+ All Categories
Home > Documents > Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive...

Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive...

Date post: 09-Aug-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
9
S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary 312 and 413 MAX phases Martin Dahlqvist a* and Johanna Rosen a* a Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping, Sweden * [email protected], [email protected] Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019
Transcript
Page 1: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S1

Supplementary Information for

Predictive theoretical screening of phase stability for chemical order

and disorder in quaternary 312 and 413 MAX phases

Martin Dahlqvista* and Johanna Rosena*

a Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping

University, SE-581 83 Linköping, Sweden

* [email protected], [email protected]

Electronic Supplementary Material (ESI) for Nanoscale.This journal is © The Royal Society of Chemistry 2019

Page 2: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S2

Figure S1. Schematic illustration of considered chemical order of M´ and M´´ for a 413 MAX phase structure with a 2:2:1:3 composition of M´:M´´:Al:C, where M´, M´´, Al, and C atoms are represented in red, blue, grey, and black, respectively.

Page 3: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S3

Table S1. Calculated formation enthalpy ΔHcp (in meV/atom) for M3AlC2 phases. M ∆Hcp (meV/atom) Equilibrium simplex

Sc 163 Sc3AlC, Sc2Al2C3, Sc3C4 Y 214 Y3AlC, Y4C5, YAl2 Ti -6 Ti5Al2C3, Ti7Al2C5 Zr -8 Zr4AlC3, Zr2Al3, Zr4Al3 Hf -12 Hf2AlC, Hf4AlC3 V 5 V12Al3C8, VAl3, Al4C3 Nb -1 Nb2AlC, Nb6C5, NbAl3 Ta -13 Ta2AlC, Ta4AlC3 Cr 81 Cr2AlC, Cr3C2, C Mo 141 C, Mo3Al W 281 WC, W, WAl5

Table S2. Calculated formation enthalpy ΔHcp (in meV/atom) for M4AlC3 phases. M ∆Hcp (meV/atom) Equilibrium simplex

Sc 195 Sc3AlC, Sc3C4, Sc2Al2C3 Y 245 Y3AlC, Y4C5, YAl2 Ti -0.01 Ti3AlC2, TiC Zr -0.3 Zr3AlC2, ZrC Hf -0.2 Hf3AlC2, HfC V 12 V12Al3C8, V6C5, Al4C3 Nb 10 Nb6C5, NbAl3, Nb12Al3C8 Ta 0.2 Ta6AlC5, Ta12Al3C8, TaAl3 Cr 108 Cr2AlC, Cr3C2, C Mo 171 C, Mo3Al, Mo2C W 317 WC, W, WAl5

Page 4: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S4

Table S3. Calculated formation enthalpy ΔHcp (in meV/atom) for chemical distribution if lowest energy, disorder temperature Tdisorder or T0 (in K), and identified equilibrium simplex for given M´2M´´AlC2 composition.

M´ M´´ Lowest energy

ΔHcp Tdisorder or

T0 Comment Equilibrium simplex

Sc Y SQS 171 6247 not stable Sc3AlC, Y4C5, YAl2, Sc2Al2C3 Sc Ti A 103 4581 not stable TiC, Sc3AlC, Sc2Al2C3, ScAl3 Sc Zr A 86 4580 not stable ZrC, Sc3AlC, Sc2Al2C3 Sc Hf A 80 5195 not stable HfC, Sc3AlC, Sc2Al2C3, ScAl2 Sc V A 91 3532 not stable Sc3AlC, Sc2Al2C3, V6C5, (V2/3Sc1/3)2AlC Sc Nb A -1 1933 order, stable Nb2Sc2AlC3, Sc3AlC, Sc2Al2C3, Nb2ScAlC2 Sc Ta A -14 3075 order, stable Ta2Sc2AlC3, Sc3AlC, Sc2Al2C3, ScAl3 Sc Cr SQS 151 5495 not stable (Cr2/3Sc1/3)2AlC, Sc2CrC3, Sc3AlC, Sc2Al2C3 Sc Mo A 28 2065 not stable (Mo2/3Sc1/3)2AlC, Sc3AlC, Sc3C4 Sc W A -13 2240 order, stable (Sc2/3W1/3)2AlC, WC, Sc3AlC, Sc3C4 Y Sc SQS 169 6159 not stable ScAl3C3, Y4C5, YAl2, YAl3C3 Y Ti SQS 202 7349 not stable TiC, Y3AlC, YAl2, Y4C5 Y Zr A 141 5370 not stable ZrC, Y3AlC, YAl2, Y4C5 Y Hf A 154 6485 not stable HfC, Y3AlC, YAl2, Y4C5 Y V SQS 194 7064 not stable Y3AlC, YAl2, Y4C5, V6C5 Y Nb A 91 3550 not stable Y3AlC, YAl2, Y4C5, Nb6C5 Y Ta A 56 3344 not stable TaC, Y3AlC, YAl2, Y4C5 Y Cr D 237 8631 not stable Y2Cr2C3, YAl2, Y4C5, Y3AlC Y Mo SQS 145 5293 not stable (Mo2/3Y1/3)2AlC, Y3AlC, Y4C5, YAl2 Y W SQS 128 4683 not stable YWC2, Y3AlC, YAl2, (W2/3Y1/3)2AlC Ti Sc D 64 2482 not stable (Ti2/3Sc1/3)2AlC, Sc3AlC, TiC, Sc2Al2C3 Ti Y SQS 183 6667 not stable TiC, (Ti2/3Y1/3)2AlC, YAl2, Y3AlC Ti Zr A 39 1782 not stable (Ti2/3Zr1/3)2AlC, ZrC, Ti3AlC2 Ti Hf A 18 1403 disorder, stabilized by temperature Ti2AlC, HfC Ti V C 3 389 disorder, stabilized by temperature TiV2AlC2, V2AlC Ti Nb D -5 184 disorder, stable Nb2TiAlC2, Ti3AlC2 Ti Ta A -30 529 disorder, stable Ta2TiAlC2, Ti3AlC2 Ti Cr C 19 2091 order, close to stable (Cr2/3Ti1/3)2AlC, TiC, TiAl3, Ti4AlC3 Ti Mo C 9 1139 disorder, stabilized by temperature TiC, Mo3Al, Mo3Al8 Ti W C 6 340 disorder, stabilized by temperature (Ti2/3W1/3)2AlC, TiC, Ti2W2AlC3 Zr Sc F 72 2853 not stable ZrC, ZrAl2, Sc3AlC Zr Y SQS 120 4370 not stable ZrC, YAl2, Y2Al Zr Ti C 41 1708 disorder, stabilized by temperature (Ti2/3Zr1/3)2AlC, ZrC, Zr4AlC3 Zr Hf A -6 401 disorder, stable HfC, Zr4AlC3, Zr2Al3, Zr4Al3 Zr V C 113 4491 not stable (V2/3Zr1/3)2AlC, Zr4AlC3 Zr Nb C 16 684 disorder, stabilized by temperature Nb2Zr, ZrC, Zr4AlC3 Zr Ta A 5 435 disorder, stabilized by temperature ZrC, ZrAl2, Ta2C Zr Cr C 221 10505 not stable (Cr2/3Zr1/3)2AlC, ZrC, ZrAl2, ZrAl3 Zr Mo C 94 4339 not stable ZrC, Mo3Al, Mo3Al8 Zr W C 85 3537 not stable ZrC, (W2/3Zr1/3)2AlC, W, ZrC Hf Sc D 73 3132 not stable HfC, ScAl Hf Y D 159 6134 not stable HfC, Y2Al, YAl2 Hf Ti C 22 1131 disorder, stabilized by temperature (Ti2/3Hf1/3)2AlC, HfC, Hf4AlC3 Hf Zr C 9 576 disorder, stabilized by temperature HfC, Zr4Al3, Zr2Al3 Hf V C 88 4007 not stable (V2/3Hf1/3)2AlC, HfC, Hf4AlC3 Hf Nb D 16 1239 disorder, stabilized by temperature HfC, Nb2Al, NbAl3 Hf Ta C 10 456 disorder, stabilized by temperature (Hf2/3Ta1/3)2AlC, HfC, Hf4AlC3 Hf Cr D 140 7917 not stable HfC, (Cr2/3Hf1/3)2AlC, Cr2Al, HfAl3 Hf Mo C 115 5536 not stable Hf2Al3C4, Hf3Al2, Mo3Al8, C Hf W C 333 13132 not stable (Hf2/3W1/3)2AlC, HfC, WC V Sc C 48 2851 not stable (V2/3Sc1/3)2AlC, V6C5, Sc3AlC, Sc2Al2C3 V Y C 205 8367 not stable YAl2, V6C5, Y3AlC, Y4C5 V Ti A -8 873 disorder, stable Ti2V2AlC3, V2AlC V Zr A 101 4542 not stable ZrC, (V2/3Zr1/3)2AlC, V12Al3C8, ZrAl3 V Hf A 88 4441 not stable V2AlC, HfC V Nb A 47 2011 not stable V12Al3C8, NbAl3, Nb6C5, Nb12Al3C8 V Ta A 15 1582 disorder, stabilized by temperature V2AlC, Ta2V2AlC3 V Cr D 13 1513 disorder, stabilized by temperature Cr2AlC, V12Al3C8, V6C5, Al4C3 V Mo C 38 2534 not stable V6C5, C, Mo3Al, Mo3Al8 V W C 41 2334 not stable WC, V12Al3C8, W, WAl5

Page 5: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S5

Nb Sc C -21 909 disorder, stable (Nb2/3Sc1/3)2AlC, Nb2Sc2AlC3, Nb12Al3C8, Sc2Al2C3 Nb Y C 74 3446 not stable YAl2, Nb6C5, Y3AlC, Y4C5 Nb Ti A -13 627 disorder, stable Ti2Nb2AlC3, (Nb2/3Ti1/3)2AlC, Nb12Al3C8, NbAl3 Nb Zr A -6 975 disorder, stable ZrC, (Nb2/3Zr1/3)2AlC, Nb12Al3C8, NbAl3 Nb Hf A -3 1483 disorder, stable Hf2Nb2AlC3, Nb2AlC Nb V F 40 1938 not stable NbAl3, Nb12Al3C8, Nb6C5, V12Al3C8 Nb Ta A -11 1055 disorder, stable Nb2Ta2AlC3, Ta2C, NbAl3, Nb12Al3C8 Nb Cr D 123 7033 not stable Nb2CrAlC2, Nb12Al3C8, NbAl3, Nb6C5 Nb Mo F 36 2560 not stable Nb6C5, C, Mo3Al, Mo3Al8 Nb W F 68 3350 not stable WC, W, NbAl3, Nb12Al3C8 Ta Sc C -14 1034 disorder, stable Ta2Sc2AlC3, (Ta2/3Sc1/3)2AlC, Ta12Al3C8, ScAl3 Ta Y C 66 3501 not stable YAl2, Nb6C5, Y3AlC, Y4C5 Ta Ti A -7 10 disorder, stable Ti2TaAlC2, Ta12Al3C8, (Ti0.5Ta0.5)C, TaAl3 Ta Zr A 2 540 disorder, stabilized by temperature ZrC, Ta2Zr, Ta12Al3C8, ZrAl3 Ta Hf A -9 972 disorder, stable Hf2Ta2AlC3, Ta2AlC Ta V F 14 1349 disorder, stabilized by temperature Ta2V2AlC3, V2AlC, Ta12Al3C8, TaAl3 Ta Nb C 4 675 disorder, stabilized by temperature Nb2TaAlC2, Nb2Ta2AlC3, Ta12Al3C8, NbAl3 Ta Cr D 35 4102 not stable (Cr2/3Ta1/3)2AlC, Ta6AlC5 Ta Mo F 39 3519 not stable TaC, Mo3Al, Mo3Al8 Ta W F 45 3231 not stable WC, Ta12Al3C8, W, WAl5 Cr Sc A 103 6407 not stable (Cr2/3Sc1/3)2AlC, ScCrC2, Cr3C2, C Cr Y A 247 10465 not stable (Cr2/3Y1/3)2AlC, C, Y2Cr2C3, Cr3C2 Cr Ti A -2 3757 order, stable Cr2AlC, TiC Cr Zr A 137 8357 not stable (Cr2/3Zr1/3)2AlC, ZrC, Cr3C2, C Cr Hf A 115 8003 not stable Cr2AlC, HfC Cr V A 6 2971 order, close to stable Cr2AlC, V6C5, C Cr Nb A 53 5244 not stable (Cr2/3Nb1/3)2AlC, C, Cr3C2, Nb6C5 Cr Ta A 35 5256 not stable Cr2AlC, TaC Cr Mo A 99 4612 not stable Cr3C2, C, Mo3Al, Mo3Al8 Cr W A 131 6427 not stable Cr2AlC, WC Mo Sc A -20 3128 order, stable (Mo2/3Sc1/3)2AlC, Mo2C, C, Sc3C4 Mo Y A 134 7196 not stable (Mo2/3Y1/3)2AlC, YMoC2, Mo2C, C Mo Ti A -18 4392 order, stable Ti2Mo2AlC3, Mo3Al, Mo3Al8, C Mo Zr A 16 4957 order, close to stable (Mo2/3Zr1/3)2AlC, Mo2C, ZrC, C Mo Hf A 3 5361 order, close to stable HfC, Mo3Al, Mo3Al8 Mo V A 28 3620 not stable C, Mo3Al, V6C5, Mo3Al8 Mo Nb A 24 4160 order, close to stable C, Mo3Al, Nb6C5, Mo3Al8 Mo Ta A 10 4310 order, close to stable Ta2Mo2AlC3, C, Mo3Al, Mo3Al8 Mo Cr C 109 4989 not stable C, Mo3Al8, Mo3Al, Cr3C2 Mo W A 186 7454 not stable WC, C, Mo3Al, Mo3Al8 W Sc A 1 4500 order, close to stable WC, (W2/3Sc1/3)2AlC, (Sc2/3W1/3)2AlC W Y A 158 8548 not stable (W2/3Y1/3)2AlC, YWC2, WC W Ti A -3 4072 order, stable Ti2W2AlC3, WC, W, WAl5 W Zr A 64 5709 not stable (W2/3Zr1/3)2AlC, WC, ZrC W Hf A 220 12257 not stable WC, (Hf2/3W1/3)2AlC, C, WAl5 W V A 98 5561 not stable WC, W, WAl5, V12Al3C8 W Nb A 125 6743 not stable WC, W, NbAl3, Nb12Al3C8 W Ta B 161 6356 not stable WC, W, WAl5, Ta12Al3C8 W Cr C 178 7884 not stable WC, Cr2AlC, W, WAl5 W Mo F 273 10075 not stable WC, Mo3Al, Mo3Al8

Page 6: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S6

Table S4. Calculated formation enthalpy ΔHcp (in meV/atom) for chemical distribution of lowest energy, disorder temperature Tdisorder or T0 (in K), and identified equilibrium simplex for given M´2M´´2AlC3 composition.

M´ M´´ Lowest energy

ΔHcp Tdisorder

or T0 Comment Equilibrium simplex

Sc Y SQS 237 7920 not stable Sc3AlC, Y4C5, YAl2, Sc2Al2C3 Sc Ti A 79 4249 not stable TiC, Sc3AlC, Sc2Al2C3, ScAl3 Sc Zr A 60 3981 not stable ZrC, Sc3AlC, Sc2Al2C3, ScAl3 Sc Hf A 56 4337 not stable HfC, Sc3AlC, Sc2Al2C3, ScAl3 Sc V I 72 3417 not stable Sc3AlC, V6C5, Sc2Al2C3, Sc3C4 Sc Nb I -22 310 disorder, stable Sc2NbAlC2, Nb6C5, Sc2Al2C3, Sc3C4 Sc Ta I -26 935 disorder, stable Sc2TaAlC2, TaC Sc Cr I 162 7117 not stable (Cr2/3Sc1/3)2AlC, Sc2CrC3 Sc Mo I 15 1526 disorder, stabilized by temperature Mo2ScAlC2, Sc4C3, Sc3C4 Sc W I 0 1304 disorder, stabilized by temperature Sc2WAlC2, WC Y Sc SQS 237 7920 not stable Sc3AlC, Y4C5, YAl2, Sc2Al2C3 Y Ti A 212 7985 not stable TiC, Y3AlC, YAl2, Y4C5 Y Zr A 106 5286 not stable ZrC, Y3AlC, YAl2, Y4C5 Y Hf A 121 6406 not stable HfC, Y3AlC, YAl2, Y4C5 Y V I 253 8649 not stable YAl2, V6C5, Y3AlC, Y4C5 Y Nb I 79 3476 not stable YAl2, Nb6C5, Y3AlC, Y4C5 Y Ta A 41 3067 not stable TaC, Y3AlC, YAl2, Y4C5 Y Cr SQS 304 10177 not stable Y2Cr2C3, (Cr2/3Y1/3)2AlC, YAl2, YAl3C3 Y Mo I 169 6405 not stable (Mo2/3Y1/3)2AlC, Y4C5, Mo2C Y W I 155 6584 not stable YWC2, (W2/3Y1/3)2AlC, YAl2, Y3AlC Ti Sc B 79 4249 not stable TiC, Sc3AlC, Sc2Al2C3, ScAl3 Ti Y B 212 7985 not stable TiC, Y3AlC, YAl2, Y4C5 Ti Zr A 44 2023 not stable ZrC, Ti3AlC2, Zr4AlC3 Ti Hf A 27 1847 not stable HfC, Ti2AlC Ti V B 2 1235 disorder, stabilized by temperature V2TiAlC2, TiC Ti Nb B -5 -1290 disorder, stable Nb2TiAlC2, TiC Ti Ta SQS 4 132 disorder, stabilized by temperature (Ti0.50Ta0.50)C, Ti2TaAlC2, Ta2TiAlC2 Ti Cr B 4 3392 order, close to stable TiC, Cr2AlC Ti Mo B -17 -3406 order, stable Mo2TiAlC2, TiC Ti W B -15 -3143 order, stable W2TiAlC2, TiC Zr Sc B 61 3981 not stable ZrC, Sc3AlC, Sc2Al2C3, ScAl3 Zr Y B 106 5286 not stable ZrC, Y3AlC, YAl2, Y4C5 Zr Ti B 45 2023 not stable ZrC, Ti3AlC2, Zr4AlC3 Zr Hf A 2 543 disorder, stabilized by temperature Zr2HfAlC2, HfC Zr V B 120 5680 not stable ZrC, (V2/3Zr1/3)2AlC, V12Al3C8, Zr2Al3 Zr Nb B 6 1315 disorder, stabilized by temperature Nb2ZrAlC2, ZrC Zr Ta I 7 570 disorder, stabilized by temperature ZrC, (Ta2/3Zr1/3)2AlC, ZrAl3, Ta12Al3C8 Zr Cr B 138 8952 not stable ZrC, (Cr2/3Zr1/3)2AlC, Cr3C2, C Zr Mo B 24 3823 not stable ZrC, (Mo2/3Zr1/3)2AlC, Mo2C, C Zr W B 66 4105 not stable ZrC, (W2/3Zr1/3)2AlC, WC Hf Sc B 56 4337 not stable HfC, Sc3AlC, Sc2Al2C3, ScAl3 Hf Y B 121 6406 not stable HfC, Y3AlC, YAl2, Y4C5 Hf Ti B 27 1847 not stable HfC, Ti2AlC Hf Zr B 2 543 disorder, stabilized by temperature Zr2HfAlC2, HfC Hf V B 99 5601 not stable HfC, V2AlC Hf Nb B -6 -2238 order, stable HfC, Nb2AlC Hf Ta B 3 955 disorder, stabilized by temperature Ta2HfAlC2, HfC Hf Cr B 114 8655 not stable HfC, Cr2AlC Hf Mo B 7 4161 not stable HfC, C, Mo3Al, Mo3Al8 Hf W B 219 10197 not stable WC, (Hf2/3W1/3)2AlC, HfC V Sc I 72 3417 not stable Sc3AlC, V6C5, Sc2Al2C3, Sc3C4 V Y I 253 8649 not stable YAl2, V6C5, Y3AlC, Y4C5 V Ti A 2 1235 disorder, stabilized by temperature V2TiAlC2, TiC V Zr A 120 5680 not stable ZrC, (V2/3Zr1/3)2AlC, V12Al3C8, Zr2Al3 V Hf A 99 5601 not stable HfC, V2AlC V Nb A 37 2076 not stable NbAl3, Nb6C5, V6C5, V12Al3C8 V Ta A -13 1600 disorder, stable Ta6AlC5, V12Al3C8, TaAl3, Al4C3 V Cr B 8 2675 order, close to stable Cr2AlC, V6C5, C V Mo B 41 3208 not stable C, Mo3Al, V6C5, Mo3Al8 V W B 104 4313 not stable WC, V12Al3C8, W, WAl5

Page 7: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S7

Nb Sc I -22 -3236 disorder, stable Sc2NbAlC2, Nb6C5, Sc2Al2C3, Sc3C4 Nb Y I 79 3476 not stable YAl2, Nb6C5, Y3AlC, Y4C5 Nb Ti A -5 730 disorder, stable Nb2TaAlC2, TiC Nb Zr A 5 1315 disorder, stabilized by temperature Nb2ZrAlC2, ZrC Nb Hf A -7 1870 order, stable HfC, Nb2AlC Nb V B 38 2076 not stable NbAl3, Nb6C5, V6C5, V12Al3C8 Nb Ta A -12 1030 disorder, stable Nb2TaAlC2, TaC Nb Cr B 41 5196 not stable (Cr2/3Nb1/3)2AlC, C, Nb6C5, Cr3C2 Nb Mo B 19 3377 order, close to stable C, Mo3Al, Nb6C5, Mo3Al8 Nb W B 103 5312 not stable WC, W, NbAl3, Nb12Al3C8 Ta Sc I -26 -4066 disorder, stable Sc2TaAlC2, TaC Ta Y B 42 3067 not stable TaC, Y3AlC, YAl2, Y4C5 Ta Ti SQS 4 132 disorder, stabilized by temperature (Ti0.50Ta0.50)C, Ti2TaAlC2, Ta2TiAlC2 Ta Zr I 7 570 disorder, stabilized by temperature ZrC, (Ta2/3Zr1/3)2AlC, ZrAl3, Ta12Al3C8 Ta Hf A 3 955 disorder, stabilized by temperature Ta2HfAlC2, HfC Ta V B -13 -1662 disorder, stable TA6AlC5, V12Al3C8, TaAl3, Al4C3 Ta Nb B -11 -1099 disorder, stable Nb2TaAlC2, TaC Ta Cr B 9 4904 order, close to stable TaC, Cr2AlC Ta Mo B -5 -3632 order, stable TaC, C, Mo3Al, Mo3Al8 Ta W B 60 5069 not stable WC, W, Ta12Al3C8, WAl5 Cr Sc I 162 7117 not stable (Cr2/3Sc1/3)2AlC, Sc2Cr2C3 Cr Y SQS 304 10177 not stable Y2Cr2C3, (Cr2/3Y1/3)2AlC, YAl2, YAl3C3 Cr Ti A 3 3392 order, close to stable TiC, Cr2AlC Cr Zr A 137 8952 not stable ZrC, (Cr2/3Zr1/3)2AlC, Cr3C2, C Cr Hf A 114 8655 not stable HfC, Cr2AlC Cr V A 8 2675 order, close to stable Cr2AlC, V6C5, C Cr Nb A 40 5196 not stable (Cr2/3Nb1/3)2AlC, C, Nb6C5, Cr3C2 Cr Ta A 9 4904 order, close to stable TaC, Cr2AlC Cr Mo A 121 5547 not stable C, Cr3C2, Mo3Al, Mo3Al8 Cr W A 181 7877 not stable WC, Cr2AlC Mo Sc I 15 1526 disorder, stabilized by temperature Mo2ScAlC2, Sc4C3, Sc3C4 Mo Y I 169 6405 not stable (Mo2/3Y1/3)2AlC, Y4C5, Mo2C Mo Ti A -17 2940 order, stable Mo2TiAlC2, TiC Mo Zr A 24 3823 order, close to stable ZrC, (Mo2/3Zr1/3)2AlC, Mo2C, C Mo Hf A 7 4161 order, close to stable HfC, C, Mo3Al, Mo3Al8 Mo V A 40 3208 not stable C, Mo3Al, V6C5, Mo3Al8 Mo Nb A 19 3377 order, close to stable C, Mo3Al, Nb6C5, Mo3Al8 Mo Ta A -5 3785 order, stable TaC, C, Mo3Al, Mo3Al8 Mo Cr B 122 5547 not stable C, Cr3C2, Mo3Al, Mo3Al8 Mo W A 251 9010 not stable WC, C, Mo3Al, Mo3Al8 W Sc I 0 1304 disorder, stabilized by temperature Sc2WAlC2, WC W Y I 155 6584 not stable YWC2, (W2/3Y1/3)2AlC, YAl2, Y3AlC W Ti A -16 1870 order, stable W2TiAlC2, TiC W Zr A 66 4105 not stable ZrC, (W2/3Zr1/3)2AlC, WC W Hf A 219 10197 not stable WC, (Hf2/3W1/3)2AlC, HfC W V A 103 4313 not stable WC, V12Al3C8, W, WAl5 W Nb A 102 5312 not stable WC, W, NbAl3, Nb12Al3C8 W Ta A 60 5069 not stable WC, W, Ta12Al3C8, WAl5 W Cr B 181 7877 not stable WC, Cr2AlC W Mo B 259 9010 not stable WC, C, Mo3Al, Mo3Al8

Page 8: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S8

Figure S2. Calculated isostructural formation enthalpy ΔHiso as function of the disorder temperature Tdisorder for o-MAX phases with (a) n = 2 and (b) n = 3. The colours represent if the M´ and M´´ in o-MAX also forms rock salt MC. Experimentally reported phases are marked according to their reported order; green squares (o-MAX), black circles (disorder MAX), and orange diamonds (o-MAX, semi-order, or disorder). The vertical dashed line indicates the typical bulk synthesis temperature 1773 K.

Table S5. Covalent radius and electronegativity for M and Al considered in this work.

M Metallic radius r (Å)a Electronegativity �,

(Pauling scale)b Sc 1.62 1.36 Y 1.80 1.22 Ti 1.47 1.54 Zr 1.60 1.33 Hf 1.59 1.30 V 1.34 1.63

Nb 1.46 1.60 Ta 1.46 1.50 Cr 1.28 1.66 Mo 1.39 2.16 W 1.39 2.36 Al 1.43 1.61

a Ref. [1] b Ref. [2]

Page 9: Martin Dahlqvist and Johanna Rosen · 2019. 12. 3. · S1 Supplementary Information for Predictive theoretical screening of phase stability for chemical order and disorder in quaternary

S9

References

[1] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements (Butterworth-Heinemann, 1997), 2nd edn.

[2] J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry : Principles of Structure

and Reactivity (HarperCollins, New York, USA, 1993), 4th edn.


Recommended