+ All Categories
Home > Documents > Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and...

Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and...

Date post: 31-Mar-2015
Category:
Upload: katelin-certain
View: 216 times
Download: 0 times
Share this document with a friend
Popular Tags:
23
Mark W. Luckenbach 1 , Elizabeth North 2 , M. Lisa Kellogg 3 , Roger Mann 4 , Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered Bivalve Populations: Implications for Restoration 1 Virginia Institute of Marine Science, College of William and Mary, Eastern Shore Laboratory 2 University of Maryland Center for Environmental Studies, 3 University of Maryland 4 Virginia Institute of Marine Science, College of William and Mary 5 Oyster Recovery Partnership
Transcript
Page 1: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Mark W. Luckenbach1, Elizabeth North2, M. Lisa Kellogg3, Roger Mann4, Steve M. Allen5 and Kennedy T. Paynter2,3

Fertilization Success in Altered Bivalve Populations: Implications for Restoration

1Virginia Institute of Marine Science, College of William and Mary, Eastern Shore Laboratory 2University of Maryland Center for Environmental Studies,3University of Maryland4Virginia Institute of Marine Science, College of William and Mary5Oyster Recovery Partnership

Page 2: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Problem Description

Fertilization success in free-spawning, sessile marine bivalves is dependent upon gametes making contact.

Many of the shellfish populations that we seek to protect or restore currently exist at low population density, e.g.,

Argopecten irradians Mercenaria mercenariaCrassostrea virginica Arctica islandica

Restoration activities that add bivalves as broodstock do so with little basis for determining the density required to achieve high fertilization success.

Moreover, the addition of broodstock is often done without regard for the sex ratio, anticipated gamete production or potential fertilization success.

Page 3: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Problem Description

High fecundity in these species can lead to the expectation that a small population size is sufficient to effect a recovery.

For instance: 106 -107 eggs per ♀ at a density of 100 – 102 ♀’s m-2 yields1010 – 1013 eggs hectare-1

Assumptions about how many of these eggs are fertilized has the potential to propagate errors through demographics models that are several orders of magnitude.

Page 4: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Bolingbroke Sand, Choptank River

0

10

20

30

40

50

60

70

80

90

100

36-60 61-85 86-110

Size Class (mm)

% F

emal

e

1 Year Old

2 Years Old

3 Years Old

4 Years Old

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

2 3 4 5 6 7 8 9 10

Age (yr)

Sp

erm

:Eg

gs

High Sperm:Egg

Bolingbroke Sand

Low Sperm:Egg

Potentially Sperm Limited

Some Preliminary Findings with Crassostrea virginica(Kellogg et al. 2007 ICSR)

y = 3.8201Ln(x) + 64.305

R2 = 0.9998

y = 0.8836x + 0.3165

R2 = 0.9998

0

10

20

30

40

50

60

70

80

90

100

0 1 10 100 1,000 10,000

Sperm:Egg

% F

ert

ilize

d

y = 5E+06x2 + 1E+08x

R2 = 0.1567

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

0 20 40 60 80 100 120 140 160

Shell Height (mm)

# S

perm

108

109

1010

1011

1012

Page 5: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Objectives

1) Better understand the factors that affect fertilization success, including…

gamete concentrations fertilization efficiency (avg. # sperm to fertilize an egg)turbulent mixing

2) Ultimately, we want to use this, coupled with density, size and fecundity estimates from the field, to estimate not only egg production, but also fertilization success in natural and restored bivalve populations.

Page 6: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Approach

1) Construct and parameterize a computational model which predicts fertilization success based upon contact between gametes in a turbulent medium.

2) Conduct laboratory experiments with Crassostrea gametes using field-relevant turbulent mixing conditions to test initial model predictions.

3) Refine the model predictions using experimental results.

4) Repeat 2 – 3 as necessary.

Page 7: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

tfUFF ttt 1

ttt FUU 1

Predicts concentration of fertilized eggs over time when mixed with sperm of a given concentration:

where U = concentration of unfertilized eggs (number cm-3)

andF = concentration of fertilized eggs (number cm-3)f = fertilization constant (=1 if every contact results in fertilization)dt = time interval (s)ε = contact rate of sperm with each egg (number s-1).

Fertilization Success Model

Page 8: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Fertilization Success Model

The contract rate of egg and sperm (E) [After Rothschild & Osborn (1988), Evans (1989), Visser & MacKenzie (1998)]:

21

2222 2wvuRctE where c = concentration of ‘prey’ particles (e.g., sperm concentration, number cm-3)

andR = reactive distance of ‘predator’ particles (e.g., effective egg radius, cm)u = swimming velocity of ‘prey’ particles (e.g., sperm swimming speed, cm s -1)v = randomly directed motion of ‘predator’ particles (e.g., v = 0 for eggs)w = root-mean-square turbulent velocity, (cm s-1):

31daw where a = constant [1.37 or 1.9 according to references in Visser and MacKenzie (1989)]

d = turbulence length scale [d = R according to Visser and MacKenzie (1989)]

ε = turbulent dissipation rate (cm2 s-3).

Page 9: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 0.01

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 0.03

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 0.1

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 0.2

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 0.5

Unfertilized egg conc. = 100 cm-3

Sperm concentration = 1000 cm-3

Fertilization efficiency = 1.0

Preliminary model run examplesTurbulent energy dissipation rates ε = 0.007 cm2 s-3

ε = 0.034 cm2 s-3

ε = 0.180 cm2 s-3

Page 10: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Solutions for contact rates when the following parameters were varied: A) sperm concentration (note the log scale), B) sperm swimming speed and contact (egg) radius, and C) turbulent dissipation rate (e) and the constant a. Open symbols indicate ‘base-case’ solutions.

A. B. C.

0.001

0.01

0.1

1

10

100

1000

10000

1.E+00 1.E+02 1.E+04 1.E+06 1.E+08 1.E+10

Sperm concentration (# cm3)

Con

tact

Rat

e

Sperm Concentration

0.8

1

1.2

1.4

1.6

0 0.001 0.002 0.003

Radius (cm) or Swim speed (cm s-1)

Sperm Swimming Speed

Contact Radius

0

1

2

3

4

5

6

0 0.5 1 1.5 2 (cm2 s-3) or a

Turbulent Dissipation RateConstant (a)

Page 11: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Turbulent mixing

Examples of initial release of dye (left) and final distribution of dye (right) in grid chambers.

Turbulent energy dissipation rates 1) measured in Chesapeake Bay and 2) occurring in the grid-stirred chambers with different motor speeds (colored lines).

Field data courtesy of Larry Sanford, UMCES Horn Point Laboratory

Average turbulent energy dissipation rates (e, cm2 s-3), average turbulent shear (g, s-1), and Reynolds number at different motor speeds (RPM) predicted for the grid-stirred chambers.

RPM average average g Reynods number

1 0.00067 0.23 0.513 0.0070 0.80 1.53

4.8 0.020 1.39 2.456 0.034 1.82 3.06

7.2 0.053 2.28 3.679 0.090 3.00 4.5912 0.18 4.29 6.12

15.3 0.34 5.83 7.8120 0.69 8.20 10.21

Grid-stirred chambersMixing controlled by motor speed

Page 12: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Summary of sperm dilution experiments with species, gamete concentrations, gamete ratios and mean % of eggs fertilized. Values for % fertilized are means of three treatment replicates.

Species Sperm Dilution

Gamete Concentration

Sperm ml-1 Eggs ml-1 Sperm:EggMean % Fertilized

101 9.63 x 106 104 9.63 x102 66.67 102 9.63 x 105 104 9.63 x101 8.94

C. virginica 103 9.63 x 104 104 9.63 x100 2.06 104 9.63 x 103 104 9.63 x10-1 2.22 105 9.63 x 102 104 9.63 x10-2 1.89 106 9.63 x 101 104 9.63 x10-3 2.28 107 9.63 x 100 104 9.63 x10-4 1.94 101 1.71 x 107 104 1.71 x 103 93.67 102 1.71 x 106 104 1.71 x 102 69.83

C. ariakensis 103 1.71 x 105 104 1.71 x 101 9.00 104 1.71 x 104 104 1.71 x 100 0.33 105 1.71 x 103 104 1.71 x 10-1 0.00 106 1.71 x 102 104 1.71 x 10-2 0.00 107 1.71 x 101 104 1.71 x 10-3 0.00 100 1.46 x 106 103 1.46 x 103 92

C. ariakensis 1021.46 x 104 103 1.46 x 101

12.5

1041.46 x 102 103 1.46 x 10-1

0C. ariakensis 100 9.19 x 105 102 9.19 x 103 99.25

102 9.19 x 103 102 9.19 x 101 81.63

1049.19 x 101 102 9.19 x 10-1

1.25C. virginica 101 9.16 x 105 102 9.16 x 103 97.5

103 9.16 x 103 102 9.16 x 101 53.5

105 9.16 x 101 102 9.16 x 10-1 0.33C. virginica 101 3.43 x 105 103 3.43 x 102 55.67

103 3.43 x 103 103 3.43 x 100 13.50

105 3.43 x 101 103 3.43 x 10-2 0.50C. virginica 101 1.42 x 106 101 1.42 x105 90

103 1.42 x 104 101 1.42 x103 94

105 1.42 x 102 101 1.42 x101 66.17

Page 13: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Summary of sperm dilution experiments with species, gamete concentrations, gamete ratios and mean % of eggs fertilized. Values for % fertilized are means of three treatment replicate.

SpeciesEgg

Dilution

Gamete Concentration

Sperm:Egg% FertilizedSperm ml-1 Eggs ml-1

C. virginica103 5.54 x 104 101 5.54 x 103 98.50

102 5.54 x 104 102 5.54 x 102 88.17

101 5.54 x 104 103 5.54 x 101 35.67C. virginica

103 6.98 x 104 101 6.98 x 103 97.17

102 6.98 x 104 102 6.98 x 102 97.17

101 6.98 x 104 103 6.98 x 101 67.67C. virginica

103 6.98 x 104 101 6.98 x 103 94.17

102 6.98 x 104 102 6.98 x 102 65.83

101 6.98 x 104 103 6.98 x 101 33.67

Page 14: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Examples of mean % eggs fertilized at varying sperm density

0

10

20

30

40

50

60

70

80

90

100M

ean

% F

erti

liza

tion

Sperm Concentration108 107 106 105 104 103 102

C. virginica100 eggs / ml

0

10

20

30

40

50

60

70

80

90

100

Mea

n %

Fer

tili

zati

on

Sperm Concentration105 104 103 102 101 100

C. ariakensis100 eggs / ml

0

10

20

30

40

50

60

70

80

90

100

Mea

n %

Fer

tili

zati

on

Sperm Concentration107 106 105 104 103 102 101 100

C. virginica10,000 eggs / ml

0

10

20

30

40

50

60

70

80

90

100

Mea

n %

Fer

tili

zati

on

Sperm Concentration108 107 106 105 104 103 102 101

C. ariakensis10,000 eggs / ml

Page 15: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

106 105 104 103 102 101 100 10-1 10-2 10-3 10-4

Percent fertilization as a function of sperm : egg ratios

xxef ln02859.09481.313233.401.0 where x was the ratio of initial sperm and unfertilized egg conc.

Fertilization Efficiency =

Page 16: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Model predictions of fertilization success after 30 min at different initial egg concentrations: A) 10 eggs cm 3, B) 100 eggs cm3, and C) 1000 eggs cm3. (1 RPM, ε = 0.00067 cm2 s-3; 3 RPM, ε = 0.007 cm2 s-3; 6 RPM, ε = 0.034 cm2 s-3; 12 RPM, ε = 0.18 cm2 s-3).

A. Initial egg concentration = 10 cm-3

Sperm/EggRatio 1 RPM 3 RPM 6 RPM 12 RPM

1 0 0 0 010 0 0 0 025 0 0 0 2050 0 40 70 8075 30 70 80 90

100 60 80 90 100500 100 100 100 100

1000 100 100 100 1005000 100 100 100 100

10000 100 100 100 100

B. Initial egg concentration = 100 cm-3

Sperm/EggRatio 1 RPM 3 RPM 6 RPM 12 RPM

1 0 0 0 010 8 31 43 6325 95 98 99 10050 99 100 100 10075 100 100 100 100

100 100 100 100 100500 100 100 100 100

1000 100 100 100 1005000 100 100 100 100

10000 100 100 100 100

C. Initial egg concentration = 1000 cm-3

Sperm/EggRatio 1 RPM 3 RPM 6 RPM 12 RPM

1 0 0 0 010 80.7 84.7 99.4 99.825 100 100 100 10050 100 100 100 10075 100 100 100 100

100 100 100 100 100500 100 100 100 100

1000 100 100 100 1005000 100 100 100 100

10000 100 100 100 100

Percent Eggs Fertilized

Percent Eggs Fertilized

Percent Eggs Fertilized

0

20

40

60

80

100

1 10 100 1000

Per

cent

egg

s fe

rtil

ized

1 RPM

3 RPM

6 RPM

12 RPM

0

20

40

60

80

100

1 10 100 1000P

erce

nt e

ggs

fert

iliz

ed

1 RPM

3 RPM

6 RPM

12 RPM

0

20

40

60

80

100

1 10 100 1000

Per

cent

egg

s fe

rtil

ized

Sperm/egg ratio

1 RPM

3 RPM

6 RPM

12 RPM

Page 17: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Conclusions

Observed fertilization success is very low at sperm:egg ratios ≤ 102 and generally only high above 103 . . .. . . even at high gamete concentrations.

Model predictions suggest that at high mixing rates fertilization success below this sperm:egg threshold should increase. . .. . . however, this neglects the high dilution rate at high turbulence.

Page 18: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Implications

Under conditions of low population density, such as exists for many overexploited bivalve species,

or when a single age class dominates the population, as often exists in areas of sporadic recruitment

or at restoration sites where single cohorts are planted,

population growth may be seriously constrained by low fertilization success.

Page 19: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Future Directions

Investigate fertilization success in the laboratory at higher mixing rates.

Make the model open, i.e. allow for dilution of gametes.

Extend the experiments to other bivalve species.

Conduct fine scale spatial surveys of “restored” bivalve populations to more accurately map densities and distributions of the sexes.

Page 20: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Acknowledgments

Funding was provided by the NOAA Chesapeake Bay Office and the Keith Campbell Foundation for the Environment.

We thank Larry Sanford and Steve Suttles for field data and construction of the turbulence mixing chamber, respectively.

Page 21: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Sperm swimming speed

Sperm and egg suspensions were added to opposite ends of a flat capillary tube.

Observed under an inverted light microscope with attached low light video camera.

With a frame grab frequency of 0.01 s-1 we measured the movement of individual sperm for 0.6 – 1.0 s.

8 cm

3.5 mm

Egg suspensionSperm suspension

0.000

0.050

0.100

0.150

0.200

0.250

1 3 5 7 9 11 13 15 17 19 21 23 25

Number

Sw

imm

ing

spee

d (

mm

/sec

)

Measured distribution of swimming speeds for C. virginica sperm. Each bar is from a single video record and observations are ranked in increasing order.

Mean υ = 0.0057 cm s-1

Page 22: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

A. Sperm swimming speed = 0.001 cm s-1 B. Sperm swimming speed = 0.0057 cm s-1

0

20

40

60

80

100

0 300 600 900 1200 1500 1800

Per

cent

Egg

s F

ertil

ized

Time (s)

0

20

40

60

80

100

0 300 600 900 1200 1500 1800

Per

cent

Egg

s F

ertil

ized

Time (s)

Page 23: Mark W. Luckenbach 1, Elizabeth North 2, M. Lisa Kellogg 3, Roger Mann 4, Steve M. Allen 5 and Kennedy T. Paynter 2,3 Fertilization Success in Altered.

Species, sample size and range of shell heights used in determination of male size-specific fecundity.

Species nRange in Shell Height

(mm)Crassostrea virginica 55 17.4 – 135.7C. ariakensis (West Coast strain) 18 65.3 – 140.1C. ariakensis (South China strain) 23 62.1 – 88.0

0

100

200

300

400

0 50 100 150

Shell Height (mm )

Estimated sperm (in billions) vs. shell height for Crassostrea virginica ( ), west coast strain of C. ariakensis ( ) and south China strain of C. ariakensis ( ).

Size-specific Fecundity in Males


Recommended