+ All Categories
Home > Documents > Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide...

Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide...

Date post: 12-Feb-2018
Category:
Upload: tzontonel
View: 219 times
Download: 0 times
Share this document with a friend
33
ORIGINAL PAPER Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia V. V. Maslennikov  & S. P. Maslennikova  & R. R. Large  & L. V. Danyushevsky  & R. J. Herrington  & C. J. Stanley Received: 21 June 2011 /Accepted: 18 October 2012 /Published online: 22 November 2012 # Springer-Verlag Wien 2012 Abstract  Tellurium-bearing minerals are generally rare in chimney material from mafic and bimodal felsic volcanic hosted massive sulfide (VMS) deposits, but are abundant in chimney s of the Urals VMS deposi ts located within Silurian and Devonian bimodal mafic sequences. High physico - chemical gradients during chimney growth result in a wide range of telluride and sulfoarsenide assemblages including a variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution se- ries and tell uriu m sulfosalts. A cha nge in chimney typ es from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by grad- ual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides  by Hg, Ag, Au-A g tell urid e and galen a-fa hlor e with native gold assemblages. Decreasing amounts of pyrite ,  both collofo rm and pseudomor phic after pyrrhot ite, iso- cubanite ISS and chalcopyrite in the chimneys is coupled with inc reasing amounts of sphalerite , quatz, bar ite or  talc contents. This trend represents a transition from low- to high sulphidation conditions, and it is observed across a range of the Urals deposits from bimodal mafic- to bimodal felsic- hosted types: Yaman-Kasy  → Molodezhnoye  Uzelga   Valentorskoye   Oktyabrskoye   Alexandrin- skoye Tash-Tau Jusa. Introduction Telluriu m-bearin g minerali zation is found associated with many sulfide deposits, particularly in epithermal vein depos- its of gold and silver (Afifi et al. 1988b; Ciobanu et al. 2006; Cook et al.  2007a ,  b; Jaireth  1991). In general, tellurium-  bear ing mine rals are rel ativ ely uncom mon in volca nic- hosted massive sulfide (VHMS or VMS) deposits (Afifi et al.  1988b; McPhail  1995), with the notable exception of the Urals, where tellurides and tellurium minerals are recorded at a number of deposits (Shadlun  1942; Herrington et al. 1998; Prokin and Buslaev  1999; Moloshag et al.  2002; Vikentyev 2006; Novoselov et al. 2006). Tellurium is scarce in active seafloor hydrothermal systems, and tellurobismu- thite is recorded rarely in sulfides from the modern oceans (Iizasa et al.  1992). In the Urals, tellurides are not present in all VMS deposits (Prokin and Buslaev  1999; Vikentyev  2006). The causes of this are poorly understood. A theory that tellurides form in massive sulfide ores during recrystallization caused by late (low-te mpera ture) hydro therma l or metamo rphic proce sses (Vikentyev  2006; Eremin  1983) is in contradiction with the discovery of rich telluride occurrences in some non- metamorphosed VMS deposits (Shadlun 1942; Maslennikov 1999). In pre vio us work (He rri ngton et al.  1998; Maslennikov et al.  1997,  2009; Maslennikova and Maslennikov 2007), the authors documented some tellurium-bearing phases in very well preserved zoned vent chimney fragments from non- metamorphos ed Yaman-Kas y deposit. These results were high ly unus ual, but more rece ntly , nume rous sulf ide chimneys from a number of unmetamorphosed VMS deposits of the Editorial handling: L. Danyushevsky V. V. Maslennikov ( *) Instit ute of Miner alogy , Ural Devision of RAS, and the South Ural State University, Miass, Chelyabinsk district, Russia e-mail: [email protected] S. P. Maslennikova Instit ute of Miner alogy , Ural Division of RAS, and the South Ural State University, Miass, Chelyabinsk district, Russia R. R. Large : L. V. Danyushevsky CODES ARC Centre of Excellence in Ore Deposits and School of Earth Sciences, University of Tasmania, Hobart, Australia R. J. Herrin gton : C. J. Stanley Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK Miner Petrol (2013) 107:67   99 DOI 10.1007/s00710-012-0230-x
Transcript

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 1/33

ORIGINAL PAPER 

Tellurium-bearing minerals in zoned sulfide chimneys

from Cu-Zn massive sulfide deposits of the Urals, Russia

V. V. Maslennikov   &  S. P. Maslennikova   &  R. R. Large   &

L. V. Danyushevsky   & R. J. Herrington   &  C. J. Stanley

Received: 21 June 2011 /Accepted: 18 October 2012 /Published online: 22 November 2012# Springer-Verlag Wien 2012

Abstract   Tellurium-bearing minerals are generally rare in

chimney material from mafic and bimodal felsic volcanic

hosted massive sulfide (VMS) deposits, but are abundant in

chimneys of the Urals VMS deposits located within Silurianand Devonian bimodal mafic sequences. High physico-

chemical gradients during chimney growth result in a wide

range of telluride and sulfoarsenide assemblages including a 

variety of Cu-Ag-Te-S and Ag-Pb-Bi-Te solid solution se-

ries and tellurium sulfosalts. A change in chimney types

from Fe-Cu to Cu-Zn-Fe to Zn-Cu is accompanied by grad-

ual replacement of abundant Fe-, Co, Bi-, and Pb- tellurides

 by Hg, Ag, Au-Ag telluride and galen a-fahlore with

native gold assemblages. Decreasing amounts of pyrite,

 both colloform and pseudomorphic after pyrrhotite, iso-

cubanite ISS and chalcopyrite in the chimneys is coupled

with increasing amounts of sphalerite, quatz, barite or 

talc contents. This trend represents a transition from low-

to high sulphidation conditions, and it is observed across a 

range of the Urals deposits from bimodal mafic- to bimodal

felsic-hosted types: Yaman-Kasy   →   Molodezhnoye   →

Uzelga  →  Valentorskoye  →   Oktyabrskoye  →   Alexandrin-

skoye → Tash-Tau → Jusa.

Introduction

Tellurium-bearing mineralization is found associated with

many sulfide deposits, particularly in epithermal vein depos-

its of gold and silver (Afifi et al. 1988b; Ciobanu et al. 2006;

Cook et al.   2007a ,   b; Jaireth   1991). In general, tellurium-

 bearing minerals are relatively uncommon in volca nic-

hosted massive sulfide (VHMS or VMS) deposits (Afifi et 

al. 1988b; McPhail 1995), with the notable exception of the

Urals, where tellurides and tellurium minerals are recordedat a number of deposits (Shadlun   1942; Herrington et al.

1998; Prokin and Buslaev   1999; Moloshag et al.   2002;

Vikentyev 2006; Novoselov et al. 2006). Tellurium is scarce

in active seafloor hydrothermal systems, and tellurobismu-

thite is recorded rarely in sulfides from the modern oceans

(Iizasa et al. 1992).

In the Urals, tellurides are not present in all VMS deposits

(Prokin and Buslaev   1999; Vikentyev  2006). The causes of 

this are poorly understood. A theory that tellurides form in

massive sulfide ores during recrystallization caused by late

(low-temperature) hydrothermal or metamorphic processes

(Vikentyev   2006; Eremin   1983) is in contradiction with

the discovery of rich telluride occurrences in some non-

metamorphosed VMS deposits (Shadlun 1942; Maslennikov

1999). In previous work (Herrington et al. 1998; Maslennikov

et al. 1997, 2009; Maslennikova and Maslennikov 2007), the

authors documented some tellurium-bearing phases in very

well preserved zoned vent chimney fragments from non-

metamorphosed Yaman-Kasy deposit. These results were

highly unusual, but more recently, numerous sulfide chimneys

from a number of unmetamorphosed VMS deposits of the

Editorial handling: L. Danyushevsky

V. V. Maslennikov (*)

Institute of Mineralogy, Ural Devision of RAS,

and the South Ural State University,

Miass, Chelyabinsk district, Russia 

e-mail: [email protected]

S. P. Maslennikova 

Institute of Mineralogy, Ural Division of RAS,and the South Ural State University,

Miass, Chelyabinsk district, Russia 

R. R. Large : L. V. Danyushevsky

CODES ARC Centre of Excellence in Ore Deposits and School

of Earth Sciences, University of Tasmania,

Hobart, Australia 

R. J. Herrington : C. J. Stanley

Department of Mineralogy, Natural History Museum,

Cromwell Road,

London SW7 5BD, UK 

Miner Petrol (2013) 107:67 – 99

DOI 10.1007/s00710-012-0230-x

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 2/33

Urals have been discovered and are presented here. Diverse

tellurides are abundant in some chimneys but absent in others.

These conflicting data create numerous questions and require

an explanation. The problem can be resolved by research at 

different scales including analysis of relevant genetic features

of host sequences, systematic textural and paragenetic studies

of different types of VMS deposits and chimneys, and their 

rare mineral assemblages. Paragenetic models, compositionalanalyses and ranges of tellurium-bearing minerals and the

 physicochemical interpretation of chimney diversity in differ-

ent types of VMS deposits are the main subjects of this paper.

Methods and samples studied

A preliminary mineralogical study of the samples was fol-

lowed by scanning electron microscopy (REMMA – 2M

SEM equipped with energy dispersive X – ray detector and

JEOL JXA 733) at the Institute of Mineralogy, Russian

Academy of Sciences. Further mineral analyses wereobtained in several laboratories equipped with CAMEBAX

SX – 50 and JEOL-JXL-8600 (Natural History Museum,

London), Cameca SX-100 (University of Tasmania, Aus-

tralia) and JEOL JXA 8900RL (Freiberg Mining Academy,

Germany). Analytical conditions were similar in the differ-

ent laboratories. In all electron microprobe analyses, the

standard deviation of results is less than 0.1 %. Major and

minor elements were determined at 15 – 25 kV accelerating

 potential , 20 – 35 nA beam current and acquisition time

 between 10 and 20 s for X – ray peak and background. The

effective probe size was between 1 and 2  μ m.. The follow-

ing standards were used: S K α   (ZnS), Ag Lα   (Ag), Sb Lα

(Sb2S3), Cd Lβ  (CdS), Te Lα  (Bi2Te3), Te Lb  (Ag2Te), Se K α

(PbSe), Bi Lα (Bi2Te3), Pb Lα (PbS), Cu K α  (CuFeS2), S K α

(Bi2S3), Ag Lα   (Ag), Sb Lα   (Sb2S3), Cd Lα   (CdTe), Se K α

(Bi2Se3), Bi Lα (Bi2S3), Hg Ma  (HgS) As Ka  (GaAs), Cd  La

(CdS), Mn Ka  (Mn), Co Ka   (FeCoNi), Tl Ma   (TlInS2). De-

tection limits were commonly within the following range

(wt%): S and Fe 0.06. Co  –  0.05, Ni  –  0.08, Cu  –  0.10, Zn  – 

0.14, As   –  0.12, Ag   –  0.15, Sb   –  0.09 – 0.2, Te   –  0.12 – 0.29,

Hg   –  0.22, Au   –  0.18, Pb   –  0.19 – 0.34, Bi   –  0.18 – 0.26, Se   – 

0.1 – 0.13, Sn 0.03 – 0.05, Hg 0.1 – 0.3, Tl   –  0.27, Sn   –  0.03,

Mn   –  0.04.

Quantitative analysis of chimney sulfides and tellurides

for a wide range of major and trace elements (Fe, Cu, Zn,

Co, Ni, Au, Ag, Bi, Pb, Tl, Cd, As, Te, Se, Mo, Sn, V, Ti,

and Mn) was carried out using LA-ICPMS. The instrumen-

tation includes a New Wave 213 nm solid-state laser micro-

 probe coupled to an Agilent 7500cs quadrupole ICPMS

housed at the CODES LA-ICPMS analytical facility, Uni-

versity of Tasmania.

The laser microprobe was equipped with an in-house small

volume (~ 2.5 cm3) ablation cell characterised by<1 s

response time and< 2 s wash-out time. Ablation was per-

formed in an atmosphere of pure He (0.7 l/min). The He

gas carrying the ablated aerosol was mixed with Ar (0.9 l/min)

immediately after the ablation cell and the mix is passed

through a pulse-homogenising device prior to direct introduc-

tion into the torch.

The ICPMS was optimised daily to maximise sensitivity on

mid- to high-mass isotopes (in the range 130 – 240 a.m.u.).Production of molecular oxide species (i.e.,   232Th16O/ 232Th)

and doubly-charged ion species (i.e.,   140Ce++/ 140Ce+) was

maintained at<0.2 %. Due to the low level of molecular oxide

and doubly charged ion production no correction was intro-

duced to the analyte signal intensities for such potential inter-

fering species. Each analysis was performed in the time-

resolved mode which involves sequential peak hopping

through the mass spectrum.

For this study, the quantitative analyses were performed

 by ablating spots ranging in size from 40 to 60  μ m. Laser 

repetition rate was typically 5 Hz and laser beam energy at 

the sample was maintained between 4 and 5 J/cm2. Theanalysis time for each sample was 100 s, comprising a 

30 s measurement of background (laser off) and a 70 s

analysis with laser-on. Acquisition time for all masses was

set to 0.02 s. Data reduction was undertaken according to

standard methods (Longerich et al.   1996). Fe was used as

the internal standard for quantification of pyrite and chalco-

 pyrite and Zn was used as the internal standard for quanti-

fication of sphalerite. Concentrations of the internal standard

were calculated assuming stoichiometry. In cases when a 

significant degree of fine-grained mineral intergrowth oc-

curred within the ablated volume, values for the internal

standard concentration were adjusted such that the total of 

major elements (Fe, Cu, Za and S, the latter calculated

assuming stoichiometry) is 100 %. An in-house Li-borate

fused glass of a pyrite/sphalerite mixture (Danyushevsky et 

al. 2003, 2011) was used as the primary calibration standard.

The standard was analysed twice every one and a half hour 

to account for the instrument drift, with a 100  μ m beam and

at 10 Hz. The LA-ICP-MS is used for detection of rare

mineral micro-inclusions in sulfides studied, and for analy-

sis of trace elements in tellurides.

Geological setting and types of VMS deposits

Several reviews have described the geological setting and

geology of the VMS deposits in the Urals (Gusev et al.

2000; Herrington et al. 2002, 2005a , b; Kontar  2001; Kontar 

and Libarova  1997; Koroteev et al. 1987; Maslennikov 1999,

2006; Prokin and Buslaev   1999; Puchkov   2010; Seravkin

2010; Zaykov 2006; Zonenshain et al. 1984).

The VMS-deposits formed in a range of tectonic settings

(Fig.   1). Those within the Silurian Sakmara zone (e.g.

68 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 3/33

Yaman-Kasy) are ascribed to either a marginal sea (Zaykov

2006) or an island arc (Herrington et al. 2005b). The Tagil

and Magnitogorsk zones include a range of arc, back- and

intra-arc rifts (Herrington et al. 2005b; Zaykov 2006). In the

Sakmara and Tagil arcs, the VMS deposits are hosted in

Silurian age basalt-rhyolite complexes whilst those in the

Magnitogorsk zone are Devonian. The VMS deposits are

situated in extensional graben or half-graben rift valleysnot only in back-arc basins, but also in intra-arc rifted

 basement (Maslennikov  1999). The intra-arc rifts contained

infrequently developed calderas (Seravkin   2010). Most of 

VMS deposits are located within several stratigraphic levels

(Fig. 2).

Urals VMS deposits have been subdivided as into four 

main types: Cyprus, Uralian, Besshi and Baymak (note that 

names such as   ‘Kuroko-type’   and   ‘Altai-type’   have also

 been used in the lite rature to describe the latter type),

depending on the geological and geodynamic conditions of 

formation (Glasby et al. 2006; Gusev et al. 2000; Herrington

et al.   2002,   2005a ; Prokin and Buslaev   1999; Seravkin2010; Zaykov 2006). These types can be broadly compared

to the classification of Franklin et al. (2005) where Cyprus0

Mafic, Besshi0Pelitic-mafic, Uralian0Bimodal-mafic, and

Baymak 0Bimodal-felsic. The Urals VMS deposits where

chimneys were identified are related to the Uralian or 

Baymak types. The Uralian and Baymak type deposits

can be subdivided based on the distance between the ore

 bodies and basalt basements (Table  1). The distances are

roughly correlated with general ore mineralogy and Te

contents in ore bodies and in the chimneys studied.

The chimneys in situ were found in the central part of 

orebodies interpreted as the relics of hydrothermal sulfideFig. 1   The locations of the Urals VMS deposits with documented

chimney occurrences

Fig. 2   The locations of chimney-bearing Urals VMS deposits in compiled stratigraphic columns

Tellurium-bearing minerals in zoned sulfide chimneys 69

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 4/33

mounds degraded on the seafloor (Fig. 3). The central part of 

the ore lens consists of compact pyrite-chalcopyrite ores

consequently flanked by sulfide breccias and sulfide

turbidites intercalating with ferruginous cherts or black 

shales (Maslennikov   1999,   2006; Herrington et al.   2005b;

Buschmann and Maslennikov   2006; Maslennikov et al.

2009). The clastic ores and in-situ massive sulfides collected

from the apex of the sulfide mounds contain abundant frag-

ments of well-preserved chimneys and occasional sulfidized

fauna (Little et al. 1997). The lens-like shape of the ore bodies

and the presence of clastic ore with vent fossils indicate that the

Urals VMS deposits were ancient analogues of  “ black smoker ”

sulfide mounds (Shadlun   1991; Zaykov et al.   1995). The

discovery of black smoker chimney fragments confirmed this

hypothesis (Herrington et al. 1998; Maslennikov 1991, 1999,

2006; Maslennikov et al. 2009).

Typical features of the Uralian type VMS deposits are a)

common colloform and biomorphic textures of pyrite, relic

Table 1   Te contents in the bulk ore (Data from open reports of 

Ministry of Base Metals, USSR) and chimneys (original data by ICP-

MS and LA-ICP-MS analytical techniques) from different types of the

Urals VMS deposits and chimneys (original data from Zaykov  2006;

Maslennikov 1999; Moloshag et al.  2002; Tessalina et al. 1998, 2008;

Vikentyev et al. 2000, 2004)

VMS Deposit Types Distance from

 basalt basement (m)

Mean Te in

ore (ppm)

Mean Te in

chimneys

(ppm)

General ore mineralogy

Yubileynoye Cyprus to

Uaralian

0 30 40 Pyrite, chalcopyrite, sphalerite, marcasite, pyrrhotite,

arsenopyrite, magnetite, tennantite, hessite, and

electrum

Yaman-Kasy Uralian 0 – 100 325 1349 Pyrite, marcasite, chalcopyrite, sphalerite, bornite,

marcasite, arsenopyrite, pyrrhotite, altaite,

tellurobismuthite, coloradoite, empres, site, galena,

site, hessite, tennantite, barite, hematite and magnetite,

galena, enargite, petzite, stützite, löllingite, volynskite,

greenockite, digenite, cervelleite, benleonardite,

covellite, goldfieldite, sylvanite, frohbergite,

native tellurium, native gold, magnetite

Molodezhnoye Uralian 30 – 120 82 1030 Pyrite, chalcopyrite, sphalerite, bornite, marcasite,

arsenopyrite, pyrrhotite, altaite, tellurobismuthite,

coloradoite, empressite, hessite, tennantite, barite,

hematite, and magnetite, galena, enargite,

stromeyerite, arsenosulvanite, jalpaite, mackinstryite,stannoidite, mowsonite, native gold

Uzelga-4 Uralian 40 – 150 110 358 Pyrite, chalcopyrite, pyrrhotite, altaite,

tellurobismuthite, sylvanite, petzite, coloradoite,

shtützite, hessite, native tellurium, native gold,

tennantite, tetrahedrite, magnetite, arsenopyrite,

coloradoite, siderite,

Oktyabrskoye Uralian to

Baymak 

200 30 166 Pyrite, chalcopyrite, bornite, digenite, sphalerite,

quartz, bornite, barite, hessite, altaite, tennantite,

tetrahedrite, native gold

Valentorskoye Uralian to

Baymak 

90≥300 28 196 Pyrite, chalcopyrite, bornite, hessite, tellurobismuthite,

stützite, empressite or kochkarite, tennantite,

cervelleite, wittichenite, renierite, native gold

Alexandrinskoye Baymak 310 39 28 Pyrite, chalcopyrite, sphalerite, bornite, barite, galena,

tennantite, , hessite, diagenite, stromeyerite, renierite,germanite, acantite, pyrseite, native gold and electrum

Tash-Tau Baymak 150 – 300 5 25 Pyrite, sphalerite, and chacopyrite, bornite, tennantite,

galena, hessite, cervellite, native gold, and electrum,

enargite, galena, digenite, stromeyerite, jalpaite,

germanite, calcite, barite

Saphyanovskoye Baymak or Altai >300 1 17 Pyrite, chalcopyrite, sphalerite, pyrrhotite, galena,

tennatite, tetrahedrite, glauckodot, tellurobismuthite,

hessite and unresolved Bi-telluride, enargite,

stannite, native gold, Pb-sulfosalts

1

Jusa Baymak to

Kuroko

>300 3 0.1 Pyrite, chalcopyrite, sphalerite, galena, tennantite,

tetrahedrite, arsenopyrite, native gold

70 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 5/33

 phyrrhotite, pseudomorphs of pyrite and marcasite after initial

euhedral pyrrhotite, b) common occurrence of isocubanite

intermediate solid solutions (ISS) and c) low-sulfidation con-

ditions of formation, indicated by the presence of altaite. In the

Baymak-type VMS deposits, colloform and biomorphic pyrite

occurrences are rare, whereas pyrrhotite and pseudomorphs

after pyrrhotite are absent. In the footwall of the Baymak-type

deposits, volcanics are commonly highly altered to quartz-

sericite and sometimes pyrophyllite assemblages with scat-

tered pyrite, chalcopyrite, sphalerite and galena, which form

economically important ores. Abundant galena and fahlores

suggest moderate- to high-sulfidation condition for Baymak-

type deposit formation.

Preservation of chimney material

In the Magnitogorsk and Sakmara zones, the VMS deposits

have been affected by low grade metamorphism, typically to

 prehnite-pumpellite facies only. The good preservation of 

 primary colloform, sulfidized fauna and chimney textures of 

the ores is due to this low degree of metamorphic overprint 

(Herrington et al. 1998; Little et al. 1997; Maslennikov et al.

2009; Shadlun   1991; Zaykov   2006). Further north in the

Urals, the rocks of the Tagil arc are dominated by volcanic

units strongly metamorphosed from greenschist to granulite

facies. The Tagil arc, which contains magnetite-rich ferrugi-

nous sediments, is generally metamorphosed to greenschist 

facies. Chimney fragments were not found in the Tagil arc,

Dombarovsk and Orsk areas, where the VMS deposits are

metamorphosed to epidote-amphibolite facies. Two excep-

tions to this are the recovery of sulfide chimneys from the

Valentorskoye and Saphyanovskoye deposits. The latter only

shows zeolite facies metamorphism (Grabezhev et al. 2001),

and a similar of metamorphic grade is also assumed for the

Valentorskoye deposit. These deposits are located in tectoni-

cally preserved fragments of less-metamorphosed terrains.

Recovery of chimney material is thus restricted to speci-

mens from less metamorphosed VMS deposits, which are

comparable in textural features to modern black and gray

smokers (Herrington et al. 1998). In the core of the sulfide

mounds, chimneys are variably recrystallized to granular 

 pyrite. The most diverse and well-preserved fragments of 

sulfide chimneys are instead found within ore breccias. In

sulfide turbidites, the primary colloform and sooty pyrite

fragments of the chimneys were replaced by diagenetic

chalcopyrite, granular pyrite and cryptocrystalline hema-

tite due to seafloor oxidation (Saphina and Maslennikov 2008)

Fig. 3  The position of sulfide

chimneys in the ore bodies from

the Urals VMS deposits

Tellurium-bearing minerals in zoned sulfide chimneys 71

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 6/33

Results

Mineral zonation of chimneys studied

Previous papers have described three Urals chimney frag-

ments where there was clear evidence for high-temperature

fluid flow through the axial zone, passing to a temperature-

zoned chimney wall (Herrington et al.  1998; Maslennikov1999). These authors recognized the presence of three broad

mineralogical zones developed in response to the interaction

of high-temperature vent fluid with seawater.

Chimneys can be broadly divided into three radial

zones described here from the outer wall, formerly in

contact with seawater, to the inner axial hydrothermal

flow cavity: A - external zone   –    typified by pyrite,

marcasite and/or sphalerite; B - internal zone   –   typified

 by the presence of chalcopyrite, and C - lining of the

axial zone   –    normally infilled by sphalerite, quartz or 

 barite. Each of thes e zones may be subdivided into

several subzones in each sample, depending on the presence of other minerals.

Our new work based on more than 200 well-preserved

chimney/conduit fragments also shows that we can broadly

classify the chimney into 3 types based on mineralogy

(Figs. 4  and  5):

Type 1:   chalcopyrite-pyrite to quartz-pyrite-chalcopyrite;

Type 2:   chalcopyrite-pyrite (marcasite)-sphalerite to quartz-

sphalerite-pyrite-chalcopyrite ± barite;

Type 3:   chalcopyrite-sphalerite to barite-sphalerite-chalcopyrite;

The types form a general range with an increase of 

sphalerite abundance from type 1 to type 3. In each type,

the mineralogical variations lead to a decrease in chalcopy-

rite accompanied by an increase in either quartz + pyrite

(type 1 in Fig.   4a  – d), or sphalerite + quartz (type 2 in

Figs.   4e – h and  5a  – c), or sphalerite + quartz + barite (type

3 in Fig.   5d – h). Each type or subtype of these chimneys

exhibits specific mineralogical zonation, loosely adhering to

the broad A, B, C zones classification indicated above.

Mineralogical and textural proxies of the zonation can be

found in the segments of chimney walls (Figs. 6, 7, 8). Each

type of the chimneys contains different rare mineral assemb-

lages (Table 2).

Type 1 chimneys

 Numerous fragments of chalcopyrite-pyrite chimneys are

 present in the Yubileinoye deposit, but the most com-

 plete range from chalcopyrite-pyrite to quartz-pyri te-

chalcopyrite chimneys was found in the Yaman-Kasy

deposit. Other type 1 chimney fragments occur in the

lower part of the Saphyanovskoye ore body, and rarely

at the Molodezhnoye, Uzelga-4 and Valentorskoye

deposits. The largest piece of a chimney recovered

measures some 4 cm in diameter and is 12 cm long.

Another typical fragment was found in the sulfide brec-

cia layer on the southern flank of the massive sulfide

lens, measuring some 3-5 cm in diameter, about 4-8 cm

long, and is very strikingly zoned. In cross-section, all

fragments have a simple 2 – 3 fold zonation with the

development of A, B and C zones.

 Zone A  In the chimneys from the Yaman-Kasy deposit, the

outermost zone is composed of laminated and botryoidal

colloform pyrite and the orientation suggests a centrifugal

growth of the botryoidal pyrite (Figs.   6a   and   7a  – c).

Fig. 4   Type 1 (a – d) and Types 2 – 3 (e – h) chimneys specimens from

Yaman-Kasy deposit. Type 1 chimneys:   a   –  chalcopyrite-pyrite,   b   – 

chalcopyrite-pyrite-marcasite-sphalerite,   c   –   marcasite-chalcopyrite-

 pyrite-quartz,   d   –   quartz-pyrite-chalcopyrite. Type 2 and 3 chimneys:

e   –  chalcopyrite-pyrite-sphalerite;   f   –  chalcopyrite-sphalerite-pyrite-

marcasite,   g   –   sphalerite-chalcopyrite-marcasite,   h   –   quartz-sphalerite-

 barite-pyrite-chalcopyrite.  a,   b,   c   –   chimney structural zones (see text 

for details). Scale is 1 cm

72 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 7/33

Colloform pyrite grades to a vuggy, fine to medium

grained pyrite towards the central part of zone A (sub-

zone A2). The outer layers in the chimneys from the

Saphyanovskoye deposit are made up of botryoidal,

framboidal and dendritic pyrite partly replaced by chal-

copyrite (Fig.  7d – f ). In subzone A2 (Fig.   7a, c, f), there

are rare disseminated tabular-hexagonal crystals of either 

nonstochiometric cryptocrystalline pyrite or fine-grained

marcasite, replacing an initial subhedral pyrrhotite

 phase. This texture has been also described in modern

chimneys (Peter and Scott   1988; Marchig and Rösch

1988; Paradis et al.   1988), in ores of the Uralian type

deposits (Maslennikova and Maslennikov   2007), and in the

ancient chimney fragments (Maslennikov et al.   2009). The

 pseudomorphs contain relic inclusions of pyrrhotite and dis-

 play incomplete cleavages in the pyrite, characteristic of for-

mer pyrrhotite crystals (Zhabin and Samsonova  1975). Pyrite

net veining and porous textures are typical of pyrite pseudo-

morphs after pyrrhotite crystals (Zierenberg et al. 1993). Chal-

copyrite abundance increases towards the inner rim of zone A

(subzone A3), where idiomorphic coarse-grained pyrite is the

main phase. Euhedral pyrite can contain inclusions of 

 pyrrhotite. Sphalerite and marcasite are rare to absent in

subzone A3 of chalcopyrite-pyrite chimneys but are abundant 

in quartz-rich varieties. The boundary between zones A and B

is distinctive, marked by the disappearance of the granular 

aggregates of pyrite.

Fig. 5   Type 2 (a – c) and Type 3 (d – h) chimneys from the Uselga (a),

Molodezhnoye (b), Saphyanovskoye (c,  d), Valentorskoye (e,  f ), and

Alexandrinskoye (g,   h) VMS deposits.   a   –   chalcopyrite-pyrite-

sphalerite-quartz,  b   –   chalcopyrite-pyrite-sphalerite,  c   –   chalcopyrite-

quartz-pyrite-marcasite,  d   –   sphalerite-pyrite-chalcopyrite,   e   – 

chalcopyrite-sphalerite-quartz,   f   –   quartz-sphalerite-pyrite-chalcopy-rite;   g   –   sphalerite-chalcopyrite-barite,   h   –   sphalerite-chalcopyrite.   a,

b,  c  –  chimney structural zones (see text for details)

Fig. 6   The most important microfabrics of the chimneys studied:

Yaman-Kasy (a – f ), Oktyabrskoye (g) and Alexandrinskoye (h) deposits.

Reflected light  a   –   reniform colloform pyrite from the outer wall;  b   – 

marcasite pseudomorphs after tabular pyrrhotite crystals in the central

 part of the outer wall; c  –  subhedral and euhedral pyrite at the boundary

with the chalcopyrite wall;d  – drusy chalcopyrite with isocubanite lattice;

e  –  kidney-shaped chalcopyrite segregations within sphalerite frame, and

disseminated löllingite in the transition zone between the wall and the

channel;  f   –  marcasite pseudomorphs after tabular pyrrhotite crystals in

the sphalerite cement of the channel;  g   –  sphalerite with disseminated

chalcopyrite of the outer wall at the contact with crustified chalcopy-

rite of the wall;  h   –  graphic intergrowth of chalcopyrite and sphalerite

in the channel

Tellurium-bearing minerals in zoned sulfide chimneys 73

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 8/33

 Zone B  The interior of the chimneys is formed by rhythmic

layers of coarse-grained “ bladed” drusy chalcopyrite (Fig. 7).

In chalcopyrite-pyrite chimneys, the outer part (subzone B1),

close to the boundary with zone A, contains cubic crystals of 

 pyrite only (Yubileynoye, Yaman-Kasy deposits) and is de-void of accessory minerals (Fig.  4a ). Sulphoarsenides or/and

tellurides occur in chalcopyrite-pyrite-quartz transitional

members of the series.

In the Saphyanovskoye deposit, glaucodot occurs in such

chimneys whilst in the Valentorskoye deposit, the chimneys

contain Pb-rich tellurobismuthite. Chalcopyrite-pyrite-quartz

chimneys from the Molodezhnoye deposit contain altaite. In

the Yaman-Kasy deposit, the quartz-chalcopyrite-pyrite

chimneys contain disseminated frohbergite, altaite, Sb-rich

tellurobismuthite, sylvanite, stützite and coloradoite which is

Fig. 7   Wall zonation of type 1 chimneys from the Urals VMS deposits

Fig. 8   Wall zonation of type 2 chimneys from the Urals VMS depos-

its. For legend see Fig.  7

Table 2   Accessory minerals in the chimneys from the Urals VMS

deposits

Minerals Types of VMS deposits

Uralian Baymak  

Yb Y S M U V O A TT

Pyrrhotite Fe9S8   + + +

Co- and Te-rich löllingite

(Fe0.8Co0.2)(As1.5Te0.4S0.1)

+

Cobaltite CoAsS +

Arsenopyrite FeAsS + +

Glaucodot (Fe,Co)AsS +

Frohbergite (Fe, Co)Te2   +

Altaite PbTe + + + +

Tellurobismuthite Bi2Te3   + + +

Sylvanite AgAuTe4   + +

Petzite AuAg3Te2   +

Coloradoite HgTe + +

Stützite Ag5Te3 or  γ-phase Ag1.88Te + +

Hessite Ag2Te + + + + + + + +

EmpressiteAgTe + +

Volynskite AgBiTe2   +

 Native tellurium Te + +

TeO + Te or Te.H2O +

 Native gold Au0.8Ag0.2   + + + + + + + +

Cu – Ag-sulfotellurides +

(Cu – Ag – Hg)-sulfosalts + +

Tennantite

Cu10(Zn,Fe)2(As,Sb,Te)4S13

+ + + + + + +

Tetrahedrite

Cu10(Zn,Fe)2(Sb,As,Te)4S13

+ + + +

Goldfieldite Cu10Te4S13   +

Greenockite CdS +

Bornite Cu5FeS4   + + + +

Galena PbS + + + + + +

Copper sulfides CuS – Cu2S + + +

Magnetite FeO∙Fe2O3   + +

Hematite F2O3   +

Deposits:   Yb   Yubileynoye,   Y   Yaman-Kasy,   V   Valentorskoye,   M 

Molodezhnoye,   U   Uzelga,   O  Oktyabrskoye,   S  Saphyanovskoye,   A

Alexandrinskoye, TT  Tash-Tau

74 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 9/33

 partly replaced by As, Cu, Ag-sulfosalts (e.g., (Cu,Ag)3AsS4)

related to the enargite group. In quartz-pyrite-chalcopyrite

end-members, tetrahedrite, tennantite and native gold

are common minerals. In the subzone B2, the coarse-

grained chalcopyrite crystals rarely contain pyrite and

accessory mineral assemblages. These are commonly

found in subhedral chalcopyrite crystals of subzone B3.

 Zone C  This axial conduit zone is poorly developed in the

chalcopyrite-pyrite chimneys. The position of the axial con-

duit is marked by subhedral marcasite and pyrite or fram-

 boidal pyrite (Fig.   7). The open channels located in the

centre of the chalcopyrite-pyrite-quartz and quartz-pyrite

chalcopyrite chimneys are subsequently infilled with subhe-

dral pyrite, marcasite and quartz. In quartz-rich conduits,

tetrahedrite, tennantite, digenite, and bornite occur in asso-

ciation with relics of chalcopyrite.

Type 2 chimneys

The chimneys range from chalcopyrite-pyrite-sphalerite

chimneys to quartz-sphalerite-pyrite-chalcopyrite ± barite

varieties and are most abundant in the Uralian type of the

VMS deposits (Yaman-Kasy, Uzelga-4, Molodezhnoye, and

the lower level of Saphyanovskoye). Chimneys 2 – 10 cm in

diameter and 5 – 15 cm long were recovered. Three zones

and several subzones are present in this chimney type

(Figs. 4c, d and 8).

 Zone A  This zone shares features with type 1 chimneys. In

chalcopyrite-pyrite-sphalerite chimneys, the outermost sub-

zone A1 is dominated by laminated and botryoidal collo-

form pyrite with interstitial quartz and marcasite (Fig.   8).

However, in some chimneys from the Baymak type deposits

(e.g., Valentorskoye) aggregates of recrystallized dendritic

 pyrite are predominant (Fig. 8g, h). The fine-grained pyrite

is often quite porous and may be replaced and overgrown by

coarse marcasite. In the middle part (subzone A2), granular 

aggregates of pyrite and marcasite enclose very rare pseu-

domorphs after subhedral pyrrhotite (Figs.  6b and  8a, b, c,

e). Tetrahedral crystals of chalcopyrite, iron-free sphalerite

and sparry marcasite successively form an epitaxial incrus-

tation on relics of fine-grained colloform pyrite. The cores

of some sphalerite crystals contain emulsion-like chalcopy-

rite forming   “chalcopyrite disease”   described in sphalerite

from modern black smoker chimneys (Herrington et al.

1998; Shadlun  1991). The amount of colloform pyrite and

its pseudomorphs after pyrrhotite decline with the increase

in sphalerite at the outer wall of the chimneys. The outer 

wall of the sphalerite-rich end-members of this range con-

tains mainly globular colloform, framboidal or/and dendritic

 pyrite disseminated in sphalerite and cryptocrystalline quartz

(Maslennikov et al. 2009). Colloform pyrite is partly replaced

 by anhedral sphalerite, chalcopyrite or quartz in the innermost 

 part of the zone. Towards the inner part of the outer wall,

coarse-grained marcasite is replaced by euhedral pyrite

enclosed in a chalcopyrite and/or quartz matrix (Fig.  6c). A

galena-tennantite-tetrahedrite assemblage is common for sub-

zones A2 and A3. In the Molodezhnoye deposit, veinlets of 

altaite were found in colloform pyrite of pyrite-chalcopyrite-

sphalerite chimneys.

 Zone B   This zone can be divided into two or three parts

(Fig.   8). The first part (subzone B1) consists of medium-

grained massive or laminated chalcopyrite. Some of the chal-

copyrite layers intercalate with thin interlayers of sphalerite

and/or quartz. Subhedral pyrite, marcasite and accessory min-

erals are common in this subzone. Subzone B2 is composed of 

coarse-grained “ bladed” inclusion-free chalcopyrite. This sub-

zone is usually broader in the chalcopyrite-pyrite-sphalerite

members of this chimney type but is commonly absent in the

quartz-sphalerite-pyrite-chalcopyrite ± barite end-members.

Subzone B3 comprises spear-shaped crystals of chalcopyritewith inclusions of disseminated pyrite and accessory minerals.

In the B1 and B3 subzones, relicts of tartan isocubanite struc-

tures are occasionally observed (Fig.  6d), as was previously

described at Yaman-Kasy (Herrington et al.   1998; Shadlun

1991). Some chimneys from the Molodeznoye, Yaman-Kasy

and Saphyanovskoye deposits contain inclusions of pyrite

 pseudomorphs over euhedral pyrrhotite crystals.

In chalcopyrite-pyrite-sphalerite chimneys from the

Yaman-Kasy deposit, subzones B1 and B3 contain telluro-

 bismuthite, occasional altaite, frohbergite and sylvanite.

Abundant and diverse rare mineral assemblages are com-

mon in sphalerite-chalcopyrite-pyrite varieties of the

chimneys. Also present are successive overgrowths of co-

 baltite, altaite, sylvanite, stützite, volynskite, native telluri-

um, unresolved black-brown oxide-rich tellurium phases,

and galena. Petzite, empressite, coloradoite and tellurian

löllingite are present occasionally. Tellurobismuthite and

frohbergite are rare, confined to the boundaries with sub-

zone B2. In some chimneys, Ag-sulphotellurides or fine-

grained unresolved Ag-Te-S micrographic phases are found.

A later assemblage comprises native tellurium and gold,

covellite, galena and a newly identified Cu, Pb, Ag, Fe

arsenic-tellurium sulphosalt phase with an approximate for-

mula (Cu, Pb, Hg, Ag,Fe)3   (As,Te)S4. Galena and other 

sulphosalts occur together in the outermost part of subzone

B1 and the innermost part of subzone B3. These sulphosalts

replace sulphoarsenides, tellurides, and galena. Mineral di-

versity declines in the barite-rich end member of type 2

chimneys. These quartz-sphalerite-pyrite-chalcopyrite ±

 barite end-members of the chimney range contain mostly

very small grains of hessite, native gold, galena, volynskite,

and tennantite, which are confined to the boundaries be-

tween chalcopyrite and sphalerite. Altaite, arsenopyrite, and

Tellurium-bearing minerals in zoned sulfide chimneys 75

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 10/33

native gold were found in association with hessite, galena 

and tennantite in zone B of chalcopyrite-sphalerite-pyrite type

chimneys from the Molodezhnoye deposit. Chalcopyrite-

 pyrite-sphalerite-quartz ± barite chimneys from the Uzelga-4

deposit contain disseminated coloradoite, and very small

grains of tellurobismuthite and gold-rich silver telluride

(probably hessite). In the Saphyanovskoye deposit, small

grains of tellurobismuthite and hessite in association withglaucodot and arsenopyrite have been found. Sulphoarsenides

are replaced by tennantite and tetrahedrite. Tellurides and

arsenides have been replaced by a native gold   –   galena -

tennantite association in sphalerite-pyrite-chalcopyrite

chimneys, found at the upper level of the Saphyanovskoye

deposit. At the boundary with zone C, löllingite occurs in

chalcopyrite, sphalerite and quartz (Fig. 6e).

 Zon e C   The conduits of chalcopyrite-pyrite-sphalerite

chimneys are successively in-filled by pyrite, marcasite, sphal-

erite and occasional quartz (Fig.  8). Quartz-sphalerite-pyrite-

chalcopyrite ± barite chimneys are characterized by anincreased amount of galena, quartz and euhedral barite.

Sphalerite shows extensive chalcopyrite   “disease” and also a 

texture consistent with being a pseudomorph after wurtzite

(Herrington et al. 1998). Pseudomorphs of marcasite or pyrite

after pyrrhotite are also present in this zone (Fig.  6f ). In the

chimneys from the Yaman-Kasy deposit, goldfieldite occurs

in association with a quartz-marcasite assemblage. In the

chimneys of all other deposits, sphalerite-galena-tennantite

assemblages are more common.

In chalcopyrite-pyrite-sphalerite chimneys, the Co- and

Fe-sulfoarsenides and Fe, Co, Bi, Pb-tellurides are replaced

successively by native gold and hessite, and then galena-

sulfosalts assemblages with generally increasing contents of 

sphalerite, quartz and barite. The quartz-sphalerite-pyrite-

chalcopyrite ± barite end-members of this chimney type

resemble the type 3 chimneys.

Type 3 chimneys

This chimney type ranges from chalcopyrite-sphalerite to

quartz-sphalerite -chalcopyrite ± barite varieties. The main

differences from the previous types are the absence of 

marcasite and pyrite pseudomorphs after pyrrhotite. Pyrite

occurs as minor inclusions of euhedral, subhedral pyrite.

Colloform varieties of pyrite are very rare.

Fragments of type 3 chimneys have been collected from

the Alexandrinskoye, Tash-Tau, Jusa , Oktyabrskoye, Val-

entorskoye and Talganskoye deposits. The chimneys are

commonly 2-4 cm in diameter and up to 8 cm in length,

with the largest fragment measuring 10 cm in diameter and

16 cm in length. Mineralogical zones defined from the

exterior to the interior in this type of chimneys are described

 below and shown on Fig. 9

 Zone A  The outer wall of this zone comprises predominant sphalerite with disseminated euhedral and subhedral pyrite

(Fig. 6g). Barite, quartz, galena and tennantite inclusions are

common for this zone. Rare colloform or framboidal pyrite

occurs only in the outermost subzone of the chimneys. Most 

of the original colloform pyrite is replaced by chalcopyrite,

tennantite and galena.

 Zone B   This chalcopyrite-rich zone is formed by drusy

aggregates of chalcopyrite crystals, successively overgrown

 by sphalerite (Fig. 6h). The chalcopyrite layers are intercalat-

ed with sphalerite. In chalcopyrite-sphalerite chimneys from

the Valentorskoye deposit, the chalcopyrite contains small

disseminated grains of Pb-rich tellurobismuthite, rare empres-

site and stützite. In the central parts of this type, hessite and

native gold intergrowth occurs in association with chalcopy-

rite, pyrite, sphalerite and galena. In sphalerite-rich varieties

of these chimneys, galena and Te-rich tennantite are common

mineral inclusions. In the chimneys from the Oktyabrskoye

deposit, chalcopyrite contains rare inclusions of altaite, gale-

na and euhedral pyrite. Chalcopyrite from other deposits is

devoid of accessory minerals. Some chimneys from the Alex-

andrinskoye deposit contain bornite inclusions in association

with euhedral pyrite.

 Zone C   The conduit zone consists of sphalerite, quartz and

 barite. In the Oktyabrskoye deposit, sphalerite contains tellur-

obithmuthite, altaite, galena, and hessite inclusions in associ-

ation with native gold. Galena-tennantite intergrowths in

association with native gold occur in sphalerite of the

chimneys, veinlets and conduits from both Alexandrinskoye

and Tash-Tau deposits (Maslennikova and Maslennikov 2007;

Zaykov 2006). Rare hessite in association with native gold has

 been found in sphalerite chimneys from the Alexandrinskoye

Fig. 9   Wall zonation of type 3 chimneys from the Urals VMS depos-

its. Chimneys (d) to (f ) are intermediate between Types 2 and 3. For 

legend see Fig. 7

76 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 11/33

deposit. Sphalerite-barite-chalcopyrite chimneys from the

Jusa deposit contain galena and tennantite only.

Composition of tellurium-bearing phases

Te-bearing sufides

We have used SEM and LA-ICP-MS techniques to investigate

the distribution of Te in the chimneys. The most detailed data 

were collected by high-resolution LA-ICP-MS analyses of the

Yaman-Kasy deposit (Maslennikov et al. 2009). In this paper 

we present average contents of Te in chalcopyrite, sphalerite

and pyrite in each main zone of the chimneys from other Urals

VHMS deposits (Table   3). A small number of bornite and

galena grains have also been analyzed by LA-ICP-MS.

Chalcopyrite (CuFeS 2 )   Chalcopyrite is an important host 

mineral for Te. The concentrations of Te in chalcopyrite of 

the chimneys vary over several orders of magnitude be-tween deposits: Yubileynoye (25 – 60 ppm) → Yaman-Kasy

(30 – 3200)  →  Uzelga-4 (10 – 250 )  →  Molodezhnoye (10 – 

2050) →Valentorskoye (5 – 550) →Octyabrskoye (4 – 40)→

Alexandrinskoye (<1 – 45)   →   Saphyanovskoye (1 – 30)   →

Tash-Tau (0.1 – 4) → Jusa (<0.1 – 0.2) (Table 3). Higher con-

centrations and wider variations of Te contents are typical

for chalcopyrite in the chimneys from the bimodal mafic

class of VMS deposits. This chalcopyrite contains plentiful

micro-inclusions of tellurides resulting in the highest Te

contents. The lowest contents of Te occur in chalcopyrite

from the chimneys of the bimodal felsic class of VMS

deposits. Chalcopyrite in this class contains micro-inclusions

of Te-bearing tennantite only. In the Yubileynoye VMS de-

 posit hosted in basalts, chalcopyrite has moderate contents of 

Te due to nano-inclusions of silver tellurides which are ob-

served in time-resolved LA-ICPMS analyses. Chalcopyrite

from zones B frequently displays the highest relative Te con-

centrations (Table 3).

Sphalerite (ZnS)   Sphalerite contains significant, but lower 

than chalcopyrite, concentrations of Te (Table 3). The varia-

tions of Te mean values differ between deposit types: Yubi-

leynoye (3 – 23 ppm) → Yaman-Kasy (20 – 1200) → Uzelga-4

(20 – 65) → Molodezhnoye (20 – 615) → Valentorskoye (20 – 

220)  →   Oktyabrskoye (90 – 365)  →  Alexandrinskoye (0.1 – 

16)→ Saphyanovskoye (0.5 – 5)  →  Tash-Tau (0.04 – 7)   →

Jusa (0.1 – 0.3). Most of Te is contained in Te-rich tennantite

micro-inclusions, volynskite and hessite. Tellurobismuthite

and sylvanite micro-inclusions occur in sphalerite adjacent 

to chalcopyrite.

 Pyrite (FeS 2 )   Despite the absence of detectable telluride

inclusions, pyrite displays elevated and variable concentration

of Te compared to chalcopyrite and sphalerite: Yubileynoye

(10 – 185 ppm)   →   Yaman-Kasy (80 – 21200)   →   Uzelga-4

(180 – 1190)   →   Molodezhnoye (620 – 10700)  →   Valentor-

skoye (150 – 540) →Oktyabrskoye (100 – 695) →Alexandrin-

skoye (20 – 160)→ Saphyanovskoye (5 – 55)→Tash-Tau (20 – 

120)   →   Jusa (0.2) (Table   3). Tellurobismuthite nano-

inclusions were found in euhedral pyrite (Maslennikov et al.

2009). In colloform pyrite, the time-resolved Te signal issmooth, suggesting that it is homogenously distributed on

the scale of individual spot analyses (Large et al.   2009).

Although such data may be interpreted as an indication for 

the lattice-bound substitution of Te in the colloform pyrite,

substitution of Te2-

for S2-

is restricted in sulfides compared to

Se2- due to a large difference in the ionic radius between

Te2- and S2-. Thus Te commonly forms its own minerals

(tellurides, sulfotellurides, and sulfosalts) under hydrother-

mal conditions (e.g. Ciobanu et al.   2006). A comparison

of the LA-ICPMS data with known stoichiometric compo-

sitions of tellurides suggests the presence of sylvanite and

hessite nano-inclusions. A correlation of Te with Bi, Ag andAu suggests co-precipitation of tellurides and pyrite. Substi-

tution of Te for As in tennantite micro-inclusions in pyrite may

explain the Te-As correlation (Maslennikov et al. 2009).

Galena (PbS)   have moderate concentration of Te up to

70 ppm (Table 3).

Fe-, Co- tellurides, Te-bearig arsenides and sulphoarsenides

 Frohbergite (FeTe2 )  occurs in chalcopyrite-pyrite chimney

type 1 from the Yaman-Kasy deposit in association with

tellurobismuthite, sylvanite and native tellurium, and com-

monly forms grains between 1-50  μ m (Fig.  10a ). A cobalt-

rich variety (Fe0.7Co0.3)Te2   is found as fine grains (up to

7 μ m) in pyrite-marcasite-chalcopyrite-quartz chimney mate-

rial associated with the altaite-tellurobismuthite-coloradoite

assemblage. The cobalt-rich frohbergite belongs to the

frohbergite-mattagamite series (Co content up to 5 wt. %;

Table  4), although its Co contents are clearly lower than in

typical mattagamite (Co0.54Fe0.37)Te2. Se contents (0.17-0.29

wt. %) of frohbergite also suggest the presence of ferroselite

(FeSe2) or hastite (CoSe2) endmembers, although hastite oc-

currence as a separate mineral phase was discredited by

Keutsch et al. (2009). Co-rich frohbergite has elevated con-

tents of Sb (0.6 – 0.7 wt. %) due to possible isomorphic series

CoTe2 – CoSb2. LA-ICPMS analyses display high concentra-

tions of Au, Ag and Mo in some grains of frohbergite

(Table 5).

Tellurian Co- and Te-rich löllingite   ( Fe 0. 8Co 0. 2 )

(As1.5Te0.4S 0.1 )2. This mineral is found as very small rhombic

crystals (up to 10 μ m) within chalcopyrite, quartz and sphal-

erite at the boundary between zones B and C in the type 2

chimneys in the Yaman-Kasy deposit (Fig. 6e). High grades

of Co suggest a substitution series with safflorite (CoAs2)

Tellurium-bearing minerals in zoned sulfide chimneys 77

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 12/33

      T    a      b      l    e      3

    M   e   a   n    T   e   c   o   n    t   e   n    t   s    i   n   s   u    l    f    i    d

   e   s    f   r   o   m   e   a   c    h   z   o   n   e   o    f   e   a   c    h   c    h    i   m   n   e   y    t   y   p   e    (   p   p   m    )

    D   e   p   o   s    i    t

    C    h    i   m   n   e   y    t   y   p

   e

    A   z   o   n   e

    B   z   o   n   e

    C   z   o   n   e

    P   y

    C    h   p

    S   p    h

    P   y

    C    h   p

    S   p    h

    P   y

    C    h

   p

    S   p    h

    Y   u    b    i    l   e   y   n   o   y   e

    2

    5    9 .    1

    (    1    6    )

    0 .    4

    (    1    )

    3 .    2

    (    7    )

    2    4 .    3

    (    6    )

    3 .    5

    (    1    0

    )

    2    3 .    4

    (    5    )

    7 .    7

    (    7    )

    8 .    7

    (    2    )

    4 .    0

    (    2    )

    1

    2    9 .    7

    (    1    2    )

    2 .    0

    (    5    )

   –

    5    2 .    8

    (    2    )

    3    4 .    3

    (    1    0

    )

    6 .    8

    (    2    )

    1    8    6 .    2

    (    1    0    )

    6    3 .    2

    (    6    )

    1    0 .    0

    (    5    )

    1

    3    7 .    5

    (    1    0    )

    5 .    9

    (    3    )

   –

    5    7 .    0

    (    6    )

    5 .    0

    (    7    )

   –

   –

    2    2 .    0

    (    1    )

   –

    O    k    t   y   a    b   r   s    k   o   y   e

    3

    2    8    1 .    7

    (    7    )

    4    0 .    0

    (    2    )

    2    3    2 .    4

    (    5    )

    6    9    3 .    3

    (    1    )

    3 .    9

    (    7    )

    3    6    4 .    7

    (    2    )

    1    0    3 .    0

    (    1    )

    3 .    6

    (    2    )

    9    2 .    7

    (    4    )

    T   a   s    h   –    T   a   u

    3

    1    1    9 .    0

    (    9    )

    0 .    9

    (    5    )

   –

    6    6 .    8

    (    2    )

    0 .    1

    (    1    2

    )

    0 .    0

    4    (    1    )

    2    2 .    4

    (    3    )

    0 .    1

    (    1    )

   –

    3

    4    2 .    4

    (    5    )

    0 .    7

    (    3    )

   –

    3    8 .    4

    (    6    )

    1 .    5

    (    9    )

    3 .    2

    (    1    1    )

    9    0 .    9

    (    2    )

    0 .    4

    (    3    )

    6 .    6

    (    6    )

    V   a    l   e   n    t   o   r   s    k   o   y   e

    2   –    3

    1    6    0 .    1

    (    6    )

    3    3 .    4

    (    3    )

    2    2    3 .    5

    (    2    )

    1    5    4    1 .    6

    (    5    )

    4    1 .    2

    (    1    3

    )

    2    9    6 .    0

    (    5    )

    1    6    6 .    6

    (    5    )

    3

    6    7 .    1

    (    5    )

   –

    2   –    3

    1    5    0 .    0

    (    9    )

    5 .    3

    (    4    )

    1    8 .    2

    (    4    )

   –

    2    5 .    7

    (    1    4

    )

    1    5 .    7

    (    5    )

    1    2    7 .    2

    (    5    )

   –

    6 .    7

    (    3    )

    2   –    3

    4    4    0 .    0

    (    7    )

    3    4 .    2

    (    2    )

    4    6 .    0

    (    2    )

    4    0    5 .    5

    (    6    )

    1    8 .    4

    (    1    0

    )

   –

    1    4    8 .    8

    (    9    )

    1    1 .    6

    (    1    )

    2    2 .    3

    (    4    )

    2

    5    5    5 .    7

    (    8    )

    5    4    1 .    2

    (    6    )

   –

    7    8 .    4

    (    3    )

    1    3    8 .    7

    (    8    )

    5    2 .    4

    (    8    )

   –

    2

    4    0 .    2

    (    2    )

    3    8 .    6

    (    6    )

    M   o    l   o    d   e   z    h   n   o   y   e

    2

   –

   –

    1    7 .    9

    (    7    )

   –

    1    0    4    7 .    9

    (    8    )

    6    1    6 .    5

    (    4    )

    1    0    7    3    4    (    5    )

    2    0

    6    1 .    9

    (    1    )

    4    1    2 .    4

    (    5    )

    2

    6    2    0 .    2

    (    1    4    )

    1    7 .    2

    (    1    )

    1    6 .    5

    (    4    )

    1    0    0    7 .    4

    (    1    )

    3    4    4 .    7

    (    1    2

    )

   –

   –

    1    1 .    2

    (    1    )

    3    6    0 .    4

    (    4    )

    2

    1    6    5    1 .    0

    (    4    )

    7    9    9 .    5

    (    3    )

    2    1    8 .    6

    (    5    )

   –

    9    6    0 .    0

    (    8    )

   –

    8    0    2 .    5

    (    3    )

    7 .    1

    (    2    )

    1    5    4 .    3

    (    1    1    )

    S   a   p    h   y   a   n   o   v   s    k   o   y   e

    3

    3    4 .    3

    (    7    )

   –

    2 .    8

    (    5    )

    7 .    9

    (    1    )

    1 .    0

    (    3    )

    0 .    1

    (    1    )

    5    4 .    1

    (    1    )

    1 .    3

    (    3    )

    4 .    5

    (    5    )

    2

    5 .    9

    (    1    4    )

    0 .    8

    (    2    )

    0 .    6

    (    3    )

    5 .    0

    (    4    )

    2    7 .    0

    (    1    0

    )

   –

    1    9 .    8

    (    1    )

   –

    3 .    3

    (    3    )

    2

    2    1 .    2

    (    1    2    )

    1 .    9

    (    2    )

    0 .    5

    (    1    )

    1    7 .    8

    (    6    )

    3    0 .    4

    (    1    6

    )

   –

    0 .    2

    (    1    )

    3 .    5

    (    5    )

    4 .    8

    (    1    1    )

    U   z   e    l   g   a

    2

    1    1    9    2 .    2

    (    1    6    )

    1    0    (    8    )

    2    4 .    3

    (    7    )

    1    7    9 .    5

    (    1    8    )

    1    8    8 .    3

    (    1    4

    )

    2    2 .    4

    (    6    )

    4    7    6 .    3

    (    8    )

    2

    4    9 .    0

    (    6    )

    6    4 .    2

    (    3    )

    A    l   e   x   a   n    d   r    i   n   s    k   o   y   e

    2

   –

    4    6 .    0

    (    8    )

    0 .    4

    (    5    )

   –

    2    7 .    2

    (    1    5

    )

    3 .    7

    (    3    )

   –

    2    6 .    0

    (    2    )

    2    4 .    7

    (    9    )

    1

    1    6    1 .    8

    (    3    )

    1 .    3

    (    3    )

    1    4 .    6

    (    8    )

    8    8 .    2

    (    7    )

    0 .    5

    (    1    1    )

    0 .    8

    (    4    )

    2    0 .    8

    (    3    )

    2    9 .    3

    (    6    )

    1    6 .    2

    (    7    )

    J   u   s   a

    3

    0 .    2

    (    2    1    )

    0 .    2

    (    1    2    )

   –

    0 .    2

    (    2    )

    0 .    0

    (    6    )

    0 .    1

    (    2    )

   –

   –

    0 .    3

    (    1    )

    Y   a   m   a   n   –    K   a   s   y

    1

    2    8 .    8

    (    3    4    )

    2    5 .    4

    (    7    )

   –

    4    7 .    0

    (    8    )

    3    2 .    1

    (    1    5

    )

   –

    2    6 .    0

    (    6    )

    1    /    0    (    3    )

   –

    2

    5    3    0 .    0

    (    1    3    )

   –

    7    3 .    2

    (    7    )

    4    6    5 .    1

    (    4    )

    1    5    8    5 .    7

    (    2    2

    )

    1    5 .    0

    (    4    )

    3    8    4    9 .    0

    (    6    )

    6    7

    5    8 .    5

    (    1    3    )

    3    8 .    0

    (    2    0    )

    2

    1    6    7 .    1

    (    2    0    )

   –

    1    9 .    6

    (    8    )

    8    6    3 .    1

    (    7    )

    3    1    9    4 .    5

    (    8    )

    1    0    2 .    3

    (    3    )

    2    1    5    8    7    (    3    )

   –

   –

    3

    7    8 .    1

    (    9    )

    8    1    8 .    6

    (    2    )

    5    4 .    5

    (    6    )

    3    6    0    3 .    2

    (    5    )

    2    8    8    3    7    (    4    )

    4    1    1 .    8

    (    1    )

    1    6    5    2 .    9

    (    4    )

    2    7

    4    8 .    5

    (    4    )

    1    2    0    5 .    2

    (    1    0    )

    3

    2    0    5    2 .    1

    (    1    3    )

   –

    5    1 .    9

    (    1    0    )

    8    3    8 .    0

    (    1    4    )

    7    3 .    3

    (    1    1    )

    2    0 .    4

    (    4    )

   –

   –

    1    1 .    5

    (    3    )

    N   u   m    b   e   r   o    f   a   n   a    l   y   s   e   s    i   s   s    h   o   w   n    i   n    b   r   a

   c    k   e    t   s .   –

   m    i   n   e   r   a    l    i   s   a    b   s   e   n    t .    A   n   a    l   y   s   e   s   w   e   r   e   c   a   r   r    i   e    d   o   u    t   a    t    t    h   e    U   n    i   v   e   r   s    i    t   y   o    f    T   a   s   m   a   n    i   a    (    H   o

    b   a   r    t ,    A   u   s    t   r   a    l    i   a    )

78 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 13/33

(Table 6). Possible substitutions of As and S for Te are also

inferred from our data. Extensive mixing between löllingite

and isostructural tellurides: mattagamite, melonite and

frohhbergite has been described by Ciobanu et al. (2008).

Te-rich cobaltite-like mineral   Co(S,AsTe)2   (Fig.   10d).

This mineral occurs as relics of small pink cubic crystals

included in native tellurium. Commonly, grains of the

cobaltite-like mineral are corroded and replaced by other 

tellurides, making their analysis by a microprobe virtually

impossible. Contents of Te in the mineral are up to 12-15 wt.

%. The calculated formula is Co1.0(As0.7Te0.2)S1.1. Some of 

the high grades of Te are, probably, caused by tellurides and

native tellurium micro-inclusions. Rare homogenous areas

within this mineral, as observed in back-scattered SEM

images, were used for analysis, revealing minor amounts

of Cu, Fe, Zn, and Sb (Table  6). Their small size prevents

any crystallographic studies to determine the structure of 

this mineral. The mineral merits further investigations.Te-containing gl aucodot   (C o0.48   Fe0.57Cu 0.12)1.12

(As1.14Te0.02)1.16S (Table 6). Small white grains (< 5 μ m) have

 been found in chalcopyrite-rich chimneys of types 1 and 2

in the Saphyanovskoye deposit. Glaucodot is commonly

associated with hessite and the late-formed tennantite and

tetrahedrite. High Fe contents may be due to isomorphic

series of allocrasite-glaucodot-arsenopyrite. Some grains

contain elevated Cu (4 – 11 wt. %) suggesting isomorphism

 between glaucodot and lautite (CuAsS) series in the micro-

inclusions of tennantite. The elevated contents of Te (0.6 – 

1.4 wt. %) and Ag (0.2 – 1.5 wt. %) may be due to either 

substitution of Te for As, or micro-inclusions of hessite.

 Pb-, Bi- and Pb-Bi tellurides and related minerals

 Altaite (PbTe)   is by far the most common telluride present,

usually in the form of dispersed 2-3   μ m grains. Larger 

grains (up to 2 mm) are found adjacent to later galena in

the narrow part of zone B in type 2 chimneys from the

Yaman-Kasy and Molodezhnoye deposits (Fig.  10a, d). In

conduits of type 3 chimneys from the Oktyabrskoye deposit,

altaite occurs in sphalerite as intergrowths with hessite and

galena. Successive overgrowths and replacement of altaite

 by stützite-hessite, native tellurium and galena are common

(Fig. 7d). The altaite is slightly non-stoichiometric, containing

an excess of Te. Other trace elements in altaite include Sb and

Ag (Table 4), with the likely substitution2Р b2+⇔Ag1+ + Sb3+.

Altaite has high concentrations of Au, Bi and Ag. This is

consistent with published data, where altaite was also identi-

fied as a Au carrier (Ciobanu et al.  2009 b; Vikentyev 2006).

High concentrations of Co and As are due to micro-inclusions

of the cobaltite-like mineral.

Tellurobismuthite (Bi2Te3 ). Pink-white platty ctystals of 

tellurobismuthite (Fig.   10b) occur in the outer and inner 

 parts of zone B within the chalcopyrite-rich chimneys of 

types 1 and 2 in the Yaman-Kasy and Valentorskoye depos-

its (Fig. 7a ). Tellurobismuthite contains no S (Table  7), and

is similar to occurrences of this mineral in both pyrrhotite

and chalcopyrite-pyrite ores of Uralian type VMS deposits

(Sibai, Uchaly), which contrasts with bismuth sulfotellurides

found in galena-sphalerite-rich ores of the Baimak type VMS

deposits (Moloshag et al. 2002). An excess of Te is noted in

the tellurobismuthite measured here as compared with

the theoretical formula. In the quartz-pyrite-chalcopyrite

chimneys from the Yaman-Kay deposit, Sb contents reach 7.1

Fig. 10   Reflected light photomicrographs of tellurium mineralization

in the chimneys from the Yaman-Kasy (a – d,  g,  h), Valentorskoye (e),

Oktyabrskoye (f ) deposits.   a   –   coloradoite (Cld) in association with

altaite (Alt) and frohbergite (Frb) in chalcopyrite (Cp); b   –   tellurobis-

muthite (Tbs) at the boundary of the chalcopyrite (Cp) wall with the

sphalerite (Sl) channel;  c  –  sylvanite (Syl) twins with chalcopyrite (Cp)

in the sphalerite (Sl) matrix; d  – telluride mineralization (volynskite (Vol),

altaite (Alt), hessite (Hs), cobaltite (Cob), native tellurium (Te)) in asso-

ciation with sulfides (galena (Gn), marcasite (Mrc), chalcopyrite (Cp) and

sphalerite (Sl)) and quartz (Qz);   e   –   hessite (Hs) in association with

tellurobismuthite (Tbs) or kochkarite-like minerals, galena (Gn) and gold

(Au); f  –  native gold (Au) with hessite (Hs), tetrahedrite (Td) and galena 

(Gn)in sphalerite (Sl); g  – crystals of goldfieldite (Gld) in quartz (Qz); h  – 

myrmekitic intergrowths of native tellurium (Te) and silver thiotellurite

sulphosalt (Sfs)

Tellurium-bearing minerals in zoned sulfide chimneys 79

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 14/33

wt. %, where it substitutes for bismuth. Measured Sb and Bi

contents are consistent with experimental data for ternary

system Bi – Sb – Te (Caillat et al.   1992). Elevated contents of 

Cu, S and Fe (Table  7) are likely due to analytical overlapcaused by the small grain size.(Table 8)

 Kochkarite-like ISS  (Ag-Pb-Bi-Sb-Te intermediate solid

solution) occurs in chalcopyrite of zone B of pyrite-sphalerite-

chalcopyrite chimneys in the Valentorskoye deposit. Silver-

white platy crystals of these minerals are associated with sphal-

erite, hessite, galena and native gold, but not with altaite

(Fig. 10e). The values of Pb are highly varied in the minerals

(Table   7). Substitution of minor Pb for Bi is widespread

throughout the group of Bi-tellurides (Cook et al.  2007b). The

 phases can be considered as members of the alexite group

(Cook et al. 2007a ). However the most of compiled results of 

analyses display the continuous compositional range from tel-

lurobismuthite to ruckligeite, not overlapping with the tsumoiteand tetradymite-aleksite ranges (Fig. 11a, b). Contents of S and

Se are also low in the kochkarite-like minerals.

The most varieties of the kochkarite-like minerals have

Te contents within 56 – 59 at. %. Some of those are probably

akin to the synthetic layered compounds with formula 

PbBi6Te10  and PbBi8Te13. The series of structurally related

compounds, in close compositional proximity to one anoth-

er, can be potentially stacked in a disordered manner. These

c o m p o u n d s m a y b e l o n g t o a h o m o l o g o u s s e r i e s

Table 4   Chemical composition of tellurides from the low-sulphidation assemblages in the Type 2 and 3 chimneys from the Urals VMS

deposits (wt. %)

Frohbergite

 N D Ag Te Sb Fe Co Se Tl Pd Total Formula

1 Y   –    82.17 0.59 12.66 4.97 0.25   – –    100.64 (Fe0.69Co0.26)0.95(Te1.98Se0.01Sb0.01)2

2   –    81.70 0.62 12.99 4.49 0.19   – –    99.99 (Fe0.72Co0.23)0.95(Te1.97Se0.01Sb0.02)2

3   –    81.82 0.68 12.78 4.98 0.22   – –    100.48 (Fe0.70Co0.26)0.96(Te1.97Se0.01Sb0.02)2

4   –    81.87 0.64 13.32 4.23 0.19   – –    100.25 (Fe0.73Co0.22)0.95(Te1.97Se0.01Sb0.02)2

5   –    81.96   –    17.98   – – – –     99.94 Fe1.00Te2.00

6   –    82.04   –    17.86   – – – –     99.90 Fe1.00Te2.00

7   –    81.82   –    18.09   – – – –     99.91 Fe1.01Te2.00

Coloradoite

 N D Ag Te Sb Hg Bi Se Tl Pd Total Formula

8 Y   –    39.82   –    59.00   – –    0.44 0.30 99.56 (Hg0.94Tl0.03Pd0.01)0.98Te1

9   –    39.94   –    60.13   – –    0.54 0.16 100.77 (Hg0.96Tl0.04Pd0.01)1.01Te1

10   –    39.80   –    61.04   – – –    0.39 101.14 (Hg0.98Pd0.01)0.99Te1

11 0.07 40.78 0.55 56.88 2.13 0.09   – –    100.50 (Hg0.87Bi0.03)0.90(Te0.99Sb0.01)1

12 0.16 37.86 0.32 61.84 0.10 0.08   – –    100.36 Hg1.03(Te0.99Sb0.01)1

13 U  – 

  38.28  – 

  61.13  – – – –  

  99.41 Hg1.02Te1

14   –    38.97   –    60.91   – – – –     99.88 Hg0.99Te1

15   –    38.53   –    60.83   – – – –     99.36 Hg1.00Te1

Altaite

 N D Ag Te Sb Pb Co Se Tl Pd Total Formula

16 Y 0.34 38.09 0.30 60.22   – – – –     99.20 (Pb0.97Ag0.01)0.98(Te0.99Sb0.01)1

17 0.34 39.01 0.24 60.44 0.08   – – –    100.12 (Pb0.95Ag0.01)0.96(Te0.99Sb0.01)1

18 0.44 37.76 0.27 61.25   – – – –     99.94 (Pb0.99Ag0.01)1.00(Te0.99Sb0.01)1

19 0.19 38.12 0.00 61.03   – – – –     99.34 (Pb0.99Ag0.01)1.00Te1.00

20 M   –    37.54   –    62.39   – – – –     99.93 Pb1.02Te1

21   –    37.72   –    62.25   – – – –     99.97 Pb1.02Te1

22   –    38.14   –    61.64   – – – –     99.78 Pb1.01Te1

23 O  – 

  38.12  – 

  61.18  – – – –  

  99.30 Pb0.99Te1

24 1.87 38.77   –    59.02   – – – –     99.65 (Pb0.94Ag0.03)0.97Te1

25   –    37.36   –    62.42   – – – –     99.78 Pb1.03Te1

D  –  VMS deposits: Y  –  Yaman-Kasy; U  –  Uzelga; M  –  Molodezhnoye; O  –  Oktyabrskoye; V  –  Valentorskoye.  – –  element has not been analysed.

Analyses were carried out: 1 – 4, 11, 12, 16, 17  –  by JEOL JXA 8900 RL (the University of Tasmania, Hobart, Australia); 5 – 7, 13 – 15, 20 – 25  –  inby

REMMA-2 M SEM (the Institute of Mineralogy of UB RAS), 8 – 10   –  inby Camebax SX – 50 (NHM, London, England); 18 – 19   –  in JEOL JXA

8900 RL (Freiberg Mining Academy, Freiberg, Germany)

80 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 15/33

      T    a      b      l    e      5

    T   r   a   c   e   e    l   e   m   e   n    t   c   o   n   c   e   n    t   r   a    t    i   o

   n   s    (   p   p   m    )    i   n   a   c   c   e   s   s   o   r   y   m    i   n   e   r   a    l   s    f   r   o   m    t    h   e   p   a

    l   e   o  -    h   y    d   r   o    t    h   e   r   m   a    l   c    h    i   m   n   e   y   s    (    L    A  -    I    C    P  -    M    S    )

    N

    M    i   n   e   r   a    l   s

    T   e

    B    i

    A   g

    A   u

    F   e

    P    b

    C   u

    Z   n

    A   s

    S   e

    V

    1

    T   e    l    l   u   r   o    b    i   s   m   u    t    h    i    t   e    (    9    )

   m   e   a   n

      4      5      9      4      0      9

      4      9      0      0      0      0

    4    7    0    9

    2 .    5

    1

    4    4    0    6

    3    0    5    6    8

    4    6    4    0

    3    7    5

    2 .    5

    4

    5    1    8    9

    3    1 .    2

    4

   m   a   x

      4      9      5      6      1      9

      5      4      2      0      0      0

    7    4    9    1

    8 .    0

    7

    2    1    6    3    9

    4    8    2    9    4

    2    3    9    8    4

    1    9    7    6

    6 .    2

    1

    5    9    7    1

    1    0    3 .    7

    0

   m    i   n

      4      0      4      8      3      3

      4      3      1      0      0      0

    3    0    1    4

    0 .    3

    3

    6    4

    1    6    7    4    5

    2    5

    0

    0 .    5

    2

    4    3    5    8

    0 .    2

    3

    2

    S   y    l   v   a   n    i    t   e    (    2    )

      6      2      1      0      0      0

    6 .    9

    7

      1      3      0      5      3      6

      2      1      7      2      6      9

    1    3    4    4    4

    1    0

    1    6    7    6    7

    1    3    6

    0 .    2

    8

    <    2    6

    0 .    2

    3

      6      0      0      0      0      0

    5 .    3

    6

      1      3      0      2      4      8

      2      2      7      2      4      4

    1    8    5    7    6

    7

    2    3    8    5    6

    1    0    6

    3    0 .    3

    5

    1    4 .    4

    7

    <    2 .    3

    3

    F   r   o    h    b   e   r   g    i    t   e    (    2    )

      8      3      2      0      0      0

    1 .    5

    3

    2    8

    3 .    0

    0

      1      6      4      7      7      1

    4    3

    2    4    8    9

    2    0    3

    5    5 .    9

    7

    <    2    8

    0 .    3

    9

      8      2      4      0      0      0

    8 .    6

    7

    2    6

    1    8 .    0

    0

      1      6      4      6      5      8

    1    0

    9    8    1    0

    9    9    8

    2    1 .    0

    4

    <    3    4

    0 .    0

    3

    4

    T   e    l    l   u   r    i   u   m   o   x    i    d   e    (    1    )

      8      5      0      0      0      0

    7    8    9    3

    2    3    9    4    7

    4 .    1

    1

    1    4    9    6

    2    7    8    0

    2    1    3    5

    6    0    6    9

    1    9    6 .    2

    1    0 .    2

    2

    0 .    6

    1

    5

    S    t    ü    t   z    i    t   e    (    1    )

      4      5      5      0      0      0

    0 .    2

    0

      5      4      3      9      6      4

    1    0    3 .    8

    1    5

    2    7

    2    4

    4    7

    <    1    5

    2    1 .    5

    4

    0 .    1

    7

    6

    A    l    t   a    i    t   e    (    1    )

      3      7      2      0      0      0

    5    4    0    1

    5    1    8    7

    5    4 .    5

    5

    2    3    1    2

      6      0      3      1      3      5

    2    6    0    5

    3    5    7    9

    3    0    3    1 .    4

    2    5 .    3

    9

    0 .    1

    9

    7

    G   a    l   e   n   a    (    2    )

    5    5 .    8

    9

    0 .    4

    8

    5    4

    0 .    0

    2

    6

      8      6      6      0      0      0

    1

    0

    3 .    3

    8

    <    3 .    0

    <    0 .    1

    7    0 .    8

    8

    0 .    7

    2

    3    9

    0 .    6

    5

    <    1    8

      8      6      6      0      0      0

    1

    1

    1    1    1 .    5

    0 .    9

    1

    0 .    0

    2

    N

    M    i   n   e   r   a    l   s

    M   n

    C   o

    N    i

    C    d

    S   n

    S    b

    M   o

    B   a

    W

    T    l

    U

    1

    T   e    l    l   u   r   o    b    i   s   m   u    t    h    i    t   e    (    9    )

   m   e   a   n

    3    2 .    3

    6

    0 .    4

    5

    0 .    6

    8

    2 .    7

    0

    0 .    9

    9

    1    5    0 .    6

    7

    3    9 .    4

    7

    2 .    6

    7

    1 .    2

    5

    0 .    3

    6

    7 .    7

    2

   m   a   x

    9    7 .    9

    7

    3 .    1

    0

    1 .    1

    2

    7 .    5

    2

    4 .    1

    6

    1    8    8 .    0

    0

    1    2    0 .    3

    0

    2    2 .    3

    4

    4 .    8

    5

    0 .    5

    9

    6    9 .    1

    3

   m    i   n

    2 .    4

    9

    0 .    0

    2

    0 .    2

    4

    0 .    0

    3

    0 .    1

    1

    1    1    5 .    0

    0

    5 .    3

    0

    0 .    0

    1

    0 .    1

    1

    0 .    1

    8

    0 .    0

    0

    2

    S   y    l   v   a   n    i    t   e    (    2    )

    1 .    2

    3

    5 .    0

    8

    1 .    4

    1

    0 .    8

    3

    0 .    5

    5

    1    9

    5 .    0

    3

    0 .    2

    0

    0 .    1

    9

    0 .    4

    7

    <    0 .    1

    0

    <    2    4

    6 .    7

    8

    <    2    3

    3    5 .    0

    3

    <    1    0

    1    5

    <    2    7

    <    4 .    0

    0 .    3

    2

    0 .    4

    5

    0 .    0

    5

    3

    F   r   o    h    b   e   r   g    i    t   e    (    2    )

    2 .    1

    5

    4 .    8

    1

    0 .    9

    9

    1    4 .    5

    4

    1 .    7

    9

    7

    1 .    4

    4

    <    1 .    0

    0 .    2

    9

    0 .    2

    0

    0 .    0

    6

    1 .    9

    8

    6    0 .    8

    6

    <    7

    5 .    4

    6

    1 .    2

    0

    8

    3    0 .    0

    8

    0 .    4

    0

    <    0 .    6

    0 .    6

    8

    0 .    0

    0

    4

    T   e    l    l   u   r    i   u   m   o   x    i    d   e    (    1    )

    1    3 .    8

    0

    2    1 .    2

    6

    2 .    2

    4

    4    3    6 .    2

    1    6 .    2

    7

    1    9    1

    1    0    1 .    9

    5 .    5

    6

    0 .    0

    5

    1 .    3

    7

    1 .    5

    6

    5

    S    t    ü    t   z    i    t   e    (    1    )

    7 .    5

    0

    0 .    8

    6

    4 .    5

    0

    3 .    7

    4

    2 .    5

    0

    2

    2 .    9

    7

    0 .    7

    2

    0 .    2

    5

    0 .    2

    1

    0 .    0

    4

    6

    A    l    t   a    i    t   e    (    1    )

    0 .    8

    6

    2    2    0    8

    1 .    4

    7

    5 .    9

    9

    1 .    0

    2

    4    6

    1    2    0 .    0

    1 .    6

    5

    0 .    2

    0

    2    5 .    5

    3

    0 .    0

    0

    7

    G   a    l   e   n   a    (    2    )

    <    0 .    5

    <    0 .    1

    <    0 .    5

    1    6 .    1

    5

    0 .    4

    6

    5

    0 .    2

    8

    0 .    0

    8

    <    0 .    1

    0 .    0

    9

    0 .    0

    0

    <    0 .    6

    0 .    0

    5

    0 .    0

    8

    1    5 .    5

    3

    0 .    4

    2

    4

    <    1 .    0

    0 .    0

    3

    <    0 .    1

    0 .    0

    8

    0 .    0

    0

    D   e   p   o   s    i    t   s   :    1   –

    V   a    l   e   n    t   o   r   s    k   o   y   e .    2   –    7   –    Y

   a   m   a   n   –    K   a   s   y .    N   u   m    b   e   r   o    f   a   n   a    l   y   s   e   s    i   s   s    h   o   w   n    i   n    b   r   a   c    k   e    t   s .    <    −

    d   e    t   e   c    t    i   o   n    l    i   m    i    t .    M   a    j   o   r   e    l   e   m   e   n

    t   s   a   r   e    h    i   g    h    l    i   g    h    t   e    d    i   n    b   o    l    d .    A   n   a    l   y   s   e   s   w   e   r   e   c   a   r

   r    i   e    d   o   u    t   a    t    t    h   e    U   n    i   v   e   r   s    i    t   y   o    f

    T   a   s   m   a   n    i   a    (    H   o    b   a   r    t . ,    A   u   s    t   r   a    l    i   a    )

Tellurium-bearing minerals in zoned sulfide chimneys 81

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 16/33

      T    a      b      l    e      6

    C    h   e   m    i   c   a    l   c   o   m   p   o   s    i    t    i   o   n   o    f    t   e    l    l   u   r    i   u   m  -    b   e   a   r    i   n   g   a   r   s   e   n    i   c   m    i   n   e   r   a    l   s    i   n    t    h   e   c    h    i

   m   n   e   y   s    f   r   o   m    t    h   e    U   r   a    l   s    V    M    S    d   e   p   o   s    i    t   s    (   w    t .    %

    )

    N

    D

    C   u

    A   s

    S

    F   e

    Z   n

    S    b

    T   e

    C   o

    P    b

    A   g

    B    i

    S   e

    A   u

    H   g

    T   o    t   a    l

    F   o   r   m   u    l   a

    L    ö    l    l    i   n   g    i    t   e

    1

    Y

    0 .    4

    4

    5    7 .    5

    8

    1 .    5

    1

    2    2 .    7

    9

    0 .    0

    1

    0 .    1

    7

    1    3 .    5

    3

    2 .    4

    6

   –

    0 .    0

    8

   –

    0 .    2

    1

    0 .    2

    1

   –

    9    9 .    0

    5

    (    F   e      0

 .      8      8    C   o      0 .      0

      9    C   u      0 .      0

      1    )      0

 .      9      8    (    A   s      1

 .      6      6

    T   e      0

 .      2      3    S      0 .      1

      0    S   e      0

 .      0      1    )      2

    2

    0 .    6

    3

    4    9 .    4

    8

    1 .    8

    8

    1    8 .    6

    8

    0 .    1

    9

    0 .    2

    7

    2    0 .    8

    7

    6 .    2

    1

    0 .    3

    0

   –

   –

    0 .    3

    2

    0 .    4

    7

   –

    9    9 .    3

    0

    (    F   e      0

 .      7      5    C   o      0 .      2

      4    C   u      0 .      0

      2    Z   n      0 .      0

      1    )      1

 .      0      2    (

    A   s      1

 .      4      9    T   e      0

 .      3      7    S      0 .      1

      3    S   e      0

 .      0      1    )      2

    C   o    b   a    l    t    i    t   e

    3

    Y

    0 .    0

    2

    2    8 .    1

    8

    2    0 .    0

    3

    0 .    2

    7

    0 .    3

    5

    1 .    7

    1

    1    5 .    0

    1

    3    2 .    9

    3

    0 .    0

    9

   –

   –

   –

   –

   –

    9    8 .    7

    7

    C   o      0 .      9

      9    A   s      0

 .      6      6    (    T   e      0

 .      2      1    S      1 .      1

      0    )      1

 .      3      1

    4

    0 .    1

    7

    2    7 .    7

    0

    2    0 .    1

    0

    0 .    2

    7

    0 .    3

    4

    1 .    7

    2

    1    4 .    7

    8

    3    2 .    5

    1

    0 .    2

    0

   –

   –

   –

   –

   –

    9    7 .    7

    9

    C   o      0 .      9

      8    A   s      0 .      6

      6    (    T   e      0 .      2

      1    S      1 .      1

      1    )      1

 .      3      2

    G    l   a   u   c   o    d   o    t

    5

    S

    4 .    0

    2

    4    4 .    6

    6

    1    6 .    8

    4

    1    6 .    6

    2

    0 .    0

    1

    0 .    0

    0

    1 .    4

    4

    1    4 .    8

    1

   –

    1 .    5

    0

   –

   –

   –

   –

    9    9 .    9

    0

    (    C   o      0 .      4

      8    F   e      0

 .      5      7    C   u      0 .      1

      2    )      1

 .      1      2    (    A   s      1

 .      1      4

    T   e      0

 .      0      2    )      1

 .      1      6    S

    6

    1    1 .    3

    6

    4    3 .    0

    0

    1    7 .    6

    7

    1    4 .    1

    8

    1 .    3

    2

    0 .    3

    7

    0 .    6

    0

    1    1 .    1

    8

   –

    0 .    2

    4

   –

   –

   –

   –

    9    9 .    9

    2

    (    C   o      0 .      3

      4    F   e      0

 .      4      6    C   u      0 .      3

      2    Z   n      0 .      0

      4    )      1

 .      1      6    (

    A   s      1

 .      0      4    T   e      0

 .      0      1    )      1

 .      0      5    S

    T   e   n   n   a   n    t    i    t   e

    7

    Y

    4    8 .    4

    0

    1    8 .    2

    8

    2    8 .    0

    1

    2 .    0

    1

   –

   –

    2 .    3

    0

    0 .    3

    2

   –

   –

   –

   –

   –

   –

    9    9 .    3

    9

      С   u      1      1 .      3

      1    (    F   e      0 .      5

      3    C   o      0 .      0

      8    )      0

 .      6      1    (    A   s      3 .      6

      2    T   e      0 .      2

      7    )      3

 .      8      9    S      1      3

    T   e   n   n   a   n    t    i    t   e   –    t   e    t   r   a    h   e    d   r    i    t   e

    8

    A

    4    1 .    8

    3

    1    7 .    9

    2

    2    8 .    6

    4

    0 .    4

    9

    8 .    3

    9

    2 .    1

    5

    0 .    2

    8

   –

   –

   –

   –

    0 .    1

    1

   –

   –

    9    9 .    8

    1

      С   u      9 .      5

      8    (    F   e      0

 .      1      3    Z   n      1 .      8

      7    )      2

 .      0      0    (    A   s      3

 .      4      8

    S    b      0

 .      2      6    T   e      0

 .      0      3    S   e      0

 .      0      2    )      3

 .      7      9    S      1      3

    9

    V

    4    2 .    1

    7

    1    4 .    6

    5

    2    6 .    8

    7

    2 .    9

    0

    4 .    6

    6

    2 .    4

    3

    1 .    9

    4

   –

   –

    0 .    0

    6

    4 .    3

    4

   –

   –

   –

    9    9 .    7

    8

      С   u      1      0 .      2

      8    (    F   e      0

 .      8      0    Z   n      1 .      1

      1    )      1

 .      9      2    (    A   s      3

 .      0

      3    S    b      0 .      3

      1    B    i      0

 .      3      2    T   e      0

 .      2      4    )      3

 .      8      9    S      1      3

    1    0

    S

    4    0 .    8

    1

    1    1 .    0

    6

    2    6 .    9

    7

    2 .    1

    9

    7 .    0

    7

    1    0 .    9

    4

    0 .    3

    5

    0 .    4

    8

   –

   –

   –

   –

   –

   –

    9    9 .    8

    7

      С   u      9 .      9

      3    (    F   e      0 .      6

      1    Z   n      1 .      6

      7    C   o      0 .      1

      3    )      2

 .      4      1    (

    A   s      2 .      2

      8    S    b      1 .      3

      9    T   e      0 .      0

      4    )      3

 .      7      1    S      1      3

    G   o    l    d    f    i   e    l    d    i    t   e

    1    1

    Y

    4    0 .    4

    9

    0 .    2

    0

    2    5 .    8

    8

    0 .    4

    5

    0 .    0

    0 .    4

    7

    3    2 .    1

    4

   –

   –

    0 .    0

    8

   –

   –

   –

    0 .    5    4

    1    0    0 .    2

    5

    (    C   u      1      0 .      2

      6    F   e      0

 .      1      3    H   g      0 .      0

      4    A   g      0 .      0

      1    )      1      0 .      4      4    (    T   e      4

 .      0      6    S    b      0 .      0

      6    A   s      0

 .      0      4    )      4

 .      1      6    S      1      3

    1    2

    4    1 .    4

    2

    0 .    1

    9

    2    5 .    8

    0

    0 .    4

    8

    0 .    0

    0 .    5

    2

    3 .    9

    6

   –

   –

    0 .    0

    3

   –

   –

   –

    0 .    3    9

    1    0    0 .    8

    0

    (    C   u      1      0 .      5

      3    F   e      0 .      1

      4    H   g      0 .      0

      3    )      1      0 .      7

      0    (    T   e      4 .      0

      5    S    b      0 .      0

      7    A   s      0 .      0

      4    )      4

 .      1      6    S      1      3

    C   u   –    A   g   –   s   u    l    f   o    t   e    l    l   u   r    i    d   e

    1    5

    Y

    1 .    4

    5

    0 .    2

    1

    2    2 .    7

    2

    0 .    9

    3

    0 .    0

    0

   –

    3    0 .    7

    2

   –

    0 .    0

    0

    4    3 .    8

    8

   –

   –

   –

    0 .    0    0

    9    9 .    9

    1

    (    A   g      2 .      3

      0    C   u      0 .      1

      3    )      2

 .      4      3    (    T   e      1

 .      3      6    F   e      0

 .      0      9

    A   s      0

 .      0      2    )      1

 .      4      7    S      4

    1    6

    1 .    0

    3

    0 .    4

    0

    2    2 .    3

    3

    0 .    5

    9

    0 .    0

    0

   –

    3    0 .    7

    6

   –

    0 .    0

    0

    4    4 .    6

    8

   –

   –

   –

    0 .    0    0

    9    9 .    7

    9

    (    A   g      2 .      3

      8    C   u      0 .      0

      9    )      2

 .      4      7    (    T   e      1

 .      3      8    F   e      0

 .      0      6

    A   s      0

 .      0      3    )      1

 .      4      7    S      4

    D   –

    V    M    S    d   e   p   o   s    i    t   s   :    Y   –

    Y   a   m   a   n  -    K   a   s   y

 ,    S   –

    S   a   p    h   y   a   n   o   v   s    k   o   y   e   ;    A   –

    A    l   e   x   a   n    d   r    i   n   s    k   o   y   e   ;    V   –

    V   a    l   e   n    t   o   r   s    k   o   y   e .   –

   –

   e    l   e   m   e   n    t    h   a   s   n   o    t    b   e   e   n   a   n   a    l   y   s   e    d .    A   n   a    l   y   s   e   s   w   e   r   e   c   a   r   r    i   e    d   o   u    t   :    1 ,    2   –

    b   y    C   a   m   e    b   a   x    S    X   –    1    0    0    (    t    h   e

    U   n    i   v   e   r   s    i    t   y   o    f    T   a   s   m   a   n    i   a ,    H   o    b   a   r    t ,    A   u   s

    t   r   a    l    i   a    )   ;    3 ,    4 ,    8   –

    b   y    J    E    O    L    J    X    A    8    9    0    0    R    L    (    F   r   e    i    b   e   r   g    M    i   n    i   n   g    A   c   a    d   e   m   y ,    F   r   e    i    b   e   r   g ,    G   e   r   m   a   n   y    )   ;    5 ,    6 ,    7 ,    1    0 ,    1    5 ,    1    6   –

    b   y    R    E    M    M    A  -    2    M    S    E    M    (    t    h   e    I   n   s    t    i    t   u    t   e   o    f    M    i   n   e   r   a    l   o   g   y

   o    f    U    B    R    A    S    ) ,    8   –    1    2   –    b   y    C   a   m   e    b   a   x    S    X   –    5    0    (    N    H    M ,    L   o   n    d   o   n ,    E   n   g    l   a   n    d    ) .    L   o   w    t   o    t   a    l   s    f   o   r   a   n   a    l   y   s   e   s    3   a   n    d ,    4   a   r   e    d   u   e    t   o   s   m   a    l    l   s    i   z   e   s   o    f    t    h   e   g   r   a    i   n   s

82 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 17/33

nPbTe.mBi2Te3, in addition to ruckligeite and kochkarite

(Karpinsky et al. 2002; Shelimova et al.  2004a ), character-

ised by elevated values of Ag (0.59 to 1.21 wt. %) and Sb

(0.28 – 0.36 wt. %) contents (Table   7). Probably, the

kochkarite-like minerals constitute a solid solution be-

tween (Bi,Sb)2Te3   and PbTe, as considered for the same

synthetic phase (Shelimova et al. 2004b). This is in agree-

ment with the presence of Ag in a significant proportion of 

 published composition for the minerals of the same group

(Cook et al.   2007a ,   b). Small amounts of Ag maintain a 

 balance of electrostatic charges, as was predicted for the

similar Pb-Bi-Sb-Te solid solution compounds from Yanahara 

VMS deposit (Japan) (Kase et al. 1993). Implication of hetero-

valence isomorphism of   Р b2+⇔   Ag

++ Bi

3+unmasks a 

significant role of Bi2Te3 in these compounds (Table 7). Small

access of Bi can be derived from additional BiTe layers

(Shelimova et al.   2000) or the zero-valence Bi2. Possible

involvement of zero-valence Bi2 layers precludes application

of a simple arithmetic charge-balance calculation (Cook et al.

2007b). Similar extensive solid solution has been invoked by

Bayliss (1991) and termed  “disoder ”.

LA-ICP-MS analysis of kochkarite-like ISS has shown

that they carry Au in concentration up to 8 ppm. It was

suggested that Au incorporation is underpinned by statistical

substitution of Ag and Pb into Bi octahedron in Bi-telluride

or sulfosalt structure. Gold entrapment may also be linked to

the presence of Van der Waals bonds at chalcogen-chalcogen

contacts (Ciobanu et al. 2009).

Tetradymite( Bi2Te2S)   has been found in hessite in the

chalcopyrite basement of chimney structure in the Valentor-

skoye deposit. Tetradymite grains are associated with native

gold and Bi,Te-rich tennantite. Significant contents of Se

(0.14 – 0.71 wt. %) mark isomorphism with kawazulite,

expressing simple well-known Se for S substitution (e.g.,

Table 7   Chemical composition of Bi-tellurides and related intermediate solid solutions (ISS) (wt. %)

n D Ag Pb Bi Sb Te Se S Total Formula

Tellurobismuthite

1 Y 0.10 0.00 51.28 0.38 49.65 0.15 0.05 101.61 (Bi1.91Ag0.01Sb0.02)1.94(Te3.03Se0.01S0.01)3.06

2 Y 0.10 0.00 51.23 0.36 49.25 0.15 0.06 101.15 (Bi1.92Ag0.01Sb0.02)1.95(Te3.02Se0.01S0.01)3.05

3 Y 0.03 0.00 51.32 0.38 49.24 0.15 0.15 101.27 (Bi1.91Sb0.02)1.93(Te1.93Se0.01S0.04)3.06

4 V 0.00 0.00 52.01 0.00 47.96 0.00 0.00 99.97 Bi1.99Te3.01

5 V 0.00 0.00 51.99 0.00 47.96 0.00 0.00 99.95 Bi1.99Te3.01

Sb-rich tellurobismuthite

6 Y 0.05 0.00 42.63 6.73 51.76 0.15 0.03 101.35 (Bi1.53Sb0.41)1.94(Te3.04Se0.01S0.01)3.06

7 Y 0.05 0.00 42.85 6.52 51.40 0.16 0.04 101.02 (Bi1.54Sb0.40)1.94(Te3.03Se0.02S0.01)3.05

8 Y 0.12 6.12 39.04 5.50 49.91 0.17 0.00 100.86 (Bi1.42Ag0.01Pb0.23Sb0.34)2.00(Te2.98Se0.02)3.00

Tetradymite

9 V 0.06 0.34 58.74 0.00 35.99 0.23 4.61 99.97 (Bi1.97Pb0.01)1.98(Te1.98Se0.02)1.43S1.01

10 V 0.02 0.38 59.05 0.00 35.50 0.22 4.55 99.72 (Bi2.00Pb0.01)2.01(Te1.97Se0.02)1.41S1.00

11 V 0.06 0.05 58.95 0.00 35.63 0.71 4.31 99.71 Bi2.00(Te1.98Se0.06)1.46S0.95

Pb-rich tellurobismuthite-kochkarite-like ISS

12 V 0.95 6.35 45.54 0.32 47.77 0.00 0.07 101.00 (Bi1.71Ag0.07Pb0.24Sb0.02)2.04(Te2.94S0.02)2.96

13 V 0.87 6.48 44.45 0.33 47.06 0.00 0.07 99.26 (Bi1.70Ag0.06Pb0.25Sb0.02)2.03(Te2.95S0.02)2.96

14 V 0.89 2.26 50.95 0.00 46.44 0.31 0.11 100.96 (Bi1.92Ag0.07Pb0.09)2.08(Te2.87Se0.03S0.03)2.93

15 V 1.21 3.10 50.78 0.00 45.81 0.28 0.18 101.36 (Bi1.91Ag0.09Pb0.12)2.12(Te2.82Se0.03S0.04)2.89

16 V 0.81 5.32 47.62 0.36 45.63 0.00 0.08 99.82 (Bi1.83Ag0.06Pb0.21Sb0.02)2.12(Te2.86S0.02)2.88

17 V 0.95 6.35 45.54 0.32 47.77 0.00 0.07 101.00 (Bi1.71Ag0.07Pb0.24Sb0.02)2.04(Te2.94S0.02)2.96

18 V 0.89 6.56 46.56 0.35 45.59 0.00 0.05 100.00 (Bi1.78Ag0.07Pb0.25Sb0.02)2.12(Te2.86S0.01)2.87

19 V 0.71 6.56 46.36 0.37 46.74 0.00 0.09 100.83 (Bi1.75Ag0.05Pb0.25Sb0.02)2.07(Te2.90S0.02)2.92

20 V 0.76 6.78 47.06 0.00 45.61 0.00 0.10 100.31 (Bi1.80Ag0.06Pb0.26)2.12(Te2.86S0.02)2.88

21 V 0.75 6.89 46.20 0.33 45.57 0.00 0.07 99.81 (Bi1.77Ag0.06Pb0.27Sb0.02)2.12(Te2.86S0.02)2.88

22 V 0.72 7.40 47.44 0.00 44.49 0.34 0.09 100.47 (Bi1.82Ag0.05Pb0.29)2.16(Te2.79Se0.03S0.02)2.84

23 V 0.67 7.67 47.97 0.00 44.66 0.39 0.00 101.36 (Bi1.83Ag0.05Pb0.29)2.13(Te2.79Se0.04)2.83

24 V 1.01 12.24 42.72 0.00 44.21 0.35 0.12 100.65 (Bi1.63Ag0.07Pb0.47)2.17(Te2.76Se0.03S0.03)2.83

ISS   –  intermediate solid solution. D   –  VMS deposits: Y   –  Yaman-Kasy; V   –  Valentorskoye. Formulaes were calculated on the basis of 5 apfu.

Analyses were carried out: 1 – 3, 9 – 11  –  by Camebax SX – 50 (NHM, London, England); 6 – 8  –  by Camebax SX – 100 (the University of Tasmania,

Hobart, Australia); 4, 5, 12 –  24   –  by JCXA JEOL 733 (the Institute of Mineralogy of UB RAS)

Tellurium-bearing minerals in zoned sulfide chimneys 83

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 18/33

      T    a      b      l    e      8

    C    h   e   m    i   c   a    l   c   o   m   p   o   s    i    t    i   o   n   o    f   s    i    l   v   e   r    t    h    i   o    t   e    l    l   u   r    i    t   e   a   n    d   c   e   r   v   e    l    l   e    i    t   e  -    l    i    k   e   m    i   n   e   r   a    l   s    (   w    t .    %    )

   n

    C   u

    A   g

    T   e

    S

    F   e

    A   s

    S    b

    H   g

    P    b

    S   e

    T   o    t   a    l

    F   o   r   m   u    l   a

    S    i    l   v   e   r    t    h    i   o    t   e    l    l   u   r    i    t   e  -    A   g      2    T   e    S      3

    (    Y   a   m   a   n  -    K   a   s   y    )

    1

    0 .    6

    3

    4    3 .    5

    4

    3    3 .    8

    2

    1    9 .    6

    6

    0 .    3

    5

    0 .    0

    0

    0 .    1

    1

    0 .    7

    5

    0 .    7

    2

    0 .    0    0

    9    9 .    7

    0

    (    A   g      1 .      8

      5    C   u      0 .      0

      6    F   e      0

 .      0      4    P    b      0 .      0

      2    H   g      0 .      0

      2    )      1

 .      9      9    T   e      1

 .      2      1    S      2 .      8

      2

    2

    0 .    3

    6

    4    6 .    1

    1

    3    0 .    9

    3

    2    0 .    9

    0

    0 .    2

    1

    0 .    1

    2

    0 .    0

    7

    0 .    0

    0

    0 .    1

    7

    0 .    0    0

    9    8 .    9

    6

    (    A   g      1 .      9

      2    C   u      0 .      0

      3    F   e      0 .      0

      2    )      1

 .      9      7

    (    T   e      1 .      0

      9    A   s      0 .      0

      1    )      1

 .      1      0    S      2 .      9

      4

    3

    0 .    4

    5

    4    6 .    2

    8

    3    0 .    0

    5

    2    2 .    3

    0

    0 .    1

    8

    0 .    0

    1

    0 .    1

    9

    0 .    0

    1

    0 .    1

    0

    0 .    0    0

    9    9 .    5

    8

    (    A   g      1 .      8

      7    C   u      0 .      0

      4    F   e      0

 .      0      2    )      1

 .      9      3

    (    T   e      1

 .      0      3    S    b      0

 .      0      1    )      1

 .      0      4    S      3 .      0

      5

    4

    0 .    3

    0

    4    4 .    4

    9

    3    4 .    0

    0

    2    0 .    3

    2

    0 .    1

    6

    0 .    1

    7

    0 .    2

    7

    0 .    0

    0

    0 .    1

    9

    0 .    0    0

    1    0    0 .    0

    5

    (    A   g      1 .      8

      6    C   u      0 .      0

      3    F   e      0 .      0

      2    )      1

 .      9      1

    (    T   e      1 .      2

      0    A   s      0 .      0

      1    S    b      0 .      0

      1    )      1

 .      2      2    S      2 .      8

      7

    5

    0 .    3

    0

    4    2 .    1

    4

    3    4 .    4

    2

    2    1 .    4

    4

    0 .    1

    9

    0 .    2

    5

    0 .    0

    8

    0 .    0

    0

    0 .    1

    7

    0 .    0    0

    9    9 .    0

    1

    (    A   g      1 .      7

      4    C   u      0 .      0

      3    F   e      0 .      0

      2    )      1

 .      7      9

    (    T   e      1 .      2

      0    A   s      0 .      0

      1    )      1

 .      2      1    S      3 .      0

      0

    6

    1 .    4

    5

    4    3 .    8

    8

    3    0 .    7

    2

    2    2 .    7

    2

    0 .    9

    3

    0 .    2

    1

    0 .    0

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    9 .    9

    1

    (    A   g      1 .      7

      4    C   u      0 .      1

      4    F   e      0

 .      1      0    )      1

 .      9      8

    (    T   e      1

 .      0      3    A   s      0

 .      0      1    )      1

 .      0      4    S      3 .      0

      5

    7

    1 .    0

    3

    4    4 .    6

    8

    3    0 .    7

    6

    2    2 .    3

    3

    0 .    5

    9

    0 .    4

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    9 .    7

    9

    (    A   g      1 .      7

      9    C   u      0 .      1

      0    F   e      0

 .      0      6    )      1

 .      9      5

    (    T   e      1

 .      0      4    A   s      0

 .      0      2    )      1

 .      0      6    S      3 .      0

      3

    8

    0 .    9

    7

    4    3 .    1

    4

    3    1 .    4

    0

    2    2 .    8

    1

    0 .    6

    2

    0 .    9

    7

    0 .    0

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    9 .    9

    1

    (    A   g      1 .      7

      2    C   u      0 .      0

      9    F   e      0

 .      0      7    )      1

 .      8      8

    (    T   e      1

 .      0      5    A   s      0

 .      0      6    )      1

 .      1      1    S      3 .      0

      6

    9

    1 .    9

    6

    4    3 .    5

    3

    2    9 .    2

    6

    2    3 .    3

    1

    1 .    3

    3

    0 .    5

    1

    0 .    0

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    9 .    9

    0

    (    A   g      1 .      7

      0    C   u      0 .      1

      9    F   e      0 .      1

      4    )      2

 .      0      3

    (    T   e      0 .      9

      6    A   s      0 .      0

      3    )      0

 .      9      9    S      3 .      0

      7

    C   e   r   v   e    l    l   e    i    t   e  -    l    i    k   e   m    i   n   e   r   a    l   –

    A   g      4   -    x

    T   e    S

    (    Y   a   m   a   n  -    K   a   s   y    )

    1    0

    0 .    6

    4

    6    3 .    6

    1

    2    9 .    0

    1

    6 .    7

    2

    0 .    5

    2

    0 .    0

    0

    0 .    1

    6

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    1    0    0 .    6

    6

    (    A   g      3 .      3

      8    C   u      0 .      0

      6    F   e      0

 .      0      5    )      3

 .      4      9

    (    T   e      1

 .      3      0    S    b      0

 .      0      1    )      1

 .      3      1    S      1 .      2

      0

    1    1

    0 .    1

    1

    6    6 .    8

    2

    2    7 .    4

    4

    7 .    1

    1

    0 .    0

    6

    0 .    0

    0

    0 .    1

    5

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    1    0    1 .    6

    9

    (    A   g      3 .      5

      0    C   u      0 .      0

      1    F   e      0

 .      0      1    )      3

 .      5      2

    (    T   e      1

 .      2      1    S    b      0

 .      0      1    )      1

 .      2      2    S      1 .      2

      6

    1    2

    0 .    2

    4

    6    2 .    5

    5

    2    9 .    4

    0

    5 .    3

    9

    0 .    1

    5

    1 .    8

    0

    0 .    1

    0

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    9 .    6

    3

    (    A   g      3 .      4

      5    C   u      0 .      0

      2    F   e      0

 .      0      2    )      3

 .      4      9

    (    T   e      1

 .      3      7    A   s      0

 .      1      4    )      1

 .      5      1    S      1 .      0

      0

    1    3

    0 .    5

    5

    6    6 .    1

    7

    2    7 .    9

    9

    7 .    3

    6

    0 .    3

    7

    0 .    0

    0

    0 .    1

    2

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    1    0    2 .    5

    6

    (    A   g      3 .      4

      1    C   u      0 .      0

      5    F   e      0 .      0

      4    )      3

 .      5      0

    (    T   e      1 .      2

      2    S    b      0

 .      0      1    )      1

 .      2      3    S      1 .      2

      8

    1    4

    0 .    4

    5

    6    6 .    6

    9

    2    4 .    1

    4

    5 .    5

    6

    0 .    3

    4

    0 .    0

    4

    0 .    2

    4

    0 .    0

    0

    0 .    0

    0

    0 .    0    0

    9    7 .    4

    6

    (    A   g      3 .      7

      2    C   u      0 .      0

      4    F   e      0

 .      0      4    )      3

 .      8      0

    (    T   e      1

 .      1      4    S    b      0

 .      0      1    )      1

 .      1      5    S      1 .      0

      5

    C   u  -   r    i   c    h   c   e   r   v   e    l    l   e    i    t   e  -    l    i    k   e   m    i   n   e   r   a    l    (    A   g

 ,    C   u    )      4      ±    x

    T   e    S    (    V   a    l   e   n    t   o   r   s    k   o   y   e    )

    1    5

    4 .    3

    0

    6    8 .    7

    5

    2    1 .    3

    4

    5 .    7

    1

    0 .    0

    4

    0 .    0

    0

    0 .    1

    5

    0 .    0

    0

    0 .    0

    0

    0 .    0    9

    1    0    0 .    4

    2

    (    A   g      3 .      6

      4    C   u      0 .      3

      9    )      4

 .      0      3    T   e      0

 .      9      5

    S      1 .      0

      2

    1    6

    4 .    6

    0

    6    8 .    3

    3

    2    2 .    1

    1

    5 .    6

    2

    0 .    0

    2

    0 .    0

    0

    0 .    1

    5

    0 .    0

    0

    0 .    0

    0

    0 .    0    6

    1    0    0 .    9

    5

    (    A   g      3 .      6

      1    C   u      0 .      4

      1    )      4

 .      0      2    T   e      0

 .      9      8

    S      1 .      0

      0

    1    7

    4 .    3

    7

    6    7 .    7

    3

    2    1 .    6

    9

    5 .    7

    8

    0 .    0

    3

    0 .    0

    0

    0 .    1

    4

    0 .    0

    0

    0 .    0

    0

    0 .    0    9

    9    9 .    9

    0

    (    A   g      3 .      6

      0    C   u      0 .      3

      9    )      3

 .      9      9    T   e      0 .      9

      7

    S      1 .      0

      4

    1    8

    3 .    9

    3

    6    7 .    4

    5

    2    1 .    9

    6

    5 .    4

    7

    0 .    0

    3

    0 .    0

    0

    0 .    1

    1

    0 .    0

    5

    0 .    0

    0

    0 .    0    4

    9    9 .    0

    8

    (    A   g      3 .      6

      4    C   u      0 .      3

      6    )      4

 .      0      0    T   e      1

 .      0      0

    S      1 .      0

      0

    1    9

    4 .    1

    4

    6    7 .    3

    1

    2    3 .    7

    5

    5 .    5

    4

    0 .    0

    0

    0 .    0

    0

    0 .    1

    3

    0 .    0

    3

    0 .    0

    0

    0 .    0    6

    1    0    1 .    0

    1

    (    A   g      3 .      5

      7    C   u      0 .      3

      7    )      3

 .      9      5    T   e      1 .      0

      6

    S      0 .      9

      9

    2    0

    4 .    1

    2

    6    9 .    3

    5

    2    1 .    5

    0

    5 .    5

    2

    0 .    2

    2

    0 .    0

    0

    0 .    0

    8

    0 .    0

    2

    0 .    0

    0

    0 .    1    3

    1    0    0 .    9

    9

    (    A   g      3 .      6

      8    C   u      0 .      3

      7    )      4

 .      0      5    T   e      0 .      9

      6

    S      0 .      9

      9

    2    1

    5 .    3

    5

    6    7 .    6

    8

    2    0 .    4

    9

    5 .    7

    9

    0 .    1

    1

    0 .    0

    0

    0 .    0

    8

    0 .    0

    0

    0 .    0

    0

    0 .    0    2

    9    9 .    5

    6

    (    A   g      3 .      5

      8    C   u      0 .      4

      8    )      4

 .      0      6    T   e      0

 .      9      1

    S      1 .      0

      3

    2    2

    6 .    7

    3

    6    2 .    8

    1

    2    2 .    8

    8

    5 .    4

    4

    0 .    1

    2

    0 .    0

    0

    0 .    2

    0

    0 .    0

    9

    0 .    0

    0

    0 .    1    9

    1    0    0 .    2

    8

    (    A   g      3 .      3

      7    C   u      0 .      6

      1    )      3

 .      9      8    T   e      1

 .      0      3

    S      0 .      9

      8

    2    3

    1    1 .    7

    2

    5    6 .    1

    5

    2    4 .    5

    2

    6 .    7

    0

    0 .    1

    0

    0 .    0

    0

    0 .    1

    4

    0 .    0

    3

    0 .    0

    0

    0 .    0    6

    9    9 .    8

    7

    (    A   g      2 .      8

      2    C   u      1 .      0

      0    )      3

 .      8      2    T   e      1

 .      0      4

    S      1 .      1

      4

    A   n   a    l   y   s   e   s   w   e   r   e   c   a   r   r    i   e    d   o   u    t   :    1   –    1    4   –    b

   y    C   a   m   e    b   a   x    S    X   –    5    0    (    N    H    M ,    L   o   n    d   o   n ,    E   n   g    l   a   n

    d    )   ;    1    5   –    2    3   –

    b   y    C   a   m   e    b   a   x    S    X   –    1    0    0    (    t    h   e    U   n    i   v   e   r   s    i    t   y   o    f    T   a   s   m   a   n    i   a ,    H   o    b   a   r    t ,    A   u   s    t   r   a    l    i   a    )

84 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 19/33

Cook et al.   2007b). Some grains are related to plumboan

tetradymite with Pb up to 0.4 wt. %. This variety may be

considered as an initial member of an incremental chemical

series of lattice-scale homologues extending up to alexite and

then to PbBi4Te4S3  (Cook et al. 2007a ). This series forms a 

separate range of compositions from the above mentioned

tellurobismuthite-kochkarite-ruckligeite range (Fig. 11).

 Hg, Ag-Au and Ag tellurides and related minerals

Coloradoite (HgTe)  (Fig. 10a ) occurs as thin disseminations

and separate pink-grey grains, 10  μ m in size, forming com-

 posite grains in the chalcopyrite-pyrite-quartz chimneys of 

type 1 and chalcopyrite-sphalerite-pyrite-marcasite chimneys

of type 2 from the Yaman-Kasy deposit (Fig.  7c). In type 1,

coloradoite is associated with tellurobismuthite, frohbergite

and stützite. In type 2, coloradoite grains contain greenockite,

sylvanite, stützite, native tellurium and Hg-rich enargite. Mi-

croprobe analysis shows that both palladium-bearing and

 palladium-free forms of coloradoite are present. Unusuallyhigh contents of Tl are also noted (Table 4). Some analyses

display elevated contents of Co and Ag, due to inclusions of 

frohbergite and stützite. In the chalcopyrite-pyrite-sphalerite

chimneys of type 2 from the Uzelga deposit, coloradoite has

almost stoichiometric composition.

Sylvanite (AuAgTe4 )   occurs as creamy-white anhedral

grains in chalcopyrite-rich chimneys of types 1 and 2 from

the Yaman-Kasy and Valentorskoye deposits (Fig.  10c). In the

largest grains (up to 30  μ m), typical polysynthetic twins are

observed (Fig.   7b). Some grains are anisotropic and have

considerable bireflectance. Sylvanite was partly replaced by

grey Cu-Ag-sulphotellurides. The formula of sylvanite is close

to stoichiometric composition but some grains contain Hg

(Table 9). Sylvanite has low levels of trace elements in com-

 parison with other tellurides. Low levels of Bi, Co, Mo, As, Pb,

Se, have been detected by LA-ICP-MS analyses (Table 5).

Stützite (Ag 5±− xTe3 )  minerals are represented by separate

grey-white grains up to 30   μ m in size observed in some

chalcopyrite-rich chimneys of types 1 and 2 from the

Yaman-Kasy and Valentorskoye VMS deposits. In these

deposits, stützite is not common for barite-sphalerite-rich

chimneys of type 3 where hessite is most widespread. In

the outermost part of the tellurium-bearing chalcopyrite

zone (subzone B1), stützite is replaced by native tellurium

and Ag-Cu arsenic sulfosalts.

According to various publications, the composition of 

this phase may be as follows: Ag7Te4, Ag4.7Te3, Ag4.76Te3,

Ag3Te2, Ag12Te7, Ag5Te3  or Ag1,67Te. In the Yaman-Kasy

deposit, stützite studied is also highly variable in composi-

tion   –  Ag5.23Te3   to Ag4.85Te3  with an average of Ag4.9Te3(Fig.   12). In the Valentorskoye deposit, the variations of 

stützite composition are not so pronounced (Ag5.05Te3   to

Ag4.67Te3) and the mean formula (Ag4.95Te3) is close to the

stoichiometric formula Ag5Te3   (Table   9). This data is in

accordance with the general formula of stützite accepted as

Ag5±−xTe3 (homogenous field x00.24 – 0.36) (Echmaeva and

Osadchii 2009).

Stützite is identified as a main carrier of Au in the

studied telluride assemblages, with Au either residing in

nano-inclusion of silvanite, or present as a lattice-bound

substitution.Stützite-hessite compounds   (Ag1.88-xTe, where   x00.02 – 

08) are associated with stützite in the chimneys of types 1

and 2 in the Yaman-Кasy deposit. In polished sections, this

almost homogenous phase differs from stützite by a rougher 

surface texture. The composition of the phase is slightly

variable over short distances, from Ag1.88Te to Ag1.76Te,

with an average formula Ag1.82Te (Fig. 12). The calculated

formula of the Ag-rich species is close to the composition of 

the high-temperature  γ-phase Ag1.88Te (Afifi et al.  1988a ).

The other species display a Ag deficiency of at least 0.12

apfu. This Ag1.88-xTe phase may be akin to high-temperature

Ag1.9Te α   –  and  β   –  phases unknown in nature (Karakaya and Tompson 1991). The γ-phase, stable at 120 – 460ºC, was

 probably transformed to a fine mixture of hessite and stüt-

zite due to cooling to less than 120 °C (Afifi et al.  1988a ).

The reaction Ag1.99Te – Ag5Te3   + Ag2Te was directly con-

firmed by the electromotive force (EMF) method in a recent 

study (Echmaeva and Osadchii 2009).

 Hessite (Ag 2Te)  occurs as brownish grey grains in asso-

ciation with native gold, tetrahedrite and galena, which are

widespread in sphalerite-rich chimneys of types 2 and 3 in

almost all deposits studied (Fig.   10e, f ). In the Yubiley-

noye deposit, the presence of nano-inclusions of this min-

eral has been suggested from LA-ICP-MS analyses, only.

In most cases, the formula is very close to the stoichio-

metric proxy (Fig.   12, Table   9). In chimneys from the

Oktyabrskoye deposit, hessite contains elevated Au up to

0.8 wt. %, due to nano-inclusions of native gold. Isomor-

 phic substitution of gold in hessite is also a possibility

(Echmaeva and Osadchii   2009).

 Petzite (AuAg 3Te2 )   is less common in types 1 and 2

chimneys. The associations of altaite-sylvanite and pet-

z ite a re c ommo n in c himn ey s o f typ e 2 fro m the

Yaman-Kasy deposit. The chemical composition of pet-

zite is close to the theoretical (Table   9). Petzite is

commonly stoichiometric in association with native tellurium

(Markcham 1960).

 Empressite (AgTe) is observed as small (up 5  μ m) grains

in chalcopyrite within zone B of type 2 chimneys, in asso-

ciation with hessite, sylvanite, petzite and Cu-Ag sulfosalts.

The composition of empressite is close to the theoretical,

with the exception of varieties with elevated Pb, up to 2.5

wt. %, and Hg, up to 0.18 wt. % (Table 9).

Silver thiotellurite –  Ag 2TeS 3. This Ag-Te-S phase forms a 

 blue-green cement in native tellurium in a micrographic

Tellurium-bearing minerals in zoned sulfide chimneys 85

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 20/33

Table 9   Chemical compositions of silver tellurides (wt. %)

 N D Ag Te Au S Sb Hg Pb Bi Total Formula

Sylvanite

1 Y 13.1 63.3 23.82 - - 0.48 - - 100.7 (Au0.98Ag0 98Hg0.02Cu0.02)2.00Te4

2 14.2 62.6 22.88 - - 0.43 - - 100.1 (Au0.95Ag0 97Hg0.02Cu0.02)1.96Te4

3 13.2 63.4 23.02 - - 0.58 - - 100.2 (Au0.94Ag0 98Hg0.02Cu0.02)1.96Te4

4 V 12.1 62.9 24.94 - - - - - 100.0 (Au1.03Ag0.91)1.94Te4

Stützite

5 Y 58.38 41.57 99.95 Ag1.66Te

6 57.2 42.8 0.05 - - - 0.08 - 100.2 Ag1.58Te

7 58.63 41.38 100.01 Ag1.68Te

8 V 58.4 41.5 - - - - - - 99.9 Ag1.67Te

9 58.43 41.50 99.93 Ag1.67Te

10 57.70 42.26 99.96 Ag1.62Te

Stützite-hessite

11 Y 61.17 38.61 99.78 1.87 Ag1.87Te

12 61.55 38.80 100.35 1.88 Ag1.88Te

13 61.61 39.02 100.63 1.87 Ag1.87Te

Hessite14 Y 62.8 37.2 - - - - - - 100.0 Ag2.00Te

15 62.6 37.3 - - - - - - 99.9 Ag1.99Te

16 V 63.1 37.1 - 0.08 - - - - 100.2 Ag2.01Te

17 62.8 37.0 - - - - - - 99.8 Ag2Te

18 S 62.7 37.1 - - - - - - 99.9 Ag2Te

19 63.1 36.7 - - - - - - 99.8 Ag2Te

20 M 62.9 37.1 - - - - - - 100.0 Ag2.00Te

21 62.7 36.3 0.80 - - - - - 99.8 (Ag2.04Au0.01)2.05Te

22 O 62.6 37.3 - - - - - - 99.9 Ag1.99Te

23 61.6 37.4 0.79 - - - - - 99.8 (Ag1.95Au0.01)1.96Te

Empressite

24 Y 42.5 56.2 - - - - 2.52 - 101.3 (Ag0.89Pb0.03)0.92Te

25 48.3 47.5 - - 0.26 0.18 1.10 - 97.3 (Ag1.19Pb0.01)1.20Te

26 45.7 54.2 - - - - - - 99.9 Ag1.00Te

27 V 45.9 54.0 - - - - - - 99.9 Ag1.01Te

Petzite

28 Y 41.1 33.2 25.66 - - - - - 100.0 (Au1.00Ag2.93)3.93Te2

29 41.1 33.0 25.90 - - - - - 99.9 (Au1.02Ag2.95)3.97Te2

30 40.8 32.4 26.76 - - - - - 100.0 (Au1.07Ag2.98)4.05Te2

Volynskite

31 Y 17.6 45.6 - - 0.53 - - 34.7 98.4 (Ag0.91Bi0.93Sb0.02)1.86Te2

32 18.1 47.5 - - 4.99 - - 28.6 99.3 (Ag0.90Bi0.74Sb0.22)1.86Te2

 Native tellurium

 N D Te Ag S Pb Cu Fe Au Bi Total Formula

33 Y 98.49 0.73 0.22 0.11 0.52 0.21 0.00 0.00 100.28 Te

34 99.00 0.84 0.15 0.04 0.23 0.13 0.00 0.00 100.39 Te

Tellurium hydrate

 N D S Bi Ag Te Pb Zn O N   суммаTotal Formula

35 Y 0.33 0.17 0.39 80.48 1.46 0.56 12.62 0.00 96.01 Te∙H20

36 0.40 0.20 0.42 81.22 1.54 0.44 11.55 0.00 95.77 Te∙H20

D  –  VMS deposits: Y  –  Yaman-Kasy; V –  Valentorskoye; S –  Saphyanovskoye; M  –  Molodezhnoye; O  –  Oktyabrskoye. Analyses were carried out:

1 – 13, 31 – 34  –  by Camebax SX – 50 (NHM, London, England); 14 – 30,  –  by REММА – 2М SEM (the Institute of Mineralogy of UB RAS); 35, 36  – 

 by JEOL JXA 8900 RL (Freiberg Mining Academy, Freiberg, Germany). Low totals for analysis 31 is due to the small grain-size; for analyses 35,

36 is due to 4 wt. % of H

86 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 21/33

texture within native tellurium in sphalerite-rich chimneys of 

type 2 from the Yaman-Kasy deposit (Fig.  10h). The micro-

graphic textures result from breakdown of unstable solid

solution of Cu-Fe-Ag-Te-S phases. Our analyses conform to

an approximate formula (Ag,Cu)2TeS3   (Table 8). In general,the phase has almost constant composition (Fig. 13). A slight 

variation in the Te/S ratio from 0.3 to 0.4 may be caused by

analytical overlap with adjacent native tellurium during anal-

ysis of small grains. A small deficit in Ag and Cu is partly

compensated by minor amounts of Fe, Hg, Pb and Bi. A small

deficit in Ag is partly compensated by other cations, resulting

in a total composition approximating (Ag,Cu,Pb,Fe)2-xTeS3.

Some studied grains contain elevated As (up to 0.93 wt. %)

and Sb (up to 0.33 wt. %). In trigonpyramidal [TeS3]2-,Teisin

a formal state of 4+, making it isoelectronic to [AsS3]3-

(Nguyen et al. 2010). The mineral is unknown in nature and

merits a further research (Pertlik  1997). In the current study,

the small size of grains prevents any crystallographic investi-

gation to determine its structure.

 Ag-rich cervelleite-like mineral - (Ag,Cu)4-xTeS. Minerals

of this group are isotropic with grey or dark grey colour in

reflected light. In the Yaman-Kasy deposit these minerals

occur as a net of veins in grains of stützite and hessite.

This group is poorly studied (Voudouris et al. 2011). The

replacement features in stützite and hessite are common for 

chimneys of type 2 in the Yaman-Kasy deposit. Phases

similar in composition to   benleonardite-like   Ag8(Sb, As,

Te)3S3   and   cervelleite-like   Ag3.54Cu0.13Fe0.13Te1.06S1.13

minerals were previously described in a chimney from the

Yaman-Kasy deposit (Maslennikov et al. 1997; Maslennikov

1999). However, typical benleonardite and cervelleite are

absent in the deposit. These benleonardite-like phases have

significant, but much lower, contents of Sb, up to 2.26 wt. %,

and As, up to 1.8 wt. %, (Maslennikov et al.   1997) than

 benleonardite (Stanley et al.  1986). In regards to the deficit 

of Sb and As, the benleonardite-like mineral from the Yaman-

Fig. 11   Distinct compositions of the tellurobismuthite-kochkarite solid solutions in the Valentorskoye deposit compared to other similar series. Plot 

(a) Ag + Pb vs Bi , plot (b) - ternary Te-Pb-Bi diagramm

Fig. 12   Histograms illustrating the Ag contents in the series from

hessite to stützite, suggesting an intermediate stützite-hessite phase

(see text for  discussion)

Tellurium-bearing minerals in zoned sulfide chimneys 87

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 22/33

Kasy deposit may probably be included in the same mineral

group with Ag-rich cervelleite-like minerals. The analyzed

grains of cervelleite-like minerals contain Cu ranging from 0

to 1.4 apfu (Table 8). A limited solid solution exists between Ag

and Cu. Most of cervelleite-like minerals studied have a defi-

ciency in the cation site occupancy relative to cervelleite. Some

grains have a Te/(S + Te) ratio of~0.5, like cervelleite, however,

some grains, have a Te/(S + Te) ratio between 0.48 and 0.68 and

significant deficit in cation site occupancy relative to cervelleite

with formula Ag4TeS. Combining our data with previously

 published data for cervelleite-like phases for different type of deposits (Fig. 13), it is apparent that the cervelleite-like mineral

from the Yaman-Kasy deposit plots close to cervelleite from

other locations, but have lower contents of Cu.

Moloshag and Gulyaeva (1990) identified a mineral with

the formula close to Ag3TeS from the Gayskoye VMS deposit 

in the Urals. A formula Ag3TeS was calculated for the

cervelleite-like mineral described previously (Maslennikov et 

al. 1997). However, the formula displays deficit in the cation

site occupancy and the consequent inconsistency in valency

charges, if a substitution of Te2- by S2- is assumed (Novoselov

et al. 2006). This can be resolved if Te4+ is present in Ag2TeS3,

which is involved in the structure of the Ag-rich cervelleite-

like mineral. Possibly, a solid solution also exists between

Ag4TeS and Ag2TeS3 which combines new compounds simi-

lar to Ag3TeS or Ag4-xTeS. This substitution may also involve

Ag2S which is a common byproduct of Ag2TeS3   formation,

resulting in addition of Ag (Nguyen et al.   2010). In

general, the cervelleite-like mineral occupies an interme-

diate position in a possible range Ag2Te→Ag4TeS→

Ag3TeS→Ag2TeS3 (Fig. 13). Although replacement textures

are typical for this compositional series, the homogenous

areas within the cervelleite-like mineral were observed in

 back-scattered SEM images, and these were used for 

analyses. The layer of neutral [Ag2TeS3] may form com-

 plex chalcogenide compounds with unique structural ele-

ments, containing Te and S in different crystallographic

sites and even oxidation states as opposed to a simple

solid solution (Nguyen et al.   2010).

Cu-rich cervelleite-like   mineral (Cu,Ag)4-xTeS. These

minerals are widespread in the bornite ore from the Valentos-

koye deposit, where it forms the replacement rims around

hessite grains. This bornite ore is considered a product of subseafloor alteration of clastic sulfide sediments derived

from the destruction of sulfide chimneys (Maslennikov 2006).

Some grains have a Te/(S + Te) ratio between 0.43 and

0.60 and a significant deficit in the cation site occupancy

relative to cervelleite with formula close to Ag4TeS. The

variable non-stoichiometric ratios shown by (Cu + Ag) and

(Te + S) could be either due to the presence of very thin

intergrowth of different mineral phases such as hessite and/ 

or other sulphotellurides (Novoselov et al.  2006), or differ-

ent degrees of replacement or substitution with Cu+ and S-,

or possible interlayers of Cu2TeS3, although it was not found

as a discrete phase in the samples studied. Yarrouite Cu1.1S

is widespread in the bornite ore in association with native

gold, Te-rich tennantite, hessite and cervelleite-like mineral.

The strong correlation between Cu and S in the cervelleite-

like minerals (Fig.   13, a ) suggests a compositional series

 between the cervelleite-like minerals and CuS may be antici-

 pated. Likewise, the negative correlation of Ag and Cu, S and

Te (Fig. 13) may be evidence of isomorphism (Novoselov et 

al.   2006). The cervelleite-like mineral has low contents of 

trace elements with the exception of Se (0.05 – 0.18 wt. %)

Fig. 13   Compositional ranges

of cervelleite-like phases. (a)

Plot of Cu vs S, (b) Plot of Cu

vs Ag, (c) Plot of Ag/(Ag + Cu)

vs Te/(Te + S)

88 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 23/33

(Table 8), Co (up to 0.3 wt. %), Hg (up to 0.08 wt. %) and Fe

(0.01 – 0.4 wt. %). The high Fe contents may point to the

 presence of both Cu+ and Cu2+ in the primary sulphotellurides

(Criddle et al. 1989).

Volynskite (AgBiTe2 )   is a rare mineral with a grain-size of 

about 3 – 6  μ m in types 2 and 3 chimneys from the Yaman-

Kasy deposit (Figs.   10d). Volynskite occurs close to galena-

marcasite-sphalerite, native tellurium and gold assemblages,whilst tellurobismuthite is absent. Some of the grains contain

significant Sb (up to 5 wt. %) and Pb, substituting for Bi and

Ag: Ag+ + Bi3+ ⇔   Pb2+ or Ag+ + Sb3+ ⇔   Pb2+ (Table   9).

Te-bearing fahlores

Te-bearing tennantite and tetrahedrite  are widespread min-

erals in sphalerite- , barite- and quartz-rich chimneys of all

types. Tennantite varieties with As/Sb >1 are more common.

Te contents vary from 0.1 up to 4.6 wt. %. Te-rich tennatite

is widespread in the chimneys from the Yaman-Kasy, Val-

entorskoye, Alexandrinskoye and Saphyanovskoye deposits(Table   6). Much higher contents of Te in tennantite are

found in the bornite ore of the Valentorskoye deposit. This

 bornite ore formed due to subseafloor alteration of the

chimney fragments (Maslennikov   2006). The contents of 

(As+Sb+Bi) decrease with increasing Te due to isomorphic

substitutions (Fig. 14). Cu contents in Te-bearing tennantite

are also a result of isomorphic substitutions. Fe2+ and Zn2+

substitute for Cu+ with increasing Te (Fig. 14), and there is a 

distinct inverse correlation between (Fe2+ + Zn2+) and Te4+.

This is consistent with data on other Te-bearing fahlores

(Trudu and Knittel 1998).

Goldfieldite   (Fig.   10 g) with a calculated formula 

Cu+10.22Te4+4S13  has been found as small (5  μ m) euhedral

crystals in the quartz-marcasite core of type 2 chimneys

(Fig.   7e). The highest content of Te (32.33 wt. %) is well

above values recorded to date (24.04 wt. % in Novgorodova 

et al.   1978) (Table   6). Golfieldite from the Yaman-Kasy

deposit contains Hg (0.1-0.5 wt. %). This is a common

feature of goldfieldite (Trudu and Knittel   1998). Many of 

the chemical data on tetrahedrite-goldfieldite (Shimizu and

Stanley   1991) clearly deviate from stoichiometry and the

mineral is not charge balanced. It has been shown that thesubstitution of (Sb, As)3+ for Te4+ in the goldfieldite-

tetrahedrite series minerals may occur by the following

two mechanisms:

(i)   Tetrahedrite, Cu10+(Cu,Fe,Zn)2

2+(Sb,As)43+S13   and

goldfieldite, Cu+12(Sb,As)2

3+Te24+S13   form a continu-

ous solid solution according to the coupled substitution

of Cu+Te4+ for (Cu,Fe,Zn)2+(Sb,As)3+,

(ii)   Goldfieldite, Cu12+(Sb,As)2

3+Te24+S13 and the ideal end-

member, Cu+10Te4+4S13 may also form a continuous solid

solution by the coupled substitution of [](vacancy)Te4+

for Cu

+

(Sb,As)

3+

. Therefore, the general formula of gold-fieldite is Cu+

12-yTe4+2+y   (Sb,As)3+2-yS13, with   y00-2.

This end-member was predicted by Shimizu and Stanley

(1991). A synthetic end-member goldfieldite with the

formula Cu10.23Te4.12S13   has been synthesised (Karup-

Möller  1994). Its composition is consistent with the gold-

fieldite from the Yaman-Kasy chimneys.

In summary, the studied tellurium phases are character-

ized by unusually high Te contents compared to common

stoichiometric formula for recorded natural phases.

The correlation of Cu and Te in the formula of gold-

fieldite displays an inverse pattern in comparison with Te-

rich tennantite with Te<2 apfu (Fig. 14). In goldfieldite, the

fomula coefficient of Cu decreases from 12 to 10 while Te

contents increase, and there is an appearance of vacancies in

Fig. 14   Composition of Te-

 bearing tennantite and goldfiel-

dite. Plot (a) shows different 

types of covariations between

Te and (Cu + Ag). Plot (b) dis-

 plays an inverse correlation of 

Te vs (As + Sb + Bi), and the

 position of an unknown end-

member of golfieldite from the

Yaman-Kasy deposit. Plot (c)

displays an inverse correlation

of Te vs Fe + Zn

Tellurium-bearing minerals in zoned sulfide chimneys 89

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 24/33

the Me2+ to compensate for charge imbalance due to in-

creased Te4+ (Trudu and Knittel 1998).

 Native tellurium

 Native tellurium  occurs in subzones B1 and B3 (Fig.  10d).

White crystals of native tellurium occur in the innermost part 

of zone B3 (Fig.  7d), where they are close to stoichiometriccomposition, but contain appreciable S and Ag (Table   9).

White native tellurium may be evenly intergrown with galena 

or with gray unresolved Cu, Ag-tellurium sulphosalts. At the

external boundary of chalcopyrite in zone B1 in some

chimneys of type 3, abundant grains of porous native telluri-

um are found intergrown with native gold. The analyzed

grains are black-brown in colour and show low totals,

 possibly due to the presence of unresolved mixtures of 

Te and TeO2   (O04-13 at. %) or TeH2O. Tellurium

hydrate is inferred based on degradation of the aggre-

gates under vacuum conditions in the SEM. Tellurium

hydrate has elevated contents of Ag, Au, Bi, Pb, As andCo, due to micro-inclusions of hessite, sylvanite, altaite,

volynskite and a cobaltite-like mineral. High concentra-

tions of Cd, Sn and Zn are due to sphalerite micro-

inclusions. No Mo-bearing phase has been identified.

Discussion

Structure of chimneys

A minimum of two structural zones have been identi-

fied in all types of sulfide chimneys: the centrifugal

external growth zone (zone A) and the centripetal in-

ternal growth zone (zones B, C). The chalcopyrite zone

B in these chimneys may have a rhythmic structure

reflecting the episodic character of hydrothermal activ-

ity. T h is two-z on e s truc ture is ty pic al fo r ma ny

chimneys of modern black smokers (Graham et al.

1988; Haymon   1983; Hannington and Scott   1988;

Halbach and Pracejus   1988). The two layers show the

opposite growth directions from the boundary layer 

 betwe en zones A and B. Succes sive layers were formed

in response to the interaction of cold oxidized seawater 

and hot hydrothermal fluids carrying H2S and metals

(Graham et al.   1988). The textures of sulfides in sub-

zones A1 and A2 are very fine-grained, suggesting that 

they have grown rapidly by quenching of hot fluids

interacting with cold seawater. In subzone A3, coarse-

grained cubic pyrite is common, likely the result of 

recrystallization of early fine-grained pyrite. Vuggy

aggregates of botryoidal and dendritic pyrite grow out-

wards from this zone suggesting that the chimneys had

highly permeable outer walls.

In the Yaman-Kasy material, there is little evidence for 

the initial shell of anhydrite that characterizes modern chim-

ney growth. Relict bladed pyrite textures here are interpreted

as forming by replacement of pyrrhotite. Silica is ubiquitous

as a matrix phase in many of the chimney fragments. The

 broad sulfide zonation and specific location of tellurium-

 bearing phases in the Yaman-Kasy chimneys can be inter-

 preted in terms of extreme gradients of temperature andoxygen and sulphur fugacities across the vent chimney

walls, as a result of interactions between high-temperature

hydrothermal fluid in the central conduit of the chimney and

cold seawater outside the external layers. Such a model

implies increasing oxidation state of the fluids from type 1

to type 3 chimneys.

Temperature conditions

The prevalence of chalcopyrite or sphalerite in certain sam-

 ples of chimney likely reflects different formation temper-

atures. The concentration of copper in reduced, hot and acidhydrothermal fluids of sea water salinity, displays a sharp

decrease at temperatures below 320 °C (Metz and Trefry

2000), while a similar change of Zn solubility happens

 below 250 °C (Janecky and Seyfried  1984). Thus, chimneys

formed from moderate temperature fluids consist mainly of 

sphalerite, silica and barite, and their formation is related to

conductive cooling and mixing of the hydrothermal fluid

with seawater (Halbach et al. 2003). It follows that the three

chimney types are comparable to a range of formation con-

ditions from black to white smokers that follow a tempera-

ture gradient with some representing intermediate gray

smoker chimneys.

Temperature zonation across the sulfides of the chimneys

was assessed by using mineralogical geothermometers.

 Zone A   Colloform pyrite found in the outermost subzone

A1 clearly formed at low temperature (Fig.   6a ) measured

decrepitation ~ 80ºC (Maslennikov 1999). This is consistent 

with temperature measured directly from the surface of 

modern active black smoker chimneys (Juniper et al.  1992;

Halbach et al.  2003). The appearance of marcasite in sub-

zone A2 in chimneys of types 2 and 3 indicates a tempera-

ture formation < 240 °C, as marcasite generally inverts to

 pyrite above this tempe rature (Murowchick and Barne s

1986). The formation of cubic crystals of pyrite in subzone

A3 and at the boundary with zone B probably reflects an

increase of temperature relative to subzone A2. The appear-

ance of marcasite close to subzone B3 in association with

cubic pyrite suggests that the temperature was ~ 240 °C at 

the boundary between zones A and B. The cobalt pyrite-

chalcopyrite geothermometer (Eremin   1983) suggests that 

 pyrite formation in zones A2-A3 occurred at 110 – 200 °C

(Maslennikova and Maslennikov 2007).

90 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 25/33

 Zone B   No marcasite was found in all chalcopyrite-pyrite

chimneys studied, consistent with temperatures of formation >

240 °C (Murowchick and Barnes 1986) for type 1 chimneys

(Fig. 6d). Coexistence of marcasite and cubic pyrite in a single

zone of chimney types 2 and 3 suggests temperatures ~ 

240 °C. The cobalt geothermometer yields 240-260 °C for 

subzones B1 and B3 (Eremin   1983; Maslennikova and

Maslennikov  2007).In the type 2 chimneys, the temperature range can be

reconstructed from the telluride composition. The  γ-phase

(Ag1.88Te) is stable over the temperature range 120 to

460 °C, but it breaks down on cooling below 120 °C to

a mixture of hessite and stützite. This assemblage is stable

at room temperature (Afifi et al.  1988a ). Sylvanite, Te and

stützite-hessite association may be useful as a geother-

mometer since Cabri (1965) has shown that this represents

an equilibrium assemblage in the appropriate composition-

al range below 330 °C. Gold-rich sylvanite characterizes a 

high-temperature assemblage of about 300 °C. This data 

may be extrapolated to suggest that only at temperaturesaround 230 °C and below would the ideal sylvanite (Au

23.5 – 24.2 wt. %) composition be formed. The composi-

tion of sylvanite is close to ideal in the Yaman-Kasy

deposit, suggesting the tellurium mineralization formed

 between 120 and 230 °C. This is in agreement with the

 presence of empressite which also indicates a formation

temperature of around 210 °C (Honea   1964). The favour-

able temperature for native gold precipitation is interpreted

to be between 150 and 200 °C (Bortnikov et al.   2003;

Hannington and Scott   1989). The paragenesis of native

metals (gold, silver and tellurium), tellurides, and sulpho-

salts usually formed later than sulfides at temperatures of 

 between 130 and 200 °C (Vikentyev   2006). Abundant 

low-temperature, late mineral assemblages include galena 

and sulphosalts, indicating fluid temperatures < 150 °C

(Halbach et al.   2003).

The absence of tellurides in some chimneys of type 1

indicates that they formed at temperature above 250-

350 °C. This is also true for some parts of zone B

(subzone B2) of type 2 chimneys. This suggests that 

the first tellurides precipitated at moderate temperatures,

200-250 °C, in subzone B1. Then precipitation was

inhibited by higher temperatures (subzone B2), followed

 by precipitation of the latest tellurides during cooling as

hydrothermal flow declined, leading to the formation of 

subzone B3. The solid solutions are common in the

chimneys indicating growth during rapid quench (Cook 

et al.   2007b).

 Zone C  An electrum-sphalerite geothermometer (Shikazono

1985) yields temperatures of sphalerite formation at ~ 285 – 

338ºC for all chimney types (Maslennikova and Maslennikov

2007) (Fig. 6e-h).

Fluid inclusion homogenization temperatures of quartz

infillings from type 1 chimneys in Yaman Kasy are 126 – 

280º   С   for quartz-chalcopyrite-pyrite chimneys of type 1

and 15-185 °C for sphalerite-chalcopyrite-pyrite chimneys

of type 1 (Herrington et al.   1998; Simonov et al.   2006).

Homogenization of fluid inclusions in barite occurs at 103-

187 °C (Herrington et al.  1998; Simonov et al. 2006).

In zone C, a ghost wurtzite structure in sphalerite wasidentified by its distinctive hexagonal crystal habit. Wurtzite

is found primarily in the cores of recent active chimneys, likely

reflecting higher formation temperatures. This also may be a 

feature of the kinetics of precipitation, since wurtzite seems to

 be stable relative to sphalerite under conditions of active vent-

ing, but becomes unstable once venting ceases (Hannington

and Scott  1988). Wurtzite may contain significant amounts of 

copper whilst the structure of sphalerite will not accommodate

copper. The occurrence of significant “chalcopyrite disease” in

sphalerite may be the result of inversion of wurtzite to sphal-

erite with expulsion of copper to form chalcopyrite.

The abundance of chalcopyrite and ISS disease in sphal-erite of type 1 chimneys suggests that the assemblages were

formed at high temperature (Fouquet et al.  1993). The cores

of sphalerite grains in types 2 and 3 chimneys are higher in

Fe and Cu relative to the margins, which may reflect a 

decrease in temperature during growth of sphalerite.

Thus, between zones B and A, the difference of temper-

atures is at least 100-200 °C. This is consistent with

chimneys being formed by interaction of high temperature

fluids and cold seawater. This extreme temperature gradient 

explains the appearance of tellurium mineralization at the

 boundaries between the layers in zone B, characterized by

intermediate temperatures. Synchronous deposition of tel-

lurides and growth of sulfide phases in the chimneys is

consistent with the cyclic structure of zone B.

Temperature is an important control on the stability of 

HTe‾  in hydrothermal solutions and thus on the formation

of tellurides. The stability fields of both tellurides and native

tellurium are broader at lower temperatures (Afifi et al.

1988a , b; Jaireth 1991), and we thus assume that hydrother-

mal tellurides precipitation at the boundaries within zone B

is due to moderate temperatures.

Sulfur fugacity  f  (S2)

Formation conditions for the various chimneys a sum-

marized on a diagram   f  (S2) versus   f  (Te2) diagram

(Fig.   15). The diagrams at 100º and 300ºC show that 

the topology remains similar at these temperatures (Afifi

et al.   1988a ), despite some changes to the number of 

 phases and the absolute values of   f  (S2) and   f  (Te2). Some

telluride-sulfide-sulfosalts associations are shown in

Fig.   15, pertaining to assemblages, which could be

formed at around 200ºC.

Tellurium-bearing minerals in zoned sulfide chimneys 91

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 26/33

The occurrence of pseudomorphs of pyrite and marcasite

after presumed platy crystals of pyrrhotite testify to the

likely pyrite-pyrrhotite equilibrium during the earliest stages

of the mineralization process in chimneys of types 1 and 2.

The lowest   f  (S2) relates to the presence of frohbergite in

chimneys of type 1 and occasionally of type 2. The transi-

tion from frohbergite to pyrite suggests an increase in  f  (S2)

for the type 3 chimneys. The change from tellurides to Ag-

Bi-rich galena and sulphosalts documents the relative in-

crease in   f  (S2) with the maximum levels constrained by

chalcopyrite and bornite + pyrite equilibrium, since bornite

is absent in chalcopyrite-telluride assemblages. The pres-

ence of tennantite and enargite in zone B, instead of arse-

nopyrite, löllingite and cobaltite, constrains the maximum

values of  f  (S2) for most of the type 3 chimneys. The transi-

tion from sylvanite and altaite to native gold and galena 

assemblages suggests an increase of   f  (S2) with respect to

 f  (Te2) in type 3 chimneys.

Tellurium fugacity  f  (Te2)

Tellurium fugacities for chimneys of different types are shown

on the diagram of   logf   (S 2)-logf  (T2) at 200 °C (Fig.   15).

Telluride-poor chalcopyrite-pyrite chimneys of type 1 (Yubi-

leynoye and Yaman-Kasy deposits) probably formed at low

 f  (T2) conditions in equilibrium with pyrrhotite. Trend 1

 probably displays medium oxidation of HTe- and local in-

crease in f  (Te2). The highest values of  f  (Te2) are indicated by

the presence of native tellurium, frohbergite and stützite-hess-

ite   γ-phase (Ag1.88Te) in chimneys of types 1 and 2. The

transition from frohbergite to pyrite suggests a decline of 

 f  (Te2) for type 3 chimneys with respect to f  (S2). The occurrence

of volynskite instead of tellurobismuthite in type 2 chimneys

and the presence of native gold rather than sylvanite in chimneysof type 3 shows a further decrease of  f  (Te2). This tendency is

coincident with the depletion of altaite and volynskite and the

 prevalence of Ag – Bi-rich galena in type 3 chimneys.

The appearance of native tellurium reflects the highest 

activity of Te2   with log f  (Te2) >   −9.3 at 200 °C, but the

 presence of native gold in the chimneys of type 3 puts a 

limit of log f  (Te2)   −11.1 at 200 °C.

The occurrence of native gold and tellurium together in some

chimneys is rare in other natural systems, an observation not 

supported by thermodynamic data (Afifi et al. 1988a , b; Jaireth

1991). In some fragments of the type 2 chimneys, a close

intergrowth of native tellurium, tellurium oxide and Au-Ag alloyin association with cubic pyrite and galena is observed. This may

represent disequilibrium conditions during seawater alteration of 

tellurides. It is assumed that the total oxidation of tellurides has

resulted in abundant isolated grains of native tellurium and

tellurium oxides at the outermost margin of zone B.

The occurrence of native gold-galena assemblages with

rare altaite and the absence of tellurides with high Te content 

(frohbergite, sylvanite and tellurobismuthinite) and native

tellurium, infer a lower  f  (Te2) in chimneys of type 3. Thus, a 

relative increase of sulphur species over HTe‾   is seen

across the range of chimneys. This trend is inferred from

the decrease of the HTe‾/H2S ratio during seawater / hy-

drothermal fluids interaction.

Oxidation and oxygen fugacity  f  (O2)

The surfaces of modern chimneys are readily oxidized in

seawater. Colloform pyrite is replaced by hematite or magne-

tite (Fouquet et al. 1993; Graham et al. 1988; Haymon 1983).

The occurrence of hematite in zone A in some Yaman-Kasy

chimneys clearly reflects this high activity of O2,   and the

absence of tellurides in this zone is explained by the unfavor-

ably high oxidation conditions. This zone is also likely to

reflect temperatures lower than 100-225 °C so Te should be

mobile as HTeO3‾  whilst tellurides are unstable (Jaireth

1991). Oxidation within zone A likely increases from

chimneys with chalcopyrite-rich outer walls to those with

iron-poor sphalerite-rich outer walls, since sphalerite-pyrite

association is stable at more oxidized conditions compared to

chalcopyrite-pyrite (Eremin 1983; Barton and Toulmin 1966).

The external boundary of chalcopyrite zone B is where

oxygenated cold seawater and reduced hydrothermal solu-

tions from the chimney channel meet. This boundary in

Fig. 15   Logƒ(Te2) – logƒ(S2) diagram indicating approximate positions

of the chimney types studied (modified after Lehmann et al.  1999; Afifi

et al. 1988a , b; Ahmad et al. 1987; Jaireth 1991; Voicu et al. 1999). The

data illustrate an increase in ƒ(Te2) within a range from Type 1 to Type2 chimneys, followed by an increase of  ƒ(S2) and decrease of  ƒ(Te2)

from Type 2 to Type 3 chimneys. Abbreviations: Po  –  pyrrhotite, Py  – 

 pyrite, Tn   –  tennantite, Hem   –  hematite, En   –  enargite, Cp   –  chalco-

 pyrite, Bn  –  bornite, Mgt   –  magnetite. Names of studied deposits (Y -

Yaman-Kasy; Yb - Yubileinoye; O - Oktyabrskoye; M - Molodezh-

noye; S - Saphyanovskoye; V - Valentorskoye; A   –  Alexandrinskoye;

U - Uselga) and chimney types are indicated by  capital letters   and

numbers (1, 2, 3)

92 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 27/33

modern chimneys is characterized by the formation of born-

ite and covellite after chalcopyrite oxidation (Graham et al.

1988; Haymon 1983). In the Yaman-Kasy chimneys, tellur-

ides disappear close to where covellite is found and altaite is

replaced by galena, native Au-Ag and Te, followed by

sylvanite and stützite-hessite. The presence of later native

tellurium likely testifies to these higher oxidation conditions

at the end of the mineralization process in the chimneys. It isassumed that most of native tellurium is formed due to

oxidation of tellurides by seawater. However, it is possible

that some crystals of native tellurium formed as drusy infill-

ings by the primary oxidation of hydrothermal HTe‾. Re-

 placement of sylvanite, hessite-stützite, and cobaltite by Cu,

Ag-tellurium, and arsenic sulfosalts is additional evidence

for an increase in oxidation state with falling temperature

due to seawater penetration. The later formation of tellurium

oxides, sulfosalts, and abundant barite demonstrates higher 

oxidation conditions during the waning hydrothermal stage

and infilling of axial part of the channel. This is also indi-

cated by changes in the stability fields of the minerals withrespect to  f  (O2) in the following order: FeTe2 → CoTe2 →

Bi2Te3  →   PbS + PbTe (Afifi et al.   1988b) in the studied

range of the chimneys. This range can explain the preserva-

tion of altaite in some chimneys of type 3.

Modern black smoker chimneys show abundant evidence

for oxidation on the seafloor. The mineralogical zonation of 

these chimneys has been successfully explained by a model

of seawater interaction with hydrothermal fluid (Haymon

1983). Seawater provides O2 whilst the hydrothermal fluids

contain H2S (Graham et al.  1988). The initial stage of the

deposition of tellurides in the temperature range 250 – 200 °C

can happen at lower   f  (O2) close to and a little below the

 pyrrhotite/pyrite buffer at pH04.5. The precipitation of 

gold-galena-fahlore-hessite assemblages occurs in high fluid

oxidation states close to the magnetite/hematite buffer 

(Cook et al. 2009). Deposition of native tellurium occurred

in a place of cooling and oxidation of hydrothermal fluid as

suggested by thermodynamic data (Jaireth 1991; Cook et al.

2009).

Covariation of main and rare mineral assemblages

In the general range of chimneys types from 1 to 3, sphal-

erite, quartz, and barite contents increase relative to chalco-

 pyrite. Across the range, Te-rich minerals pass to low-Te

species with native gold and galena-sulphosalts associa-

tions. Similar changes are attributed to the ranges of 

chimneys varieties within types 1 and 2 in the Yaman-

Kasy deposit (Table  10). The best proxies for the compari-

son are the diverse chimneys selected from the Yaman-Kasy

and Alexandrinskoye deposits (Fig. 16). In the Yaman-Kasy

deposit, a tellurobismuthite-altaite-frohbergite assemblage

with occasional sylvanite is typical for chalcopyrite-rich

chimneys. The quartz-, barite- and/or sphalerite-rich

chimneys contain tennantite, tetrahedrite, and galena with

occasional altaite, native tellurium (Yaman-Kasy) or hessite

and native gold (Alexandrinskoye). The intermediate

chimneys varieties from the Yaman-Kasy deposit contain

diverse rare minerals including coloradoite, sylvanite, stüt-

zite, empressite, hessite, volynskite, Ag-sulfotellurides with

occasional galena, native gold and later (Cu, Ag, Pb, Hg)-arsenic sulfosalts.

This mineralogical change may be interpreted as being

related to decreasing temperature and   f  (Te2) with a relative

increase in S2 activities (Afifi et al. 1988a , b) due to mixing of 

high temperature reduced hydrothermal fluids with oxygenat-

ed seawater. Simultaneous precipitation of native gold and

hessite is probably due to an increase in pH of fluids due to

mixing with alkaline oxygenated seawater. Temperatures of ~ 

150 – 200ºC and  pH  ~ 6 – 8 are the most favorable conditions

for precipitation of these minerals (Bortnikov et al.   1988,

2003). Probably, these conditions were typical of sphalerite-

rich and marcasite-poor chimneys from all deposits studied.

Correspondence between mineral assemblages and host 

rocks compositions

The mafic, bimodal mafic and bimodal felsic classes of 

VMS deposits are characterized by having their own specif-

ic chimney types. The mafic hosted Yubileynoye VMS

deposit yields mainly chalcopyrite-pyrite and pyrite-

chalcopyrite varieties containing minor sphalerite. Similar 

chimneys have been found in Mesozoic Cyprus and Figaro

(California) VMS deposits (Little et al.   1999; Oudin and

Constantinou 1984). Abundant colloform pyrite is typical of 

this type of chimneys. The basalt-hosted modern black 

smokers are chalcopyrite-pyrite and sphalerite-chalcopyrite

varieties.

Accessory minerals are absent in most chimneys with the

exception of relic pyrrhotite in chimneys from the Yubilei-

noye deposit. Most of ancient and modern chimneys hosted

 by basalts are lack rare minerals like tellurides. A possible

rare exception is unconfirmed Bi-telluride occurrences

(Maslennikov et al. 2010). Hydrothermal fluids were likely

under-saturated in tellurides due to high temperature and/or 

reducing conditions (Maslennikov et al. 2009).

In the bimodal mafic class of VMS deposits (Yaman-

Kasy, Molodezhnoye, Uzelga, Valentorskoye), the type 2

chimneys are most common, although type 1 chimneys are

also present in the ores of the Yaman-Kasy deposit. Abun-

dant arsenides and tellurides in chalcopyrite indicate optimal

temperature and redox conditions for their precipitation. An

exception is the chalcopyrite-pyrite variety of type 1, which

effectively lack accessory minerals likely due to high tem-

 perature and/or reducing conditions (Maslennikov et al.

2009). Type 3 chimneys occur in all VMS deposits of this

Tellurium-bearing minerals in zoned sulfide chimneys 93

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 28/33

class as an end-member in the range from chalcopyrite-

 pyrite-sphalerite to barite-quartz-sphalerite-pyrite-chalcopy-

rite varieties.

Chimneys of type 3 are dominant in the bimodal felsic class

of the VMS deposits (Alexandrinskoye, Oktyabrskoye, Jusa,

Tash-Tau). These chimneys are very similar to the barite-rich

sphalerite chalcopyrite-galena chimneys from Hokuroko

VMS deposits (Maslennikov et al. 2010). Most chimneys lack 

tellurides and arsenides due to the high-sulfidation conditions,

resulting in native gold in association with tennantite, tetrahe-

drite and galena being most common minerals. Rare native

gold hessite-tetrahedrite-tennantite-galena assemblages occur,

hosted by sphalerite of some chimneys from the Oktyabrskoye

and Alexandrinskoye deposits. Occurrence of tellurides in

sphalerite, instead of chalcopyrite, suggests that telluride sat-

uration in fluids occurred at lower temperatures than in

chimneys of types 1 and 2, where tellurides are found largely

within chalcopyrite.

Our data suggest there were higher sulfidation (and oxi-

dation) conditions of the mineralization hosted by felsic

rocks in comparison to mafic and bimodal mafic sequences.

The coherence of mineral assemblages and host rock com-

 positions can be explained by a lower buffering potential of 

felsic units, compared to mafic units, at a similar extent of 

Table 10   Mineralogical associ-

ations of different types of 

chimneys (Yaman-Kasy deposit)

(modified after Maslennikova 

and Maslennikov 2007)

Type 1 chimneys: 1   – 

chalcopyrite-pyrite; 2   –  pyrite-

chalcopyrite-marcasite-quartz; 3 –  pyrite-quartz-marcasite-chal-

copyrite. Type 2 chimneys: 4   – 

chalcopyrite-pyrite-sphalerite-

marcasite; 5   –  sphalerite

chalcopyrite-marcasite-pyrite-

quartz; 6   –  sphalerite-pyrite-

quartz ± barite-chalcopyrite. ***

 –   predominant minerals, **   – 

subordinate minerals; *   –  minor 

or rare minerals

Minerals Ranges into chimney types

Type 1 Type 2

1 2 3 4 5 6

Pyrite FeS2 after pyrrhotite *** ** * *** **

Pyrite FeS2   *** *** *** *** ** *

Marcasite FeS2   * *** ** *** *** **

Chalcopyrite CuFeS2   *** *** ** *** ** *

Sphalerite ZnS * ** ***

Quartz SiO2   * ** * **

Barite BaSO4   * **

Co- and Te-rich löllingite (Fe0.8Co0.2)(As1.5Te0.4S0.1) *

Te-rich cobaltite Co1.1(As0.8Te0.2)S1.1   * *

Frohbergite FeTe2   * * *

Tellurobismuthite Bi2Te3   * * *

Sylvanite AgAuTe4   * * *

Petzite AuAg3Te2   * *

Coloradoite HgTe * *Stützite Ag5Te3   * * *

Hessite Ag2Te * * * * *

Empressite AgTe * * *

Altaite PbTe * * * * *

Volynskite AgBiTe2   * *

 Native tellurium Te * *

TeO2 + Te or Te∙H2O * * *

 Native gold Au0.8Ag0.2   * * *

Cu – Ag-sulfotellurides * *

(Cu – Ag – Hg – Pb)-enargite group * *

Goldfieldite Cu10Te4S13   * *

Tennantite Cu10(Zn,Fe)2(As,Sb)4S13   * * *

Tetrahedrite Cu10(Zn,Fe)2(Sb,As)4S13

Greenockite CdS *

Bornite Сu5FeS4   * * *

Galena PbS * ** **

Digenite Cu1.88S *

Covellite CuS *

Magnetite FeO∙Fe2O3   * *

94 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 29/33

hydrothermal fluid / seawater interaction. This buffering

 potential depends on Fe2+ contents in the rocks. The disap- pearance of pyrite and marcasite pseudomorphs after pyr-

rhotite is related to the general decrease in Fe2+ contents in

hydrothermal fluids associated with mafic to felsic hosts of 

VMS deposits.

Te-bearing minerals are generally scarse in chimney ma-

terial from mafic and bimodal felsic hosted VMS deposits,

 but are abundant in chimney fragments from the Uralian

type VMS deposits related to bimodal mafic volcanic units.

The general Te-enrichment in bimodal mafic VMS deposits

may be explained by the contribution of Te from subducted

sediments in the Urals island arc systems. Inasmuch as the

vapour-phase affinities of Te are known (Cooke and

McPhail   2001), phase separation may be considered as a 

significant factor in the concentration of Te-rich fluids.

Probably, immature magmatic-hydrothermal systems devel-

oped in the mafic units are characteristic of a lower degree

of phase separation in comparison to the bimodal mafic and

felsic volcano-magmatic sequences. On the other hand, in

felsic units, most of the tellurides may have precipitated in a 

subseafloor environment due to oxidation of hydrothermal

fluids due to their interaction with oxygenated seawater.

Bimodal mafic sequences provide intermediate conditions

of hydrothermal fluid and seawater-rock interaction, likely

to be favorable not only for Te-rich fluid generation but also

for its preservation until discharge on the seafloor.

Conclusions

1. The broad sulfide zonation of chimneys, and the specif-

ic site of tellurium-bearing phases within them, can be

interpreted in terms of the extreme gradients of temper-

ature, oxygen and sulfur fugacities across the vent 

chimney walls. The position of tellurides is constrained

 by intermediate temperature zones of the chimneys,located close to the boundary of chalcopyrite zone with

sphalerite- or pyrite-marcasite-rich zones. This position,

and the higher concentration of most tellurides in nar-

row parts of the chalcopyrite zone, may indicate that 

cooling of fluids or vapor-phase condensation are the

main processes of telluride and native tellurium precip-

itation. The position of tellurides is controlled by the

interplay between generally reduced, high-temperature,

sulfide-rich hydrothermal fluids and oxygenated cool

seawater. Fluids in equilibrium with pyrrhotite are

likely to be undersaturated in tellurium as displayed on

ƒS2  vs.  ƒTe2  diagrams. High-sulfidation conditions are

also unfavorable for most of telluride formation with the

exception of hessite associated with native gold and

galena-sulfosalt assemblages.

2.   In the Urals, the chimneys are ranged into Fe-Cu to Cu-

Zn-Fe and Zn-Cu types with decrease in a) isocubanite  – 

ISS, b) colloform pyrite and marcasite and c) pseudo-

morphs of these after pyrrhotite, accompanied by an

increase in sphalerite, quartz and barite. Each chimney

type displays its own mineralogical characteristics with

a decrease of chalcopyrite and increase in quartz and/or 

 barite and talc. This general transition is accompanied

 by a change from low- to high-sulfidation assemblages

and a decrease of Te solubility in hydrothermal fluids.

Tellurides are absent or rare in the Fe-Cu chimney types.

In the intermediate chimney types, a low-sulfidation

assemblage of Fe-, Co- tellurium sulfoarsenides and

Fe-, Bi-, and Pb- tellurides pass to Hg-, Ag-, and Au-

Ag- tellurides, which are stable in moderate sulfidation

condition. The high-sulfidation assemblages (hessite,

native gold, electrum, bornite, digenite, galena, tetrtra-

hedrite and tennantite) are typical for the end-members

Fig. 16   Assemblages of 

accessory minerals in a range of 

chimneys: 1a   – 

tellurobismuthite-altaite-

frohbergite; 1b   –  the same, but 

with sylvanite; 2a   –  diverse tel-

lurides including sylvanite, col-

oradoite, stützite, hessite,

altaite, volynskite, empressite in

association with galena and(Cu, Pb, Ag, Hg)-arsenic sulfo-

salts of enargite group; 2b   – 

same, but with native gold; 3a  – 

galena-tellurium with minor 

altaite; 3b   –  same, but with na-

tive gold; 4a   –   tennantite-

galena; 4b  –  same, but with na-

tive gold; 1 – 3 and 4a  –  Yaman-

Kasy deposit; 4b  –  Alexandrin-

skoye deposit 

Tellurium-bearing minerals in zoned sulfide chimneys 95

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 30/33

of the range enriched in quartz, barite and hematite

instead of magnetite. The specific change in tellurium-

 bearing phases can be interpreted in terms of enhanced

contributions of seawater and oxidized sulphur to the

 processes of mineralization.

3.   The same general mineral changes are observed with the

 progre ssion from bimodal mafic- to bimodal felsic-

hosted massive sulfide deposits: Yubileynoye   →

Yaman-Kasy → Molodezhnoye → Uzelga → Valentor-

skoye  →   Oktyabrskoye  →   Alexandrinskoye  →  Tash-

Tau→ Jusa. Thus, appearance of tellurides is due to not 

only the degree of phase separation and the general

influence of host rocks, but is also linked to the degree

of interaction between hydrothermal fluids and seawa-

ter. This interpretation provides an explanation for the

 presence or absence of tellurides in the chimneys. The

coherence of mineralogical features of the chimneys,

VMS deposits and host rocks can explain the causes

for telluride enrichment in VMS deposits of the bimodal

mafic class in terms of a model of hydrothermal fluid andseawater interactions with the host rocks. Nevertheless,

 phase separation and vapour Te-rich phase condensation

may be important processes of telluride enrichment in

some VMS deposits. It is suggested that for higher 

degrees of phase separation there must be higher degrees

of magmatic and hydrothermal system maturation. If this

is correct, the discovery of tellurides in modern black and

grey smokers can be anticipated especially in bimodal

sequences, but also in some mafic and ultramafic hosted

 black smokers where magmatic hydrothermal fluids may

undergo phase separation.

4.   Comparative analysis of chimney textures, paragenesis

and compositional variation in tellurium-bearing miner-

als is a previously unrecognized petrogenetic and min-

eralоgical tool. Further study of   “invisible”   Te-phases

located in sulfides is anticipated with the increasing use

of LA-IPMS analysis in ore petrology. High physico-

chemical gradients in these chimney systems, together 

with conditions of rapid fluid quenching, provide un-

usual minerals assemblages. Unresolved Cu-Ag-Te-S

and Ag-Pb-Bi-Te-S-Se solid solutions and new sulfo-

salts described in this paper merit further research.

Acknowledgements   The authors are grateful to John Spratt, Terry

Greenwood (Natural History Museum), Klaus Bekker (Freiberg Min-

ing Academy), Dave Steel (University of Tasmania), Vasiliy Kotlyarov,

Evgeniy Churin (Institute of Mineralogy UB RAS) for assistance with

analytical work. Constructive comments from Cristina Ciobanu and an

anonymous reviewer helped us to improve the manuscript. The study

was supported by the Australian Research Council funding to the

Centre of Excellence in Ore Deposits (CODES); Royal Society and

the Natural History Museum; Presidium of the Russian Academy of 

Sciences program N 23 (12 – P – 5 – 1003); and Russian Ministry of 

Education (НК – 544П/14).

References

Afifi AM, Kelly WC, Essene EJ (1988a) Phase relations among tel-

lurides, sulfides, and oxides: I. Thermodynamical data and calcu-

lated equilibria. Econ Geol 83:377 – 394

Afifi AM, Kelly WC, Essene EJ (1988b) Phase relations among

tellurides, sulfides, and oxides: II. Application to telluride-

 bearing ore deposits. Econ Geol 83:395 – 404

Ahmad M, Solomon M, Walshe JL (1987) Mineralogical and geo-chemical studies of the Emperor gold telluride deposit, Fiji. Econ

Geol 82:345 – 370

Barton PB, Toulmin P (1966) Phase relations involving sphalerite in

Fe-Zn-S system. Econ Geol 61:815 – 849

Bayliss P (1991) Crystal chemistry and crystallography of some min-

erals in the tetradymite group. Am Mineral 76:257 – 265

Bortnikov NS, Cabri LJ, Vikentyev IV (2003) Invisible gold in sulfides

of modern sulfide edifices. Geol Ore Deposits 45:232 – 245 (in

Russian)

Bortnikov NS, Kramer H, Genkin AD, Krapiva LY, Santa-Crus M

(1988) Paragenesis of gold-silver tellurides in gold deposit Flor-

ensy (Cuba). Geol Ore Deposits 30:49 – 61, in Russian

Buschmann B, Maslennikov VV (2006) The late Ordovican or earliest 

Silurian hydrothermal vent fauna from Yaman Kasy VMS deposit 

(South Uralides, Russia). Paläont Stratigr Fazies 14:139 – 172Cabri LJ (1965) Phase relations in the Au-Ag-Te system and their 

mineralogical significance. Econ Geol 60:1569 – 1606

Caillat T, Carle M, Perrin D, Scherrer H, Scherrer S (1992) Study

of the Bi-Sb-Te ternary phase diagram. J Phys Chem Solids

53:227 – 232

Ciobanu CL, Cook NJ, Spry PG (2006) Preface   –   special issue:

telluride and selenide minerals in gold deposits   –  how and why.

Miner Petrol 87:163 – 169

Ciobanu CL, Cook NJ, Pring A, Damian G (2008) Another look at 

nagyágite from the type locality, Sǎ cǎ rîmb, Romania: replace-

ment, chemical variation and petrogenetic implications. Mineral

Petrol 93:273 – 307

Ciobanu CL, Pring A, Cook NJ, Self P, Jefferson D, Dima GI,

Melnikov V (2009) Crystal-structural modularity in the tetrady-

m ite gr oup: a H R T E M s tudy. A m Miner al 94:517534.

doi:10.2138/am.2009.2906

Cooke DR, McPhail DC (2001) Epithermal Au-Ag-Te mineralization,

Acupan, Baguio Philippines; numerical simulations of mineral

deposition. Econ Geol 96:109 – 131

Cook NJ, Ciobanu CL, Spry PG, Voudouris P, and the participants of 

IGCP-486 (2009) Understanding gold-(silver)-telluride-(selenide)

deposits. Episodes 32:249 – 263

Cook NJ, Ciobanu CL, Stanley CJ, Paar W, Sunblad K (2007a)

Compositional data for Bi-Pb tellurosulfides. Can Mineral

45:417 – 435. doi:10.2113/gscanmin.45.3.417

Cook NJ, Ciobanu CL, Wagner T, Stanley J (2007b) Minerals of the

system Bi – Te – Se – S related to the tetradymite archetype: review

of classification and compositional variation. Can Mineral

45:665 – 708

Criddle AJ, Chisholm JE, Stanley CJ (1989) Cervelleite, Ag4TeS, a 

new mineral from the Bambolla mine, Mexico, and a description

of a photo-chemical reaction involving cervelleite, acanthite and

hessite. Eur J Mineral 1:371 – 380

Danyushevsky LV, Robinson R, Gilbert S, Norman M, Large R,

McGoldrick P, Shelley JMG (2011) Routine quantitative multi-

element analysis of sulfide minerals by laser ablation ICP-MS:

standard development and consideration of matrix effects. Geo-

chim Explor Environ Anal 11:51 – 60

Danyushevsky L, Robinson P, McGoldrick P, Large R, Gilbert S

(2003) LA – ICPMS of sulfides: Evaluation of an XRF glass disc

standard for analysis of different sulfide matrixes. 2003

96 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 31/33

Goldschmidt Conference, Japan. Geochim Cosmochim Acta 67,

18, A73 Suppl

Echmaeva EA, Osadchii EG (2009) Determination of the thermody-

namic properties of compounds in the Ag-Au-Se and Ag-Au-Te

systems by the EMF method. Geol Ore Dep 51:247 – 258

Eremin NI (1983) Differentiation of volcanogenic sulfide deposits.

Moscow state university press, Moscow, p 256, in Russian

Fouquet Y, Wafic A, Cambon P, Mevel C, Meyer C, Gente P (1993)

Tectonic setting and mineralogical and geochemical zonation in

the Snake Pit Sulfide Deposit (Mid Atlantic Ridge at 23 ºN). EconGeol 88:2018 – 2036

Franklin JM, Gibson HL, Jonasson IR, Galley AG (2005) Volcano-

genic massive sulfide deposits. In: Hedenquist JW, Thompson

JFH, Goldfarb RJ, Richards JP (eds) Economic geology One

hundredth anniversary volume. 1905 – 2005. Society of Economic

Geologist, Inc, Littleton, pp 523 – 560

Glasby GP, Prozherova IA, Maslennikov VV, Petukhov SI (2006) Jusa 

and Barsuchi Log volcanogenic massive sulfide deposits from the

Southern Urals of Russia: tectonic setting, structure and mode of 

formation. Resour Geol 57:24 – 36

Grabezhev AI, Moloshag VP, Sotnikov VI, Murzin VV, Korovko AV,

Zhuxlistov AP (2001) Metasomatic aureole of Saphyanovskoye

zinc-copper deposit (Middle Urals). Petrology 9:294 – 312 (in

Russian)

Graham UM, Bluth GJ, Ohmoto H (1988) Sulfide-sulphate chimneyson the East Pacific Rise, 11 ° and 13 °N latitudes. Part 1: miner-

alogy and paragenesis. Can Mineral 26:487 – 504

Gusev GS, Gushchin AV, Zaykov VV, Maslennikov VV, Mezhelovsky

 NV, Perevolozchnikov BV et al (2000) Geology and metallogeny

of island arcs. In: Mezhelovsky NN et al (eds) Geodynamics and

metallogeny: theory and implication for applied geology. Ministry

of Natural resources of the RF and GEOKART Ltd, Moscow, pp

213 – 295 (in Russian)

Halbach P, Fouquet Y, Herzig P (2003) Mineralization and composi-

tional patterns in deep-sea hydrothermal systems. In: Halbach PE,

Tunnicliffe V, Hein JR (eds) Energy and mass transfer in marine

hydrothermal systems. Dalhem University Press, Berlin, pp 85 – 

122

Halbach P, Pracejus B (1988) Geology and mineralogy of massive ores

from Central Okinawa Trough, Japan. Econ Geol 88:2210 – 2225

Hannington MD, Scott SD (1988) Mineralogy and geochemistry of a 

hydrothermal silica-sulfide -sulphate spire in the caldera of Axial

Seamount, Juan de Fuca Ridge. Can Mineral 26:603 – 626

Hannington MD, Scott SD (1989) Sulphidation equilibria as guides to

gold mineralization in volcanogenic massive sulfides: evidence

from sulfide mineralogy and composition of sphalerite. Econ Geol

84:1978 – 1995

Haymon RM (1983) Growth history of hydrothermal black smoker 

chimneys. Nature 305:695 – 698

Herrington RJ, Maslennikov VV, Spiro B, Zaykov VV, Little CTS (1998)

Ancient vent chimney structures in the Silurian massive sulfides of 

the Urals. In: Mills RA, Harrison K (eds) Modern ocean floor 

 processes and the geological record. Geol Soc Lond 148: 241 – 257

Herrington R, Maslennikov V, Zaykov V, Seravkin I, Kosarev A,

Buschmann B et al (2005a) Classification of VMS deposits:

lesson from the South Uralides. Ore Geol Rev 27:203 – 237

Herrington R, Zaykov V, Maslennikov V, Brown D, Puchkov V

(2005b) Mineral deposits of the Urals and links to geodynamic

evolution. Economic Geology: One Hundredth Anniversary Vol-

ume 1069 – 1095

Herrington RJ, Armstrong RN, Zaykov VV, Maslennikov VV, Tessalina 

SG, Orgeval J-J et al (2002) Massive sulfide deposits in the South

Urals: geological setting within the framework of the Uralide oro-

gen. In: BrownD, JuhlinC, Puchkov VN (eds) Mountain building in

the Uralides: Pangea to the present. Geophysical monograph 132.

American Geophysical Union, Washington, pp 155 – 182

Honea RM (1964) Empressite and stuetzite redefined. Am Mineral

49:325 – 338

Iizasa K, Yuasa M, Yokota S (1992) Mineralogy and geochemistry of 

volcanogenic sulfides from the Myojinsho submarine caldera, the

Shichito-Iwojima Ridge, Izu-Ogasawara Arc, northwestern Pacif-

ic. Mar Geol 108:39 – 58

Jaireth S (1991) Hydrothermal geochemistry of Te, Ag2Te and

AuTe2   in epithermal precious metal deposits. EGRU Contrib

37:1 – 21

Janecky DR, Seyfried WE (1984) Formation of massive sulfide depos-its on oceanic ridge crust: incremental reaction models for mixing

 between hydrothermal solutions and seawater. Geochim Cosmo-

chim Acta 48:2723 – 2738

Juniper SK, Jonasson IR, Tunnicliffe V, Southward AJ (1992) Influence

of a tube-building polychaete on hydrothermalchimney mineraliza-

tion. Geology 20:895 – 898

Karakaya I, Thompson WT (1991) The Ag-Te (silver-tellurium) sys-

tem. J of Phase Equilibria 12(1):56 – 63

Karpinsky OG, Shelimova LE, Avilov ES, Kretova MA, Zemskov VS

(2002) X-ray diffraction study of mixed layer compounds in the

PbTe-Bi2Te3  system. Inorg Mater 38:17 – 24

Karup-Möller S (1994) Phases and phase relations in the Cu-Te-S

system at temperatures between 350 º and 900 °C. N Jb Miner 

Abh 166:13 – 136

Kase K, Kusachi I, Kishi S (1993) Rucklidgeite solid-solution I theYanahara deposit, Japan. Can Mineral 31:99 – 104

Keutsch FN, Förster H-J, Stanley CJ, Rhede D (2009) The discredita-

tion of hastite, the orthorhombic dimorph of CoSe2, and observa-

tions on trogtalite, cubic CoSe2, from the type locality. Can

Mineral 47:969 – 976

Kontar ES (2001) Condition of location and history of formation of 

copper, zinc and lead in the Urals. Department of Natural resour-

ces of the Urals, Ekaterinburg, p 133, in Russian

Kontar ES, Libarova LE (1997) Metallogeny of copper, zinc, lead at 

the Urals. Uralgeolcom, Ekaterinburg, p 233, in Russian

Koroteev VA, de Boorder H, Necheukhin VM, Sazonov VN (1987)

Geodynamic setting of the mineral deposits of the Urals. Tecto-

nophys 276:91 – 300

Large RR, Danyushevsky LD, Hollit C, Maslennikov VV, Meffre S,

Gilbert S, Bull S, Scott R, Emsbo P, Thomas H, Singh R, Foster J

(2009) Gold and trace element zonation in pyrite using a laser 

imaging technique; implications for the timing of gold in orogenic

and Carlin-style sediment-hosted deposits. Econ Geol 104:635 – 668

Lehmann B, Heinhorst J, Hein M et al (1999) The Bereznjakov-

skoje gold trend, Southern Urals, Russia. Mineral Deposita 

34:241 – 249

Little CTS, Herrington RJ, Maslennikov VV, Morris NJ, Zaykov VV

(1997) Silurian high-temperature hydrothermal vent community

from the southern Urals, Russia. Nature 385:3 – 6

Little CTS, Maslennikov VV, Morris NJ, Gubanov AP (1999) Two

Palaeozoic hydrothermal vent communities from the Southern

Ural Mountains, Russia. Palaeontol 42:1043 – 1078

Longerich HP, Jackson SE, Gunte D (1996) Laser ablation inductively

coupled plasma mass spectrometric transient signal data acquisi-

tion and analyte concentration calculation. J Anal At Spectrom

11:899 – 904

Marchig V, Rösch H (1988) Mineralogical zonation and radiochrono-

logical relations in a large sulfide chimney from the East Pacific

Rise at 18 °25  ′ S. Can Mineral 26:541 – 554

Markcham NL (1960) Synthetic and natural phases in the system Au-

Ag-Te. Econ Geol 55:1460 – 1477

Maslennikov VV (1991) Lithological control of cupper massive sulfide

ores (after the example of Sibai and Oktyabrskoye deposits, Ural).

UB AS USSR, Sverdlovsk, p 139, in Russian

Maslennikov VV (1999) Sedimentogenesis, halmyrolysis, and ecology

of massive sulfide-bearing paleohydrothermal fields (after 

Tellurium-bearing minerals in zoned sulfide chimneys 97

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 32/33

example of the Southern Urals). Geotur press, Institute of Miner-

alogy of UB RAS press, Miass, p 348, in Russian

Maslennikov VV (2006) Lithogenesis and massive sulfide deposits

formation. Institute of Mineralogy of UB RAS press, Miass, p

384, in Russian

Maslennikov VV, Herrington RJ, Buslaev FP, Stanley CJ (1997)

 Native telluri um, tellur ides and sulf urte lluride s in sulf ide

chimneys of black smokers of the Yaman-Kasy Cu-Zn-

massive sulfide deposit (South Ural). Ural Mineral Sb 7:53 – 

67 (in Russian)Maslennikov VV, Lein AY, Maslennikova SP, Bogdanov YA (2010)

Phanerozoic black smokers as indicators of ore hosting complexes

contents. Lithosphere 3:153 – 162 (in Russian)

Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV

(2009) Study of trace element zonation in vent chimneys from

the Silurian Yaman-Kasy VHMS (the Southern Urals, Russia)

using laser ablation inductively coupled plasma mass spectrome-

try (LA-ICP MS). Econ Geol 104:1111 – 1141

Maslennikova SP, Maslennikov VV (2007) Sulfide chimneys of Pa-

leozoic black smokers (after the example of Ural). UB RAS,

Ekaterinburg-Miass, p 312, in Russian

McPhail DC (1995) Thermodynamic properties of tellurium spe-

cies between 25 ° and 350 °C. Geochim Cosmochim Acta 

59:851 – 866

Metz S, Trefry JH (2000) Chemical and mineralogical influences onconcentration of trace elements in hydrothermal fluids. Geochim

Cosmochim Acta 64:2267 – 2279

Moloshag VP, Gulyaeva TYa (1990) Telluride mineralization of 

the Urals massive sulfide deposits. In: Koroteev VA (ed)

Annualcollection-1989. Sverdlovsk: Institute of Geology and

Geochemistry Academy of Scoence of USSR, pp 94 – 95, in

Russian

Moloshag VP, Grabezhev AI, Gulyaeva TY (2002) Conditions of 

telluride formation in ores of the Urals massive sulfide and

copper-gold-porphyry deposits. Zap Vser Mineral Obsch 131

(5):40 – 53, in Russian

Murowchick JB, Barnes HL (1986) Marcasite precipitation from

hydrothermal solution. Geochim Cosmochim Acta 50:2615 – 

2629

 Nguyen SL, Jang JI, Ketterson JB, Kanatzidis MG (2010) (Ag2Te-

S3)2·A2S6   (A0Rb, Cs): layeres of silver thiotellurite intergrown

with alkali-metal polysulfides. Inorg Chem 49:9098 – 9100.

doi:10.1021/ic1011346

 Novgorodova MI, Tsepin AI, Dmitrieva MT (1978) The new isomor-

 phic series in grey ore group. Zap Vses Mineral Obsch 107:100 – 

110 (in Russian)

 Novoselov KA, Belogub EV, Zaykov VV, Yakovleva VA (2006) Silver 

sulfotellurides from volcanic-hosted massive sulfide deposits in

the Southern Urals. Mineral Petrol 87:327 – 349

Oudin E, Constantinou G (1984) Black smoker chimney fragments in

Cyprus sulfide deposits. Nature 308:349 – 353

Paradis S, Jonasson IR, Le Cheminant GM, Watkinson DH (1988) Two

zinc-rich chimneys from the plume site, Southern Juan de Fuca 

Ridge. Can Mineral 26:637 – 654

Pertlik F (1997) Crystal structure of Ag2TeS3 and Na(Na 1-xAgxTeS3 (x

≈  0.5) and the geometry of Te(IV)S3  polyhedra. Monatsh Chem

128:157 – 163

Peter JM, Scott SD (1988) Mineralogy, composition, and fluid-

inclusion microthermometry of seafloor hydrothermal deposits

in the Southern Trough of Guaymas Basin, Gulf of California.

Can Mineral 26:567 – 587

Prokin VA, Buslaev FP (1999) Massive copper-zinc sulfide deposits in

the Urals. Ore Geol Rev 14:1 – 69

Puchkov VN (2010) Geology of the Urals and Preurals (actual ques-

tions of stratigraphy, tectonics, geodynamics, and metallogeny).

DizainPoligraphServis, Ufa, p 280, in Russian

Saphina NP, Maslennikov VV (2008) Ore clastites of the Yaman-Kasy

and Saphyanovka VMS deposits (Urals). the scientific edition.

Institute of Mineralogy of UB RAS press, Miass, p 260, in

Russian

Seravkin IB (2010) The metallogeny of the Southern Urals and the

Central Kazakhstan. Gilem, Ufa, p 281, in Russian

Shadlun TN (1942) On colloform structural ores of the Yaman-Kasydeposit in Southern Ural. Zap Vses Mineral Obsch 3:151 – 159 (in

Russian)

Shadlun TN (1991) Some sulfide intergrowths typical for modern

oceanic and ancient massive sulfide ores. Geol Ore Deposits

33:110 – 118 (in Russian)

Shelimova LE, Karpinsky OG, Kosykov VI, Shestakov VA, Zemskov

VS, Kuznetsov FA (2000) Homologous series of layered

tetradymite-like compounds in Bi-Te and GeTe-Bi2Te3  systems.

J Struct Chem 41:81 – 87

Shelimova LE, Karpinsky OG, Konstantinov PP, Avilov ES, Kretova 

MA, Zemskov VS (2004a) Crystal structures and thermoelectric

 properties of layered compounds in the ATe-Bi2Te3  (A0Ge, Sn,

Pb) systems. Inorg Mater 40:451 – 460

Shelimova LE, Karpinsky OG, Svechnikova TE, Avilov ES, Kretova 

MA, Zemskov VS (2004b) Synthesis and structure of layeredcompounds in the PbTe-Bi2Te3  and PbTe-Sb2Te3   systems. Inorg

Mater 40:1264 – 1270

Shikazono NA (1985) Comparison of temperatures estimated from the

electrum-sphalerite-pyrite-argentite assemblage and filling tem-

 peratures of fluid implications from epithermal Au-Ag vein type

deposits in Japan // Econ Geol 80(5): 1415 – 1424

Shimizu M, Stanley CJ (1991) Coupled substitutions in goldfieldite-

tetrahedrite minerals from the Iriki mine, Japan. Miner Mag

55:515 – 519

Simonov VA, Kovyazin SV, Terenya EO, Maslennikov VV, Zaykov

VV, Maslennikova SP (2006) Physical-chemical parameters of 

magmatic and hydrothermal processes in the Yaman-Kasy mas-

sive sulfide deposit (South Ural). Geol Ore Deposits 48:423 – 438

(in Russian)

Stanley CJ, Criddle AJ, Chisholm JE (1986) Benleonardite, a new

mineral from the Bambolla mine, Moctezuma, Sonora, Mexico.

Miner Mag 50:681 – 686

Tessalina SG, Bourdon B, Maslennikov VV, Orgeval J-J, Birck J-L,

Gannoun A, Capmas F, Allègre C-J (2008) Osmium isotope

distribution within the Palaeozoic Alexandrinka seafloor hydro-

thermal system in the Southern Urals, Russia. Ore Geol Rev

33:70 – 80

Tessalina SG, Maslennikov VV, Surin TN (1998) Alexandrinka VMS

deposit (East Magnitogorsk paleoisland arc, Urals). Institute of 

Mineralogy of UB RAS press, Miass, p 228, in Russian

Trudu AG, Knittel U (1998) Crystallography, mineral chemistry

and chemical nomenclature of goldfieldite, the tellurian mem-

 ber of the tetrahe drit e solid-s olu tion seri es. Can Mineral

36:1115 – 1137

Vikentyev IV (2006) Precious metal and telluride mineralogy of large

volcanic-hosted massive sulfide deposits in the Urals. Mineral

Petrol 87:305 – 326

Vikentyev IV, Belenkaya YA, Ageev BI (2000) Alexandrinskoye mas-

sive sulfide polymetallic deposit (the Urals, Russia). Geol Ore

Deposits 42:248 – 274 (in Russian)

Vikentyev IV, Yudovskaya MA, Mokhov AV, Kerzin AL, Tsepin AI

(2004) Gold and PGE in massive sulfide ore of the Uzelginsk 

deposit, Southern Urals, Russia. Can Mineral 42:651 – 665

98 V.V. Maslennikov et al.

7/23/2019 Maslennikov 2013 - Tellurium-bearing Minerals in Zoned Sulfide Chimneys From Cu-Zn Massive Sulfide Urals

http://slidepdf.com/reader/full/maslennikov-2013-tellurium-bearing-minerals-in-zoned-sulfide-chimneys-from 33/33

Voicu G, Bardoux M, Jebrak M (1999) Tellurides from the Paleopro-

terozoic Omai gold deposit, Guiana Shield. Can Mineral 37:559 – 

573

Voudouris P, Spry PG, Sakellaris GA, Mavrogonatos C (2011) A

cervelleite-like mineral and other Ag-Cu-Te-S minerals

[Ag2CuTeS and (Ag,Cu)2TeS] in gold-bearing veins in meta-

morphic rocks of the Cycladic Blueschist Unit, Kallianou,

Evia Island, Greece. Mineral Petrol 101:169 – 183

Zaykov VV (2006) Volcanism and sulfide mounds of paleoocean

margins. Nauka, Moscow, p 428, in RussianZaykov VV, Shadlun TN, Maslennikov VV, Bortnikov NS (1995)

Yaman-Kasy sulfide deposit   –    ancient    “ black smoke r ”   of 

U r als paleoocean. G eol O r e D epos its 37:511 – 5 29 ( in

Russian)

Zhabin AG, Samsonova NS (1975) Traces of disappeared pyrrhotite in

massive sulfide deposits. Zap Vses Mineral Obsch 104:346 – 350

(in Russian)

Zierenberg RA, Koski RA, Morton JL, Bouse RM (1993) Genesis of 

massive sulfide deposits on a sediment-covered spreading center,

Escanaba trough, Southern Gorda Ridge. Econ Geol 88:2069 – 

2099

Zonenshain LP, Korinevski VG, Kazmin VG, Pecherski DM, KnainVV, Matveenkov VV (1984) Plate tectonic model of the South

Urals development. Tectonophys 109:95 – 135

Tellurium-bearing minerals in zoned sulfide chimneys 99


Recommended