+ All Categories
Home > Documents > Mass Spec Lecture (2)

Mass Spec Lecture (2)

Date post: 21-Jan-2016
Category:
Upload: athina-mardha
View: 79 times
Download: 0 times
Share this document with a friend
Description:
Bahan kuliah anfisko
Popular Tags:
52
Mass Spectrometry Parts of Elucidation Structure
Transcript
Page 1: Mass Spec Lecture (2)

Mass Spectrometr

y

Parts of Elucidation Structure

Page 2: Mass Spec Lecture (2)

Background

Mass spectrometry (Mass Spec or MS) uses high energy electrons to break a molecule into fragments.

Separation and analysis of the fragments provides information about: Molecular weight Structure

Page 3: Mass Spec Lecture (2)

Background

The impact of a stream of high energy electrons causes the molecule to lose an electron forming a radical cation. A species with a positive charge

and one unpaired electron

+ e-C H

H

HH H

H

H

HC + 2 e-

Molecular ion (M+)

m/z = 16

Page 4: Mass Spec Lecture (2)

Background

The impact of the stream of high energy electrons can also break the molecule or the radical cation into fragments.

(not detected by MS)

m/ z = 29

molecular ion (M+) m/ z = 30

+ C

H

H

H

+ H

HH C

H

H

C

H

H

H C

H

H

C

H

H

H C

H

H

+ e-H C

H

H

C

H

H

H

m/z = 15

Page 5: Mass Spec Lecture (2)

Background

Molecular ion (parent ion): The radical cation corresponding

to the mass of the original molecule

The molecular ion is usually the highest mass in the spectrum Some exceptions w/specific

isotopes Some molecular ion peaks are

absent.

HH

H

HC H C

H

H

C

H

H

H

Page 6: Mass Spec Lecture (2)

Background

Mass spectrum of ethanol (MW = 46)

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/1/09)

M+

Page 7: Mass Spec Lecture (2)

Background

The cations that are formed are separated by magnetic deflection.

Page 8: Mass Spec Lecture (2)

Background

Only cations are detected. Radicals are “invisible” in MS.

The amount of deflection observed depends on the mass to charge ratio (m/z). Most cations formed have a

charge of +1 so the amount of deflection observed is usually dependent on the mass of the ion.

Page 9: Mass Spec Lecture (2)

Background

The resulting mass spectrum is a graph of the mass of each cation vs. its relative abundance.

The peaks are assigned an abundance as a percentage of the base peak. the most intense peak in the

spectrum

The base peak is not necessarily the same as the parent ion peak.

Page 10: Mass Spec Lecture (2)

Background

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/1/09)

M+base peak

The mass spectrum of ethanol

Page 11: Mass Spec Lecture (2)

Background

Most elements occur naturally as a mixture of isotopes. The presence of significant

amounts of heavier isotopes leads to small peaks that have masses that are higher than the parent ion peak.

M+1 = a peak that is one mass unit higher than M+

M+2 = a peak that is two mass units higher than M+

Page 12: Mass Spec Lecture (2)

Molecules with Heteroatoms

Isotopes: present in their usual abundance.

Hydrocarbons contain 1.1% C-13, so there will be a small M+1 peak.

If Br is present, M+2 is equal to M+. If Cl is present, M+2 is one-third of

M+. If iodine is present, peak at 127, large

gap. If N is present, M+ will be an odd

number. If S is present, M+2 will be 4% of M+. =>

Page 13: Mass Spec Lecture (2)

Easily Recognized Elements in MS

Nitrogen: Odd number of N = odd MW

CH3CNM+ = 41

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/2/09)

Page 14: Mass Spec Lecture (2)

Easily Recognized Elements in MS

Bromine: M+ ~ M+2 (50.5% 79Br/49.5% 81Br)

2-bromopropane

M+ ~ M+2

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/1/09)

Page 15: Mass Spec Lecture (2)

Easily Recognized Elements in MS

Chlorine: M+2 is ~ 1/3 as large as M+

Cl

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/2/09)

M+2

M+

Page 16: Mass Spec Lecture (2)

Sulfur: M+2 larger than usual (4% of M+)

Easily Recognized Elements in MS

M+

Unusually large M+2

S

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/1/09)

Page 17: Mass Spec Lecture (2)

Easily Recognized Elements in MS

Iodine I+ at 127 Large

gap

Large gap

I+

M+

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/2/09)

I CH2CN

Page 18: Mass Spec Lecture (2)

Fragmentation Patterns

The impact of the stream of high energy electrons often breaks the molecule into fragments, commonly a cation and a radical. Bonds break to give the most

stable cation. Stability of the radical is less

important.

Page 19: Mass Spec Lecture (2)

Fragmentation Patterns

Alkanes Fragmentation often splits off

simple alkyl groups: Loss of methyl M+ - 15 Loss of ethyl M+ - 29 Loss of propyl M+ - 43 Loss of butyl M+ - 57

Branched alkanes tend to fragment forming the most stable carbocations.

Page 20: Mass Spec Lecture (2)

Fragmentation Patterns

Mass spectrum of 2-methylpentane

Page 21: Mass Spec Lecture (2)

Fragmentation Patterns Alkenes:

Fragmentation typically forms resonance stabilized allylic carbocations

Page 22: Mass Spec Lecture (2)

Fragmentation Patterns Aromatics:

Fragment at the benzylic carbon, forming a resonance stabilized benzylic carbocation (which rearranges to the tropylium ion)

M+

CH

H

CH Br

HC

H

H

or

Page 23: Mass Spec Lecture (2)

Fragmentation Patterns

Aromatics may also have a peak at m/z = 77 for the benzene ring.

NO2

77M+ = 123

77

Page 24: Mass Spec Lecture (2)

Fragmentation Patterns

Alcohols Fragment easily resulting in very

small or missing parent ion peak May lose hydroxyl radical or water

M+ - 17 or M+ - 18 Commonly lose an alkyl group

attached to the carbinol carbon forming an oxonium ion. 1o alcohol usually has prominent

peak at m/z = 31 corresponding to H2C=OH+

Page 25: Mass Spec Lecture (2)

Fragmentation Patterns

MS for 1-propanol

M+M+-18

CH3CH2CH2OH

H2C OH

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Page 26: Mass Spec Lecture (2)

Fragmentation Patterns

Amines Odd M+ (assuming an odd number

of nitrogens are present) a-cleavage dominates forming an

iminium ion

CH3CH2 CH2 N

H

CH2 CH2CH2CH3 CH3CH2CH2N CH2

H

m/ z =72

iminium ion

Page 27: Mass Spec Lecture (2)

Fragmentation Patterns86

CH3CH2 CH2 N

H

CH2 CH2CH2CH3

72

Page 28: Mass Spec Lecture (2)

Fragmentation Patterns

Ethers a-cleavage forming oxonium ion

Loss of alkyl group forming oxonium ion

Loss of alkyl group forming a carbocation

Page 29: Mass Spec Lecture (2)

Fragmentation Patterns

H O CHCH3

MS of diethylether (CH3CH2OCH2CH3)

CH3CH2O CH2H O CH2

Page 30: Mass Spec Lecture (2)

Fragmentation Patterns

Aldehydes (RCHO) Fragmentation may form acylium

ion

Common fragments:

M+ - 1 for M+ - 29 for

RC O

R (i.e. RCHO - CHO)

RC O

Page 31: Mass Spec Lecture (2)

Fragmentation Patterns

MS for hydrocinnamaldehyde

M+ = 134C C C H

H

H

H

H

O

133

105

91105

91

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Page 32: Mass Spec Lecture (2)

Fragmentation Patterns

Ketones Fragmentation leads to formation

of acylium ion:

Loss of R forming

Loss of R’ forming

RC O

R'C O

RCR'

O

Page 33: Mass Spec Lecture (2)

Fragmentation Patterns

MS for 2-pentanoneCH3CCH2CH2CH3

O

M+

CH3CH2CH2C O

CH3C O

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Page 34: Mass Spec Lecture (2)

Fragmentation Patterns

Esters (RCO2R’) Common fragmentation patterns

include: Loss of OR’

peak at M+ - OR’

Loss of R’ peak at M+ - R’

Page 35: Mass Spec Lecture (2)

Frgamentation Patterns

M+ = 136

C

O

O CH3

105

77 105

77

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Page 36: Mass Spec Lecture (2)

Rule of Thirteen

The “Rule of Thirteen” can be used to identify possible molecular formulas for an unknown hydrocarbon, CnHm.

Step 1: n = M+/13 (integer only, use remainder in step 2)

Step 2: m = n + remainder from step 1

Page 37: Mass Spec Lecture (2)

Rule of Thirteen

Example: The formula for a hydrocarbon with M+ =106 can be found:

Step 1: n = 106/13 = 8 (R = 2)

Step 2: m = 8 + 2 = 10

Formula: C8H10

Page 38: Mass Spec Lecture (2)

Rule of Thirteen

Example: A compound with a molecular ion peak at m/z = 102 has a strong peak at 1739 cm-1 in its IR spectrum. Determine its molecular formula.

Page 39: Mass Spec Lecture (2)
Page 40: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum  

a. Aturan elektron genap Spesies-spesies elektron genap biasanya

tidak akan pecah menjadi 2 spesies yang mengandung elektron ganjil (yaitu, tidak akan pecah menjadi radikal dan ion radikal), karena tenaga total dari hasil campuran ini akan sangat tinggi.

Page 41: Mass Spec Lecture (2)

a. Aturan elektron genap

Spesies-spesies elektron genap biasanya tidak akan pecah menjadi 2 spesies yang mengandung elektron ganjil (yaitu, tidak akan pecah menjadi radikal dan ion radikal), karena tenaga total dari hasil campuran ini akan sangat tinggi.

  A+ → B .+ + C Genap ganjil ganjil

Spesies elektron genap lebih suka pecah menjadi ion lain dan molekul netral A+ → B .+ + C .

Genap genap genap   Ion radikal yaitu spesies elektron ganjil, dapat melepaskan molekul netral dan ion radikal sebagai

hasil ikutan.

A .+ → B .+ + C .

ganjil ganjil genap

Ion radikal dapat pecah menjadi radikal dan ion A .+ → B+ . + C +

Genap ganjil Atau A + → B . + C +

ganjil genap  

Page 42: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

b.Aturan Nitrogen : 

Suatu senyawa yang hanya mengandung C,H, O memiliki berat molekul genap, atau jika senyawa tersebut mengandung atom nitrogen maka jumlah atom nitrogen haruslah genap. Sedangkan jika senyawa hanya mengandung C,H,N,O mempunyai berat molekul ganjil jika jumlah atom nitrogennya ganjil. Jika senyawa yang mengandung C,H,O kehilangan fragmen radikal (CH3, OCH3 dan yang lainnya) maka akan menghasilkan ion fragmen ganjil, tetapi yang dilepaskan molekul netral (H2O, HCN, olefin dan yang lainnya), maka ion fragmen yang dihasilkan adalah genap.

Page 43: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

1.Tinggi relatif puncak ion molekul terbesar untuk senyawa rantai-lurus dan akan menurun dengan bertambahnya percabangan.

2. Tinggi relatif puncak ion molekul biasanya berkurang dengan bertambahnya berat molekul deret homolog, kecuali untuk ester lemak.

3. Pemecahan cenderung terjadi pada karbon tersubstitusi alkil; semakin tersusbtitusi, semakin mudah putus. Hal ini merupakan akibat dari terstabilkannya karbation tersier dibandingkan sekunder dan primer

Page 44: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

Urutan kestabilan karbo kation : CH3 < R’CH2 < R2’CH+ < R3’C+

Secara umum, gugus ganti terbesar pada suatu cabang lebih mudah lepas sebagai radikal, kemungkinan karena radikal rantai-panjang dapat menstabilkan dengan delokalisasi elektron sunyi.

4. Adanya ikatan rangkap dua, struktur siklik khususnya cincin aromatik (heteroaromatik) menstabilkan ion molekul sehingga meningkatkan keboleh jadian terjadinya.

Page 45: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

5. Adanya ikatan rangkap dua mendukung pemecahan alil dan memberikan karbokation alilik terstabilkan resonansi. Aturan ini tidak pada alkalena sederhana disebabkan mudahnya migrasi ikatan rangkap dua tetapi terjadi pada sikloalkana.

 

Page 46: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

6. Cincin jenuh cenderung melepaskan rantai samping alkil pada ikatan-. Muatan positif cenderung bertahan pada fragmen cincin.

Page 47: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

7. Pada senyawa aromatik tersubtitusi alkil, pemecahan terjadi pada ikatan- terhadap cincin dan memberikan ion-benzil terstabilkan resonansi atau sering membentuk ion tropilium.

Page 48: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

8. Ikatan C-C yang bersebelahan dengan heteroatom cenderung terpecah meninggalkan muatan fragmen yang mengandung heteroatom dimana elektron sunyi membantu stabilisasi resonansi

Page 49: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

9. Pelepasan sering diikuti dengan penghilangan molekul kecil yang netral seperti karbon monoksida, olefin, air, amonia, hidrogen sulfida, hidrogen sianida, merkaptan, ketena atau alkohol, juga sering diikuti dengan penataan ulang.

Page 50: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

10. Ion penataan ulang adalah fragmen-fragmen yang asal usulnya tidak dapat dijelaskan dengan pemecahan sederhana dari ikatan pada ion molekul, tetapi hasil dari penataan ulang atomik intramolekular selama fragmentasi. Penataan ulang meliputi, migrasi atom hidrogen pada molekul yang mengandung heteroatom

Page 51: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

Agar berlangsungnya penataan ulang Mclafferty suatu molekul harus memiliki heteroatom yang terletak tertentu, sistem-л (biasanya ikatan rangkap) dan atom hidrogen yang terletak terhadap sistem c=0.

Penataan ulang menyebabkan menonjolnya puncak yang khas.

Page 52: Mass Spec Lecture (2)

Aturan-aturan umum untuk meramalkan puncak-puncak utama dari spektrum

Reaksi Retro Diels-Alder (RDA Reaction) Pola pemecahan yang sering dijumpai

pada senyawa tak jenuh (ikatan rangkap dua)


Recommended