+ All Categories
Home > Documents > March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and...

March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and...

Date post: 10-Jul-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
13
Keidanren’s Commitment to a Low Carbon Society ~ Ex. Long‐term Vision for Steel Industry ~ March 6, 2019 Hiroyuki Tezuka Chair, WG on Global Environment Strategy Chair, Energy Technology Committee, JISF
Transcript
Page 1: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

Keidanren’s Commitment to a Low Carbon Society~ Ex. Long‐term Vision for Steel Industry ~

March 6, 2019

Hiroyuki TezukaChair, WG on Global Environment StrategyChair, Energy Technology Committee, JISF

Page 2: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

Reduction from Domestic Business 

Operations

1. Participating industries and companies set their own targets.2. The plan consists of 4 pillars (shown bellow).3. 60 industries made their plans for the Phase I (toward 2020) and for 

the Phase II (toward 2030).

Enhance efforts

Keidanren’s Commitment to a Low Carbon Society

Emission Reduction from Domestic Business Operation1st Pillar

Targets for 2020

Phase Ⅰtoward 2020

Targets for 2030

Phase Ⅱtoward 2030

Enhance efforts

Enhance efforts

Reducing GHG

emissions

on a global scale

Contribution through low carbon products

International Contribution

Development of Innovative Technology

2ndPillar

4thPillar

3rdPillar

5

60 industries participate

Conventional climate protection measures mainly focuses on this 

field.  

Both an international framework and 

conventional domestic measures do not cover enough these fields.  

Page 3: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

Long‐term Climate Change Policy Platform, METI Japan

2

Page 4: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

November 19, 2018Japan Iron and Steel Federation

JISF Long-term vision for climate change mitigation

Page 5: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Estimating the future steel demand and supply: performance trend of Japan

4

13.6 

1.0 

4.0 

7.0 

10.0 10.7 

0

600

1200

1800

2400

3000

3600

4200

4800

0.0

5.0

10.0

15.01950

1952

1954

1956

1958

1960

1962

1964

1966

1968

1970

1972

1974

1976

1978

1980

1982

1984

1986

1988

1990

1992

1994

1996

1998

2000

2002

2004

2006

2008

2010

2012

2014

steel stock (100 million ton)steel stock per capita (t/person)GDP per capita (right axis, thousand JPY/person)

0.2t/person/year 0.06t/oerson/year0.2t/person/year 0.2t/person/year

Page 6: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Estimating the future steel demand and supply: performance trend of the world

5

Muller, et.al, “Patterns of Iron Use in Societal Evolution”, Environ. Sci. Technol. 2011, 45

“Sustainable steel: at the core of a green economy”, World Steel Association, 2012

Relationship between GDP per capita and steel stock Transition of steel stock per capita

Page 7: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Estimating the future steel demand and supply: calculation assumptions

6

[Calculation assumptions]a) Steel stock per capita

2015:4.0t/person (actual data)2050:7.0t/person (assumed)2100:10.0t/person (assumed)

b) Population World Population Prospects2017, UN

c) Diffusion and loss0.1% of the total steel stock was assumed to be diffused or lost.

d) The rate of scrap generation d-1) internal scrap: 12.5% of total crude steel production (2015 actual data)d-2) manufacturing scrap: 9.3% of total steel products shipped out (2015 actual data) d-3) end-of-life scrap: assumed to increase gradually from 0.8% of total steel stock in 2015 (actual data) →

1.5% in 2050→ 2.0% in 2100.e) Yield ratio of crude steel to iron source

Yield ratio of crude steel to iron source was set as 91% (2015 actual data) for both pig iron and scrap

loss rate world pop.

(%) (billion)

2015 1.62 1.22 0.56 0.2 0.13 0.22 12.5 9.3 0.8 29.4 4 0.1 7.38

2020 1.85 1.35 0.68 0.23 0.15 0.3 12.5 9.3 0.9 34.8 4.5 0.1 7.8

2030 2.1 1.38 0.92 0.26 0.17 0.49 12.5 9.3 1.1 46.2 5.4 0.1 8.55

2050 2.68 1.4 1.55 0.34 0.22 0.99 12.5 9.3 1.5 68.2 7 0.1 9.77

2100 3.79 1.2 2.97 0.47 0.31 2.19 12.5 9.3 2 111.8 10 0.1 11.18

scrap generation rate (%) steel stock

crude steel total internal prompt end-of-lifepig iron

DRIinternal/

crude steelprompt/products

EoL/steel stock

total(billion ton)

per capita(t/person)

production (billion ton) scrap generation (billion ton)

2015 2050 21007.38 9.77 11.18

Per Capita (t/person) 4.0 7.0 10.0total (billion ton) 29.4 68.2 111.8

World Population (billion) *

Steel Stock

Page 8: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Estimating the future steel demand and supply: calculation results

7

(billion ton2015 2050 21001.29 2.13 3.011.62 2.68 3.791.22 1.4 1.20.56 1.55 2.97

Amount of steel in final productsCrude steel productionPig iron productionScrap consumption

29

68

112

7.4

9.8

11.2

4.0

7.0

1.62

2.68

3.79

1.22 1.40 1.20

0.56

1.55

2.97

0.0

2.0

4.0

6.0

8.0

10.0

12.0

0

20

40

60

80

100

120

20

11

20

13

20

15

20

17

20

19

20

21

20

23

20

25

20

27

20

29

20

31

20

33

20

35

20

37

20

39

20

41

20

43

20

45

20

47

20

49

20

51

20

53

20

55

20

57

20

59

20

61

20

63

20

65

20

67

20

69

20

71

20

73

20

75

20

77

20

79

20

81

20

83

20

85

20

87

20

89

20

91

20

93

20

95

20

97

20

99

2015

2050

2100

world population (right axis, billion)

total stock (left axis, billion t)

stock per capita (right axis)

crude steel production (right axis, billion t)

scrap generation (right axis, billion t)pig iron (right axis, billion t)

Page 9: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Long-term climate change mitigation scenarios of steel industry

8

BAU (Business as Usual) ScenarioThe amount of crude steel production changes, while the CO2 intensity stays at the current level for both natural resource route and the recycling route. The amount of scrap recovered (= used) will increase, leading to a rise of the scrap ratio in the iron source which lowers CO2 intensity. However, the total amount of CO2 emissions will increase due to the increase in the amount of crude steel production.

Maximum Introduction of BAT (Best Available Technologies) Scenario Scenario➀Maximize the diffusion of existing advanced energy saving technologies (CDQ,TRT etc.) to the world. IEA ETP 2014 assumes that the reduction potential by international diffusion of BAT is 21%, and that this will be achieved by 2050. Although the CO2 intensity will be improved compared to the BAU scenario, the total amount of CO2emission will increase due to the increase in the amount of crude steel production.

Maximum Introduction of Innovative Technologies Scenario Scenario②The innovative technologies currently being developed (COURSE50: hydrogen reduction portion, ferro coke, etc) will be introduced at the maximum level from 2030 to 2050, and the CO2 intensity in the natural resource route will be improved by 10%.

Super Innovative Technologies Development Scenario Scenario③、④

With the introduction of super innovation technologies (hydrogen reduction steel, CCS, CCU etc.) that are not yet in place and the achievement of zero emission of the grid power supply, it is assumed that "zero-carbon steel" will be realized in 2100. Based on the level of achievement in 2050, low level case (20% reduction in CO2 intensity from the Maximum Introduction of Innovative Technologies Scenario), middle level case (50% reduction) and high level case (80% reduction) were estimated.

Page 10: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

COURSE50 ~ Breakthrough Technology (COURSE50:CO2 Ultimate Reduction in Steelmaking process by Innovative technology for cool Earth 50 )

• CO2 Reduction by 30%

• Develop by 2030

9

Page 11: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Long-term climate change mitigation scenarios for steel industry: CO2 emissions

10

The total storage volume in 2030-2100 when the Super Innovation Technology Scenario is executed only with CCS:Low level case: 91.1 Bt-CO2

Middle level case: 101.2Bt-CO2

High level case: 111.2Bt-CO2

also necessary to solve issues beyond technical aspects, such as securing CO2 storage sites, acceptance from society, implementing entities, and distribution of the economic burdens. The amount of hydrogen required for producing pig iron in hydrogen reduction in 2100: 1.2 trillion Nm3

low cost and stable supply of large amounts of carbon-free hydrogen is a requirement for practical application

Requirement for the implementation of the

super innovative technologies scenario

1.84 1.67 

1.40 

1.97 

1.69 1.32 

1.05 1.23 0.97 0.98 

0.61 

0.25 

0.00

0.50

1.00

1.50

2.00

2.50

2015 2030 2050 2100

low level case

mid level case

high level case

super innovative technologies scenarioH2 reductionCCS, CCUZero‐emissionelectricity

BAU scenarioBATmax introduction scenarioinnovative technologiesmax introduction scenariosuper innovative technologies scenario

CO2 intensity(t‐CO2/t‐crude steel)

38.6 44.8

53.1

31.9 35.5

35.4 39.8

32.9 36.9

26.3 16.5

6.6

0.0

10.0

20.0

30.0

40.0

50.0

60.0

2015 2030 2050 2100

total emissions(billion t‐CO2) BAU scenarioBATmax introduction scenarioinnovative technologiesmax introduction scenariosuper innovative technologies scenario

low level case

mid level case

high level case

super innovative technologies scenarioH2 reductionCCS, CCUZero‐emissionelectricity

Page 12: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Long-term climate change mitigation strategy by JISF: super innovative technologies development

11

Development of technologies specific to iron & steel sector 2100

COURSE50 H2 reduction in BF (internal H2)

Super COURSE50 H2 reduction in BF (external H2)

H2 reduction iron making H2 reduction without using BF

CCS Recovery of CO2 from BF gas, etc.

CCU Adding value to CO2 from steel plant

Development of common fundamental technologies for society

Zero-emission electricity Zero-emission electricity through nuclear, renew ables, etc.

Carbon-free H2 Low cost, large quantity production w ith nuclear and renew ables

CCS/CCU cheap storage, location, adding value, etc.

2010 2020 2030 2040 2050

introduction

開発

introductionR&D

R&DStepping up

Stepping up introductionR&D

introductionR&D

introductionR&D

R&D

実機化開発 introductionR&D

introductionR&D

Scenario ②

Scenario ③

Page 13: March 6, 2019 Hiroyuki Tezuka Chair, WG on Global ... · Estimating the future steel demand and supply: performance trend of the world 5 Muller, et.al,“Patternsof Iron Use in Societal

© 2018 The Japan Iron & Steel Federation, All Rights Reserved.The Japan Iron & Steel Federation

Long-term climate change mitigation strategy by JISF: Consistency with IEA-ETP2017 2DS

12

IEA-ETP 2017 2DS assumes:By 2060,a) zero emission from the electricity sectorb) 30% emission reduction from the industry sectorCalculation Assumptions

Emission factor from gird electricity:combined average from IGES GRID EF v10.2 Grid electricity intensity in BF-BOF route: 140kWH/t-s (2016 average of Japan) Grid electricity intensity in EAF route: 872kWH/t-s (2016 average of Japan) CO2 emission factor in BF-BOF route: 2.4t- CO2 /t-s CO2 emission factor in EAF route: 1.0t- CO2 /t-s Yield of crude steel against iron source: 0.91 (both natural resource route and

scrap route)

Electricity

Transport

Industry

b)

a)

IEA-ETP 2017 2DS

Gabi Professional TS DB

38.6

44.8 46.0

37.3

39.3 37.4

31.0

26.0 32.7 28.0

23.0

31.9

21.8 17.1

0.0

10.0

20.0

30.0

40.0

50.0

2015 2030 2050 2060

BAU Scenario

Zero‐Emission Electricity @2060

BAT max. introduction

COURSE50 (H2)

COURSE50(H2+CCS)

Total Emissions (Billion t‐CO2)

2DS scenario: -30%(2.24)@2060 IEA-ETP20172℃ Scenario

Scenario②

Scenario➀


Recommended