+ All Categories
Home > Documents > Mass Production Cost Estimation for Direct H2 PEM Fuel ... · PDF fileMass Production Cost...

Mass Production Cost Estimation for Direct H2 PEM Fuel ... · PDF fileMass Production Cost...

Date post: 05-Feb-2018
Category:
Upload: vanque
View: 220 times
Download: 0 times
Share this document with a friend
111
Mass Production Cost Estimation for Direct H 2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update March 26, 2009 v.30.2021.052209 Prepared by: Brian D. James & Jeffrey A. Kalinoski One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 7032433383 Prepared for: Contract No. GS10F0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program
Transcript
  • Mass Production Cost Estimation for Direct H2 PEM Fuel Cell Systems for Automotive Applications: 2008 Update

    March 26, 2009 v.30.2021.052209

    Prepared by: Brian D. James & Jeffrey A. Kalinoski

    One Virginia Square 3601 Wilson Boulevard, Suite 650 Arlington, Virginia 22201 7032433383

    Prepared for: Contract No. GS10F0099J to the U.S. Department of Energy Energy Efficiency and Renewable Energy Office Hydrogen, Fuel Cells & Infrastructure Technologies Program

  • Foreword Energy security is fundamental to the mission of the U.S. Department of Energy (DOE) and hydrogen fuel cell

    vehicles have the potential to eliminate the need for oil in the transportation sector. Fuel cell vehicles can operate on hydrogen, which can be produced domestically, emitting less greenhouse gas and pollutants than conventional internal combustion engine (ICE), advanced ICE, hybrid and plugin hybrid vehicles that are tethered to petroleum fuels. A diverse portfolio of energy sources can be used to produce hydrogen, including nuclear, coal, natural gas, geothermal, wind, hydroelectric, solar, and biomass. Thus, fuel cell vehicles offer an environmentally clean and energysecure transportation pathway for transportation.

    Fuel cell systems will have to be costcompetitive with conventional and advanced vehicle technologies to gain the marketshare required to influence the environment and reduce petroleum use. Since the light duty vehicle sector consumes the most oil, primarily due to the vast number of vehicles it represents, the DOE has established detailed cost targets for automotive fuel cell systems and components. To help achieve these cost targets, the DOE has devoted research funding to analyze and track the cost of automotive fuel cell systems as progress is made in fuel cell technology. The purpose of these cost analyses is to identify significant cost drivers so that R&D resources can be most effectively allocated toward their reduction. The analyses are annually updated to track technical progress in terms of cost and indicate how much a typical automotive fuel cell system would cost if produced in large quantities (i.e. 500,000 vehicles per year).

    The capacity to produce fuel cell systems at high manufacturing rates does not yet exist, and significant investments would have to be made in manufacturing development and facilities in order to enable it. Once the investment decisions are made, it will take several years to develop and fabricate the necessary manufacturing facilities. Furthermore, the supply chain will need to develop which requires negotiation between suppliers and system developer, with details rarely made public. For these reasons, the DOE has consciously decided not to analyze supply chain scenarios at this point, instead opting to concentrate its resources on solidifying the tangible core of the analysis, i.e. the manufacturing and materials costs.

    The DOE uses these analyses as tools for R&D management and tracking technological progress in terms of cost. Consequently, nontechnical variables are held constant to elucidate the effects of the technical variables. For example, the cost of platinum is held at $1,100 per troy ounce to insulate the study from unpredictable and erratic platinum price fluctuations. Sensitivity analysis is used to explore the effect of nontechnical parameters.

    To maximize the benefit of our work to the fuel cell community, DTI strives to make each analysis as transparent as possible. Through transparency of assumptions and methodology, the validity of the analysis will be strengthened. We hope that these analyses have been and will continue to be valuable tools to the hydrogen and fuel cell R&D community.

    Directed Technologies, Inc. ii

  • Table of Contents 1. Overview .......................................................................................................1 2. Basic Approach...............................................................................................2 3. Summary of Results........................................................................................4

    3.1. Changes since the 2007 Update Report ................................................................ 4 3.2. Cost Summary of the 2008 Technology System .................................................. 10 3.3. Cost Summary of the 2010 Technology System .................................................. 11 3.4. Cost Summary of the 2015 Technology System .................................................. 12 3.5. Cost Comparison of All Three Systems ................................................................ 14

    4. Detailed Assumptions ..................................................................................16 4.1. System Performance and Operation ................................................................... 16 4.2. Manufacturing Cost ............................................................................................. 18

    4.2.1. Machine Rate Validation ......................................................................................... 20 4.3. Markup Rates ...................................................................................................... 22 4.4. Fuel Cell Stack Materials, Manufacturing, and Assembly.................................... 23

    4.4.1. Bipolar Plates .......................................................................................................... 24 4.4.1.1. InjectionMolded Bipolar Plates ....................................................................................25 4.4.1.2. Stamped Bipolar Plates..................................................................................................27

    4.4.1.2.1. Alloy Selection and Corrosion Concerns..............................................................................32 4.4.1.2.2. Bipolar Plate Surface Treatments and Coatings ..................................................................33

    4.4.2. Membrane .............................................................................................................. 37 4.4.2.1. Membrane Material & Structure (Nafion on ePTFE)....................................................37 4.4.2.2. Membrane Material Cost...............................................................................................38 4.4.2.3. Membrane Manufacturing Cost ....................................................................................39 4.4.2.4. Total Membrane Cost and Comparison to Other Estimates .........................................43

    4.4.3. Catalyst Ink.............................................................................................................. 44 4.4.4. Catalyst Application................................................................................................. 47 4.4.5. Gas Diffusion Layer.................................................................................................. 50 4.4.6. MEA Gaskets and MEA Assembly............................................................................ 52

    4.4.6.1. HotPressing the Membrane and GDLs .........................................................................53 4.4.6.2. Cutting & Slitting............................................................................................................55 4.4.6.3. InsertionMolding the Frame/Gasket ............................................................................57

    4.4.7. End Plates................................................................................................................ 59 4.4.8. Current Collectors ................................................................................................... 63 4.4.9. Coolant Gaskets ...................................................................................................... 65

    4.4.9.1. InsertionMolded Coolant Gaskets ................................................................................66 4.4.9.2. LaserWelded Coolant Gaskets ......................................................................................67 4.4.9.3. ScreenPrinted Coolant Gaskets ....................................................................................69

    4.4.10. End Gaskets............................................................................................................. 72 4.4.10.1. InsertionMolded End Gaskets ......................................................................................73 4.4.10.2. ScreenPrinted End Gaskets...........................................................................................75

    4.4.11. Stack Compression .................................................................................................. 76 4.4.12. Stack Assembly........................................................................................................ 77

    Directed Technologies, Inc. iii

  • 4.4.13. Stack Conditioning and Testing ............................................................................... 79 4.5. Balance of Plant and System Assembly ............................................................... 82

    4.5.1. Mounting Frames .................................................................................................... 82 4.5.2. Air Loop ................................................................................................................... 82 4.5.3. Humidifier and Water Recovery Loop ..................................................................... 83 4.5.4. Coolant Loops.......................................................................................................... 84

    4.5.4.1. Coolant Loop (High Temperature) ................................................................................ 85 4.5.4.2.


Recommended