heat ing Value (BTU/Lb)

Table 6-18

ANALYTICAL RESULTS - PLANT Q

Pvrite mg/L 101600

c42 1280 770 11 140

7960 550 62 02

71700 1560 1800 280

7.9

0.86 c0.4 2.6

(0.5

1.8

7460

8180 < 18 67 34

18.12 4863

P y r i t e F.hwL Standard

mg/L mg/L 17100

c4 1180 (0.2 c0.2

c0.4 (10

15300 500

57 3 . 2

1983400 435900 48

3720 190

28 0.21

110 18500

(0.5

13 4990 (180 210 170

0.26 NA

49.53 2174

-

*Atomic abosrp t ion ana lys is . A l l o t h e r elements by ICP.

NA - Not analyzed

Whole-sample d i g e s t i o n s by p e r c h l o r i c a c i d d igest ion, except f o r i r o n and s i l l c o n analyses which were prepared by l i t h i u m metaborate fus ion.

6-25

Elemental Ana lys is A1 umi num Antimony Arsenic* Barium B e r y l l i u m Boron Cadmium Calcium Ch romi um Coba l t Copper I r o n Lead* Magnesium Manganese Mercury Molybdenum Nicke l Phosphorus Potassium Selenium* S i 1 i con S i l v e r Sod i urn Thal 1 i um T i tan ium Vanadium Z inc

S u l f u r (%) Heat ing Value (BTWLb)

Table 6-19

ANALYTICAL RESULTS - PLANT R

Pvrite mg/L 8130 (4 1

3460 (2 (2 (98 <4

1670 5 20 15

374300

610 170

11 59

(490 1190

9.2

0.27

0.76

c0.5

5.8 940 a 8 0 150 (3 0 78

46.34 3241

*Atomic abosrp t ion ana lys is . A l l o the r elements by ICP.

NA - Not analyzed

. ILesJL

mg/L 1870 100 56 990 c2.0

220 6.9

1780 380 93 140

488700

520 470

12 25 0 (500 1630

4.8

0.02

c0.5

14 c30 <180 1060 60 46

0.29 NA

P y r i t e Standard

mg/L

435900

49.53 2174

Whole-sample d iges t i ons by p e r c h l o r i c a c i d d iges t ion , except f a r i r o n and s i l i c o n analyses which were prepared by 1 i t h i u m metaborate fusion.

B-26

Table 6-20

ANALYTICAL RESULTS - PLANT S

Elemental Ana lys is A 1 urn inum Antimony Arsenic Barium B e r y l 1 ium Boron Cadmium Calcium Ch rom i um Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N i c k e l Phosphorus Potassium Selenium S i l v e r Sodium S u l f u r ( % ) T i tan ium T h a l l ium Vanadium Z i n c

Heat ing Value (BTU/l b)

PYtTe

48800 (40 200 3800

15 NA (4

3670 44 20 100

86900 65

3000 130

0.2 15 37

c300 11000

c4 c 2 730 14.04

2500 (180 160 44

4200

8-27

Table 8-21

ANALYTICAL RESULTS - PLANT T

Sample:

Oescr i p t i on :

Elemental Ana lys is A1 umi num Antimony Arsen ic Barium Bery l 1 i um Boron Cadmium Calcium Ch romi um Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potass i urn Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z i n c

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C b 3 ) COD C h l o r i d e F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

T-Ft1

F i res ide t1 H r

mg/L 21

0.31 <o .002 0.089 0.012

<0.5 0.2

0.53 5.4 7.1

0.051

1.3 <0.0002 0.074 0.59

<0.002 6.1 0.022

0.27 4.7

381

513

2710

335

5790

25

T-Ft16

F i r e s i de t 1 6 H r s

mg/L <0.05 0.087 0.016 0.09

<0.001 0.29

<o. 002 14 <0.005 <0.006 0.012 0.52 0.008

17 0.002

<o . 0002 0.43 0.032 5.5

<o .002 0.98

<0.002 75 0 C0.09 19 0.007

10.1 (10

1400 18 13

I .2 2 0.06

340 2200

3

T-Tk02

Thickener Overflow

mg/L <0.05 <0.02 (0.002 0.046

(0.001 0.63

(0.002

0.013 <O .006 0.014 0.27

<0.002 0.22 0.003

<0.0002 0.28 <O .003 26 <0.002 1.3

<o. 002

<o * 09 8.8

CO. 003

25 1

942

11.2 < l o 320 26

860

<1

1200 3200

<1

0.7

0.6

T-S3

F i l t e r Sludae

Pg/g 10200

55 340

84 (1 60

52600 180 130 400

72500 18 1

149300 1320

26 4330 1930

96 83 0

5090 40

6840 1940

5.2

4.4

6-28

Table B-22

ANALYTICAL RESULTS - PLANT U

Sample:

D e s c r i p t i o n :

Elemental Ana lys i s Aluminum Antimony A r sen 1 c Barium Bery l 1 ium Boron Cadmium Calcium Chranium Chromium V I Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Pot ass i um Se len i um S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y (as CaCO ) A l k a l i n i t y (as C k 0 3 ) Ammonia (as N ) coo C h l o r i d e F l u o r i d e N i t r a t e N i t r i t e (as N) S u l f a t e TDS

u-v1

EDTA Waste

mg/L (5 0.74 0.4 1.3

< O . l (5 10.2 <5 4.7

0.6 123

6580 23 27 32

0.0012 1

15 9.9

<o .002 14 0.029

1790 0.43 0.28

60

8.4 < l o

11000 6300

40000 60

20 800 350

43000 20500

1.9

U-R1

EDTA Rinse

mq/L <6.05 0.032 0.014 0.005 0.004

(0.05 <o. 002 21

0.11

0.023 0.94

0.46 4.1 1.3

<o . 0002 0.098 0.64 1.3

<0.002 0.45

<o .002 25 <o .09 0.003 1.6

145

9.1 <10 530

1200 6 0.7

30 1.4

20 1400 460

U-HAF2

HAF Waste

mg/L <5 2.8 0.007 0.16 (0.1 <5 <0.2 <5 17 0.27 0.62 0.1

6000 0.3 4.2

38 0.0004

13 6.2

(5 <0.002 13 C0.2 <3 <9 1.3 3.8

3.1 43000

<1

25000 <1

1500 50

100 9600

15000 ~.

TOC

8-29

Appendix C

TABULATION OF REGULATORY ANALYSIS OF LOW

VOLUME WASTES AT FOSSIL FUEL-FIRED POWER PLANTS

CONTENTS

c- 1 Comparison o f Leaching Test Methods c-2

c-2

c-3 C a l i f o r n i a Assessment Manual Waste E x t r a c t i o n Test Resul ts -- EP and TCLP Leach Test Resul ts--Plants A Through ti

P l a n t s A Through T C-8

c-3

c-4 A n a l y t i c a l Resul ts o f RCRA Wastes--Plants A Through U c-11

C - i i i

TABULATION OF REGULATORY ANALYSIS OF

LW VOLUME WASTES

T h i s appendix presents t h e r e s u l t s of federa l and s t a t e regu la to ry c l a s s i f i c a t l o n

procedures performed on u t i l i t y low volume waste samples c o l l e c t e d a t 21 power

p l a n t s ( A through U ) . A summary of t h e procedures I s conta ined i n Table C-1. The remaining t a b l e s present t h e r e s u l t s o f performing t h e t e s t s on samples

c o l l e c t e d from p l a n t s A through U.

c-1

Table C-1

COMPARISON OF LEACHING TEST METHODS

Epl Procedure :

L i q u i d t o s o l i d 2O:l r a t i o

Leaching f l u i d Water maintained a t pH 5.0 w i t h 0.5 N a c e t i c a c i d (no more than 49 per g o f so l i d s )

M ix ing method S t i r o r5

E x t r a c t i o n t i m e 24 (hours)

Phase Membrane separa t ion f i l t e r

r o t a t e

Old TCLP'

2O:l

0.1 N sodium aceta te b u f f e r a t pH 5.

Rotate a t 30 r P m

18

Glass f i b e r f i l t e r

New TCL P3 CAM4

2O:l 1 O : l -

1) 0.1 N 0.2 M c i t r a t e sodium aceta te b u f f e r a t pH b u f f e r a t pH 5 5. or 2) 0.1 N a c e t i c a c i d

S t i r , r o a t e i! Rotate a t 30 rpm o r shake

18 48

Glass f i b e r Memb ran e f i l t e r f i l t e r

'EP - E x t r a c t i o n Procedure (EP) T o x i c i t y Tes t Method and S t r u c t u r a l I n t e g r i t y

Test, Tes t Methods f o r Eva lua t i ng S o l i d Waste. SW-846, 1985.

'Old TCLP - D r a f t procedure dated A p r i l 1985 (Method 13xx, T o x i c i t y

C h a r a c t e r i s t i c Leaching Procedure).

3New TCLP - Revised d r a f t procedure dated October 4, 1985 (Method 13xx,

T o x i c i t y C h a r a c t e r i s t i c Leaching Procedure).

e x t r a c t i o n media.

Federal Reg is te r .

Inc ludes choice of two

Th is procedure was a l s o presented i n t h e January 14, 1986

4CAM - C a l i f o r n i a Assessment Manual Waste E x t r a c t i o n Test. C r i t e r i a f o r

I d e n t i f i c a t i o n of Hazardous and Extremely Hazardous Wastes. A r t i c l e 11 o f T i t l e

22, C a l i f o r n i a Department of Hea l th Services, October 13, 1984.

50verhead s t i r r e r s were used t o f a c i l i t a t e pH c o n t r o l i n t h e EP t o x i c i t y t e s t .

The TCLP and CAM e x t r a c t s were a g i t a t e d by r o t a t i o n .

c-2

Table C-2

EP AND TCLP LEACH TEST RESULTS - PLANTS A, B. C (mg/L)

Sample: RCRA Max. A 4 4 A-S4 B-S5 c-s4 c-54

Method: Llmit

Elemental Analysis Arsenic 5 Barium 100 Beryl l ium Cadm i urn 1 Chromium 5 Cobalt Copper Lead 5

Molybdenum Nickel Selenium 1 S i l v e r 5 T h a l l ium Vanadium Z i nc

Mercury 0.2

pH ( u n i t s )

EP

<0.002 1.5 0.003 0.18 0.036 1.2 0.31

<0.002 0.0006 0.048 13 (0.002 0.0006 (0.09 0.051 1.7

5.6

0.004 0.19

<O.OOl 0.022 (0.005 0.11 0.11 0.41 0.00077 0.018 0.97

<0.002 0.007 (0.09 0.006 0.076

9.1

EP

(0.002 0.15 0.003 0.24 0.02 0.61 0.053

<o .002 <0.0002 0.011 13 <0.002 0.009 (0.09

0.024 4.2

5

EP

0.077 0.033 (0.001 0;056 0.012 0.19 0.62

<0.002 <0.0002 0.031

31 (0.002 0.016 0.1 (0.003 17

5.3

0.007 0.053 <0:01 0.065 (0.05 0.078 (0.01 <0.002 <0.0002 0.034 13 <0.002 0.019 (0.9 (0.03 1.6

6

c-3

Table C-2 (continued)

EP AND TCLP LEACH TEST RESULTS - PLANTS 0, Fp G (mg/L)

Sample: RCRA Max.

Method : Llmlt Elemental Analysis

Arsenic Barium Beryl 1 ium Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum Nickel Selenium S i l v e r T h a l l ium Vanad i um Zinc

pH ( u n i t s )

5 100

1 5

5 0.2

1 5

0-S3

EP

(0.002 0.16 0.007 0.48 0.053 0.54 0.091

(0.002 <0.0002 0.15

36 (0 .002 0.014

(0.09 4.8 3.3

4.8

D-S3

L 2 M i l u

0.013 0.02

(0.001 0.002 0.046 0.011 0.021

(0.002 <0.0002 1.1 0.028

(0.002 0.034 0.18

0.018

7.5

37

. .

F-S3

EP

(0.002 0.092

(0.01 0.042

(0.05 (0.06 0.14

<0.002 0.0009 0.054 1.2

(0.002 0.01

(0.09 (0.03 0.28

5.1

F-$3

Old TCLP

<0.002 0.014

(0.001 0.022 0.017

<0.006 (0.001 <0.002 0.0006 0.25

(0.003 <0.002 0.007

(0 .09 (0.003 0.007

7.1

g-53

EP

<0.002 0.26

(0.01 0.054 0.056 0.21 0.53

<0.002 <0.0002

0.032 23 <o .002 0.016

(0.09 (0.03 20

4.8

c-4

Table C-2 (cont inued)

EP AND TCLP LEACH TEST RESULTS - PLANTS G, HI K (mg/L)

Sample: RCRA Max. G-S3 H-S3 K-TkU5 Old K-TkU5

Method: -.L.mL-

Elemental Ana lys is Arsenic 5 Barium 100 Bery l 1 ium Cadmium 1 Ch rom i um 5 Cobal t Copper Lead 5 Mercury 0.2 Molybdenum Nicke l Selenium 1 S i l v e r 5 T h a l l ium Vanad i um Z inc

(0.002 0.035

(0.01 0.016

~ .. (0.05 (0 .06 (0.01 (0.002 c0.0002 0.048 2.2 (0.002 0.012

(0.09 (0.03 (0.03

0.036 0.002

(0.001 <0.002 0.01

(0.006 0,054

(0.03 0.0052 0.21 0.011 <0.002 0.004

0.012 (0.09

20

L

(0.002 0.22

<0.001 <0.002 0.014

(0.006 0.007 (0.002

0.0094 0.75 0.17 0.007 <0;002 (0.09

1.5 0.023

(0. 002 0.25

(0.001 <0.002 0.024 (0.006

0.021 <0.002 0.0004 0.34 0.015 0.003 <0.002 (0.09

1.7 0.035

pH ( u n i t s ) 6.8 13 9 9. I

Old K-TkU5

TcLp/uo.

<0.002 0.12

(0.001 0.004

(0.005 (0.006 0.021 <0.002 0.0006 0.94 0.15 0.005 <0.002 (0.09 2.3

(0.003

9.6

c-5

Table C-2 (cont inued)

EP AND TCLP LEACH TEST RESULTS - PLANT K (mg/L)

Sample: RCPA Max. K-W1 K-ESP1 Wash S o l i d s

Method : L i m i t L L JCLP/Sol id TCLP/Lia. Stack Wash 01 d 01 d

Elementa l Ana lys is Arsen ic Barium B e r y l l i u m Cadm i um Chromi urn C o b a l t Copper Lead Mercury Molybdenum N i c k e l Selenium S i l v e r T h a l l ium Vanadium Z i n c

pH ( u n i t s )

5 0.1 100 0.03

1 0.23 5 0.25

0.46

0.009

5 3.1 0.058

0.2 0.0002 0.1

14 1 0.026 5 0.008

(0.09 7.8 1.5

3.5

0.19 0.13 0.018 9.4 1

22 7.1

<0.002 <0.0002 8.1

(0.002 0.083

(0.09 360

43

820

2.9

0.003 0.089 . 0.003 0.75 0.069 1.7 0.33

(0.002 <0.0002 1.1

60 (0. 002 0.002

(0.09 12 3.3

4.9

0.062 0.16 0.036

21 2.1 48 15 (0.002 <0.0002 20

1730 (0.002 0.23

(0.09 880

92

3

C-6

Table C-2 (cont inued)

EP AN0 TCLP LEACH TEST RESULTS - PLANTS M, N

Sample: RCRA Max.

Method : Limlt

Elemental Analys is Arsenic 5 Barium 100 B e r y l l i u m Cadmium 1 Chromium 5 Cobal t Copper Lead 5 Mercury 0.2 Molybdenum N icke l Selenium 1 S i l v e r 5 T h a l l ium Vanadium Z inc

pH ( u n i t s )

M-S3

EP

<o. 002 0.06

<0.001 0.02 0.1 0.06 0.41

<0,002 0.0017 0.02 0.11 0.13 0.02

(0.09 0.04 0.18

5.2

(mg/L)

. .

M-S3

L2 lLrGu

(0.002 0.07 0.001 0.007 0.1 0.075 0.94

<0.002 0.0032 0,025 0.16 0.25 0.01

(0.09 0.03 0.02

N-S3

EP

(0.002 0.045

(0.001 <0.002 0.01

(0.006 0.15 0.006

<0.0002 (0 * 002 0.011

(0.003 <0.002 (0.09 0.032 0.69

N-S3

kd2l.E

<O. 004 0.07

(0.001 (0 .002 0.018

S0.006 0.16

(0.002 0.0002

(0.002 0.03

(0. 003 0.009 (0.09 0.044 0.53

n-53

cLd3L.e

(0.004 0.19

(0.001 (0.002 0.022

<0.006 0.17 0.006

<0.0002 0.006 0.018

C0.003 0.007

(0.09 0.061 0.89

c-7

Table 0 2 (continued)

EP AN0 TCLP LEACH TEST RESULTS - PLANTS 0, T (mg/L)

Sample: RCRA Max. 0 4 2 0-s2 0 4 2 T-S3

Method: L i m i t L l i Q L u e - L Elemental Analysis

Arsenic 5 Barium 100 Beryl 11 um Cadm i um 1 Chromium 5 Cobalt Copper Lead 5 Mercury 0.2 Molybdenum Nickel Selenium 1 S i l v e r 5 Tha l l i u m Vanadium Zinc

0.015 0.12 <0.001 <0.002 0.011 (0.006 0.024

<0.002 <0.0002 0.005 0.076 (0.003 0.004

(0.09 0.023 0.65

0.016 0.089 <0.001 <0.002 0.023 0.007 0.027 0.16

<0.0002 0.006 0.034

0.012

0.043 2

(0.03

<o .09

<0.002 0.16 (0.001 <o .002 0.017 C0.006 0.014

<0.002 <0.0002 0.008 0.017 <0.003 0.011 10.09 0.033 0.52

<o. 002 0.21 0.002 0.012 0.014 0.32 0.036

CO. 002 <0.0002 0.018 11 (0.003 0.011 0.1 0.15 1.2

T-S3 t-53

l?hLr.wm

<0.002 <0.002 0.64 0.081 0.002 <0.001 0.011 <0.002 0.012 0.009 0.43 (0.006 0.024 0.018

<0.002 <0.002 <0.0002 <0.0002 0.022 0.022 12 0.011 <0.003 (0.003 0.008 0.006 0.097 (0.09 0.14 0.24 2.4 0.005

C-8

Table C-3

CALIFORNIA ASSESSMENT MANUAL WASTE EXTMCTION TEST RESULTS - PLANTS A, C, D, F S G (mg/L)

Sample: A-S4 c-s4 D-S1 F-S3 G-S3

D e s c r i p t i o n : CAM Sludge S1 udge S1 udge Sludge S1 udge m ~ ~ ~ s Q L h k s Q L h k

Elemental Ana lys is Arsenic 5 0.018 0.31 0.33 0.021 0.17 Barium 100 1.3 1.1 2.6 0.26 1.2 B e r y l 1 lum 0.75 0.4 <o. 1 0.029 0.014 (0.1 Cadmium 1 0.1 1.5 1.5 0.062 0.47 Chromium 560 0.7 27 1.2 6.8 6.5 Chranium V I 5 0.13 0.037 0.054 Cobal t Copper Lead Mercury Molybdenum N i c k e l Selenium S i l v e r Thal 1 ium Vanadium Z inc

80 25

5 0.2

350 20 1 5 7

24 250

2.8 0.69 1.1 0.00084 0.08

34 <0.002 0.065

<0.9 7.4

11

1.3 1 0.26

<0.0002 2

100 <o .002 0.8

<9 9

100

1.6 0.21 <0.6 2.2 0.62 0.29 2.4 <0.002 <0.002

<o . 0002 <0.0002 <o . 0002 2.9 3.1 c0.2

<0.002 <0.002 <0.002 0.26 <o .02 <0.2 4.2 (0.9 (9

1000 0.44 1.9 11 1.1 56

110 2 79

pH ( u n i t s ) 8 6.6 7.8 8.6 6.8

c-9

Table C-3 (cont inued)

CALIFORNIA ASSESSMENT MANUAL WASTE EXTRACTION TEST RESULTS - PLANTS K, M, N p 0 (mg/L)

Sample: K-TkU5 K-ESP1 M-S3 N-S3 0-s2 7-53

D e s c r i p t i o n : CAM SIU;

Elemental Analys is Arsenic 5 Barium 100 Bery l 1 i urn 0.75 Cadmium 1 Chromi um 560 Chromium V I 5 Cobal t 80 Copper 25 Lead 5 Mercury 0.2 Molybdenum 35 0 Nickel 20 Selenium 1 S i l v e r 5 Thal 1 i urn 7 Vanad i um 24 Zinc 25 0

Th Ickener Sol i d s

0.012 0.3

<0.001 0.097 0.22

0.2 0.47 0.22 0.0004 0.85 5.5 0.004

<o .002 CO.09 13

1.21

ESP Sol i d s

1.3 0.21

<0.01 13 2.6 0.026

32 11

<0.0002 20

4.7

1100 0.016 0.24 4.5

970 59

Pond. Sollds

0.052 0.08 0.005 0.009 1.6

0.14 4.2

<0.002 0.0027 0.11 0.37 0.28 0.02

<0.09 0.21 0.44

Pond Sollds

<o. 008 0.059 0.001

<0.002 0.047

0.009 0.56

<o. 002 0.0002 0.017 0.046

<0.03 0.006

<0.09 0.11 2.3

Pond solids

<0.016 0.067 0.001

<0.002 0.061

<0.006 0.082

<o. 002 0.0003 0.007 0.048

<0.02 0.004

CO.09 0.083 2.1

F i l t e r -&l.i!&

0,13 0.42

<0,01 (0.02

1.4

0,96 3.7 0.7 0,0007 0.29

23 <0.003 (0.02 <0.9 43 2.2

c-10

Table C-3 (continued)

CALIFORNIA ASSESSMENT MANUAL WASTE EXTRACTION TEST RESULTS - BLANK EXTRACTIONS (mg/L)

Sample:

Descript ion:

Elemental Analysis Arsenic Barium Bery l l ium Cadmlum Chromium Chromium V I Cobalt Copper Lead Mercury Molybdenum Nickel Selenium S i l v e r Thall ium Vanadium Zinc

CAM

SIU;

5 100

0.75 1

560 5

80 25

5 0.2

35 0 20 1 5 7

24 25 0

A C-G K

~~~

(0.002 0.02

(0.001 (0.002 <0.005

<O. 006 <0.001 0.021 0.00028

<0.002 0.043

(0.002 0.031

(0.09 (0.003 0.095

<0.002 0.031

(0.001 0.051 0.012

<O. 006 0.007 0.021

<0.0002 0.013 0.021

<0.002 (0.002 (0.09 <O .003 0.021

<0.002 0.017

(0.001 0.051

(0.005

(0.006 0.007 0.16

<0.0002 0.014 0.043

<0.002 0.043

(0.09 0.21 0.032

M N,O#T

_8lnnhBlank

<0.002 0.007 0.04 0.02

(0.001 (0.001 <0.002 (0.002 (0.005 (0.005

(0.006 (0.006 0.005 0.017

<0.002 (0, 002 <0.0002 <0.0002

0.01 (0.002 0.03 0.023

<0.002 <o. 002 10.09 (0.09 10.003 (0.003 0.04 0.067

c-11

Table C-4

ANALYTICAL RESULTS OF RCRA WASTES - PLANTS A, B (mg/L)

Sample: RCRA A-F2 A-V 1 B-HC1 1 B-R1 8-SA1

Oescript ion: Maximum F i r e s i d e EDTA HC1 Waste Waste

Elemental Analysis

~~~~~~

Arsenic 5 (0.002 0.21 <0.002 <0.002 <0.002 Barium 100 0.083 0.34 0.47 0.051 0.019 Beryl 1 ium (0.001 <0.001 <o. 1 <0.001 (0.001 Cadm i um 1 0.004 0.061 0.78 0.002 0.022 Chromium 5 (0.005 0.55 h 0.045 (0.005 Chranium VI 0.47 0.47 Cobalt Copper Lead Mercury Molybdenum Nickel Selenium S i l v e r T h a l l i urn Vanadium Zinc

pH ( u n l t s )

~. . ~. . 0.26 0.41 1.5 0.013 <O, 006 0.12 1.52 182 1.7 0.39

5 0.007 1.1 0.51 0.7 0.64 0.2 <0.0002 <0,0002 0.0003 0.0003 <0.0002

0.003 0.2 0.45 0.007 0.022 5.7 8.3 26 0.25 <0.003

1 <0.002 (0.002 <0.002 (0.002 <0.02 5 0.0022 0.012 0.098 0.0038 0.011 ~~

(0.09 (0.09 (0.9 (0.09 <0.09 0.14 12 0.094 (0.003 <O .003 0.45 1.4 30 0.14 0.09

2<pH<12.5 6.5 6.7 1.8 1.8

c-12

Table C-4 (cont inued)

ANALYTICAL RESULTS OF RCRA WASTES - PLANTS C, 0, E, F (mg/L)

Sample: F-HAF1 RCRA C-Brl C-HC11 D-F1 E-C1 HAF

Oescr i p t i o n : Maximum Bromate HC1 F i r e s i d e C i t r i c Composite l l m i t W a s t e - - - W a s t e

Elemental Ana lys is 5 <o. 002 0.015 <o. 002 0.031 <o. 002

100 0.015 1.6 0.26 1.1 0.097 <0.01 < O . l (0.01 <o. 1 (0.01

Arsenic Bar 1 um Bery l1 ium Cadmfum Chromium Chromium V I Cobal t Cop pe r Lead Mercury Molybdenum N icke l Selenium S i l v e r Thal 1 i um Vanadium Zinc

pH ( u n i t s )

1 0.021 5 (0.05

CO. 06 1050

5 0.17 0.2 <o. 0002

0.058 2.3

1 <o .002 5 <o .02

<0.9 <O .03 7.9

2<pH<12.5 10.4

0.24 u 0.51 1

290 4.2 0.0005 0.1

<0.002 0.11 (9 C0.3

240

410

1.05

0.027 0.19 0.32 3.4

3 0.79 1.2 0.63 223 <0.002 1.6 0.0003 <0.0002 1.1 2.2 89 13 <o. 002 <0.002 0.016 0.37 1 <9

180 13 4.3 61

3.3 9.75

0.19 3.6 0.06 0.13 0.91 0.88 0.076 1.6 0.031 <0.002 0.11

c0.9 0.27 0.23

3.8

C-13

Table C-4 (cont inued)

ANALYTICAL RESULTS OF RCRA WASTES - PLANT G (mg/L)

Sample: RCRA

D e s c r i p t i o n : Maximum L.iD2.L

Elemental Ana lys is Arsenic Barium Bery l 1 i um Cadm i um Chromi um Chromium V I Coba l t Copper Lead Me rcu r y Molybdenum N i c k e l Selenium S i l v e r T h a l l i um Vanadium Z inc

5 100

1 5

5 0.2

1 5

pH ( u n i t s ) Z<pH<12.5

G-Cmp 1 G-81

Composite Bromate Waste -w.a%k

0.008 (0. 002 0.17 (0.1

(0.01 10.1 0.15 0.006 1.1 0.5 0.12 3 0.35 <0.6 19 450 0.032 <o. 002

<0.0002 <0.0002 0.25 0.59 47 1.5 <0.002 10.002 0.055 0.26 (0.9 (9 0.23 (0.3 6.2 3

1.5 9.75

G-R1

Water -iu.nxL

0.004 0.006

<o. 001 0.007 0.011 0.06

(0.006 0.31

<o. 002 0.076 0.033 0.031

CO. 002 0.0063 (0.09 0.005, 0.006

3.8

G-HC1 1

HC1 Waste

0.004 1 (0.1 0.18 3.5 0.24 1.6

1.6 <0.0002 0.72

<0.002 0.17 <9 10.3 30

320

210

1.5

G-Hyl

Hydrazine Draln

0.015 (0.01 (0.01 0.041 0.07 0.064 (0.06 0.98

10.002

0.49 3 <0.002 0.028 (0.9 (0.03 0.11

C-14

Table C-4 (cont inued)

ANALYTICAL RESULTS OF FCRA WASTES - PLANT H

Sample: RCRA

Descr ip t ion : Maximum JAQiL

Elemental Analys is Arsenic 5 Barium 100 Bery l l i um Cadm i um 1 Chromium 5 Chromium V I Coba 1 t Copper Lead 5 Mercury 0.2 Molybdenum Nickel Selenium 1 S i l v e r 5 T h a l l i um Vanadium Z.i nc

pH ( u n i t s ) 2<pH<12.5

(mg/L 1

H-Brl

Bromate Waste

<0.002 0.022

<o. 01 0.007

(0.05

(0.06 3 25

0.016 <0.0002 0.031 0.098

<0.002 0.069

<0.9 CO.03 3.1

10.8

H-HC1 1

HC1 J!luiL%

0.007 2.6

<o. 1 0.019 5 . 2 2.4 0.78

10.5 0.33

<o . 0002 0.43

<0.002 0.001

(0.9 10.3

180

100

1.5

H-HC12

Neut ra l i zed HC1 A

<0.002 <o. 001 <0.001

0.002 0.02 0.064

<0.006 0.58

<0.03 0,0039 0.25 0.015

<0.002 <0.001 <o .09 0.016

26

12.1

C-15

Table C-4 (cont inued)

ANALYTICAL RESULTS OF RCRA WASTES - PLANTS I, J

Sample: RCRA

Desc r ip t i on : Maximum limLt

Elemental Analys ls Arsenic 5 Barium 100 Bery l 1 ium Cadmium 1 Chromium 5 Chromium V I Cobal t Copper Lead 5

Molybdenum N icke l Selenium 1 S i l v e r 5 T h a l l ium Vanadium Z inc

Mercury 0.2

pH ( u n i t s ) 2<pH<12.5

(mg/L)

I-HC11

HCl Waste Anit 3

0.12 0.87

<o. 1 0.13 a4 0.2 0.83

0.008 0.0003 1.1 4 <0.002

0.2 <0.9 0.32

287

170

1.01

I-HC11

HC1 Waste AliLL

0.011 0.31

0.066

1.1 0.64 1.7 0.33 0.0008 8.5 7.4

<o .002 0.044 (0.9

0.5 0.56

1.12

<o. 1

25

I-TSP1

Na3P04 lnLLL

0.01 0.009

<0.001 <0.002 0.028 0.007 CO.006 0.29

CO.08 <0.0002 0.018 (0.003 <0.002 <0.002 (0.09 0.012 0.013

9.42

J-V1

EDTA Waste

0.043 0.2

<o. 1 0.21 2 . 4 0.02

(0.6 282

0.024 <0.0002 0.71 1.4

<o .002 0.031 (0.9 (0.3 3.3

9.6

C-16

Table C-4 (continued)

ANALMICAL RESULTS OF RCRA WASTES - PLANTS K s L, M (mg/L)

Sample: RCRA K-APrl K-APrl L-v1 M-BCR1 M-P2

Descr ip t ion : Maximum F i l t e r e d U n f i l t e r e d EDTA Re jec t Pond -LA&- A i rp rehah te r W a s h w a t e r W a s t e L l a u l d W

Elemental Ana lys is 5 10.002 <0.002 0.36 0.27 0.019

100 0.076 0.061 0.65 0.1 0.1 Arsenic Barium Bery l l i um Cadm i um Chromium Chrmium V I Cobalt Copper Lead Mercury Molybdenum Nicke l Selenium S i l v e r T h a l l i um Vanadium Zinc

pH ( u n i t s )

10; 001 1 0.011 5 (0.005

0.19 0.12

5 (0.002 0.2 <0.0002

0.006 5.5

1 10.002 5 0.021

(0; 09 0.006 0.36

ZpH(12.5 3.06

<0.001 <o. 1 0.017 0.78 0.21 L1

0.89 0.22 1.8 0.33 321 0.082 1.8

10 . 0002 0.0004 0.036 2.4 6.5 160

10.002 <0.002 0.019 0.057

10.09 (0.9 6.8 (0.3 0.71 64

3.9 10.3

0.003 0.02 0.03 0.04 0.31 0.26

0.89 0.05 3.5 1.4 1.8

10.002 <0.002 0.0003 0.025 1.5 0.68 0.37 1.3 0.027 L5. 0.03 0.01 0.19 0.12 0.51 0.41 4.1 4.4

4.9 4.6

C-17

Table C-4 (cont inued)

ANALYTICAL RESULTS OF RCRA WASTES - PLANTS N, 0, P (mg/L)

Samp 1 e: RCRA N-BCR3 0-BCR1 0-P2 P-c1

Descr ip t ion :

Elemental Ana lys is Arsenic Barium Bery l 11 um Cadmium Chromium Chranium V I Cobalt Copper Lead Mercury Molybdenum Nickel Selenium S i l v e r T h a l l i um Vanad i um Zinc

Maximum U m i L

5 100

1 5

5 0.2

1 5

Re jec t !J.uuJ-

0.52 0.14 0.008

CO.02 0.14

0.1 0.33

~ . . ~ <0.002 <0.0002 0.87 0.84

<o. 002 0.022 0.54 0.68

20

Re jec t “!L

0.02 0.18 0.001

<o .002 (0.005

0.018 0.011

<0.002 <0.0002 0.039 0.28

(0.002 <o .002

0.1 0.14

10.003

Pond lwQL

0.14 0.15 0.003 0.003 0.025

0.047 0.076

<0.002 <o . 0002 0.33 0.32 0.037

<o .002 0.21 0.27 2.2

C i t r a t e Waste

0.17 0.32

(0.1 (0.2 Lz

0.95 3.8 0.19

<0.0002 1.1 4.9

<o .002 CO.02 0.41 0.29 2.7

pH ( u n i t s ) 2<ph<12.5 4.9 4.6 9.8

P-RI

F i r s t _Rlnstr

0.018 0.097

(0.01 0.04 0.77

0.09 8.5

<0.002 <0.0002 0.19 0.49

<0.002 <0.02 (0.09 0.03 0.49

9.3

c-18

Table C-4 (cont inued)

ANALYTICAL RESULTS OF RCRA WASTES - PLAkTS T, U (mg/L)

Sample: RCRA T-Ft1 T-Ft16 u-v1 U-R1 U-HAF2

Descr ip t ion : Maximum F i r e s i d e F i r e s i d e EDTA EDTA HAF J.3u.L +1 h r t 1 6 hrs ~~~

Elemental Analys is Arsenic 5 Barium 100 Bery l l i um Cadm f um 1 Chromi um 5 C h r a i u m V I Cobalt Copper Lead 5

Molybdenum Nickel Selenium 1 S i l v e r 5 T h a l l i um Vanad i urn Zinc

Mercury 0.2

pH ( u n i t s ) 2<pH<12.5

<0.002 0.089 0.012 0.2 0.53

5.4 7.1 0.051

<0.0002 0.074 0.59

<0.002 0.022 0.27 4.7

25

0.016 0.09

<O.OOl <0.002 (0.005

<0.006 0.012 0.008

<0.0002 0.43 0.032

<0.002 (0.002 (0.09 19 0.007

10.1

0.4 1.3

(0.1 <0.2 4.7

0.6 123 23

0.0012 1

15 <0.002 0.029 0.43 0.28

60

8.4

0.014 0.005 0.004

<0.002 0.11

0.023 0.94 0.46

<0.0002 0.098 0.64

<0.002 <0.002 (0.09

0.003 1.6

9.1

0.007 0.16

(0.1 (0.2 lz

0.027 0.62 0.1 0.3 0.0004

13 6.2

<0.002

1.3 3.8

3.1

c-19

Appendix D

QUALITY ASSURANCE -- RESULTS

OF FIELD AND LABORATORY

QUALITY CONTROL

CONTENTS

Iahle m D-1 Q u a l i t y Assurance Resu l t s -- Ana lys i s o f Con t ro l

Standard D-2

D-2 D.ual i ty Assurance Resu l ts -- R e p l i c a t e Ana lys i s D-3

D-3 Q u a l i t y Assurance Resu l ts -- EP R e p l i c a t e Ana lys is . D-4

D-4 Q u a l i t y Assurance Resu l ts -- D.ual i ty Con t ro l f o r Water

Parametars (P lan ts A through U) D-5

0 - i i i

QUALITY ASSURANCE -- RESULTS OF FIELD AN0

LABORATORY QUALITY CONTROL

The q u a l i t y assurance p lan inc luded adher ing t o t h e sampling and a n a l y t i c a l p lans

developed f o r each p l a n t ( o r each s e t of experiments), and f o l l o w i n g q u a l i t y

c o n t r o l CQC) p r a c t i c e s es tab l i shed f o r l a b o r a t o r y analys is . The QC plan was

w r i t t e n p r i o r t o i n i t i a t i o n o f any o f t h e work.

A n a l y t i c a l QC inc luded t h e f o l l o w i n g four-s tep pro toco l :

0 Cont ro l Standards - With each batch of analyses (a t o t a l of f i v e

batches were processed) EPA c o n t r o l standards were a l s o analyzed. The

c o n t r o l standards were p laced i n b o t t l e s i d e n t i c a l t o t h e sample

b o t t l e s . One standard conta ined known l e v e l s o f arsenic, barium,

cadmium. chranium, lead. selenium and s i l v e r ; another conta ined known

l e v e l s o f a l k a l i n i t y , c h l o r i d e , f l u o r i d e , and s u l f a t e ; another had a

known pH and TOS; and a f i n a l standard f o r COO and TOC. These QC

analyses i n d i c a t e how c l o s e t h e .analyses came t o c e r t i f i e d standards

(accuracy ) . 0 R e p l i c a t e Ana lys is - One sample was analyzed repeatedly w i t h each batch

of analyses. The comparison o f r e s u l t s f o r t h i s sample over t i m e g ives

an i n d i c a t i o n o f t h e t ime v a r i a b i l i t y o f t h e analyses ( p r e c i s i o n ) .

0 Recovery - Water q u a l i t y parameters were QC checked f o r recovery by

runn ing c e r t i f i e d standards and by s p i k i n g t h e ac tua l samples w i t h a

known amount o f standard.

accuracy o f t h e analyses.

Both checks prov ide a measure of t h e

The r e s u l t s o f t h e QC plan, presented i n t h e t a b l e s of t h i s appendix. can be used

t o judge t h e r e l a t i v e accuracy (closeness t o a known standard) and p r e c i s i o n

( b i a s ) o f t h e analyses.

D - 1

Table 0-1

QUALITY ASSURANCE RESULTS--ANALYSIS OF CONTROL STANDARD

U i c a l Resu l ts (mo/L) .

P1 ants:

Elemental Ana lys is A1 um i n um Antimony Arsenic Barium Bery l1 ium Boron Cadmium Calcium Ch rom 1 um Cobal t Copper I r o n Lead Ma.gn e s i um Manganese Mercury Molybdenum N icke l Potassium Selenium S i l i c o n S i l v e r Sod i um T h a l l ium Vanadium Z inc

Water Qual i t y Values pH ( u n i t s ) A c i d i t y

A1 k a l i n i t y

coo Ch lor ide F l u o r i d e N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

(as CaC03)

(as CaC03)

A

(0.05 (0 .02 (0.06 0.34

(0.001 (0.06 <0.002 (0 .05 0.032

(0.006 (0.001 (0.008 (0.08 (0.03 (0.001

(0.002 (0 ,003 (0.05 (0.08 0.26 0.021 0.46

(0.09 (0.003 0.004

7.7

23

26 440

19 (0.1 (1 (0 .02 10

B-G

0.17 10.02 0.037 0.37

(0.001 (0.05 0.006

(0 .05 (0.006 0.035

(0.001 0.018

(0.08 (0.03 (0.001

(0.002 (0 .003 (0.05 0.005 0.3 0.041 0.87

(0.09 (0.003 (0.003

0.48

15 0 89 103

tl-l

0.037 0.36

(0.001

<0.002

0.031 (0.006 <0.001

0.044

0.0096 0.007

(0.003

0.008

0.01

(0.09 (0.003 (0 .003

2.44

570

(1 190 27

0.51 (2 (0.02 11 64 85

P,M

(0.05 (0.02 0.044 0.36

<0.001 0.26

(0.002 (0 .05 0.047

(0 .006 (0.001 0.095 0.041

(0.03 (0.001

<0.002 (0 .003 0.15 0.009 0.33 0.035

(0.03 (0.09 (0.003 (0 .003

0.0012

7.6

15

21.5

18.3 0.51

(1 10.02 5.4

42 88

209

fLQLILL

10.05 <0.02 0.044 0.36

(0.001 0.26

<0,002 (0.05 0.047

(0.006 (0.001 0.095 0.041

(0 .03 (0. 001

(0.002 (0.003 0.15 0.009 0.33 0.035

(0.03 (0.09 (0.003 10.003

0.0012

6.9

15

Actual Values

0.043 0.344

0.0046

0.046

0.045

0.0076

0.034

7.8

22 21.7

20 17.8 210 232

0.51 0.43 (1 (0.02 5.4 7.2

42 44.2 88 91.5

D-2

Table 0-2

QUALITY ASSURANCE RESULTS--REPLICATE ANALYSIS

Elemental Ana lys is Aluminum Ant i mony Arsen ic Barium Bery l 1 i um Boron Cadmium Calcium Chromium Coba l t Copper I r o n Lead Magnesium Manganese Mercury Molybdenum N icke l Potassium Selenium S i l i c o n S i l v e r Sodium T h a l l ium Vanadium Z inc

Water Q u a l i t y Values pH ( u n i t s ) A c i d i t y

(as CaCO3) A1 k a l i n i t v

(as CaC63) coo Ch lor ide F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TOS TOC

Sample B - H C l l (ma/L) 7/3/85 7/15/85 1013185 12/04/85

26 0.5

(0. 002 1.7

(0.1 16

42 0.59

6.4 1.6

25 0.5

<0.002 0.47

10.1 12 0.89

29 6 1.5

21 0.86 0.01 2.6

(0.1 12 (0.2 34 5.4 1.5

(5 0.6 0.01 0.43

(0. 1 (4.8 (0.2 30

6.6 1.6

160 160 61 22 4800 4450 4950 4770

0.51 2.2 <0.002 2 ~~

19 14 15 25 27 27 28 29

0.0003 0.0003 (0 .0002 0.0009 0.91 0.45 0.56 0.38

25 26 26 73 (5 (0.5 36 13 (0.002 (0.002 10.002 (0 .002 13 15 14 46 0.098 (0.02 0.12 0.072

160 390 170 18 (0.9 (0.9 0.37 0.35 0.58 0.094 0.37 0.36

26 30 27 27

1.77 1.9 1.85 1.4

52000 54000 55000 47000

(1 (1 (1 (1 8000 6200 14000 7500

33000 37000 35000 io7no . ~~~

2100 2500 -~ .~ 2300

19 (10 (5 0 (1 (0 .02 (0 .02 (0 .02 (0.02 50 65 3 10 400

12000 500 10500 7800 890 11000 83 0 1460

Averaae -

18 0.62 0.005 1.3

(0.1 10

34 0.37

6.1 1.6

101 4700

17 28

1.2

0.0004 0.58

25 12 <0.002 23

0.073 180

0.18 0.35

28

1.7

52000

(1 8900

29000 2800

4.8 (0.02

210 7700 3500

0-3

Table D-3

EP QUALITY ASSURANCE RESULTS -- EP REPLICATE ANALYSIS

Elemental Ana lys is Arsen ic Barium B e r y l l i u m Cadmium Chromium Cobalt Copper Lead Mercury Molybdenum N icke l Selenium S i l v e r Thal 1 ium Vanadium Z inc

pH ( u n i t s )

(0.002 1.5 0.003 0.18 0.036 1.2 0.31

(0.002 0.0006 0.048

13 (0.002 0.0006

(0.09 0.051 1.7

5 . 6

(0.002 1.4 0.003 0.17 0.034 1.1 0.2

(0 .002 0.0007 0.014

13 to . 002 <o. 002 (0.09 0.04 1.6

5 .7

(0.002 2.5

(0.001 0.21 0.046 1.3 0.28

(0.002 <0.0002 0.027

14 (0 .002 (0.002 (0.09 0.057 1.6

5 . 8

<0.002 2.4

(0.001 0.23 0.05 1.2 0.52

(0 .002 <0.0002 0.03

16 (0. 002 0.01

<o .09 0.07 2.9

5 . 2

<0.002 2.2

(0.001 0.014

(0.005 1.1 0.47

<0.002 <0.0002 <0.002 17 10.003 10.002 (0.09 0.076 3.6

<0.002 2.1

(0.001 0.16 0.033 1.2 0.37

(0.002 (0 .0002

0.018 15 (0.003 <0.002 (0.09 0.061 2.4

0-4

P l a n t A

Table D-4

QUALITY ASSURANCE RESULTS -- GUALIN CONTROL FOR WATER PARAMETERS

Water Q u a l i t v Va l u e s (mo/L) DH ( u n i t s )

Oupl i c a t e R e p r o d u c i b i l i t y

(Percent 1

0.048 A c i d i t y (as CaCO 1 18

0- COD 84.7.30 D A l k a l i n i t y (as C&03) 11

C h l o r i d e F1 u o r i de N i t r a t e N i t r i t e (as N) S u l f a t e TDS TOC

I I /

Acceptable I n i t i a l R e p r o d u c i b i l i t y QC Recovery

(Percent) (Percent)

20 20 110 20 97 20 86 20 94 20 96 20 98 20 104 20 98 20 99 20 90

Cont inu ing Spike Acceptable QC Check Recovery Spike (Percent) (Percent ) Recove r v

119 91.92,97,105

84 104 99

102 103 99

90,87.85 -

- - -

97 76.100 119,98

99 73,96

85

-

-

- 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115

VIVIVIVIVIVIVIVIVIVI 3r1333d3d33 3 3 d 3 3 3 3 d d d

VIVIVIVIVIVIVIVIVIVI 1 1 1 1 1 1 1 1 1 1 1

a, n u m m m m m m m m m m V v ) a: 2

0 0 0 0 0 0 0 0 0 0 0 N N N N N N N N N N N

o m o N Q o N o m N N, .... . m 0 N, N,

ZCN, r m w 3 N

m

D-6

Table D-4

QUALITY ASSURANCE RESULTS -- QUALITY CONTROL FOR WATER PARAMETERS

P l a n t H-L D u p l i c a t e R e p r o d u c i b i l i t y

(Pe r c e n t

Water Q u a l i t v Values (ma/L) pH ( u n i t s ) 0,l

D A c i d i t y (a5 CaCO 2 v A l k a l i n i t y (as C b 3 ) 0

COD - C h l o r i d e 0,4 F l u o r i de 0,8 N i t r a t e 0 N i t r i t e (as N) - S u l f a t e 1,1.5 TDS 14,4 TOC 19,o

Acceptable R e p r o d u c i b i l i t y

(Percent 1

20 20 20 20 20 20 20 2C 20 20 20

I n i t i a l QC Recovery

(Percent

100

96

99,102 101

101,104

102.100 97 86

- -

-

Cont inu ing Spike Acceptable QC Check Recovery Spike (Percent) (Percent 1 Recove r v

100.105 - - - 102,99 103,101 101,101

101,102 95

94 I93

-

- 95,96

108,90,36 111.115,132

108.94

88,120

- -

- 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115

' I I /

I I i r - m w u r - i - d m r - o m d 3 . 2

? - 3 .

m.4 00 N 3 d

0 0 3

m ~ o o o o m o m o o o m o o o o o o 3 3 3 d 3 h r . 4 3

0000000000 N N N N N N N N N N

1"'. O m 3 N I I I PWN-

d

2 "! . 0

0-8

Table D-4

QUALITY ASSURANCE RESULTS -- QUALITY CONTROL FOR WATER PARAMETERS

P l a n t N,O.T,U Dup l i ca te R e p r o d u c i b i l i t y

(Percent)

Mater Q u a l i t v Values hjLJ 0 pH ( u n i t s ) - W A c i d i t y (as CaCO 1 0

COD 12,2 Ch lo r ide 0.4.1.8 F1 u o r i de 27,15,0.4 N i t r a t e NA N i t r i t e 0 S u l f a t e 0.4.1.4

A l k a l i n i t y (as C iC03) 4

TOS TO€

4 1.5 93,14,1

Acceptable R e p r o d u c i b i l i t y (Percent)

20 20 20 20 20

20 20 20 20 20 20

I n i t i a l Cont inu ing Spike QC Recovery QC Check Recovery

(Percent 1 (Percent) -cmxe&l

- - - - 91 92 99 100.94,91,111 100 100.97 105 - 102 101.99 96 102.98,104 98 9i,98 107 - 100 99,99

- - - - 99,94 100.96 100,90

100 105,102

79,97 -

Acceptab 1 e Spike

Recoverv

- 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115 85-115

I I I I '

i

Appendix E

COST BASIS

CONTENTS

Labla

E-1

E-2

E-3

E-4

E-5

E-6

E-7

E-8

E-9

E-10

E-11

E-12

E-13

E-14

E-15

E-16

.E-17

E-18

E-19

Rapid-Mix Tank N e u t r a l i z a t i o n - 50 GPM System

Rapid-Mix Tank N e u t r a l i z a t i o n - 50 GPM Two Chemical

Rapid-Mix Tank N e u t r a l i z a t i o n - 250 GPM System

Rapid-Mix Tank N e u t r a l i z a t i o n - 250 GPM Two Chemical

Rapid-Mix Tank N e u t r a l i z a t i o n - 500 GPM System

Rapid-Mix Tank N e u t r a l i z a t i o n - 500 GPM Two Chemical

Feed Systems

Feed Systems

Feed Systems

In -L ine N e u t r a l i z a t i o n - 50 GPM System

In -L ine N e u t r a l i z a t i o n - 50 GPM Two Chemical Feed

Systems

In -L ine N e u t r a l i z a t i o n - 250 GPM System

In -L ine N e u t r a l i z a t i o n - 250 GPM Two Chemical Feed

Systems

In -L ine N e u t r a l i z a t i o n - 500 GPM System

In -L ine N e u t r a l i z a t i o n - 500 GPM Two Chemical Feed

Systems

Procedure for Determining Impoundments Costs

Physical IChemical Treatment - 50 GPM

Physfcal IChemical Treatment - 250 GPM

Physical IChemical Treatment - 250 GPM

Physlcal/Chemical Treatment - 500 GPM

Physical/Chemical Treatment - 500 GPM

Procedure f o r Determining L a n d f i l l Costs

E-2

E-3

E-4

E-5

E-6

E-7

E-8

E-9

E-10

E-11

E-12

E-13

E-14

E-16

E-18

E-19

E-20

E-21

E-22

E-iii

COST B A S I S FOR TREATMENT SYSTEMS

Th is appendix presents data used as the basis f o r costs o f treatment systems

discussed i n Section 4 o f t h i s manual. The basis includes d e t a i l e d equipment

1 i s t s , equipment purchase and i n s t a l l a t i o n costs. and ca lcu la t ions for est imating

sme costs.

E-1

Table E-1

RAPID-MIX TANK NEUTRALIZATION - 50 GPM SYSTEM ( d e t a i l e d equipment l i s t )

Item Mix Tank

Mix Tank A g i t a t o r

Chemlcal Feed Tanks

Discharge Sump Pumps

Acid Feed Pumps

Caust lc Feed Pumps

pH Cont ro l System

Level Cont ro l System

F1 ow I n d i c a t o r

DescdDt ion

Concrete Sump 2000 ga l lon . 6.5 ft x 6.5 f t x 7.5 f t (1 f t freeboard) g ra ted top, a g i t a t o r and pump suppor ts

P r o p e l l e r mixer ( 2 hp. 70 rpm) a l l in-tank p a r t s 304 S t a i n l e s s Steel

200 ga l lon . f i be rg lass - re in fo rced p l a s t i c , v e r t i c a l , f l a t bottom. dished heads. inc ludes hold-down lugs. manway, and ven t connect ion

Cent r i fuga l . 50 gpm, 55 ft head. 2 hp, TEFC motor, s t a i n l e s s s t e e l i n te rna ls , mechanical sea ls (1 operat ing. 1 spare)

Diaphragm, i n t e r n a l s o f Carpenter 20 s tee l , 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment. 4-20 m i l l i amp i n p u t (1 operat ing. 1 spare)

Dlaphragm, s t a i n l e s s s t e e l i n t e r n a l s 1/3 hp motor, e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i amp i n p u t (1 operat ing. 1 spare)

I n s e r t i o n probe (1 operat ing. 1 spare), 2 t ransmi t te rs , 4-20 m i l l i amp outpu t

dP t ransmi t te r , 4-20 m i l l i amp outpu t I / P conver te r (4-20 mil l iamp/3-15 p s i g ) S1 i d i n g g a t e valve, pneumat ica l ly operated, 2'9, Cv = 30. carbon s t e e l w i t h threaded ends and s t a i n l e s s s t e e l i n t e r n a l s

S t a i n l e s s s t e e l o r i f i c e and f l ange dP t r a n s m i t t e r . l o c a l i n d i c a t o r

E-2

Table E-2

RAPID-MIX TANK NEUTRALIZATION - 50 GPM TWO CHEMICAL FEED SYSTEMS

(equipment purchase and installation costs) - Mix Tank Mix Tank Agitator Chemical Feed Tanks Discharge Pumps Acid Feed Pumps Caustic Feed Pumps pH Control System Level Control System Flow Indicator On-site Costs1 Off-site Costs2

TOTAL

Unit _I;esf,

$900 5,000 1.850 1,900 2,500 2,450 1,600 3,700 1,000

Total Purchase l l a F t s C o s t

1 $900 1 5,000 2 3.700 2 3,800 2 5,000 2 4.900 2 3,200 1 3,700 1 1,000

Instal lation Cost

$1,600 1,000 1,000 1,000 400 400

1,000 600 300

Total -!2!2sL

$2,500 6.000 4,700 4,800 5,400 5,300 4,200 4,300 1.300 7,800 6,900

$52.900

l25 percent of purchased equipment cost for piping, foundations. electrical, and insulation, paint, and cleanup.

'15 percent of direct process cost for buildings, storage facilities, uti1 ities, and off-site piping.

E-3

Table E-3

RAPID-MIX TANK NEUTRALIZATION - 250 GPM SYSTEM ( d e t a i l e d equipment 1 i s t )

Item DesCriDt ion

Mix Tank Concrete Sump 10,DOO gal lon, 11 f t x 11 f t x 12 ft (1 ft freeboard) grated top, a g i t a t o r and pump supports

Mix Tank A g i t a t o r p r o p e l l e r mixer (5 hp, 70 rpm) a l l in- tank p a r t s 304 S t a i n l e s s Steel

Chemical Feed Tanks 1000 gal lon, f i b e r g l a s s - r e i n f o r c e d p l a s t i c , v e r t i c a l , f l a t bottom, dished heads, i nc ludes hold-down lugs. manway, and ven t connect ion

C e n t r i f u g a l s 250 gpm. 50 f t head. 10 hp, TEFC motor, s t a i n l e s s s t e e l i n te rna ls , mechanical seals, (1 operat ing. 1 spare)

Discharge Sump Pumps

Acid Feed Pumps Diaphragm, i n t e r n a l s o f Carpenter 20 s tee l , 1/3 hp motor, e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i amp i n p u t (1 operat ing, 1 spare)

Caust ic Feed Pumps Diaphragm, s t a i n l e s s s t e e l i n t e r n a l s 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i a m p i n p u t (1 operat ing, 1 spare)

pH Cont ro l System I n s e r t i o n probe (1 operat ing, 1 spare), 2 t ransmi t te rs . 4-20 m i l l i a m p ou tpu t

Level Con t ro l System dP t r a n s m i t t e r , 4-20 m i l l i a m p ou tpu t I / P conver te r (4-20 m i l 1 iamp/3-15 ps ig ) S1 i d i n g g a t e valve. pneumat ica l ly operated. 3", Cv = 130, carbon s t e e l w i t h f langed ends and s t a i n l e s s s t e e l i n t e r n a l s

Flow I n d i c a t o r S t a i n l e s s s t e e l o r i f i c e and f l ange dP t r a n s m i t t e r , l o c a l i n d i c a t o r

E-4

Table E-4

RAPID-MIX TANK NEUTRALIZATION - 250 GPM TWO CHEMICAL FEE0 SYSTEMS

(equipment purchase and i n s t a l l a t i o n c o s t ) - Mix Tank Mix Tank A g i t a t o r Chemical Feed Tanks Discharge Pumps Acid Feed Pumps Caust ic Feed Pumps pH Cont ro l System Level C o n t r o l System Flow I n d i c a t o r

On-s i te Costs1

O f f - s i t e Costs2

TOTAL

U n i t _ I ; e S l t u

$2,400 1 8.500 1 2,800 2 3,100 2 2,550 2 2,450 2 1,600 2 5.100 1 1,000 1

T o t a l Purchase Cost

$2,400 8,500 5,600 6.200 5,100 4,900 3,200 5.100 1,000

I n s t a l l a t i o n Cost

$4,400 1,400 1,500 1,000

400 400

1,000 600 300

T o t a l AhiL

$6,800 9,900 7,100 7,200 5,500 59300 4,200 5,700 1.300

11.000

9,500

$73,500

l 2 5 percent of purchased equipment c o s t fo r p ip ing. foundations, e l e c t r i c a l , and i n s u l a t i o n . pa in t , and cleanup.

215 percent of d i r e c t process c o s t f o r b u i l d i n g s , s torage f a c i l i t i e s , u t i l i t i e s , and o f f - s i t e p ip ing .

E-5

Table E-5

RAPID-MIX TANK NEUTRALIZATION - 500 GPM SYSTEM ( d e t a i l e d equipment l i s t )

Item Descr iD t ion

Mix Tank Concrete Sump 20,000 gal lon, 14 f t x 14 f t x 15 f t (1 f t freeboard) grated top. a g i t a t o r and pump supports

Mix Tank A g i t a t o r

Chemical Feed Tanks 2000 gal lon, f i be rg lass - re in fo rced p l a s t i c , v e r t i c a l , f l a t bottom. dished heads. inc ludes hold-down lugs. manway. and v e n t connect ion

Discharge Sump Pumps Cen t r i f uga l , 500 gpm, 50 f t head, 15 hp, TEFC motor. s t a i n l e s s s t e e l i n te rna ls , mechanical

p r o p e l l e r m ixe r (10 hp. 60 rpm) a l l in- tank p a r t s 304 S t a i n l e s s Steel

Ac id Feed Pumps

Caus t i c Feed Pumps

pH Con t ro l system

seals. (1 operat ing. 1 spare)

Diaphragm. i n t e r n a l s o f Carpenter 20 s tee l . 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i a m p i n p u t (1 operat ing, 1 spare)

Diaphragm, s t a i n l e s s s t e e l i n t e r n a l s 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i a m p i n p u t (1 operat ing. 1 spare)

I n s e r t i o n probe (1 operat ing. 1 spare), 2 t ransmi t te rs , 4-20 m i l l i a m p ou tpu t

Level Con t ro l System dP t r a n s m i t t e r , 4-20 m i l l i a m p ou tpu t I / P conver te r (4-20 mi l l iamp/3-15 p s i g ) S1 i d i n g g a t e valve. pneumat ica l ly operated. 4", Cv = 200, carbon s t e e l w i t h f langed ends and s t a i n l e s s s t e e l i n t e r n a l s

Flow I n d i c a t o r S t a i n l e s s s t e e l o r i f i c e and f l ange dP t r a n s m i t t e r . l o c a l i n d i c a t o r

E-6

Table E-6

RAPID-MIX TANK NEUTRALIZATION - 500 GPM TWO CHEMICAL FEE0 SYSTEMS

(equipment purchase and i n s t a l l a t i o n cos ts )

U n i t To ta l Purchase I n s t a l l a t i o n To ta l -*-LA- Mix Tank $4.000 1 $4.000 $7,000 $1 1,000 Mix Tank A g i t a t o r lotloo 1 lotloo 900 11.000 Chemical Feed Tanks 4,000 2 8,000 2,000 10,000 Discharge Pumps 3,800 2 7,600 1,000 8,600 Acid Feed Pumps 29550 2 5,100 400 5,500 Caust ic Feed Pumps 29500 2 5.000 400 5.400 pH Cont ro l System 1.600 2 3200 1,000 4.200 Level Cont ro l System 6.100 1 6,100 600 69700 F1 ow I n d i c a t o r 1,000 1 1,000 300 1.300 On-s i te Costs1 13,000 O f f - s i t e Costs2 11,000

TOTAL $87,000

l25 percent o f purchased equipment c o s t f o r p ip ing. foundations, e l e c t r i c a l , and insu la t l on , pa int , and cleanup.

215 percent o f d i r e c t process c o s t f o r bu i l d ings . s torage f a c i l i t i e s . u t i l i t i e s , and o f f - s i t e p ip ing .

-

E-7

Table E-7

IN-LINE NEUTRALIZATION - 50 GPM SYSTEM ( d e t a i l e d equipment l i s t )

Item In-1 i n e S t a t i c Mixer

Chemical Feed Tanks

Discharge Pumps

Acid Feed Pumps

Caust ic Feed Pumps

pH Con t ro l System

Flow I n d i c a t o r

D e s c r i o t i o n

2- inch diameter, 2 e lemen tdmixe r A l l o y 20 cons t ruc t ion . threaded ends

200 ga l lon . f i be rg lass - re in fo rced p l a s t i c . v e r t i c a l , f l a t bottom. dished heads. inc ludes hold-down lugs. manway, and ven t connect ion

Cen t r i f uga l , 50 gpm. 50 f t head. 2 hp, TEFC motor. s t a i n l e s s s t e e l l n te rna ls , mechanical seals. (1 operating, 1 spare)

Diaphragm. i n t e r n a l s o f Carpenter 20 s tee l , 113 hp motor, e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i amp i n p u t (1 operating, 1 spare)

Diaphragm, s t a i n l e s s s t e e l i n t e r n a l s 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i amp i n p u t (1 opera t ing , 1 spare)

I n s e r t i o n probe (1 operat ing. 1 spare). 2 t ransmi t te rs . 4-20 m i l l i a m p ou tpu t

S t a i n l e s s s t e e l o r i f i c e and f lange dP t r a n s m i t t e r . l o c a l i n d i c a t o r

E-8

Table E-8

IN-LINE NEUTRALIZATION - 50 GPM TWO CHEMICAL FEED SYSTEMS

(equipment purchase and i n s t a l l a t i o n costs;

U n i t

In-1 i n e Mixer $700 1 Chemical Feed Tanks 1.850 2 Discharge Pumps 1,900 2 Ac id Feed Pumps 29500 2 Caus t i c Feed Pumps 2,450 2 pH Con t ro l System 1,600 2 Flow I n d i c a t o r 1,000 1 On-si te Costs1

O f f - s l t e Costs2

TOTAL -

Total Purchase Cost

$700 3,700 31800 5,000 4.900 3,200 1,000

I n s t a l l a t i o n Cost

$500 1,000 1,000

400 400

1,000 300

T o t a l _cnst

$1,200 4,700 4,800 5,400 5.300 4.200 1.300

5,500 4 I 800

$36,800

I25 percent o f purchased equipment c o s t f o r p ip ing, foundations, e l e c t r i c a l , and insu la t i on , pa int , and cleanup.

'15 percent o f d i r e c t process c o s t f o r bu i l d ings , s torage f a c i l i t i e s , u t i l i t i e s . and o f f - s i t e p ip ing.

E-9

Table E-9

IN-LINE NEUTRALIZATION - 250 GPM SYSTEM ( d e t a i l e d equipment l i s t )

Item Descr ipL ion

In-1 i n e S t a t i c M ixe r 4-inch diameter, 2 elements/mixer A l l o y 20 cons t ruc t ion . threaded ends

Chemical Feed Tanks 1000 ga l lon , f iberg lass- re in fo rced p l a s t i c . v e r t i c a l , f l a t bottom, dished heads. inc ludes hold-down lugs, manway. and vent connect ion

Discharge Pumps Cent r i fuga l . 250 gpm, 50 ft head, 10 hp, TEFC motor, s t a i n l e s s s t e e l i n te rna ls . mechanical seals, (1 operat ing. 1 spare)

s tee l , 1/3 hp motor. e l e c t r o n i c s t roke adjustment, 4-20 mi l l i amp i n p u t (1 operat ing. 1 spare)

Ac id Feed Pumps Diaphragm, i n t e m a l s o f Carpenter 20

Caust ic Feed Pumps Diaphragm, s t a i n l e s s s t e e l I n t e r n a l s 1/3 hp motor, e l e c t r o n i c s t r o k e adjustment, 4-20 mi l l i amp i n p u t (1 operat ing. 1 spare)

2 t r ansmi t te rs , 4-20 mi l l i amp ou tpu t pH Cont ro l System I n s e r t i o n probe (1 operat ing, 1 spare),

Flow I n d i c a t o r S t a i n l e s s s t e e l o r i f i c e and f l ange dP t ransmi t te r . l o c a l i n d i c a t o r

E-10

IN-LINE NEUTRALIZATION - 250 GPM TWO CHEMICAL FEE0 SYSTEMS

(equipment purchase and i n s t a l l a t i o n cos ts )

U n i t To ta l Purchase I n s t a l l a t i o n ItemcCostmcostCost

In-1 i n e Mixer $1,500 1 $1,500 $1.000 Chemical Feed Tanks 2,800 2 5.600 1.500 Discharge Pumps 3,100 2 61200 1,000 Acid Feed Pumps 2,550 2 5,100 400 Caust ic Feed Pumps 2,450 2 4.900 400 pH Contro l System 1,600 2 3,200 1.000 Flow I n d i c a t o r 1,000 1 1,000 300

On-s i te Costs1

O f f - s i t e Costs2

TOTAL

Tota l AiQSL

$2,500 7,100 7.200 5,500 5.300 4,200 1.300

6.900

61000

$46,000

125 percent of purchased equipment c o s t for piping, foundations, e l e c t r i c a l . and i n s u l a t i o n . pa int , and cleanup.

215 percent of d i r e c t process c o s t f o r bu i ld ings, storage f a c i l i t i e s . u t i l i t i e s , and o f f - s i t e p ip ing.

E-11

Table E-11

IN-LINE NEUTRALIZATION - 500 GPM SYSTEM ( d e t a i l e d equipment 1 i s t )

Item D e s c r i p t i o n

In-1 i n e S t a t i c Mixer 6- inch diameter, 2 elements/mixer A l l o y 20 cons t ruc t ion , threaded ends

Chemical Feed Tanks

Discharge Pumps

Ac id Feed Pumps

Caus t i c Feed Pumps

pH Cont ro l System

Flow I n d i c a t o r

2000 ga l 1 on, f i be r g l ass- r e i n f o r c e d p l a s t i c, v e r t i c a l . f l a t bottom, d ished heads, inc ludes hold-down lugs, manway, and vent connect ion

Cen t r i f uga l . 500 gpm, 50 f t head, 15 hp, TEFC motor. s t a i n l e s s s t e e l i n t e r n a l s , mechanical seals. ( 1 operating, 1 spare)

Diaphragm. i n t e r n a l s o f Carpenter 20 s tee l , 6 hp motor, e l e c t r o n i c s t r o k e adjustment, 4-20 mi l l i amp i n p u t (1 operat ing, 1 spare)

Diaphragm. s t a i n l e s s s t e e l i n t e r n a l s 1/3 hp motor. e l e c t r o n i c s t r o k e adjustment, 4-20 m i l l i a m p i n p u t (1 operating, 1 spare)

I n s e r t i o n probe (1 operat ing, 1 spare), 2 t r ansmi t te rs , 4-20 m i l l i a m p ou tpu t

S ta in less s t e e l o r i f i c e and f lange dP t r a n s m i t t e r , l o c a l t o d i c a t o r

E-12

Table E-12

IN-LINE NEUTRALIZATION - 500 GPM TWO CHEMICAL FEED SYSTEMS

(equipment purchase and i n s t a l l a t i o n cos ts )

U n i t T o t a l Purchase -cost

In -1 i n e Mixer $2,700 1 $2.700 Chemical Feed Tanks 4.000 2 8,000 Discharge Pumps 3.800 2 7,600 Acid Feed Pumps 2.550 2 5,100 Caust ic Feed Pumps 2,500 2 5,000 pH Cont ro l System 1,600 2 3,200 F1 ow I n d i c a t o r 1,000 1 1,000

On-s i te Costs1

O f f - s i t e Costs2

TOTAL

I n s t a l l a t i o n Cost

$1,500 2r000 lrOOO 400 400

1,000 300

To ta l a 54r200 10,000 81600 5r500 5,400 4,200 1,300 8,100 7.100

$54,100

125 percent o f purchased equipment c o s t f o r p ip ing . foundations, e l e c t r i c a l , and insu la t i on . pa in t . and cleanup.

215 percent o f d i r e c t process c o s t f o r bu i ld ings , s to rage f a c i l i t i e s , u t i 1 i t i e s . and o f f - s i t e p ip ing .

E- 13

Table E-13

PROCEDURE FOR OETEWINING IMPOUNDMENT COSTS

These procedures can be used t o es t imate t h e cos ts o f d iked impoundments. t h i s design. it i s assumed t h a t t h e ponds a re excavated t o a depth s u f f i c i e n t t o a l l o w c o n s t r u c t i o n of t h e d i kes w i t h t h e excavated m a t e r i a l (i.e., volume of excavated m a t e r i a l i s approx imate ly equal t o t h e volume requ i red f o r d i k i n g ) .

For g i ven impoundment spec i f i ca t i ons . several texts p rov ide standard geane t r i ca l formulas t o c a l c u l a t e t h e phys i ca l paramsters needed f o r c o s t es t imat ion . Two o f these are:

Kayes. W.B., and P o l l u t i o n C o n t r a E a c i l i t i e a . Wiley, 1977, 329 pp.

Radian Corporation. Treatment Costs f o r Gas-side Washes a t Steam E l e c t r i c Power Plants, EPA Con t rac t No. 68-01-5163. November, 1981.

I n

The design s p e c i f i c a t i o n s f o r use o f these formula include:

impoundment volume. g a l l o n s w a l l s lope berm width. f t l i q u i d depth, f t freeboard, ft

The parameters needed f o r c o s t es t ima t ion include:

excavat ion volume (volume o f e a r t h excavated below grade), cub ic f e e t b a c k f i l l volume (volume o f e a r t h requ i red f o r d ikes) , c u b i c feet l i n i n g area (sur face area o f l i n e r ma te r ia l ) . square f e e t s i t e p repara t i on area (a rea o f impoundment. i n c l u d i n g d ikes) . acres

A step-by-step procedure f o r determin ing impoundment cos ts from these da ta i s presented below.

A 1 = Land Cost = $5,00O/acre X s i t e p repara t i on area

A2 = Cleaning and Grubbing = $264/acre X s i t e p repara t i on area

= On-s i te Excavat ion = $2.20/cu yd X excavat ion volume

A4 = R o l l i n g Area = $0.53/sq yd X s i t e p repara t i on area

A5 = S o i l S t e r i l i z a t i o n = $0.02/sq f t x s i t e p repara t i on area

= D ike Placement/Compaction = $1.38/cu yd X b a c k f i l l volume

A7 = G e o t e x t i l e Under l i ne r ( i n s t a l l e d cos t ) = 61.45/sq yd X l i n e r area ( n o t requ i red f o r c lay-1 ined impoundments)

E-14

Table E-13 (cont inued)

PROCEDURE FOR OETEWINING IMPOUNDMENT COSTS

A8 = L i n e r M a t e r i a l and I n s t a l l a t i o n F l e x i b l e Membrane L iners :

S ing le FML ( i n s t a l l e d ) = $0.42/sq ft X l i n e r area Double FML ( i n s t a l l e d ) = $0.82/sq f t X l i n e r area

L o c a l l y A v a i l a b l e ( i n s t a l l e d ) = $0.30/sq f t X l i n e r area $ l l O / t o n De l i ve red Clay ( i n s t a l l e d ) = $0.63/sq f t X l i n e r area $150/ton De l i ve red Clay ( i n s t a l l e d ) = $0.75/sq f t X l i n e r area $200/ton De l i ve red Clay ( i n s t a l l e d ) = $0.90/sq f t X l i n e r area

Clay L i n e r s (18- inch) :

Ag = Groundwater Mon i to r i ng ( o p t i o n a l ) - sum o f w e l l i n s t a l l a t i o n c o s t and c o s t o f sampling pump and generator

Number o f w e l l s = (1/50 acres X s i t e p repara t i on area) t 5 Cost = $ 3 2 / f t X we l l depth X number o f w e l l s Sampling Pump and Generator = $1,700

A1O = Leachate C o l l e c t i o n ( o p t i o n a l ) - sum o f c o s t s f o r g ranu la r ma te r ia l . p ip ing . ho ld ing sump, r e t u r n pump. and i n s t a l l a t i o n

Granular Ma te r ia l . cub ic yards = l i n e r area X th i ckness X number o f leachate c o l l e c t i o n l a y e r s

M a t e r i a l Cost $4.00/cu yd Hau l ing $Z.OO/cu yd I n s t a l l a t i o n d l 9 D / c u v d

To ta l $9.00/cu yd

P i p i n g and I n s t a l l a t i o n = $3.00/ f t X 1200 f t / a c r e X s i t e p repara t i on area

Ho ld lng Sump and Return Pump = $4,500

E-15

Table E-14

PHYSICAL/CHEMICAL TREATMENT - 50 GPM ( d e t a i l e d equipment l i s t )

Item D e s c r i p t i o n

Lime Storage System Storage s i l o . 750 cub ic fee t . ( w i t h ladder, s l i d e gate. b rac ing f o r dus t c o l l e c t o r ) , 2-foot b i n a c t i v a t o r . 2-inch screw feeder

Dust c o l l e c t o r . 486 sq ft. 3 hp blower

Welded epoxy-l ined carbon s t e e l mix tank. 1400 gal lons, 2 hp a g i t a t o r

S t a i n l e s s s t e e l c e n t r i f u g a l . 5 gpm, 65 ft head. 1-1/2 hp, TEFC motor (1 operat ing, 1 spare)

Cent r i fuga l , 50 gpm, 50 f t head, 2 hp, TEFC motor, (1 operat ing, 1 spare)

Raw Wastewater Pumps

React ion Tank

C1 a r i f i e r System

Polymer Feed System

pH Adjustment System

Welded epoxy-l ined carbon s t e e l tank, 350 gal lons. 1/2 hp a g i t a t o r

100 sq ft, 10- foo t s idewa l l c l a r i f i e r . s t a i n l e s s s t e e l c e n t r i f u g a l underflow pump. 15 gpm, 65 f t head. 1.5 hp

Drum mixer and drum t r a n s f e r pump, 50 g a l l o n s t a i n l e s s s t e e l mix tank, 1/4 hp a g i t a t o r , diaphragm feed pump, s t a i n l e s s s tee l i n t e m a l s . 1/3 hp

Acid s torage tank, 50 g a l l o n FRP diaphragm feed pump, Carpenter 20 i n te rna ls . 1/3 hp. e l e c t r o n i c s t roke adjustment. 4-20 m i l l i amp input, 100 g a l l o n FRP mix tank, 1 /4 hp a g i t a t o r

G r a v i t y F i 1 t e r System S ing le -ce l l dual media f i l t e r s , 4 - f o o t diameter, automatic backwash. f i l t e r media inc luded (2 u n i t s )

Thickener System 14- foo t diameter, 10- foot s idewal l , sludge rake and motor included. s t a i n l e s s s t e e l diaphragm underf low pump, 10 gpm (1 operating, 1 spare)

Vacuum F i l t e r System Rotary vacuum f i l t e r , 3 - f o o t diameter, 3 - f o o t face, 28 sq f t r vacuum pump, rece iver , and f i l t r a t e pump inc luded

E-16

Table E-14

PHYSICAL/CHEMICAL TREATMENT - 50 GPM (equipment purchase and i n s t a l l a t i o n c o s t s )

U n i t T o t a l Purchase I n s t a l l a t i o n T o t a l

Lime Storage System $23.000 1 $23,000 $7,000 $30.000 Lime Slaker 0 0 0 Lime S l u r r y Mix System 7,800 1 7.800 1,500 9.300 Lime S l u r r y Feed Pump 1,600 2 3,200 1,000 4,200 Raw Wastewater Pump 1,900 2 3.800 1,000 4,800 Polymer Feed System 4,300 1 4,300 1,000 5,300 F lash Mix System 2,800 1 2,800 1,000 3.800 C1 a r i f i e r 21,000 1 21.000 8,000 29,000 C l a r i f i e r Underf low Pump 1,600 2 3,200 1,000 4,200 pH Adjustment System 4,800 1 4,800 1,000 5,800 G r a v i t y F l l t e r 18,000 2 3 6 ~ 0 0 0 14,400 50,400 G r a v i t y Thickener 25,000 1 25.000 10.000 35,000 Thickener Underflow Pump 2,500 2 5,000 1,000 6.000 Rotary Vacuum F i l t e r 50r000 1 50,000 4.000 54,000

I n s t r u m e n t a t i o n 20.000 20.000 4,000 24,000 B e l t Conveyer 5.250 0 0 0 0

On-s i te Costs1 180.000

O f f - s i t e Costs2 110,000

TOTAL $5601000 __

145 percent o f purchase c o s t s f o r p ip ing, foundations, e l e c t r i c a l , and insu la - t i o n , pa in t . and cleanup.

225 percent o f d i r e c t process c o s t s f o r bu i ld ings , s to rage f a c i l i t i e s , u t i l i t i e s and o f f - s i t e p ip ing.

E-17

Table E-15

PHYSICAL/CHEMICAL TREATMENT - 250 GPM ( d e t a i l e d equipment l i s t )

Item Lime Storage System

Raw Wastewater Pumps

React ion Tank

C1 a r i f i e r System

Polymer Feed System

pH Adjustment System

G r a v i t y F i l t e r System

Thickener System

Vacuum F i l t e r System

B e l t Conveyer

D e s c r i o t i o n

Storage s i l o , 3700 cub ic feet, ( w i t h ladder. s l i d e gate, b rac ing f o r d u s t c o l l e c t o r ) , 4 - foo t b i n ac t i va to r , 2-inch screw feeder

Dust c o l l e c t o r , 486 sq ft. 3 hp b lower

Lime s laker . 1000 lb /h r , g r i t remover inc luded

Welded epoxy-l ined carbon s t e e l mix tank. 7000 gal lons. 5 hp a g i t a t o r

S t a i n l e s s s t e e l c e n t r i f u g a l . 20 gpm. 65 f t head. 3 hp, TEFC motor. (1 operat ing, 1 spare)

Cen t r i f uga l . 250 gpm, 50 f t head. 5 hp, TEFC motor (1 operat ing. 1 spare)

Welded epoxy-1 ined carbon s t e e l tank. 2000 ga l lons . 2 hp a g i t a t o r

500 sq ft, 10- foot s idewa l l c l a r i f i e r . s t a i n l e s s s t e e l c e n t r i f u g a l underf low pump, 80 gpm, 70 f t head. 3 hp

Drum mixer and drum t r a n s f e r pump, 150 g a l l o n s t a i n l e s s s t e e l mix tank. 1/4 hp ag i ta to r , diaphragm feed pump. s t a i n l e s s s t e e l i n t e m a l s . 1/3 hp

Acid s torage tank, 150 g a l l o n FRF' diaphragm feed pump, Carpenter 20 in te rna ls . 1/3 hp. e l e c t r o n i c s t r o k e adjustment. 4-20 m i l l iamp input. 500 g a l l o n FRF' mix tank, 1/2 hp a g i t a t o r

S ing le -ce l l dual media f i l t e r s . 7-fOOt diameter automat ic backwash, f i l t e r media inc luded (2 u n i t s )

30 - foo t diameter. 10-foot s idewal l , sludge rake and motor included. s t a i n l e s s s t e e l diaphragm underf low pump, 40 gpm (1 operating, 1 spare)

Rotary vacuum f i l t e r , 6 - foo t diameter, 6 - foo t face, 113 sq ft, vacuum pump, rece iver . and f i l t r a t e pump inc luded

50 f t conveyer, 18-inch b e l t width, inc ludes t r u s s and frame. pu l leys . d r ive , i d l e r s . l oad ing hopper. and d ischarge hood

E-18

Table E-16

PHYSICAL/CHEMICAL TREATMENT - 250 GPM (equipment purchase and i n s t a l l a t i o n c o s t s ) -

Lime Storage System Lime Slaker Lime S l u r r y Mix System Lime S l u r r y Feed Pump Raw Wastewater Pump Polymer Feed System F lash Mix System C l a r i f i e r C l a r i f i e r Underflow Pump pH Adjustment System G r a v i t y F i l t e r G r a v i t y Thickener Thickener Underflow Pump Rotary Vacuum F i l t e r B e l t Conveyer I n s t r u m e n t a t i o n

1 On-s i te Costs 2 O f f - s i t e Costs

U n i t -c!?sL!Jni&

$3 1,000 1 23,000 1 13,000 1 1.600 2 3,100 2 5.100 1 6.500 1

36;OOO 1 6,000 2 6,500 1 32.000 2 ~. 45.000 1 4,100 2 75,000 1 8,300 1 25,000

Tota l Purchase Cost

$31,000 23,000 13,000 3,200 6,200 5.100 6.500 36;OOO 12,000 6,500

64,000 45.000 8,200 75.000 8.300 25;OOO

I n s t a l l a t i o n Cost

$10,000 7,000 4,000 1,000 1,000 1,000 1,500 14,000 1,000 1,000 23.000 18,000 1,000 5,000 1,000 5,000

T o t a l -!k!L

$4 1 t 000 30,000 17,000 4,200 7,200 6,100 81000 50,000 13,000 7.500 87,000 63.000 9,200 80,000 9,300 30,000 170,000 130,000

TOTAL $750,000

'45 percent o f purchase c o s t s f o r p ip ing, foundations, e l e c t r i c a l . and insu la - t i o n . pa in t , and cleanup.

'25 percent o f d i r e c t process c o s t s f o r b u i l d i n g s , s to rage f a c i l i t i e s , u t i l i t i e s and o f f - s i t e p ip ing.

E-19

Table E-17

PHYSICAL/CHEMICAL TREATMENT - 500 GPM ( d e t a i l e d equipment l i s t )

Item Lime Storage System

Raw Wastewater Pumps

React ion Tank

C l a r i f i e r System

Polymer Feed System

pH Adjustment System

G r a v i t y F i l t e r System

Thickener System

Vacuum F i l t e r System

B e l t Conveyer

D e s c r i p t i o n

Storage s i l o , 8000 c u b i c f e e t ( w i t h ladder, s l i d e gate, b rac ing f o r d u s t c o l l e c t o r ) . 8- foot b i n a c t i v a t o r . 2- i nch screw feeder

Dust c o l l e c t o r . 486 sq ft. 3 hp blower

L i r e s laker . 2000 l b / h r r g r i t remover inc luded

Bol ted epoxy- l ined carbon s t e e l mix tank. 14,000 gal lons, 10 hp a g i t a t o r

S t a i n l e s s s t e e l c e n t r i f u g a l , 40 gpm. 75 ft head. 3 hp. TEFC motor (1 operat ing, 1 spare)

Cen t r i f uga l , 500 gpm, 50 f t head, 15 hp. TEFC motor (1 operat ing. 1 spare)

Bol ted epoxy-l ined carbon s t e e l tank. 3750 gal lons. 3-1/2 hp a g i t a t o r

1000 sq ft, 10- foot s idewa l l c l a r i f i e r , s t a i n l e s s s t e e l c e n t r i f u g a l underf low pump, 160 gpm, 85 f t head, 3 hp

Drum mixe r and drum t r a n s f e r pump, 250 g a l l o n s t a i n l e s s s t e e l mix tank, 1/2 hp a g i t a t o r , diaphragm feed pump. s t a i n l e s s s t e e l i n t e m a l s , 1/3 hp

Acid s torage tank, 250 g a l l o n FRP diaphragm feed pump, Carpenter 20 in te rna ls , 1/3 hp, e l e c t r o n i c s t r o k e adjustment. 4-20 m i l l i a m p input. 1000 g a l l o n FRP mix tank, 1 hp a g i t a t o r

S ing le -ce l l dual media f i l t e r s , & f o o t diameter automatic backwash, f i l t e r media inc luded ( 2 u n i t s )

42- foot diameter, 10-foot s idewal l , s ludge rake and motor included, s t a i n l e s s s t e e l diaphragm underf low pump, 75 gpm (1 operat ing, 1 spare)

Rotary vacuum f i l t e r . & f o o t diameter, 10- foot face. 250 sq ft, vacuum pump, receiver , and f i l t r a t e pump inc luded

50 f t conveyer, 18-inch b e l t width. inc ludes t r u s s and frame. pu l l eys , dr ive. i d l e r s , l oad ing hopper, and discharge hood

E-20

Table E-18

PHYSICAL/CHEMICAL TREATMENT - 500 GPM (equipment purchase and i n s t a l l a t i o n c o s t s ) -

Lime Storage System Lime Slaker Lime S l u r r y Mix System Lime S l u r r y Feed Pump Raw Wastewater Pump Polymer Feed System F lash Mix System C l a r i f i e r C l a r i f i e r Underf low Pump pH Adjustment System G r a v i t y F i l t e r G r a v i t y Thickener Thickener Underf low Pump Rotary Vacuum F i l t e r B e l t Conveyer I n s t r u m e n t a t i o n . On-s i te Costs1

O f f - s i t e Costs2

U n i t A&iL

$56,000 27,000 17,500 6,000 39800 6.000 8.500

45.000 6,000 7.400

36,000 60,000

4,100 95.000

8,300 25,000

Tota l Purchase ! M t S C o s t

1 $56,000 1 27,000 1 171500 2 12.000 2 7.600 1 6.000 1 8.500 1 45,000 2 129000 1 7.400 2 72.000 ~

1 60;OOO 2 8,200 1 95.000 1 8,300

25,000

I n s t a l l a t i o n Cost

$16.000 7 r 0 0 0 59500 1,000 1,000 1,000 4,500

18,000 1,000 1,000

25,000 24,000

1,300 5.000

900 5,000

T o t a l _I;nslt_

$72.000 34,000 23.000 12,800 8,600 7.000

13,000 63,000 13.000 8,400

97,000 84.000

9,500 100.000

9,200 30.000

210.000

140.000

TOTAL 8930tOOO - 145 percent o f purchase c o s t s f o r p ip ing. foundations. e l e c t r i c a l , and insu la - t i o n . pa in t . and cleanup.

225 percent o f d i r e c t process c o s t s for bu i ld ings , s to rage f a c i l i t i e s , u t i l i t i e s and o f f - s i t e p i p i n g .

E - 2 1

Table E-19

PROCEDURE FOR DETEFMINING LANDFILL COSTS

These procedures can be used t o e s t i m a t e t h e c o s t s o f below-grade, d iked l a n d f i l l s . l a n d f i l l s o r l a n d f i l l s having double f l e x i b l e membrane l i n e r systems.

F o r g iven l a n d f i l l geometries, severa l t e x t s p r o v i d e standard formulas t o c a l c u l a t e t h e p h y s i c a l parameters needed f o r c o s t es t imat ion . Two o f these are:

Kayes, W.B., C a o s t r u c t i o n o f L i n i n g s f o r Ressmoirs . Tanks. and P o l l u t i o n C o n t r d F a c i l i t i a s d L i h y , 1977, 329 pp.

Radian Corporation, Treatment Costs f o r Gas-side Washes a t Steam E l e c t r i c Power Plants , EPA C o n t r a c t No. 68-01-5163, November 1981.

The methodology g iven below can be used t o c o s t e i t h e r c l a y - l i n e d

The design s p e c i f i c a t i o n f o r use of these formula inc lude:

waste volume, cub ic yards w a l l s l o p e berm width, f t waste depth, f t t h i c k n e s s o f s o i l l i n i n g s and caps. f t

The parameters needed f o r c o s t e s t i m a t i o n inc lude:

excavat ion volume (volume o f e a r t h excavated below grade), cub ic f e e t b a c k f i l l volume (volume o f e a r t h r e q u i r e d f o r d ikes) , cub ic f e e t l i n i n g areas (sur face area for f l e x i b l e membrane l i n e r s ) , square f e e t l i n i n g volumes (volumes f o r s o i l l i n e r s o f s p e c i f i e d th ickness) , c u b i c yards s i t e p r e p a r a t i o n area ( a r e a of impoundment, i n c l u d i n g d ikes) . acres

A step-by-step procedure f o r determin ing l a n d f i l l c o s t s from these data i s presented below.

INSTALLED = + A2 t A3 t A4 + A5 t Ag t A7 t A8 t Ag t A10 + A 1 1

= Land Cost = $5,00O/acre X s i t e p r e p a r a t i o n area

A2 = Cleaning and Grubbing = $264/acre X s i t e p r e p a r a t i o n area

A3 = On-s i te Excavat ion = $2.2O/cu yd X excavat ion volume

= R o l l i n g Area = $0.53/sq yd X s i t e p r e p a r a t i o n area

Ag = s o i l S t e r i l i z a t i o n = $o.OZ/sq f t x s i t e p repara t ion area

A6 = D ike PlacementKompaction = $1.38/cu yd X b a c k f i l l volume

E-22

Table E-19 (cont inued)

PROCEDURE FOR DETEFNINING LANDFILL COSTS

A, = L i n e r System - sum o f requi red l i n e r l a y e r s and leacha te c o l l e c t i o n F l e x i b l e Membrane L ine rs :

FML ( i n s t a l l e d ) = $0.50/sq ft X l i n e r area

Clay L i n e r s ( 3 f t laye rs ) :

L o c a l l y A v a i l a b l e ( i n s t a l l e d ) = $0.60/sq f t X l i n e r area $ l l O / t o n D e l i v e r e d Clay ( i n s t a l l e d ) = $1.26/sq f t X l i n e r area $15D/ton De l i ve red Clay ( i n s t a l l e d ) = $1.50/sq ft X l i n e r area $20D/ton D e l i v e r e d Clay ( i n s t a l l e d ) = $1.8O/sq f t X l i n e r area

Leachate C o l l e c t i o n - sum of c o s t s f o r g r a n u l a r mater ia l , p ip ing, ho ld ing

sump, r e t u r n pump, and i n s t a l l a t i o n

M a t e r i a l Cost $4.DO/cu yd Hau l i ng $2.OO/cu yd I n s t a l l a t i o n

T o t a l $9.OO/cu yd

Granular Ma te r ia l , c u b i c yards = t o t a l volume o f c o l l e c t i o n l a y e r s

P i p i n g and I n s t a l l a t i o n = $3.00/ft X 1200 f t / a c r e X s i t e p repara t i on area

Hold ing Sump and Return Pump = $4,500

Ag = Cap System - sum f o r requi red l i n e r l a y e r s and leacha te c o l l e c t i o n Topso i l = $8.OO/cubic yard X l i n e r volume

( o t h e r l i n e r c o s t s and leacha te c o l l e c t i o n c o s t s a r e t h e same as those

l i s t e d for t h e l i n e r system; see A7)

A9 = Groundwater Mon i to r i ng ( o p t i o n a l ) - sum o f w e l l i n s t a l l a t i o n c o s t and c o s t of sampling pump and generator

Number o f w e l l s = (1/50 acres X s i t e p repara t i on area) + 5 Cost = $ 3 2 / f t X w e l l depth X number o f w e l l s Sampling Pump and Generator = $1.700

A10 = Fencing: M a t e r i a l = $ 8 . l l / f t X d iked p e r i m t e r + $400 Gates = $ 3 7 / f t X se lected ga te s i z e Sign = $28/sign X number o f s igns requi red

All = Roads Clear ing/Grubbing = $1.69/ f t X road l e n g t h R o l l i ng /P repara t i on = $1.76/f t X road l e n g t h C u l v e r t s = $19075 /cu l ve r t X number o f c u l v e r t s Base M a t e r i a l = $6.46/f t X road l e n g t h Wear M a t e r i a l = $2.01/f t X road l e n g t h Grading/Cleanup = $0.66/f t X road l e n g t h

E-23


Recommended