+ All Categories
Home > Documents > MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass...

MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass...

Date post: 08-Nov-2020
Category:
Upload: others
View: 32 times
Download: 6 times
Share this document with a friend
19
MASS TRANSFER BETWEEN PHASES We consider the mass transfer of solute A from one fluid phase by convection and then through a second fluid phase by convection. For example, the solute may diffuse through a gas phase and then diffuse through and be absorbed in an adjacent and immiscible liquid phase. This occurs in the case of absorption of ammonia from air by water. The two phases are in direct contact with each other, such as in a packed, tray, or spray-type tower, and the interfacial area between the phases is usually not well defined. In two-phase mass transfer, a concentration gradient will exist in each phase, causing mass transfer to occur. At the interface between the two fluid phases, equilibrium exists in most cases. In such cases, equilibrium relations, e.g. Henryโ€™s law and equilibrium distribution coefficients, are important to determine concentration profiles for predicting rates of mass transfer. The concentration in the bulk gas phase decreases to at the interface. The liquid concentration starts at at the interface and falls to in the bulk liquid phase. At the interface, since there would be no resistance to transfer across this interface, and are in equilibrium and are related by the equilibrium distribution relation (e.g. Henryโ€™s law), = ( ) (10.4-1) We consider here any two-phase system where y stands for the one phase and x for the other phase. For example, for the extraction of the solute acetic acid (A) from water (y phase) by isopropyl ether (x phase), the same relations will hold. Concentration profile of solute A diffusing through two phases.
Transcript
Page 1: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

MASS TRANSFER BETWEEN PHASES

We consider the mass transfer of solute A from one fluid phase by convection and then

through a second fluid phase by convection. For example, the solute may diffuse

through a gas phase and then diffuse through and be absorbed in an adjacent and

immiscible liquid phase. This occurs in the case of absorption of ammonia from air by

water. The two phases are in direct contact with each other, such as in a packed, tray, or

spray-type tower, and the interfacial area between the phases is usually not well defined.

In two-phase mass transfer, a concentration gradient will exist in each phase, causing

mass transfer to occur. At the interface between the two fluid phases, equilibrium exists

in most cases. In such cases, equilibrium relations, e.g. Henryโ€™s law and equilibrium

distribution coefficients, are important to determine concentration profiles for

predicting rates of mass transfer.

The concentration in the

bulk gas phase ๐‘ฆ๐ด๐บ

decreases to ๐‘ฆ๐ด๐‘–at the

interface. The liquid

concentration starts at ๐‘ฅ๐ด๐‘–

at the interface and falls to

๐‘ฅ๐ด๐ฟin the bulk liquid

phase. At the interface,

since there would be no

resistance to transfer

across this interface, ๐‘ฆ๐ด๐‘–

and ๐‘ฅ๐ด๐‘– are in equilibrium and are related by the equilibrium distribution relation (e.g.

Henryโ€™s law),

๐‘ฆ๐ด๐‘– = ๐‘“(๐‘ฅ๐ด๐‘– ) (10.4-1)

We consider here any two-phase system where y stands for the one phase and x for the

other phase. For example, for the extraction of the solute acetic acid (A) from water (y

phase) by isopropyl ether (x phase), the same relations will hold.

Concentration profile of solute A diffusing through two

phases.

Page 2: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Mass Transfer Using Film Mass-Transfer Coefficients and

Interface Concentrations

Case 1. Equi-molar counter-diffusion

For A diffusing from the gas to liquid and Bin equi-molar counter-diffusion from

liquid to gas,

๐‘๐ด = ๐‘˜๐‘ฆโ€ฒ (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) = ๐‘˜๐‘ฅ

โ€ฒ (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) (10.4-2)

The driving force in the gas phase is (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) and in the liquid phase it is

(๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ). Here, ๐‘˜๐‘ฆโ€ฒ is gas-phase mass-transfer coefficient in ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™ ๐‘“๐‘Ÿ๐‘Ž๐‘โ„

and ๐‘˜๐‘ฅโ€ฒ is liquid-phase mass-transfer coefficient.

Rearranging,

โˆ’๐‘˜๐‘ฅ

โ€ฒ

๐‘˜๐‘ฆโ€ฒ

=๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–

๐‘ฅ๐ด๐ฟ โˆ’ ๐‘ฅ๐ด๐‘–

(10.4-3)

In Fig. 10.4-2, point P represents the bulk phase compositions ๐‘ฆ๐ด๐บ and ๐‘ฅ๐ด๐ฟ of the two

phases and point M the interface

concentrations ๐‘ฆ๐ด๐‘– and ๐‘ฅ๐ด๐‘–. The

slope of the line PM is โˆ’ ๐‘˜๐‘ฅโ€ฒ ๐‘˜๐‘ฆ

โ€ฒโ„ .

Therefore, if the two film

coefficients are known, the

interface compositions, i.e.

๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘– can be determined by

drawing line PM with a slope

โˆ’ ๐‘˜๐‘ฅโ€ฒ ๐‘˜๐‘ฆ

โ€ฒโ„ intersecting the

equilibrium line.

Fig 10.4-2. For the case of equimolar counterdiffusion,

conc. driving forces and interface conc. in interphase

mass transfer

Page 3: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Case 2. Diffusion of A through stagnant or non-diffusing B.

For the common case of A diffusing through a stagnant gas phase and then through a

stagnant liquid phase, the equations for A diffusing through a stagnant gas and then

through a stagnant liquid are

๐‘๐ด = ๐‘˜๐‘ฆ(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) = ๐‘˜๐‘ฅ(๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) (10.4-4)

The driving force in the gas phase is (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) and (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) in the liquid phase.

Here, the gas-phase mass-transfer coefficient (๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™ ๐‘“๐‘Ÿ๐‘Ž๐‘โ„ ) is

๐‘˜๐‘ฆ =๐‘˜๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€=

๐‘˜๐‘ฆโ€ฒ

๐‘ฆ๐ต๐‘–๐‘€

(10.4-5a)

and the liquid-phase mass-transfer coefficient is

๐‘˜๐‘ฅ =๐‘˜๐‘ฅ

โ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€=

๐‘˜๐‘ฅโ€ฒ

๐‘ฅ๐ต๐‘–๐‘€

(10.4-5a)

Rearranging,

โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ= โˆ’

[๐‘˜๐‘ฅ

โ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€]

[๐‘˜๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€]

=๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–

๐‘ฅ๐ด๐ฟ โˆ’ ๐‘ฅ๐ด๐‘–

(10.4-3)

where,

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฆ๐ด๐‘–) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ด๐‘–) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]= ๐‘ฆ๐ต๐‘–๐‘€

=๐‘ฆ๐ต๐‘–

โˆ’ ๐‘ฆ๐ต๐บ

ln[๐‘ฆ๐ต๐‘–๐‘ฆ๐ต๐บ

โ„ ]

(10.4-6,7)

In Figure 10.4-3, the slope of the line PM is โˆ’ ๐‘˜๐‘ฅ ๐‘˜๐‘ฆโ„ . Therefore, if the two film

coefficients are known, the interface compositions, i.e. ๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘– can be determined by

drawing line PM with a slope โˆ’ ๐‘˜๐‘ฅ ๐‘˜๐‘ฆโ„ intersecting the equilibrium line.

However, since (1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ and (1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ are unknowns, a trial and error method is

needed. For the first trial (1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ and (1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ are assumed to be 1.0 and Eq.

(10.4-9) is used to get the slope and ๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘– . Then for the second trial, these values of

๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘– are used to calculate a new slope to get new values of ๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘– . This is repeated

until the interface compositions do not change.

Page 4: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Figure 10.4-3: For the case of A diffusing through stagnant B, conc.

driving forces and interface concentrations in interphase mass transfer

Page 5: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Example 10.4-1 (CJG):

Determination of Interface Composition in Interphase Mass Transfer

The solute A is being absorbed from a gas mixture of A and B in a wetted-

wall tower with the liquid flowing as a film downward along the wall. At a

certain point in the tower, bulk gas concentration is ๐’š๐‘จ๐‘ฎ = ๐ŸŽ. ๐Ÿ‘๐Ÿ– mol

fraction and the bulk liquid concentration is ๐’™๐‘จ๐‘ณ = ๐ŸŽ. ๐Ÿ๐ŸŽ.

The tower is operating at 298 K and 101.325 ร— 103Pa and the equilibrium

data are given in the table.

The solute A diffuses through a stagnant B in the gas phase and then

through a non-diffusing liquid.

Using correlations for dilute solutions in wetted-wall towers, the film mass-

transfer coefficients for A in the gas and liquid phases are predicted as:

๐‘˜๐‘ฆ = 1.465 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

๐‘˜๐‘ฅ = 1.967 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

Note that for dilute solution, ๐‘˜๐‘ฅโ€ฒ = ๐‘˜๐‘ฅ; ๐‘˜๐‘ฆ

โ€ฒ = ๐‘˜๐‘ฆ.

Calculate the interface concentrations, (๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘–) and flux of component A.

SOLUTION:

Step 1: Plot the equilibrium data for the given temperature and pressure. Next,

locate the bulk compositions, P (๐‘ฅ๐ด๐ฟ, ๐‘ฆ๐ด๐บ).

Step 2: One needs to plot a straight line from point P (๐‘ฅ๐ด๐ฟ , ๐‘ฆ๐ด๐บ) with the slope

โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ= โˆ’

[๐‘˜๐‘ฅ

โ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€]

[๐‘˜๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€]

๐‘ฅ๐ด 0 0.050 0.10 0.15 0.20 0.25 0.30 0.35

๐‘ฆ๐ด 0 0.022 0.052 0.087 0.131 0.187 0.265 0.385

Page 6: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Its intersection with equilibrium curve gives interface composition

(๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘–). Since (๐‘ฅ๐ด๐‘– , ๐‘ฆ๐ด๐‘–) is not known, one need to its value for

computing the slope. Therefore, iterative approach is required.

Trial 1

Assume (๐‘ฅ๐ด๐‘– = 0, ๐‘ฆ๐ด๐‘– = 0), and compute the slope

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ = 1; (1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ = 1

โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ= โˆ’

[1.967 ร— 10โˆ’3

1 ]

[1.465 ร— 10โˆ’3

1 ]= โˆ’1.342

Use the following straight line equation,

๐‘ฆ โˆ’ ๐‘ฆ0 = ๐‘š(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘ฆ โˆ’ ๐‘ฆ๐ด๐บ = โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ

(๐‘ฅ โˆ’ ๐‘ฅ๐ด๐ฟ)

๐‘ฆ โˆ’ 0.38 = โˆ’1.342(๐‘ฅ โˆ’ 0.1)

Choose any arbitrary value for ๐‘ฅ to get ๐‘ฆ. Choosing, ๐‘ฅ = 0.2 gives ๐‘ฆ =

0.38 โˆ’ 0.1342 = 0.246. Now draw a straight line with points (0.10,0.38)

and (0.2,0.246). Its intersection with the equilibrium line from the graph

gives

(๐‘ฅ๐ด๐‘– = 0.247, ๐‘ฆ๐ด๐‘– = 0.183).

Page 7: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Trial 2

From first trial, use (๐‘ฅ๐ด๐‘– = 0.247, ๐‘ฆ๐ด๐‘– = 0.183), and compute the slope

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฅ๐ด๐ฟ) โˆ’ (1 โˆ’ ๐‘ฅ๐ด๐‘–)

ln[(1 โˆ’ ๐‘ฅ๐ด๐ฟ) (1 โˆ’ ๐‘ฅ๐ด๐‘–)โ„ ]=

(1 โˆ’ 0.10) โˆ’ (1 โˆ’ 0.247)

ln[(1 โˆ’ 0.10) (1 โˆ’ 0.247)โ„ ]= 0.825

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฆ๐ด๐‘–) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ด๐‘–) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]=

(1 โˆ’ 0.183) โˆ’ (1 โˆ’ 0.38)

ln[(1 โˆ’ 0.183) (1 โˆ’ 0.38)โ„ ]= 0.715

โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ= โˆ’

[1.967 ร— 10โˆ’3

0.825]

[1.465 ร— 10โˆ’3

0.715]

= โˆ’1.163

Trial 1 slope = โˆ’๐Ÿ. ๐Ÿ‘๐Ÿ’๐Ÿ

Trial 2 slope = โˆ’๐Ÿ. ๐Ÿ๐Ÿ”๐Ÿ‘

Use the following straight line equation,

๐‘ฆ โˆ’ ๐‘ฆ0 = ๐‘š(๐‘ฅ โˆ’ ๐‘ฅ0)

๐‘ฆ โˆ’ ๐‘ฆ๐ด๐บ = โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ

(๐‘ฅ โˆ’ ๐‘ฅ๐ด๐ฟ)

๐‘ฆ โˆ’ 0.38 = โˆ’1.163(๐‘ฅ โˆ’ 0.1)

Choose any arbitrary value for ๐‘ฅ to get ๐‘ฆ. Choosing, ๐‘ฅ = 0.2 gives ๐‘ฆ = 0.38 โˆ’

0.1163 = 0.264. Now draw a straight line with points (0.10,0.38) and

(0.2,0.264). Its intersection with the equilibrium line from the graph gives

(๐‘ฅ๐ด๐‘– = 0.257, ๐‘ฆ๐ด๐‘– = 0.197).

Page 8: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Summary Trial ๐’™๐‘จ๐’Š ๐’š๐‘จ๐’Š (๐Ÿ โˆ’ ๐’™๐‘จ)๐’Š๐‘ด (๐Ÿ โˆ’ ๐’š๐‘จ)๐’Š๐‘ด โˆ’ ๐’Œ๐’™ ๐’Œ๐’šโ„

1 0 0 1.00 1.00 -1.342

2 0.247 0.183 0.825 0.715 -1.163

3 0.257 0.197 0.820 0.709 -1.160

4 0.257 0.197

Trial 3

From second trial, use (๐‘ฅ๐ด๐‘– = 0.257, ๐‘ฆ๐ด๐‘– = 0.197), and compute the slope

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฅ๐ด๐ฟ) โˆ’ (1 โˆ’ ๐‘ฅ๐ด๐‘–)

ln[(1 โˆ’ ๐‘ฅ๐ด๐ฟ) (1 โˆ’ ๐‘ฅ๐ด๐‘–)โ„ ]=

(1 โˆ’ 0.10) โˆ’ (1 โˆ’ 0.257)

ln[(1 โˆ’ 0.10) (1 โˆ’ 0.257)โ„ ]= 0.820

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฆ๐ด๐‘–) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ด๐‘–) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]=

(1 โˆ’ 0.197) โˆ’ (1 โˆ’ 0.38)

ln[(1 โˆ’ 0.197) (1 โˆ’ 0.38)โ„ ]= 0.709

โˆ’๐‘˜๐‘ฅ

๐‘˜๐‘ฆ= โˆ’

[1.967 ร— 10โˆ’3

0.825]

[1.465 ร— 10โˆ’3

0.715]

= โˆ’1.16

Trial 1 slope = โˆ’๐Ÿ. ๐Ÿ‘๐Ÿ’๐Ÿ

Trial 2 slope = โˆ’๐Ÿ. ๐Ÿ๐Ÿ”๐Ÿ‘

Trial 3 slope = โˆ’๐Ÿ. ๐Ÿ๐Ÿ”๐ŸŽ

Therefore,

๐‘ฅ๐ด๐‘– = 0.257, ๐‘ฆ๐ด๐‘– = 0.197

๐‘ฅ๐ดโˆ— = 0.349, ๐‘ฆ๐ด

โˆ— = 0.052

Therefore,

๐‘๐ด = ๐‘˜๐‘ฆ(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) = [1.465 ร— 10โˆ’3

0.715] (0.38 โˆ’ 0.197)

= 3.78 ร— 10โˆ’4 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2

๐‘๐ด = ๐‘˜๐‘ฅ(๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) = [1.967 ร— 10โˆ’3

0.825] (0.257 โˆ’ 0.10)

= 3.78 ร— 10โˆ’4 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2

Page 9: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.
Page 10: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Question 4 (Fall 2018 2019 Test 2):

The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower with the liquid flowing as a film downward along the wall. At a certain point in the tower, bulk gas concentration is ๐‘ฆ๐ด๐บ = 0.38 mol fraction and the bulk liquid concentration is ๐‘ฅ๐ด๐ฟ = 0.10. The solute A diffuses through a stagnant B in the gas phase and then through a non-diffusing liquid. Using correlations for dilute solutions in wetted-wall towers, the film mass-transfer coefficients for A in the gas and liquid phases are predicted as:

๐‘˜๐‘ฆ = 1.00 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘; ๐‘˜๐‘ฅ = 2.00 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

Note that for dilute solution, ๐‘˜๐‘ฅโ€ฒ = ๐‘˜๐‘ฅ; ๐‘˜๐‘ฆ

โ€ฒ = ๐‘˜๐‘ฆ. The tower is operating at 298 K and 101.325 ร—

103Pa. The equilibrium data are given in the figure, which also show the interface concentration. Determine

Mass transfer coefficient, ๐‘˜๐‘ฆ, in the present case.

Molar flux of component A, ๐‘๐ด, ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2

Page 11: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Question 4 (Fall 2018 2019 Test 2): Solution

From the figure,

๐‘ฅ๐ด๐‘– = 0.228

๐‘ฆ๐ด๐‘– = 0.158

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฆ๐ด๐‘–) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ด๐‘–) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]=

(1 โˆ’ 0.158) โˆ’ (1 โˆ’ 0.38)

ln[(1 โˆ’ 0.158) (1 โˆ’ 0.38)โ„ ]= 0.725

๐‘๐ด = ๐‘˜๐‘ฆ(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) = [1.0 ร— 10โˆ’3

0.725] (0.38 โˆ’ 0.158) = 3.06 ร— 10โˆ’4 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2

From the figure,

๐‘ฅ๐ด๐‘– = 0.228

๐‘ฆ๐ด๐‘– = 0.158

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ =(1 โˆ’ ๐‘ฅ๐ด๐ฟ) โˆ’ (1 โˆ’ ๐‘ฅ๐ด๐‘–)

ln[(1 โˆ’ ๐‘ฅ๐ด๐ฟ) (1 โˆ’ ๐‘ฅ๐ด๐‘–)โ„ ]=

(1 โˆ’ 0.10) โˆ’ (1 โˆ’ 0.228)

ln[(1 โˆ’ 0.10) (1 โˆ’ 0.228)โ„ ]= 0.835

๐‘๐ด = ๐‘˜๐‘ฅ(๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) = [2.0 ร— 10โˆ’3

0.835] (0.228 โˆ’ 0.10) = 3.06 ร— 10โˆ’4 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2

Page 12: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Overall Mass-Transfer Coefficients and Driving Forces

Film or local single-phase mass-transfer coefficients are often difficult to measure

experimentally. Therefore, overall mass-transfer coefficients ๐พ๐‘ฆโ€ฒ and ๐พ๐‘ฅ

โ€ฒ are measured

based on the overall gas phase/liquid phase driving forces,

๐‘๐ด = ๐พ๐‘ฆโ€ฒ (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด

โˆ—) = ๐พ๐‘ฅโ€ฒ (๐‘ฅ๐ด

โˆ— โˆ’ ๐‘ฅ๐ด๐ฟ) (10.4-10) & (10.4-11)

๐พ๐‘ฆโ€ฒ : overall gas-phase mass-transfer coefficient in ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™ ๐‘“๐‘Ÿ๐‘Ž๐‘โ„

๐พ๐‘ฅโ€ฒ: overall liquid-phase mass-transfer coefficient in ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™ ๐‘“๐‘Ÿ๐‘Ž๐‘โ„

๐‘ฆ๐ดโˆ—: gas-phase value that would be in equilibrium with ๐‘ฅ๐ด๐ฟ

๐‘ฅ๐ดโˆ—: liquid-phase value that would be in equilibrium with ๐‘ฆ๐ด๐บ

Case 1: Equi-molar Counter-diffusion ๐‘๐ด = ๐‘˜๐‘ฆ

โ€ฒ (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) = ๐‘˜๐‘ฅโ€ฒ (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) (10.4-2)

Overall gas-phase driving forces: ๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ— = (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) + (๐‘ฆ๐ด๐‘– โˆ’ ๐‘ฆ๐ด

โˆ—)

๐‘šโ€ฒ =๐‘ฆ๐ด๐‘– โˆ’ ๐‘ฆ๐ด

โˆ—

๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ

10.4-

13

๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ— = (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–)

+ ๐‘šโ€ฒ (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ)

10.4-

14

๐‘๐ด

๐พ๐‘ฆโ€ฒ =

๐‘๐ด

๐‘˜๐‘ฆโ€ฒ +

๐‘šโ€ฒ๐‘๐ด

๐‘˜๐‘ฅโ€ฒ

1

๐พ๐‘ฆโ€ฒ =

1

๐‘˜๐‘ฆโ€ฒ +

๐‘šโ€ฒ

๐‘˜๐‘ฅโ€ฒ

10.4-

15

If slope m' is quite small, so that the equilibrium curve in Fig. 10.4-2 is almost

horizontal, a small value of yA in the gas will give a large value of xA in equilibrium in

Page 13: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

the liquid. The gas solute A is then very soluble in the liquid phase, and hence the term ๐‘šโ€ฒ

๐‘˜๐‘ฅโ€ฒ in Eq. (10.4-15) is very small. Then,

1

๐พ๐‘ฆโ€ฒ โ‰…

1

๐‘˜๐‘ฆโ€ฒ

10.4-19

and the major resistance is in the gas phase, or the "gas phase is controlling." The point

M has moved down very close to E, so that

๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ— โ‰… (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ

๐ด๐‘–) 10.4-20

Overall liquid phase driving force:

๐‘ฅ๐ดโˆ— โˆ’ ๐‘ฅ๐ด๐ฟ = (๐‘ฅ๐ด

โˆ— โˆ’ ๐‘ฅ๐ด๐‘–) + (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) 10.4-16

๐‘šโ€ฒโ€ฒ =๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ

๐ด๐‘–

๐‘ฅ๐ดโˆ— โˆ’ ๐‘ฅ๐ด๐‘–

10.4-

17

๐‘ฅ๐ดโˆ— โˆ’ ๐‘ฅ๐ด๐ฟ = (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ

๐ด๐‘–) ๐‘šโ€ฒโ€ฒโ„

+ (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ)

1

๐พ๐‘ฅโ€ฒ =

1

๐‘šโ€ฒโ€ฒ๐‘˜๐‘ฆโ€ฒ +

1

๐‘˜๐‘ฅโ€ฒ

10.4-

18

Similarly, when m" is very large, the solute A is very insoluble in the liquid, 1

๐‘šโ€ฒโ€ฒ๐‘˜๐‘ฆโ€ฒ

becomes small,

1

๐พ๐‘ฅโ€ฒ โ‰…

1

๐‘˜๐‘ฅโ€ฒ

10.4-21

The "liquid phase is controlling" and

๐‘ฅ๐ดโˆ— = ๐‘ฅ๐ด๐‘–

Systems for absorption of oxygen or carbon dioxide from air by water are similar to

(10.4-21).

Page 14: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Case 2: Diffusion of A through stagnant or nondiffusing B

๐‘๐ด =๐‘˜๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€

(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ด๐‘–) =๐‘˜๐‘ฅ

โ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€

(๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) 10.4-8

Since the overall gas-phase driving forces can be written as,

๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ— = (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ

๐ด๐‘–) + (๐‘ฆ

๐ด๐‘–โˆ’ ๐‘ฆ๐ด

โˆ—)

But, as before

๐‘šโ€ฒ =๐‘ฆ

๐ด๐‘–โˆ’ ๐‘ฆ๐ด

โˆ—

๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ

10.4-13

Therefore,

๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ— = (๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ

๐ด๐‘–) + ๐‘šโ€ฒ (๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ) 10.4-14

Define,

๐‘๐ด =๐พ๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)โˆ—๐‘€

(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ—) =

๐พ๐‘ฅโ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)โˆ—๐‘€

(๐‘ฅ๐ดโˆ— โˆ’ ๐‘ฅ๐ด๐ฟ)

10.4-22

or,

๐‘๐ด = ๐พ๐‘ฆ(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ—) = ๐พ๐‘ฅ(๐‘ฅ๐ด

โˆ— โˆ’ ๐‘ฅ๐ด๐ฟ) 10.4-23

Here,

๐พ๐‘ฆ: overall gas-phase mass-transfer coefficient for A diffusing through stagnant B ๐พ๐‘ฅ: overall liquid-phase mass-transfer coefficient for A diffusing through stagnant B

๐‘ฆ๐ดโˆ—: gas-phase value that would be in equilibrium with ๐‘ฅ๐ด๐ฟ

๐‘ฅ๐ดโˆ—: liquid-phase value that would be in equilibrium with ๐‘ฆ๐ด๐บ

(1 โˆ’ ๐‘ฆ๐ด)โˆ—๐‘€ =(1 โˆ’ ๐‘ฆ๐ด

โˆ—) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ดโˆ—) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]

= ๐‘ฆ๐ตโˆ—๐‘€=

๐‘ฆ๐ตโˆ— โˆ’ ๐‘ฆ๐ต๐บ

ln[๐‘ฆ๐ตโˆ— ๐‘ฆ๐ต๐บโ„ ]

(10.4-25)

(1 โˆ’ ๐‘ฅ๐ด)โˆ—๐‘€ =(1 โˆ’ ๐‘ฅ๐ด๐ฟ) โˆ’ (1 โˆ’ ๐‘ฅ๐ด

โˆ—)

ln[(1 โˆ’ ๐‘ฅ๐ด๐ฟ) (1 โˆ’ ๐‘ฅ๐ดโˆ—)โ„ ]

= ๐‘ฅ๐ตโˆ—๐‘€=

๐‘ฅ๐ต๐ฟ โˆ’ ๐‘ฅ๐ตโˆ—

ln[๐‘ฅ๐ต๐ฟ ๐‘ฅ๐ตโˆ—โ„ ]

(10.4-27)

Note: Overall mass transfer coefficients are concentration dependent

1

๐พ๐‘ฆ=

1

๐‘˜๐‘ฆ+

๐‘šโ€ฒ

๐‘˜๐‘ฅ

24

Page 15: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

๐Ÿ

๐‘ฒ๐’™=

๐Ÿ

๐’Œ๐’š๐’Žโ€ฒโ€ฒ

+๐Ÿ

๐’Œ๐’™

๐Ÿ

๐‘ฒ๐’™โ€ฒ (๐Ÿ โˆ’ ๐’™๐‘จ)โˆ—๐‘ดโ„

= (๐’Žโ€ฒโ€ฒ๐’Œ๐’š

โ€ฒ

(๐Ÿ โˆ’ ๐’š๐‘จ)๐’Š๐‘ด)

โˆ’๐Ÿ

+ (๐’Œ๐’™

โ€ฒ

(๐Ÿ โˆ’ ๐’™๐‘จ)๐’Š๐‘ด)

โˆ’๐Ÿ

26

Equi-molar Counter-

diffusion

Diffusion of A through

stagnant or nondiffusing B

Overall gas-phase

mass-transfer

coefficient

1

๐พ๐‘ฆโ€ฒ

=1

๐‘˜๐‘ฆโ€ฒ

+๐‘šโ€ฒ

๐‘˜๐‘ฅโ€ฒ

1

๐พ๐‘ฆ=

1

๐‘˜๐‘ฆ+

๐‘šโ€ฒ

๐‘˜๐‘ฅ

Overall liquid-phase

mass-transfer

coefficient

1

๐พ๐‘ฅโ€ฒ

=1

๐‘šโ€ฒโ€ฒ๐‘˜๐‘ฆโ€ฒ

+1

๐‘˜๐‘ฅโ€ฒ

1

๐พ๐‘ฅ=

1

๐‘˜๐‘ฆ๐‘šโ€ฒโ€ฒ+

1

๐‘˜๐‘ฅ

๐‘ฒ๐’š =๐‘ฒ๐’š

โ€ฒ

(๐Ÿ โˆ’ ๐’š๐‘จ)โˆ—๐‘ด; ๐‘ฒ๐’™ =

๐‘ฒ๐’™โ€ฒ

(๐Ÿ โˆ’ ๐‘ฅ๐ด)โˆ—๐‘ด; ๐’Œ๐’š =

๐’Œ๐’šโ€ฒ

(๐Ÿ โˆ’ ๐’š๐‘จ)๐’Š๐‘ด; ๐’Œ๐’™ =

๐’Œ๐’™โ€ฒ

(๐Ÿ โˆ’ ๐’™๐‘จ)๐’Š๐‘ด

Page 16: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Ex. 10.4-2 (CJG): Overall Mass-Transfer Coefficients from Film Coefficients

The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower

with the liquid flowing as a film downward along the wall. At a certain point in the

tower, bulk gas concentration is ๐’š๐‘จ๐‘ฎ = ๐ŸŽ. ๐Ÿ‘๐Ÿ– mol fraction and the bulk liquid

concentration is ๐’™๐‘จ๐‘ณ = ๐ŸŽ. ๐Ÿ๐ŸŽ. The tower is operating at 298 K and 101.325 ร— 103Pa

and the equilibrium data are given in the table.

The solute A diffuses through a stagnant B in the gas phase and then through a non-

diffusing liquid. Using correlations for dilute solutions in wetted-wall towers, the film

mass-transfer coefficients for A in the gas and liquid phases are predicted as:

๐‘˜๐‘ฆ = 1.465 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

๐‘˜๐‘ฅ = 1.967 ร— 10โˆ’3 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

Note that for dilute solution, ๐‘˜๐‘ฅโ€ฒ = ๐‘˜๐‘ฅ; ๐‘˜๐‘ฆ

โ€ฒ = ๐‘˜๐‘ฆ.

Calculate the overall mass transfer coefficient ๐พ๐‘ฆโ€ฒ , the flux, and the percent resistance in

the gas and liquid films. Do this for the case of A diffusing through stagnant B.

Solution:

๐‘ฆ๐ด๐บโˆ— = 0.052 (See figure in next page)

๐‘šโ€ฒ =๐‘ฆ๐ด๐‘– โˆ’ ๐‘ฆ๐ด

โˆ—

๐‘ฅ๐ด๐‘– โˆ’ ๐‘ฅ๐ด๐ฟ=

0.197 โˆ’ 0.052

0.257 โˆ’ 0.100= 0.923

๐‘˜๐‘ฆ =๐‘˜๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€=

1.465 ร— 10โˆ’3

0.709

๐‘˜๐‘ฅ =๐‘˜๐‘ฅ

โ€ฒ

(1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€=

1.967 ร— 10โˆ’3

0.820

(1 โˆ’ ๐‘ฆ๐ด)โˆ—๐‘€ =(1 โˆ’ ๐‘ฆ๐ด

โˆ—) โˆ’ (1 โˆ’ ๐‘ฆ๐ด๐บ)

ln[(1 โˆ’ ๐‘ฆ๐ดโˆ—) (1 โˆ’ ๐‘ฆ๐ด๐บ)โ„ ]

=(1 โˆ’ 0.052) โˆ’ (1 โˆ’ 0.380)

ln[(1 โˆ’ 0.052) (1 โˆ’ 0.380)โ„ ]= 0.773

๐‘ฅ๐ด 0 0.050 0.10 0.15 0.20 0.25 0.30 0.35

๐‘ฆ๐ด 0 0.022 0.052 0.087 0.131 0.187 0.265 0.385

Page 17: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Total gas-phase resistance is sum of gas film and liquid film, i.e.

1

๐พ๐‘ฆ

(Total resistance) =1

๐‘˜๐‘ฆ

(Gas film resistance) +๐‘šโ€ฒ

๐‘˜๐‘ฅ

(Liquid film resistance)

1

๐พ๐‘ฆโ€ฒ (1 โˆ’ ๐‘ฆ๐ด)โˆ—๐‘€โ„

=1

๐‘˜๐‘ฆโ€ฒ (1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€โ„

+๐‘šโ€ฒ

๐‘˜๐‘ฅโ€ฒ (1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€โ„

1

๐พ๐‘ฆโ€ฒ

0.773

=1

1.465 ร— 10โˆ’3

0.709

+0.923

1.967 ร— 10โˆ’3

0.820

= 484 (56%) + 384.8(44%) = 868.8

๐‘ฒ๐’šโ€ฒ = ๐Ÿ–. ๐Ÿ—๐ŸŽ ร— ๐Ÿ๐ŸŽโˆ’๐Ÿ’ ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด/๐‘  โˆ™ ๐‘š2 โˆ™ ๐‘š๐‘œ๐‘™๐‘“๐‘Ÿ๐‘Ž๐‘

๐‘๐ด =๐พ๐‘ฆ

โ€ฒ

(1 โˆ’ ๐‘ฆ๐ด)โˆ—๐‘€

(๐‘ฆ๐ด๐บ โˆ’ ๐‘ฆ๐ดโˆ—) =

8.90 ร— 10โˆ’4

0.773(0.38 โˆ’ 0.052)

= 3.78 ร— 10โˆ’4 ๐‘˜๐‘” ๐‘š๐‘œ๐‘™ ๐ด

๐‘  โˆ™ ๐‘š2

Page 18: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Final Exam Winter 20172018:

The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower with the liquid

flowing as a film downward along the wall. At a certain point in the tower the bulk gas concentration

yAG = 0.30 mol fraction and the bulk liquid concentration is xAL = 0.10. The tower is operating at 298

K and 1013 kPa and the equilibrium data given in the figure. The solute A diffuses through stagnant

B in the gas phase and then through a non-diffusing liquid. Using correlations for dilute solutions in

wetted-wall towers, the film mass-transfer coefficient for A in the gas phase is predicted as:

๐‘˜๐‘ฅโ€ฒ ๐‘Ž = 1.0 ร— 10โˆ’2 kg mol/s โˆ™ m3 โˆ™ mol frac ; ๐‘˜๐‘ฆ

โ€ฒ ๐‘Ž = 5.0 ร— 10โˆ’2 kg mol/s โˆ™ m3 โˆ™ mol frac

Compute the slope of the tie lie using โˆ’ [๐‘˜๐‘ฅ

โ€ฒ ๐‘Ž

(1โˆ’๐‘ฅ๐ด๐ฟ)] [

๐‘˜๐‘ฆโ€ฒ ๐‘Ž

(1โˆ’๐‘ฆ๐ด๐บ)]โ„

If required, assume ๐‘Ž = 10 m2/m3, and answer the following by filling up the table

๐‘ฅ๐‘– ๐‘ฆ๐‘– ๐‘ฅโˆ— ๐‘ฆโˆ—

0.30 0.265 0.315 0.053

(1 โˆ’ ๐‘ฅ๐‘–)๐‘€ (1 โˆ’ ๐‘ฆ๐‘–)๐‘€ ๐‘˜๐‘ฅ๐‘Ž ๐‘˜๐‘ฆ๐‘Ž

0.797 0.817 0.0125 0.070

๐พ๐‘ฅ๐‘Ž Gas film resist. (%) Liquid film resist. (%) Molar flux

0.0115 14.4 85.6 0.00025/0.0025

Page 19: MASS TRANSFER BETWEEN PHASES - KSUfaculty.ksu.edu.sa/sites/default/files/absorber_design...Mass Transfer Using Film Mass-Transfer Coefficients and Interface Concentrations Case 1.

Final Exam Fall 2017ยฌ2018:

The solute A is being absorbed from a gas mixture of A and B in a wetted-wall tower with the liquid flowing as

a film downward along the wall. At a certain point in the tower the bulk gas concentration yAG = 0.35 mol

fraction and the bulk liquid concentration is xAL = 0.20. The tower is operating at 298 K and 1013 kPa and the

equilibrium data given in the figure. The solute A diffuses through stagnant Bin the gas phase and then through

a non-diffusing liquid.

Using correlations for dilute solutions in wetted-wall towers, the film mass-transfer coefficient for A in the gas

phase is predicted as:

๐‘˜๐‘ฆโ€ฒ ๐‘Ž = 6.16 ร— 10โˆ’2kg mol/s โˆ™ m3 โˆ™ mol frac

๐‘˜๐‘ฅโ€ฒ ๐‘Ž = 6.16 ร— 10โˆ’2kg mol/s โˆ™ m3 โˆ™ mol frac

Calculate the overall mass transfer coefficient ๐พ๐‘ฆโ€ฒ ๐‘Ž and the percent resistance in the gas and the liquid films

and the flux NA. If required, assume ๐‘Ž = 10 m2/m3. Use the given figure showing the equilibrium line and

make only one trial to obtain interface concentration assuming (1 โˆ’ ๐‘ฆ๐ด)๐‘–๐‘€ = (1 โˆ’ ๐‘ฅ๐ด)๐‘–๐‘€ = 1.


Recommended