+ All Categories
Home > Documents > Marine2low2clouds2and2inversion2strength2€¦ · full low cloud covariance per standard deviation...

Marine2low2clouds2and2inversion2strength2€¦ · full low cloud covariance per standard deviation...

Date post: 21-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
1
synoptic only covariance 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.15 0.1 0.05 0 0.05 0.1 0.15 Covariance of ISCCP adjusted low cloud with EIS. Posi9ve values (red) in the subtropics and eastern tropical Atlan9c and Pacific Oceans indicate cloud amounts are greater for more stable condi9ons. Nega9ve values (blue) poleward of 45° la9tude show cloud amount increases for unstable condi9ons. Synop9c (130 day) covariance is responsible for most of the total covariance (posi9ve and nega9ve) poleward of ±15° la9tude, including in the stratus regions. In the deep tropics, seasonal covariance of cloud and EIS is responsible for much of the total covariance, especially over the eastern tropical Pacific and Atlan9c Oceans. Amplitudes are normalized to represent cloud frac9on anomalies associated with a standard devia9on of EIS. References Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observa9onal and Model Evidence for Posi9ve LowLevel Cloud Feedback. Science, 325, 460464. Klein, S. A., and D. L. Hartmann, 1993: The seasonal cycle of low stra9form clouds. J. Climate, 6, 15881606. Rossow, W. B., and R. A. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteorol. Soc., 80, 22612287. Wood, R., and C. S. Bretherton, 2006: On the Rela9onship between Stra9form Low Cloud Cover and LowerTropospheric Stability. J. Climate, 19, 64256432, 10.1175/ JCLI3988.1. The authors acknowledge Joel Norris for his guidance in adjus@ng for satellite ar@facts in ISCCP cloud. This work was supported by the Office of Science (BER) U.S. Department of Energy grant DOE ASR DESC0006994. Marine low clouds and inversion strength Simon P. de Szoeke 1* , Sandra E. Yuter 2 , David B. Mechem 3 1 Oregon State University, Corvallis. 2 North Carolina State University, Raleigh. 3 University of Kansas, Lawrence. *corresponding author email address: [email protected] low cloud standard deviation 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0 0.1 0.2 0.3 low cloud synoptic standard deviation 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0 0.1 0.2 0.3 low cloud seasonal standard deviation 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0 0.1 0.2 0.3 CERES "D1" 20002011 daylight low cloud amount 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0 0.2 0.4 0.6 0.8 Top: Mean low cloud amount (CERES daylightonly) shows subtropical marine stra9form cloud decks near the Klein and Hartmann (1993) stratus regions (squares). Low cloud is defined to have cloud top below 560 hPa to include clouds in deep boundary layers. Right: ISCCP standard devia9on of low cloud amount (~0.3) is dominated by synop9c varia9ons, with a 0.1 contribu9on from the seasonal cycle in the southern stratus decks. 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.02 0.01 0 0.01 0.02 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.015 0.01 0.005 0 0.005 0.01 0.015 Low clouds cool the climate by reflec9ng sunlight, shading the ocean surface, and emijng thermal radia9on at a warm temperature. Marine low cloud amount is correlated to lower tropospheric stability (θ 700hPa θ sfc ) on seasonal and interannual 9me scales (Klein and Hartmann 1993). Low cloud parameteriza9ons in many models are ac9vated by lower tropospheric stability criteria. Es9mated inversion strength (EIS, Wood and Bretherton 2006) measures inversion strength using standard analysis levels. A stronger inversion is presumed to limit entrainment of dry air into the boundary layer, aiding cloud forma9on and limi9ng cloud evapora9on. As surface climate warming would reduce inversion strength and thus cloud amount, the control of the inversion strength on marine low cloud represents a posi9ve climate feedback. We inves@gate the low cloudEIS rela@on on sub daily to interannual 9me scales with 26years of ISCCP D1 adjusted low cloud frac9on (Rossow and Schiffer 1999, Clement et al. 2009) and EIS from NCEP reanalysis. We find: 1. Synop@c variability is responsible for most EISlow cloud covariance throughout the subtropics and midla9tudes. Nega9ve synop9c covariance (unstablecloudy) is found at 4560° la9tude. Synop9c storm structure explains the midla9tude covariance. 2. The seasonal EISlow cloud (stablecloudy) correla9on (Klein and Hartmann 1993) dominates only in the southeastern tropical Atlan9c and Pacific Oceans. Beware of using Kleinline low cloud parameteriza@ons on @mescales other than seasonal. 3. Diurnal and interannual low cloudEIS covariance are 10x smaller than seasonal or synop9c variability. 4. Synop9c covariance of low cloud with downward ver@cal velocity is found in midla9tude storm tracks, especially over the western north Pacific and Atlan9c Oceans. The seasonal inversion strength varia@ons explain a small frac@on of low cloud variance around the globe. The processes responsible for marine low cloud correla@ons should be considered carefully when extrapola@ng these correla@ons to climate feedbacks. Interannual to diurnal power spectra of ISCCP adjusted cloud, EIS, and 700 hPa pressure velocity in the tropical stratus regions. Considerable energy lies in the broad synop9c band around 10 day period. We separate EIS and low cloud amount covariance into orthogonal interannual, seasonal, synop9c, and diurnal bands. longitude la9tude Low cloud varia9ons associated with diurnal and interannual varia9ons of EIS are small. longitude la9tude full low cloud covariance per standard deviation of omega 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.15 0.1 0.05 0 0.05 0.1 0.15 la9tude 4. longitude upwardcloudy downwardcloudy 3. What is responsible for the synop@c midla@tude lowcloud EIS covariance? Synop9c pamerns of EIS and low cloud regressed on downward 700hPa pressure velocity at 44°S, 61°E (cross). The EIS regression on pressure velocity 9lts northeastsouthwest in the southern hemisphere, while low cloud amount 9lts northwestsoutheast. Thus more low clouds are found in stable condi9ons equatorward of 45° and more low clouds are found in unstable condi9ons poleward of 45°, explaining the synop9c low cloudEIS correla9on (1) at len. Low clouds increase ~0.15 for a standard downward anomaly of 700 hPa pressure velocity (ω 700 ) in midla9tudes, especially the western Pacific and Atlan9c storm tracks, and the Atlan9c and Indian Southern Ocean. Low cloud response to ver9cal velocity is weak outside the midla9tudes, with clouds increasing slightly for upward mo9on outside of tropical convergence zones. low cloudEIS covariance per standard EIS anomaly 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.1 0.05 0 0.05 0.1 synoptic 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.1 0.05 0 0.05 0.1 seasonal 60 90 120 150 180 150 120 90 60 30 0 30 60 60 45 30 15 0 15 30 45 60 0.1 0.05 0 0.05 0.1 less stable cloudy more stable cloudy longitude la9tude 1. 2. la9tude la9tude 10 -3 10 -2 10 -1 10 0 NEP 20-30°N 120-130°W 10 -3 10 -2 10 -1 10 0 NEA 15-25°N 25-35°W 10 -3 10 -2 10 -1 10 0 SEP 10-20°S 80-90°W 10 -3 10 -2 10 -1 10 0 SEA 10-20°S 0-10°E 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 10 -4 10 -3 10 -2 10 -1 -1 10 0 10 1 10 2 10 3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 3 power spectral density [power / day ] -1 frequency [day ] inversion strength [K] cloud amount ω [Pa s ] 700 hPa -1 seasonal diel 20 40 60 80 100 120 70 65 60 55 50 45 40 35 30 25 1 0.5 0 0.5 1 K EIS anomaly correlated to downward velocity at H L 20 40 60 80 100 120 70 65 60 55 50 45 40 35 30 25 0.15 0.1 0.05 0 0.05 0.1 0.15 H L la9tude stablecloudy unstablecloudy low cloud anomaly correlated to downward velocity longitude geopoten9al height contours every 10 m rms: 0.12 rms: 0.09 rms: 0.04 rms: 0.05 rms: 0.005 diurnal interannual ! ! room 1 poster 57 45°S c low ’s’ < 0 c low ’s’ > 0 ____ ____ + + + + + + + + + + + + + + + + + + + + + + southern hemisphere
Transcript
Page 1: Marine2low2clouds2and2inversion2strength2€¦ · full low cloud covariance per standard deviation of omega 60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60 −60 −45 −30

full low cloud covariance per standard deviation of omega

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

synoptic only covariance

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

diurnal covariance

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Covariance  of  ISCCP  adjusted  low  cloud  with  EIS.  Posi9ve  values  (red)  in  the  subtropics  and  eastern  tropical  Atlan9c  and  Pacific  Oceans  indicate  cloud  amounts  are  greater  for  more  stable  condi9ons.  Nega9ve  values  (blue)  poleward  of  45°  la9tude  show  cloud  amount  increases  for  unstable  condi9ons.  

•  Synop9c  (1-­‐30  day)  covariance  is  responsible  for  most  of  the  total  covariance  (posi9ve  and  nega9ve)  poleward  of  ±15°  la9tude,  including  in  the  stratus  regions.  

•  In  the  deep  tropics,  seasonal  covariance  of  cloud  and  EIS  is  responsible  for  much  of  the  total  covariance,  especially  over  the  eastern  tropical  Pacific  and  Atlan9c  Oceans.  

Amplitudes  are  normalized  to  represent  cloud  frac9on  anomalies  associated  with  a  standard  devia9on  of  EIS.  

 

 

 

 

 

 

 

 

 

 

 

 

 

References  Clement,  A.  C.,  R.  Burgman,  and  J.  R.  Norris,  2009:  Observa9onal  and  Model  Evidence  for  

Posi9ve  Low-­‐Level  Cloud  Feedback.  Science,  325,  460-­‐464.  Klein,  S.  A.,  and  D.  L.  Hartmann,  1993:  The  seasonal  cycle  of  low  stra9form  clouds.  J.  

Climate,  6,  1588-­‐1606.  Rossow,  W.  B.,  and  R.  A.  Schiffer,  1999:  Advances  in  understanding  clouds  from  ISCCP.  Bull.  

Amer.  Meteorol.  Soc.,  80,  2261-­‐2287.  Wood,  R.,  and  C.  S.  Bretherton,  2006:  On  the  Rela9onship  between  Stra9form  Low  Cloud  

Cover  and  Lower-­‐Tropospheric  Stability.  J.  Climate,  19,  6425-­‐6432,  10.1175/JCLI3988.1.  

The  authors  acknowledge  Joel  Norris  for  his  guidance  in  adjus@ng  for  satellite  ar@facts  in  ISCCP  cloud.  This  work  was  supported  by  the  Office  of  Science  (BER)  U.S.  Department  of  Energy  grant  DOE  ASR  DE-­‐SC0006994.  

Marine  low  clouds  and  inversion  strength  Simon  P.  de  Szoeke1*,  Sandra  E.  Yuter2,  David  B.  Mechem3  

1Oregon  State  University,  Corvallis.  2North  Carolina  State  University,  Raleigh.  3University  of  Kansas,  Lawrence.  *corresponding  author  email  address:  [email protected]  

low cloud standard deviation

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

0

0.1

0.2

0.3

low cloud synoptic standard deviation

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

0

0.1

0.2

0.3

low cloud seasonal standard deviation

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

0

0.1

0.2

0.3

CERES "D1" 2000−2011 daylight low cloud amount

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

0

0.2

0.4

0.6

0.8

Top:  Mean  low  cloud  amount    (CERES  daylight-­‐only)  shows  subtropical  marine  stra9form  cloud  decks  near  the  Klein  and  Hartmann  (1993)  stratus  regions  (squares).  Low  cloud  is  defined  to  have  cloud  top  below  560  hPa  to  include  clouds  in  deep  boundary  layers.    Right:  ISCCP  standard  devia9on  of  low  cloud  amount  (~0.3)  is  dominated  by  synop9c  varia9ons,  with  a  0.1  contribu9on  from  the  seasonal  cycle  in  the  southern  stratus  decks.  

diurnal

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.02

−0.01

0

0.01

0.02

interannual

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

full−(interannual+seasonal+synoptic+diurnal)

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Low  clouds  cool  the  climate  by  reflec9ng  sunlight,  shading  the  ocean  surface,  and  emijng  thermal  radia9on  at  a  warm  temperature.  Marine  low  cloud  amount  is  correlated  to  lower  tropospheric  stability  (θ700hPa-­‐θsfc)  on  seasonal  and  interannual  9me  scales  (Klein  and  Hartmann  1993).  Low  cloud  parameteriza9ons  in  many  models  are  ac9vated  by  lower  tropospheric  stability  criteria.  Es9mated  inversion  strength  (EIS,  Wood  and  Bretherton  2006)  measures  inversion  strength  using  standard  analysis  levels.  A  stronger  inversion  is  presumed  to  limit  entrainment  of  dry  air  into  the  boundary  layer,  aiding  cloud  forma9on  and  limi9ng  cloud  evapora9on.  As  surface  climate  warming  would  reduce  inversion  strength  and  thus  cloud  amount,  the  control  of  the  inversion  strength  on  marine  low  cloud  represents  a  posi9ve  climate  feedback.  We  inves@gate  the  low  cloud-­‐EIS  rela@on  on  sub-­‐daily  to  interannual  9me  scales  with  26-­‐years  of  ISCCP  D1  adjusted  low  cloud  frac9on  (Rossow  and  Schiffer  1999,  Clement  et  al.  2009)  and  EIS  from  NCEP  reanalysis.  We  find:  1.   Synop@c  variability  is  responsible  for  most  EIS-­‐low  cloud  covariance  throughout  the  subtropics  and  midla9tudes.  Nega9ve  synop9c  covariance  (unstable-­‐cloudy)  is  found  at  45-­‐60°  la9tude.  Synop9c  storm  structure  explains  the  midla9tude  covariance.  

2.   The  seasonal  EIS-­‐low  cloud  (stable-­‐cloudy)  correla9on  (Klein  and  Hartmann  1993)  dominates  only  in  the  southeastern  tropical  Atlan9c  and  Pacific  Oceans.  Beware  of  using  Klein-­‐line  low  cloud  parameteriza@ons  on  @mescales  other  than  seasonal.  

3.   Diurnal  and  interannual  low  cloud-­‐EIS  covariance  are  10x  smaller  than  seasonal  or  synop9c  variability.  

4.   Synop9c  covariance  of  low  cloud  with  downward  ver@cal  velocity  is  found  in  midla9tude  storm  tracks,  especially  over  the  western  north  Pacific  and  Atlan9c  Oceans.  

The  seasonal  inversion  strength  varia@ons  explain  a  small  frac@on  of  low  cloud  variance  around  the  globe.  The  processes  responsible  for  marine  low  cloud  correla@ons  should  be  considered  carefully  when  extrapola@ng  these  correla@ons  to  climate  feedbacks.  

Interannual  to  diurnal  power  spectra  of  ISCCP  adjusted  cloud,  EIS,  and  700  hPa  pressure  velocity  in  the  tropical  stratus  regions.  Considerable  energy  lies  in  the  broad  synop9c  band  around  10-­‐day  period.    We  separate  EIS  and  low  cloud  amount  covariance  into  orthogonal  interannual,  seasonal,  synop9c,  and  diurnal  bands.    

longitude  

la9tud

e  

Low  cloud  varia9ons  associated  with  diurnal  and  interannual  varia9ons  of  EIS  are  small.  

longitude  

la9tud

e  

full low cloud covariance per standard deviation of omega

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

synoptic only covariance

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

diurnal covariance

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

la9tud

e  

4.  longitude  

upward-­‐cloudy  

downward-­‐cloudy  

3.  

What  is  responsible  for  the  synop@c  midla@tude  low-­‐cloud  EIS  covariance?  

Synop9c  pamerns  of  EIS  and  low  cloud  regressed  on  downward  700-­‐hPa  pressure  velocity  at  44°S,  61°E  (cross).  

 

The  EIS  regression  on  pressure  velocity  9lts  northeast-­‐southwest  in  the  southern  hemisphere,  while  low  cloud  amount  9lts  northwest-­‐southeast.  Thus  more  low  clouds  are  found  in  stable  condi9ons  equatorward  of  45°  and  more  low  clouds  are  found  in  unstable  condi9ons  poleward  of  45°,  explaining  the  synop9c  low  cloud-­‐EIS  correla9on  (1)  at  len.  

 

Low  clouds  increase  ~0.15  for  a  standard  downward  anomaly  of  700  hPa  pressure  velocity  (ω700)  in  midla9tudes,  especially  the  western  Pacific  and  Atlan9c  storm  tracks,  and  the  Atlan9c  and  Indian  Southern  Ocean.  

Low  cloud  response  to  ver9cal  velocity  is  weak  outside  the  midla9tudes,  with  clouds  increasing  slightly  for  upward  mo9on  outside  of  tropical  convergence  zones.  

low cloud−EIS covariance per standard EIS anomaly

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

synoptic

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

seasonal

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

low cloud−EIS covariance per standard EIS anomaly

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

synoptic

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

seasonal

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

low cloud−EIS covariance per standard EIS anomaly

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

synoptic

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

seasonal

60 90 120 150 180 −150 −120 −90 −60 −30 0 30 60−60−45−30−15

0

15304560

−0.1

−0.05

0

0.05

0.1

less  stable  cloudy  

more  stable  cloudy  

longitude  

la9tud

e  

1.  

2.  la9tud

e  la9tud

e  

10!3 10!2 10!1 100

NEP20-30°N120-130°W

10!3 10!2 10!1 100

NEA15-25°N25-35°W

10!3 10!2 10!1 100

SEP10-20°S80-90°W

10!3 10!2 10!1 100

SEA10-20°S0-10°E

10!4

10!3

10!2

10!1

100

101

102

103

10!4

10!3

10!2

10!1

100

101

102

103

10!4

10!3

10!2

10!1!1

100

101

102

103

10!4

10!3

10!2

10!1

100

101

102

103

powe

r spe

ctral

dens

ity [p

ower

/ day

]

!1frequency [day ]

inversion strength [K]

cloud amount

" [Pa s ]700 hPa!1

seasonal   diel  

inversion strength

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−1

−0.5

0

0.5

1

longit

ude

low cloud

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

omega (+downward)

longitude

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

K  

EIS  anomaly  correlated  to  downward  velocity  at  

H   L  

inversion strength

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−1

−0.5

0

0.5

1

longit

ude

low cloud

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

omega (+downward)

longitude

20 40 60 80 100 120−70−65−60−55−50−45−40

−35

−30

−25

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

H   L  la9tud

e   stable-­‐cloudy  

unstable-­‐cloudy  

low  cloud  anomaly  correlated  to  downward  velocity  

longitude  

geopoten9al  height  contours  every  10  m  

rms:0.12  

rms:  0.09  

rms:0.04  

rms:0.05  

rms:0.005  

diurnal  

interannual  

In  lower  panel,  outline-­‐contour  EIS  anomaly  over  shaded  cloud  anomaly,  to  see  posi9ve  and  nega9ve  covariance  bands  bemer.  

This  is  due  to  compe99on  between  low  clouds  and  high  clouds.  High  clouds  obscure  low  clouds  to  the  satellite.  

!  

!  

room      1  poster  57  

45°S  

clow’s’  <  0  

clow’s’  >  0  ____  

____  –   –  –  

–  –  –  

–  

+   +  +   +  

+  

+  

+  

–  

+  +  

+  +  

+  +  

+  +  

+  

–   –  –  

–  –  

–  

–   –  –  

–  –  

–  –  

+  +  +   +  +  

+  

southern  hemisphere  

 

 

 

 

 

 

 

Recommended