+ All Categories
Home > Documents > Materials - Miami-Dade County Public...

Materials - Miami-Dade County Public...

Date post: 17-Feb-2018
Category:
Upload: hoangkhuong
View: 218 times
Download: 3 times
Share this document with a friend
224
Miami-Dade County Public Schools Division of Academics Required ESSENTIAL Laboratory Activities M/J Comprehensive Science 3
Transcript
Page 1: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Miami-Dade County Public Schools

Division of Academics

RequiredESSENTIAL

Laboratory Activities

M/J Comprehensive Science 3TEACHER EDITION

REVISED July 2016

Page 2: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

THE SCHOOL BOARD OF MIAMI-DADE COUNTY, FLORIDA

Ms. Perla Tabares Hantman, ChairDr. Dorothy Bendross-Mindingall, Vice Chair

Ms. Susie V. Castillo Dr. Lawrence S. Feldman

Dr. Wilbert “Tee” HollowayDr. Martin Karp

Ms. Lubby NavarroMs. Raquel A. RegaladoDr. Marta Pérez Wurtz

Mr. Logan Schroeder-StephensStudent Advisor

Mr. Alberto M. CarvalhoSuperintendent of Schools

Ms. Maria L. IzquierdoChief Academic Officer

Office of Academics and Transformation

Ms. Lissette M. AlvesAssistant SuperintendentDivision of Academics

Mr. Cristian CarranzaAdministrative DirectorDivision of Academics

Department of Mathematics and Science

Dr. Ava D. RosalesExecutive Director

Department of Mathematics and Science

Page 3: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Table of ContentsIntroduction....................................................................................................................................6

Materials.........................................................................................................................................7

Next Generation Sunshine State Standards .............................................................................10

Lab Roles......................................................................................................................................13

Lab Safety Information and Contract.......................................................................................14

Pre-Lab Safety Worksheet and Approval Form.......................................................................15

Parts of a Lab Report..................................................................................................................16

Experimental Design Diagram and Hints .................................................................................19

Engineering Design Process........................................................................................................21

Conclusion Writing (CER) .........................................................................................................22

Project Based STEM Activity (PBSA) Rubric..........................................................................23

Essential Labs and STEM ActivitiesBoat Challenge (STEM 4.0) (Topic 1)........................................................................................25

What’s the Matter? Inquiry Lab (STEM 2.0) (Topic 2)..........................................................28

Physical and Chemical Changes in Matter (STEM 3.0) (Topic 3).........................................31

Conservation of Mass (STEM 2.0) (Topic 3).............................................................................34

Air Bag Challenge(STEM 2.0)....................................................................................................37

Atomic Modeling (STEM 4.0) (Topic 4)....................................................................................41

Periodic Table of Elements (STEM 2.0) (Topic 5)....................................................................44

Clay Elements, Compounds/Molecules (STEM 3.0) (Topic 6)................................................47

Separating Mixtures (STEM 3.0)...............................................................................................51

Investigating the Effect of Light Intensity on Photosynthesis (Topic 7).................................54

Maximizing Photosynthesis(STEM 3.0) ....................................................................................57

Carbon Cycle Game (STEM 2.0) (Topic 8)..............................................................................60

Scale of the Universe Modeling Activity(STEM 4.0) (Topic 9)...............................................71

Star Bright Apparent Magnitude Lab (Topic 10).....................................................................73

Star Brightness(STEM 4.0).........................................................................................................76

The Martian Sun-Times (STEM 4.0) (Topic 11).......................................................................78

Space Travel Tour Agency(STEM 2.0)......................................................................................85

What Causes the Seasons? (STEM 2.0) (Topic 12)...................................................................89

EL8_2016 M-DCPS Department of Science 4

Page 4: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Additional ResourcesDensity of Blocks (STEM 2.0)....................................................................................................94

CSI: Following the Hard Evidence Density Lab(STEM 2.0) ................................................... 9 7

Mass, Volume, Density (STEM 2.0) ........................................................................................101

Precipitating Bubbles(STEM 2.0) ...........................................................................................106

Greenhouse Gases in a Bottle (STEM 2.0)...............................................................................113

Imaginary Alien Life-forms(STEM 2.0) .................................................................................116

Planetary Exploration and Extreme Life Forms (STEM 4.0)...............................................133

EL8_2016 M-DCPS Department of Science 5

Page 5: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherIntroduction

The purpose of this packet is to provide the M/J Comprehensive Science 3 and Grade 8 teachers with a list of basic laboratory and hands-on activities that students should experience in class. Each activity is aligned with the Next Generation Sunshine State Standards (NGSSS). Emphasis has been placed on those hands-on activities that are aligned to the Annually Assessed Benchmarks, which are assessed in the Statewide Science Assessment (SSA), formally known as the Florida Comprehensive Assessment Test 2.0 (SSA 2.0), that is administered in eighth grade.

In most cases, the activities were designed as simple as possible without the use of advanced technological equipment to make it possible for all teachers to use these activities. All activities and supplements (i.e., Parts of a Lab Report) can be modified, if necessary, to fit the needs of an individual class and/or student ability.

This document is intended to be used by science departments in M-DCPS so that all science teachers can work together, plan together, and rotate lab materials among classrooms. Through this practice, all students and teachers will have the same opportunities to participate in these experiences and promote discourse among learners, forming the building blocks of authentic learning communities.

Acknowledgement

M-DCPS Department of Mathematics and Science would like to acknowledge the efforts of the teachers who worked arduously and diligently on the preparation of this document.

EL8_2016 M-DCPS Department of Science 6

Page 6: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherMaterials

Each list corresponds to the amount of materials needed per station (whether one student or a group of students uses the station). Safety goggles should be assigned to each student as well as lab aprons on all labs containing the possible use of sharp objects or requiring mixtures of chemicals.

Boat Challenge Plastic tub o A sheet of Aluminum foil

Substitute: A sheet of paper Ruler Straws Masking Tape Electric Scale

Substitute: Triple beam balance, Graduated cylinder

PenniesSubstitutes: Paper clips, Washers

“What’s the Matter?” Inquiry Lab Mystery Mixture (sugar,

sand, water, wood chips, and iron fillings or staples)

Coffee Filter Magnet

Hot Plate Beaker Graduated Cylinder Triple Beam Balance Thermometer

Physical Change and Chemical Changes in Matter(Per group) Beakers (2) Test tubes (6) Test tube rack Thermometer Stirrers Water Milk Vinegar Cabbage Juice

(phenol red) Baking Soda Calcium Chloride

(Damp Rid) 250ml Beaker

Conservation of Mass Graduated Cylinder

Erlenmeyer Flask Balloon Baking Soda Triple Beam Balance Spoon

Air Bag Challenge Vinegar Hard boiled eggs

Baking soda Clear plastic cups

Meter stick/measuring tape Graduated cylinders

Electronic scale/triple beam balance Masking tape Optional: shoebox or plastic container to hold air bag in place.

Plastic sandwich bags

EL8_2016 M-DCPS Department of Science 7

Page 7: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAtomic Models Student handout: Periodic Table of Elements Coloring utensils

Periodic Table of Elements Student handout: Periodic Table of Elements Student Textbook

Clay Elements, Molecules and Compounds Materials : Paper Towel Toothpicks Modeling Clay Colored pencils

Investigating the Effect of Light intensity on Photosynthesis Test tube Source of bright light Sodium bicarbonate solution Watch or clock with second indicator 400-mL beaker Plastic gloves Freshly cut sprig of an evergreen (such

as yew) or elodea Hand lens

Forceps

Maximizing Photosynthesis 6 Straws/Skewers 1 Meter of Masking Tape 3 Plastic Bags 1 Sheet of Graph Paper 1 Pair of Scissors 1 smartphone/tablet with a Thermal Cam

app (many free options are available) 1 Ruler Stand (2 liter soda bottle with skewer)

Carbon Cycle Game 7 Dice Carbon Cycle Passport for Each Student 7 Station Signs Carbon Atom Model for Each Student 7 Station Movement Directions Blank Bar Graph for Each Student

Scale of the Universe Modeling Activity Modeling clay String Paper Balloons Different sized balls Markers Scissors Straws

Star Bight Apparent Magnitude LabMaterials (per group): 3 pencils 1 meter stick Tape 2 flashlights

Star Brightness Flash light or other light source Tape/glue Black construction paper Scissors Cardboard (individual panels or box) Colored plastic (clear plastic wrap and

markers may substitute)

The Martian Sun-TimesEL8_2016 M-DCPS Department of Science 8

Page 8: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher Worksheets Computer with Internet access Meter stick Markers or colored pencils Metric ruler Scissors

Adding machine tape or old VHS tape Various spherical objects of different

sizes (basketball, marbles, softball, tiny beads, soccer ball)

Construction paper

Space Travel Tour Agency

Computers with internet access Glue and/or tape Construction paper Student Page Crayons, markers, colored pencils, etc. Rubric Scissors

What Causes the Seasons? Globe of the Earth Tape Metric ruler Thermometer

Lamp with 100-watt bulb Ring stand and utility clamp 20-cm Length of string

EL8_2016 M-DCPS Department of Science 9

Page 9: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAnnually Assessed Benchmarks

Next Generation Sunshine State Standard (NGSSS)

SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (Also assesses SC.6.N.1.1, SC.6.N.1.3, SC.7.N.1.1, SC.7.N.1.3, SC.7.N.1.4, SC.8.N.1.3, and SC.8.N.1.4.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

SC.7.N.1.2 Differentiate replication (by others) from repetition (multiple trials). (Also assesses SC.6.N.1.2, SC.6.N.1.4, and SC.8.N.1.2.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.7.N.1.5 Describe the methods used in the pursuit of a scientific explanation as seen in different fields of science such as biology, geology, and physics. (Also assesses SC.7.N.3.2, SC.8.N.1.5, and SC.8.E.5.10.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.N.2.2 Explain that scientific knowledge is durable because it is open to change as new evidence or interpretations are encountered. (Also assesses SC.7.N.1.6, SC.7.N.1.7, SC.7.N.2.1, and SC.8.N.1.6.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.7.N.3.1 Recognize and explain the difference between theories and laws and give several examples of scientific theories and the evidence that supports them. (Also assesses SC.6.N.3.1 and SC.8.N.3.2.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition. (Also assesses SC.8.E.5.1 and SC.8.E.5.2.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

SC.8.E.5.5 Describe and classify specific physical properties of stars: apparent magnitude (brightness), temperature (color), size, and luminosity (absolute brightness). (Also assesses SC.8.E.5.6.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions. (Also assesses SC.8.E.5.4 and SC.8.E.5.8.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.8.E.5.9 Explain the impact of objects in space on each other including: 1. the Sun on the Earth including seasons and gravitational attraction 2. the Moon on the Earth, including phases, tides, and eclipses, and the relative position of each body. (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

SC.7.E.6.2 Identify the patterns within the rock cycle and events (plate tectonics and mountain building). (Also assesses SC.6.E.6.1, SC.6.E.6.2, and SC.7.E.6.6.) relate them to surface events (weathering and erosion) and subsurface events (plate tectonics and mountain building). (Also assesses SC.6.E.6.1, SC.6.E.6.2, and SC.7.E.6.6.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

SC.7.E.6.4 Explain and give examples of how physical evidence supports scientific theories that Earth has evolved over geologic time due to natural processes. (Also assesses SC.7.E.6.3.) (Cognitive Complexity Level 3: Strategic Thinking and Complex Reasoning)

EL8_2016 M-DCPS Department of Science 10

Page 10: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

SC.7.E.6.5 Explore the scientific theory of plate tectonics by describing how the movement of Earth’s crustal plates causes both slow and rapid changes in Earth’s surface, including volcanic eruptions, Earthquakes, and mountain building. (Also assesses SC.7.E.6.1 and SC.7.E.6.7.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.E.7.4 Differentiate and show interactions among the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere. (Also assesses SC.6.E.7.2, SC.6.E.7.3, SC.6.E.7.6, and SC.6.E.7.9.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.6.E.7.5 Explain how energy provided by the Sun influences global patterns of atmospheric movement and the temperature differences between air, water, and land. (Also assesses SC.6.E.7.1.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties are independent of the amount of the sample. (Also assesses SC.8.P.8.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a multitude of ways to produce compounds that make up all of the living and nonliving things that we encounter. (Also assesses SC.8.P.8.1, SC.8.P.8.6, SC.8.P.8.7, SC.8.P.8.8, and SC.8.P.8.9.) (Cognitive Complexity Level 1: Recall)

SC.8.P.9.2 Differentiate between physical changes and chemical changes. (Also assesses SC.8.P.9.1 and SC.8.P.9.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.7.P.10.1 Illustrate that the Sun’s energy arrives as radiation with a wide range of wavelengths, including infrared, visible, and ultraviolet, and that white light is made up of a spectrum of many different colors. (Also assesses SC.8.E.5.11.) (Cognitive Complexity Level 1: Recall)

SC.7.P.10.3 Recognize that light waves, sound waves, and other waves move at different speeds in different materials. (Also assesses SC.7.P.10.2.) (Cognitive Complexity Level 1: Recall)

SC.7.P.11.2 Investigate and describe the transformation of energy from one form to another. (Also assesses SC.6.P.11.1 and SC.7.P.11.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.7.P.11.4 Observe and describe that heat flows in predictable ways, moving from warmer objects to cooler ones until they reach the same temperature. (Also assesses SC.7.P.11.1.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.P.13.1 Investigate and describe types of forces including contact forces and forces acting at a distance, such as electrical, magnetic, and gravitational. (Also assesses SC.6.P.13.2 and SC.8.P.8.2.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.P.13.3 Investigate and describe that an unbalanced force acting on an object changes its speed, or direction of motion, or both. (Also assesses SC.6.P.12.1.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.L.14.1 Describe and identify patterns in the hierarchical organization of organisms from atoms to molecules and cells to tissues to organs to organ systems to organisms. (Cognitive Complexity Level 1: Recall)

EL8_2016 M-DCPS Department of Science 11

Page 11: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

SC.6.L.14.2 Investigate and explain the components of the scientific theory of cells (cell theory): all organisms are composed of cells (single-celled or multi-cellular), all cells come from preexisting cells, and cells are the basic unit of life. (Also assesses SC.6.L.14.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.L.14.4 Compare and contrast the structure and function of major organelles of plant and animal cells, including cell wall, cell membrane, nucleus, cytoplasm, chloroplasts, mitochondria, and vacuoles. (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.6.L.14.5 Identify and investigate the general functions of the major systems of the human body (digestive, respiratory, circulatory, reproductive, excretory, immune, nervous, and musculoskeletal) and describe ways these systems interact with each other to maintain homeostasis. (Also assesses SC.6.14.6.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.6.L.15.1 Analyze and describe how and why organisms are classified according to shared characteristics with emphasis on the Linnaean system combined with the concept of Domains. (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.7.L.15.2 Explore the scientific theory of evolution by recognizing and explaining ways in which genetic variation and environmental factors contribute to evolution by natural selection and diversity of organisms. (Also assesses SC.7.L.15.1 and SC.7.L.15.3.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.7.L.16.1 Understand and explain that every organism requires a set of instructions that specifies its traits, that this hereditary information (DNA) contains genes located in the chromosomes of each cell, and that heredity is the passage of these instructions from one generation to another. (Also assesses SC.7.L.16.2 and SC.7.L.16.3.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

SC.7.L.17.2 Compare and contrast the relationships among organisms such as mutualism, predation, parasitism, competition, and commensalism. (Also assesses SC.7.L.17.1 and SC.7.L.17.3.) (Cognitive Complexity Level 2: Basic Application of Skills and Concepts)

SC.8.L.18.4 Cite evidence that living systems follow the Laws of Conservation of Mass and Energy. (Also assesses SC.8.L.18.1, SC.8.L.18.2, and SC.8.L.18.3.) (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

EL8_2016 M-DCPS Department of Science 12

Page 12: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherLAB ROLES AND THEIR DESCRIPTIONS

Cooperative learning activities are made up of four parts: group accountability, positive interdependence, individual responsibility, and face-to-face interaction. The key to making cooperative learning activities work successfully in the classroom is to have clearly defined tasks for all members of the group. An individual science experiment can be transformed into a cooperative learning activity by using these lab roles.

Project Director (PD)The project director is responsible for the group.Roles and responsibilities:

Reads directions to the group Keeps group on task Is the only group member allowed to

talk to the teacher Shares summary of group work and

results with the class

Materials Manager (MM)The materials manager is responsible for obtaining all necessary materials and/or equipment for the lab.Roles and responsibilities:

The only person allowed to be out of his/her seat to pick up needed materials

Organizes materials and/or equipment in the work space

Facilitates the use of materials during the investigation

Assists with conducting lab procedures

Returns all materials at the end of the lab to the designated area

Technical Manager (TM)The technical manager is in charge of recording all data.Roles and responsibilities:

Records data in tables and/or graphs Operates digital devices (computer,

laptops, tablets) Completes conclusions and final

summaries Assists with conducting the lab

procedures Assists with the cleanup

Safety Director (SD)The safety director is responsible for enforcing all safety rules and conducting the lab.Roles and responsibilities:

Assists the PD with keeping the group on-task

Conducts lab procedures Reports any accident to the teacher Keeps track of time Ensures group research using

electronic sources is done in a productive and ethical manner

Assists the MM as needed.

When assigning lab groups, various factors need to be taken in consideration;

1 Always assign the group members preferably trying to combine in each group a variety of skills.

2 Constantly evaluate the groups and observe if they are on task and if the members of the group support each other in a positive way. Rotation of lab groups and members throughout the year is encouraged.

EL8_2016 M-DCPS Department of Science 13

Page 13: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherLABORATORY SAFETY

Rules:

Know the primary and secondary exit routes from the classroom.

Know the location of and how to use the safety equipment in the classroom.

Work at your assigned seat unless obtaining equipment and chemicals.

Do not handle equipment or chemicals without the teacher’s permission.

Follow laboratory procedures as explained and do not perform unauthorized experiments.

Work as quietly as possible and cooperate with your lab partner.

Wear appropriate clothing, proper footwear, and eye protection.

Report all accidents and possible hazards to the teachers.

Remove all unnecessary materials from the work area and completely clean up the work area after the experiment.

Always make safety your first consideration in the laboratory.

Safety Contract:

I will: Follow all instructions given by the teacher. Protect eyes, face and hands, and body while conducting class activities. Carry out good housekeeping practices. Know where to get help fast. Know the location of the first aid and firefighting equipment. Conduct myself in a responsible manner at all times in a laboratory situation.

I, _______________________, have read and agree to abide by the safety regulations as set forth above and also any additional printed instructions provided by the teacher. I further agree to follow all other written and verbal instructions given in class.

Student Signature: ____________________________ Date: ___________________

Parent Signature: _____________________________ Date: ___________________

EL8_2016 M-DCPS Department of Science 14

Page 14: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Pre-Lab Safety Worksheet and Approval FormThis form must be completed with the teacher’s collaboration before the lab.

Name of Student Researcher: __________________________________________ Period: ______

Title of Experiment: ___________________________________________________________________

Place a check mark in front of each true statement below: 1. I have reviewed the safety rules and guidelines.2. This lab activity involves one or more of the following: Human subjects (Permission from participants required. Subjects must indicate willingness to

participate by signing this form below.) Vertebrate Animals (requires an additional form) Potentially Hazardous Biological Agents (Microorganisms, molds, rDNA, tissues, including

blood or blood products, all require an additional form.) Hazardous chemicals (such as: strong acids or bases) Hazardous devices (such as: sharp objects or electrical equipment) Potentially Hazardous Activities (such as: heating liquids or using flames)3. I understand the possible risks and ethical considerations/concerns involved in this experiment.4. I have completed an Experimental/Engineering Design Diagram.

Show that you understand the safety and ethical concerns related to this lab by responding to the questions below. Then, sign and submit this form to your teacher before you proceed with the experiment (if necessary, use the back of this form).

A. Describe what you will be doing during this lab.

B. What are the safety concerns with this lab that were explained by your teacher? How will you address them?

C. What additional safety concerns or questions do you have?

D. What ethical concerns related to this lab do you have? How will you address them?

Student Researcher Signature: ____________________________ Date: ___________________

Teacher Approval Signature: _____________________________ Date: ___________________

Human Subjects’ Agreement to Participate:

Subject Name: ______________________ Signature: ____________________ Date: ________PLEASE PRINT

Subject Name: ______________________ Signature: ____________________ Date: ________PLEASE PRINT

Subject Name: ______________________ Signature: ____________________ Date: ________PLEASE PRINT

EL8_2016 M-DCPS Department of Science 15

Page 15: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherPARTS OF A LAB REPORT

A Step-by-Step Checklist

Good scientists reflect on their work by writing a lab report. A lab report is a recap of what a scientist investigated. It is made up of the following parts.

Title (underlined and on the top center of the page)

Benchmarks Covered: Your teacher should provide this information for you. It is a summary of the main concepts

that you will learn about by carrying out the experiment.Problem Statement:

Identify the research question/problem and state it clearly.Variables and Control Test:

Identify the variables in the experiment. State those over which you have control. There are three types of variables.1. Test Variable (Independent Variable) : (also known as the tested variable) the factor that

can be changed by the investigator (the cause).2. Outcome Variable (Dependent Variable) : (also known as the outcome variable) the

observable factor of an investigation which is the result or what happened when the independent variable was changed.

3. Controlled variables (Constants) : the other identified independent variables in the investigation that are kept constant or remain the same during the investigation.

Identify the control test. A control lest is the separate experiment that serves as the standard for comparison to identify experimental effects, changes of the dependent variable resulting from changes made to the independent variable.

Potential Hypothesis (e.g.): State the hypothesis carefully. Do not just guess but try to arrive at the hypothesis logically

and, if appropriate, with a calculation. Write down your prediction as to how the test variable (independent variable) will affect the

outcome variable (dependent variable) using an “if” and “then” statement. If (state the test variable) is (choose an action), then (state the outcome variable) will (choose

an action).Materials:

Record precise details of all equipment usedFor example: a balance weighing to +/- 0.001 g, a thermometer measuring from -10 to +110oC to an accuracy of +/- 0.1oC, etc.

Record precise details of any chemicals usedFor example: 5 g of copper (II) sulfate pentahydrate CuSO4

.5H2O(s).Procedure:

Do not copy the procedures from the lab manual or handout. Summarize the procedures; be sure to include critical steps. Give accurate and concise details about the apparatus and materials used.

Data: Ensure that all data is recorded.

- Pay particular attention to significant figures and make sure that all units are stated. Present your results clearly. Often it is better to use a table or a graph.

EL8_2016 M-DCPS Department of Science 16

Page 16: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher- If using a graph, make sure that the graph has a title, both axis are labeled clearly,

units of measure are identified and that the correct scale is chosen to utilize most of the graph space.

Record all observations. - Include color changes, solubility changes, whether heat was released or absorbed, etc.

Results: Ensure that you have used your data correctly to produce the required result in words and

provide graphs. Include any other errors or uncertainties which may affect the validity of your result.

Conclusion and Evaluation: A conclusion statement answers the following 7 questions in at least three paragraphs.

I First Paragraph: Introduction1. What was investigated?

a) Describe the problem.2. Was the hypothesis supported by the data?

a) Compare your actual result to the expected result (either from the literature, textbook, or your hypothesis)

b) Include a valid conclusion that relates to the initial problem or hypothesis. 3. What were your major findings?

a) Did the findings support or not support the hypothesis as the solution to the restated problem?

b) Calculate the percentage error from the expected value.

II Middle Paragraphs: These paragraphs answer question 4 and discusses the major findings of the experiment using data.

1. How did your findings compare with other researchers?a) Compare your result to other students’ results in the class.

The body paragraphs support the introductory paragraph by elaborating on the different pieces of information that were collected as data that either supported or did not support the original hypothesis.

Each finding needs its own sentence and relates back to supporting or not supporting the hypothesis.

The number of body paragraphs you have will depend on how many different types of data were collected. They will always refer back to the findings in the first paragraph.

III Last Paragraph: Conclusion1. What possible explanations can you offer for your findings?

a) Evaluate your method. b) State any assumptions that were made which may affect the result.

2. What recommendations do you have for further study and for improving the experiment?a) Comment on the limitations of the method chosen.b) Suggest how the method chosen could be improved to obtain more accurate and

reliable results.3. What are some possible applications of the experiment?

a) How can this experiment or the findings of this experiment be used in the real world for the benefit of society?

EL8_2016 M-DCPS Department of Science 17

Page 17: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherParts of a Lab Report Reminder

Step 1: Stating the Purpose/Problem What do you want to find out? Write a statement that describes what you want to do. It should be

as specific as possible. Often, scientists read relevant information pertaining to their experiment beforehand. The purpose/problem will most likely be stated as a question such as:

- “What are the effects of _________ on ___________?”Step 2: Defining Variables TEST VARIABLE (TV) (also called the independent variable) – The variable that is changed

on purpose for the experiment; you may have several levels of your test variable. OUTCOME VARIABLE (OV) (also called the dependent variable) – The variable that acts in

response to or because of the manipulation of the test variable. CONTROLLED VARIABLES (CV) – All factors in the experiment that are NOT allowed to

change throughout the entire experiment. Controlling variables is very important to assure that the results are due only to the changes in the test variable; everything (except the test variable) must be kept constant in order to provide accurate results.

Step 3: Forming a Hypothesis A hypothesis is an inferring statement that can be tested. The hypothesis describes how you think the test variable will respond to the outcome variable.

- (i.e., If…... then……) It is based on research and is written prior to the experiment. Never change your hypothesis during the

experiment. Never use “I,” “we,” or “you” in your hypothesis (i.e. I believe or I think that…)

- For example: If the temperature increases, then the rate of the reaction will increase. It is OK if the hypothesis is not supported by the data. A possible explanation for the unexpected

results should be given in the conclusion Step 4: Designing an Experimental Procedure Select only one thing to change in each experimental group (test variable). Change a variable that will help test the hypothesis. The procedure must tell how the variable will be changed (what are you doing?). The procedure must explain how the change in the variable will be measured. The procedure should indicate how many trials would be performed (usually a minimum of 3-4

for class experiments). It must be written in a way that someone can copy your experiment, in step by step format.Step 5: Results (Data) Qualitative Data is comprised of a description of the experimental results (i.e. larger, faster….). Quantitative Data is comprised of results in numbers (i.e. 5 cm, 10.4 grams) The results of the experiment will usually be compiled into a table/chart for easy interpretation. A graph of the data (results) may be made to more easily observe trends.Step 6: ConclusionThe conclusion should be written in paragraph form. It is a summary of the experiment, not a step-by-step description. Does the data support the hypothesis? If so, you state that the hypothesis is accepted. If not, you reject the hypothesis and offer an explanation for the unexpected result. You should summarize the trend in data in a concluding statement (ex: To conclude, the increase in temperature caused the rate of change to increase as shown by the above stated data.). Compare or contrast your results to those from similar experiments. You should also discuss the implications for further study. Could a variation of this experiment be used for another study? How does the experiment relate to situations outside the lab? (How could you apply it to real world situations?)

EL8_2016 M-DCPS Department of Science 18

Page 18: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherStudent Name: ____________________________ Date: ______________ Period: ______

Experimental Design Diagram & HintsThis form should be completed before experimentation.

Title:

Problem Statement:

Null Hypothesis:

Research Hypothesis:

Test Variable(Independent Variable)

Number of Tests:Subdivide this box to specify each variety.

Control Test:

# of Trials per Test:

Outcome Variable(Dependent Variable)

Controlled Variables

1.

2.

3.

4.

5.

6.

EL8_2016 M-DCPS Department of Science 19

Page 19: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

EXPERIMENTAL DESIGN DIAGRAM HINTS

Title: A clear, scientific way to communicate what you’re changing and what you’re measuring is to state your title as, "The Effect of ____________on__________." The tested variable is written on the first line above and the outcome variable is written on the second line.

Problem Statement: Use an interrogative word and end the sentence with a question mark. Begin the sentence with words such as: How many, How often, Where, Will, or What. Avoid Why.

Null Hypothesis: This begins just like the alternate hypothesis. The sentence should be in If ............, then...........format. After If, you should state the TV, and after the then, you should state that there will be no significant difference in the results of each test group.

Research Hypothesis: If ____________(state the conditions of the experiment), then ____________(state the predicted measurable results). Do not use pronouns (no I, you, or we) following If in your hypothesis.

Test Variable (TV): This is the condition the experimenter sets up, so it is known before the experiment (I know the TV before). In middle school, there is usually only one TV. It is also called the independent variable, the IV.

Number of Tests: State the number of variations of the TV and identify how they are different from one another. For example, if the TV is "Amount of Calcium Chloride" and 4 different amounts are used, there would be 4 tests. Then, specify the amount used in each test.

Control Test: This is usually the experimental set up that does not use the TV. Another type of control test is one in which the experimenter decides to use the normal or usual condition as the control test to serve as a standard to compare experimental results against. The control is not counted as one of the tests of the TV. In comparison experiments there may be no control test.

Number of Trials: This is the number of repetitions of one test. You will do the same number of repetitions of each variety of the TV and also the same number of repetitions of the control test. If you have 4 test groups and you repeat each test 30 times, you are doing 30 trials. Do not multiply 4 x 30 and state that there were 120 trials.

Outcome Variable(s): This is the result that you observe, measure and record during the experiment. It’s also known as the dependent variable, OV. (I don’t know the measurement of the OV before doing the experiment.) You may have more than one OV.

Controlled Variables or Variables Held Constant: Controlled Variables (Constants) are conditions that you keep the same way while conducting each variation (test) and the control test. All conditions must be the same in each test except for the TV in order to conclude that the TV was the cause of any differences in the results. Examples of Controlled Variables (Constants): Same experimenter, same place, time, environmental conditions, same measuring tools, and same techniques.

EL8_2016 M-DCPS Department of Science 20

Page 20: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherENGINEERING DESIGN PROCESS

1. Identify the need or problem 2. Research the need or problem

a. Examine current state of the issue and current solutions b. Explore other options via the internet, library, interviews, etc.c. Determine design criteria

3. Develop possible solution(s) a. Brainstorm possible solutions b. Draw on mathematics and science c. Articulate the possible solutions in two and three dimensions d. Refine the possible solutions

4. Select the best possible solution(s) a. Determine which solution(s) best meet(s) the original requirements

5. Construct a prototype a. Model the selected solution(s) in two and three dimensions

6. Test and evaluate the solution(s) a. Does it work? b. Does it meet the original design constraints?

7. Communicate the solution(s) a. Make an engineering presentation that includes a discussion of how the solution(s) best

meet(s) the needs of the initial problem, opportunity, or need b. Discuss societal impact and tradeoffs of the solution(s)

8. Redesign a. Overhaul the solution(s) based on information gathered during the tests and presentation

EL8_2016 M-DCPS Department of Science

Step 4Select the Best

Possible Solution(s)Step 5Construct a Prototype

Step 8Redesign

Step 7Communicate the

Solution(s)

Step 6Test and Evaluate

the Solution(s)

Step 2Research the Need

or Problem

Step 3Develop Possible

Solution(s)

Step 1Identify the Need

or Problem

21

Page 21: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSource(s): Massachusetts Department of Elementary and Secondary Education

EL8_2016 M-DCPS Department of Science 22

Page 22: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherCONCLUSION WRITING

Claim, Evidence and Reasoning

Students should support their own written claims with appropriate justification. Science education should help prepare students for this complex inquiry practice where students seek and provide evidence and reasons for ideas or claims (Driver, Newton and Osborne, 2000). Engaging students in explanation and argumentation can result in numerous benefits for students. Research shows that when students develop and provide support for their claims they develop a better and stronger understanding of the content knowledge (Zohar and Nemet, 2002).

When students construct explanations, they actively use the scientific principles to explain different phenomena, developing a deeper understanding of the content. Constructing explanations may also help change students’ view of science (Bell and Linn, 2000). Often students view science as a static set of facts that they need to memorize. They do not understand that scientists socially construct scientific ideas and that this science knowledge can change over time. By engaging in this inquiry practice, students can also improve their ability to justify their own written claims (McNeill et al., 2006). Remember when providing evidence to support a claim, the evidence must always be: Appropriate Accurate Sufficient

The rubric below should be used when grading lab reports/conclusions to ensure that students are effectively connecting their claim to their evidence to provide logical reasons for their conclusions.

Base Explanation Rubric

Component Level0 1 2

Claim –A conclusion that answers the original question.

Does not make a claim, or makes an inaccurate claim.

Makes an accurate but incomplete claim.

Makes an accurate and complete claim.

Evidence –Scientific data that supports the claim. The data needs to be appropriate and sufficient to support the claim.

Does not provide evidence, or only provides inappropriate evidence (evidence that does not support the claim).

Provides appropriate but insufficient evidence to support claim. May include some inappropriate evidence.

Provides appropriate and sufficient evidence to support claim.

Reasoning –A justification that links the claim and evidence. It shows why the data count as evidence by using appropriate and sufficient scientific principles.

Does not provide reasoning, or only provides reasoning that does not link evidence to claim

Provides reasoning that links the claim and evidence. Repeats the evidence and/or includes some – but not sufficient – scientific principles.

Provides reasoning that links evidence to claim. Includes appropriate and sufficient scientific principles.

McNeill, K. L. & Krajcik, J. (2008). Inquiry and scientific explanations: Helping students use evidence and reasoning. In Luft, J., Bell, R. & Gess-Newsome, J. (Eds.). Science as inquiry in the secondary setting. (p. 121-134). Arlington, VA: National Science Teachers Association Press.Source(s): Massachusetts Department of Elementary and Secondary Education

EL8_2016 M-DCPS Department of Science 23

Page 23: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Project: _______________________________ Score: ______________

PROJECT BASED STEM ACTIVITY (PBSA) RUBRIC

Score 4 Score 3 Score 2 Score 1 Score 0

Purp

ose Students demonstrate

outstanding understanding of the problem, criteria, and constraints.

Students demonstrate adequate understanding of the problem, criteria, and constraints.

Students demonstrate minimal understanding of the problem, criteria, and constraints.

Student understanding of the problem, criteria, and constraints in inadequate or unclear.

Student understanding of the problem, criteria, and constraints is not evident or not recorded.

Bra

inst

orm

Student uses prior knowledge and lesson content knowledge to brainstorm a clear, focused idea(s).Idea(s) selected from brainstorming are excellently aligned to the intent of the problem.

Student uses prior knowledge and/or lesson content knowledge to brainstorm a clear, focused ideas.Idea(s) selected from brainstorming are adequately aligned to the intent of the problem.

Student uses prior knowledge and/or lesson content knowledge to brainstorm an idea(s). Idea(s) selected from brainstorming are minimally aligned to the intent of the problem and a clear connection is not readily apparent without explanation.

Student uses prior knowledge and/or lesson content knowledge to brainstorm an idea(s).Idea(s) selected from brainstorming are impractical for the intent of the problem and/or connection to the problem is inadequate or unclear.

Brainstorming idea(s) are not aligned with the intent of the problem, no idea(s) were given by the student, or no brainstorming is evident or recorded.

Des

ign/

Plan

Student proposes and designs a plan that excellently aligns with the criteria, constraints, and intent of the problem.Design sketch is complete and includes exceptional, relevant details that will be referenced when building the solution to the problem.

Student proposes and designs a plan that adequately aligns with the criteria, constraints, and intent of the problem.Design sketch is complete and includes details that will be referenced when building the solution to the problem.

Student proposes and designs a plan that minimally aligns with the criteria, constraints, and intent of the problem.Design sketch is complete and a clear connection is not readily apparent without explanation.

Student proposes and designs a plan that does not align with the criteria, constraints, and intent of the problem.Design sketch is impractical and/or connection to the problem is inadequate or unclear.

Design plan is not completed by the student or no plan is evident or recorded.

Cre

ate/

Bui

ld a

W

orki

ng M

odel Student builds a working model

that excellently aligns with the criteria, constraints, and intent of the problem.The working model can be tested using appropriate tools, materials and resources.

Student builds a working model that adequately aligns with the criteria, constraints, and intent of the problem.The working model can be tested using appropriate tools, materials and resources.

Student builds a working model that minimally aligns with the criteria, constraints, and intent of the problem.The working model can be tested using modified tools, materials and resources.

Student builds a working model that does not align with the criteria, constraints, and intent of the problem.The working model can be tested using modified tools, materials and resources OR completed working model cannot be tested.

Working model is not built.

Tes

t and

R

edes

ign

Student tests the working model’s effectiveness to solve the problem. Accurate and detailed records are collected and an analysis of data is present.

Student tests the working model’s effectiveness to solve the problem. Adequate records are collected and an analysis of data is present.

Student tests the working model’s effectiveness to solve the problem. Minimal records are collected. Analysis of data is not present.

Student tests the working model’s effectiveness to solve the problem. Minimal records are collected. Analysis of data is not present.

Testing is not performed due to an inability to test based on the quality of the working model, there is no working model to test, or no testing is evident or recorded.

EL8_2016 M-DCPS Department of Science 24

Page 24: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Project: _______________________________ Score: ______________

PROJECT BASED STEM ACTIVITY (PBSA) RUBRIC

Score 4 Score 3 Score 2 Score 1 Score 0

Bud

get(

if ap

plic

able

)

Student record of budget is exceptionally clear and complete. Students were on or under budget.

Student record of budget is exceptionally clear and complete. Students were over budget, but less than 10% over.

Student record of budget is clear and complete. OR the student went 10% or more over budget.

Student record of budget is unclear or incomplete. OR the student went 15% or more over budget.

Student did not include a record of the budget or it is not evident.

Prod

uctio

n Student uses data, observations, and anecdotal notes from the design process to excellently articulate why their project is ready for production and use.

Student uses data, observations, and anecdotal notes from the design process to adequately articulate why their project is ready for production and use.

Student uses data, observations, and anecdotal notes from the design process to minimally articulate why their project is ready for production and use.

Student uses data, observations, and anecdotal notes but production notes are unclear or incomplete.Or no data was used to support statement.

Student does not provide reasoning for why the project is ready for production or use or this is not evident.

Dis

cuss

and

Sha

re

Student is excellently prepared for and participates in project discussion without prompting. Summarized results from testing are communicated clearly and effectively. Student poses and responds to specific questions to clarify or follow up on information shared from other classmates.

Student is adequately prepared for and participates in project discussion without prompting. Summarized results from testing are communicated clearly. Student poses and responds to specific questions to clarify or follow up on information shared from other classmates.

Student is minimally prepared for and participates in project discussion with prompting. Summarized results from testing are shared. Student infrequently poses and responds to questions to clarify or follow up on information shared from other classmates.

Student is not prepared for and inadequately participates in project discussion. Summarized results from testing are shared, but are incomplete or unclear. Communication with classmates by posing and responding to questions is limited.

Student does not participate in project discussion with judge.

Con

stru

ct v

iabl

e ar

gum

ents

.

Student can reason inductively about data, using this knowledge to communicate findings clearly based on evidence. Student can appropriately reference objects, diagrams, drawings, data, and/or actions from the activity for a viable argument of whether not their design plan was successful.

Student can adequately interpret data, using this knowledge to communicate findings based on evidence. Student can appropriately reference objects, diagrams, drawings, data, and/or actions from the activity for a viable argument of whether not their design plan was successful.

Student can minimally communicate findings by referring to objects, diagrams, drawings, data, and/or actions from the activity for a viable argument of whether not their design plan was successful.

Student inadequately communicates findings, or analysis of data is present, but flawed.

Student does not participate in project discussion with judge.

EL8_2016 M-DCPS Department of Science 25

Page 25: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

BOAT CHALLENGE(STEM 4.0)

Project Based STEM Activities – Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Tea

cher

Set

-Up

Engagement or Introduction:

Introduce the challenge and show YouTube video: Basic Hull Design [1:01].

Standard Alignment:

SC.8.N.1.1: Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.SC.8.N.2.2: Discuss what characterizes science and its methods.SC.8.N.4.1: Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels.SC.8.P.8.3: Explore and describe the densities of various materials through measurement of their masses and volumes.

Suggested Timeframe: 2 Block periods/4 traditional periods

Cross-Curricular Standards:

LAFS.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements or performing technical tasks.LAFS.68.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.MAFS.8.SP.1.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

EL8_2016 M-DCPS Department of Science 26

Page 26: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSt

ep 1

Iden

tify

the

Nee

d or

Pro

blem

Define Problem/Scenario:

Your company wants to be hired to transport building materials from Miami Beach to Fisher Island at the lowest possible cost. In order to do so, your company will ship more materials in fewer trips. Cost of fuel is very expensive making it important that your team constructs the most energy efficient boat possible.

Expected Task: Build an economical boat that can hold the most mass without sinking.

Step

2R

esea

rch

the

Nee

d or

Pr

oble

m

Research and Citations:

Written information by the students about the need or problem being solved with citations noted. How does the shape or material design of a boat affect how much weight it can hold?http://www.dot.state.fl.us/planning/trends/tc-report/freight.pdf

Vocabulary: mass, volume, density, buoyancy, gravity, balanced forces, unbalanced forces, design, solution, test

Step

3D

evel

op

Poss

ible

So

lutio

n(s)

Criteria: Costs: 1cm2 of foil= $10,1 cm of masking tape= $100,1 plastic straws= $250

Each group should consist of 3-4 studentsConstraints: Maximum Budget for construction materials $5,000Materials: Plastic tub, pennies (may substitute with paper clips, plastic cubes or

any standard weight), ruler, electronic scale or triple beam balance.

Step

4Se

lect

the

Bes

t Po

ssib

le S

olut

ion(

s)/

Step

5C

onst

ruct

a P

roto

type

Building of the Product (Prototype, model or Artifact):

Brainstorm ways in which to design the boat with the fewest materials possible. Create a sketch of the design of the boat that will keep the boat afloat and balanced. Think of ways to reinforce the bottom and how to make the walls to keep the water out. Then build the model to replicate the sketch using the materials provided. Be sure to note the volume of your boat when completed.

Step

6Te

st a

nd E

valu

ate

the

Solu

tion(

s)

Testing of the Product (Prototype, model or Artifact):

Test the boat and record the maximum amount of pennies (mass) before the boat sinks. Record the volume of the boat. Calculate the density of the sinking/floating boats.

Peer-Review Questions:

How did you prioritize the budget with the design of your team’s boat?

How did you choose which design to build? What research did you use to design your boat? What other designs did you consider for your boat? What would you improve in the design of your boat?

EL8_2016 M-DCPS Department of Science 27

Page 27: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSt

ep 7

Com

mun

icat

e th

e So

lutio

n(s)

Project Summary:

Each team will create a “pitch” (poster, PowerPoint, etc.) presentation to their company’s boat and the reason their boat had the most efficient design.

Presentation of Final Solution:

Students will present their team’s boat design and budget to the class. They will test to see the maximum mass that their boat can hold. A class data chart will be constructed where the volume of the boat and maximum mass is recorded per team.Teacher: Take the boat that held the most pennies and the one that held the least pennies and compare them. Lead the class in a brief discussion of the immediately apparent physical differences between the two boats. Subject both boats to the water displacement test to have students discuss mass, volume and density relationship by observing the volume of the boat (shape) and the water it displaces. How did the shape of the boat affect how much mass it can hold? How did the most efficient boat compare to the other boats in

relation to its volume and mass it could hold?

Step

8R

edes

ign

Re-designing of the Prototype

Students will adjust or re-design their boat and re-test based on peer reviews, teacher input, and analysis of proposed solution.

Teacher Notes:

Record the volume of the boat before testing. Maximum mass is the number of pennies before the boat sinks. You may have students copy the suggested data chart and analysis

questions in their journals and have them fill in the data and answers to the questions.

EL8_2016 M-DCPS Department of Science 28

Page 28: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher“WHAT’S THE MATTER?” INQUIRY LAB

(STEM 2.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.P.8.4. Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties are independent of the amount of the sample.

Purpose of the Lab/Activity: Students will identify different classes of matter based on physical properties by separating a mixture. Students will observe and explore the properties of different substances. Students will test how different substances interact with each other

Prior Knowledge:Matter is divided into the four basic states of solid, liquid, gas, and plasma. Matter is classified based on composition. Matter is identified by its characteristic physical properties. Physical properties are those that can be determined without altering the composition of the substance, such as, color, odor, density, strength, elasticity, magnetism, and solubility.

Problem Statement / Research Question: How can characteristic properties be used to distinguish one form of matter from another? Why is that important?

Materials (per group): Mystery Mixture (sugar,

sand, water, wood chips, and iron fillings or staples)

Coffee Filter Magnets

Hot Plate Beaker Graduated Cylinder Triple Beam Balance Thermometer

Procedures for TeacherBefore Activity

Teacher will create mystery mixture in a beaker for each lab group, which consists of sugar, sand, water, wood chips, and iron (fillings or staples).

Engage:Teacher will engage students through the following activities:

“Mystery balloons”: place common objects or materials (penny, key, battery, flour, etc.) in deflated rubber balloons and tie the balloons. Have students use their senses to try to identify the contents based on physical properties.

Show Study Jams-Properties of Matter. Distribute the student handout and mystery mixture to begin the lab activity

During Activity

Explore: Ask students to examine the mystery mixture and think about how they would

separate it. Ask students to create a set of procedures that can be replicated to separate the

mixture.

EL8_2016 M-DCPS Department of Science 29

Page 29: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe possible steps are written in red. Students should create their OWN procedures.

1. Run magnet through mixture to separate iron based on magnetism.2. Pour water over mixture to separate wood based on density. Wood is less dense

than water.3. Use filter to remove sand from mixture since sand is not soluble in water.4. Use hot plate to separate sugar from water. Water will evaporate first since it

has a lower boiling point than sugar.

If students are having difficulty coming up with procedures, ask them to list the properties of matter (magnetism, density, particle size, and solubility)

After students create procedures, distribute materials so students can conduct their investigation.

Circulate the room and inquire what students are doing as well as encourage the completion of the lab report by referring to and/or amplifying the following questions:

1. How did you separate the materials in the beaker? Answers will vary.2. Why is it important for scientists to write detailed procedures? So that other

scientists can replicate the study and verify the validity of the results.3. Would the physical properties of a material change if the size of the material

is changed? Explain. No, physical properties are independent of sample size.4. Did you have to completely alter /chemically change any of the materials to

measure their physical properties? Explain. No, can measure physical properties without changing the substance.

Important Note: Students may not know what the difference is between a physical and chemical change. This activity is to get students thinking about physical and chemical changes for the next topic.

After Activity Explain and Elaborate: After students have completed the lab procedures they should discuss the

following conclusion questions:

Scientists often find mysterious materials. Explain how physical properties are important for identifying unknown substances.Scientists can use the various physical properties such as melting point, boiling point, thermal or electrical conductivity, magnetism, density and solubility of the unknown substance to compare to known substances and correctly identify the substance or discover a new substance.

Have students read Discovery Education article “Understanding Physical Properties of Matter”

Evaluate:Evaluate student understanding of objectives through conclusion writing using the Claim-Evidence-Reasoning based on the problem statement.

SSA Connections:EL8_2016 M-DCPS Department of Science 30

Page 30: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

1. Rafael broke a small twig off a tree and threw it in the lake. It floated away. If he could somehow push the whole tree into the lake and it floated, which of the following would explain why it floats?

A. The temperature of the tree is less than the temperature of the water.

B. The volume of the tree is less than the volume of the water.

C. The mass of the tree is less than the mass of the water.

D. The density of the tree is less than the density of the water.

2. Ryan boiled a liter of water and then stirred sugar into it, adding more sugar until no more would dissolve in the water, creating a saturated solution. If he pours more sugar into it after it has had a chance to cool, what will most likely happen?

A. All of the sugar will come out of solution, and pure water will float to the top.

B. If he stirs constantly, the sugar will form into one large sugar crystal.

C. The added sugar will sink to the bottom.

D. The added sugar will dissolve in the water.

3. Sarah is completing a lab in which she is required to identify an unknown substance. She records several observations and measurements of the substance. Which of the following properties will be most helpful to Sarah in making a correct identification?

A. Density

B. Mass

C. Volume

D. Weight

4. Katie's teacher has given her a sample that contains a mixture of salt, sand, and iron filings. She is instructed to separate the mixture into the three individual components. What would be the best physical property to focus on for the first step in separating the mixture?

A. Density

B. Electrical conductivity

C. Magnetism

D. Melting point

EL8_2016 M-DCPS Department of Science 31

Page 31: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

PHYSICAL & CHEMICAL CHANGES IN MATTER(STEM 3.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA) (Also assesses SC.8.P.9.1 and SC.8.P.9.3.)SC.8.P.9.3 Investigate and describe how temperature influences chemical changes.

Purpose: Students will differentiate between physical changes and chemical changes by mixing a variety of

substances in test tubes with red cabbage juice (phenol red).

Problem Statement / Research Question: How can you differentiate between a physical and chemical change?

What are some indicators that a chemical change has occurred?

Important Notes: There are two versions of this lab with separate directions for each outlined in the “Procedure” table. The use of vinegar and calcium chloride will need to be accompanied by the use of a ventilation fan in

case of nasal sensitivity, allergy issues, or asthma. Be sure to read precautions on the calcium chloride container. Calcium chloride can burn the skin. Students should use gloves when handling this substance. If you prepare small cups with quantities for each set of students, you may want to cover the cups to prevent inhalation issues.

Guiding Questions: How does changing what you add to each substance affect it? Answers may vary. How could you explain the similarities and differences between what you see before you start your

investigation and after you have completed your tests? Answers may vary. What is a physical change? Any change that changes a substance’s shape, texture, or other physical

property without altering its chemical composition. What is a chemical change? Any change that alters the chemical composition of a substance. How can you tell if a substance has stayed the same or changed into a new substance? A substance has

undergone a chemical change when a gas is released, a precipitate has formed, an odor is released, or when its color changes (although sometimes color changes don’t always necessarily mean a chemical change occurred).

Materials (per group) Beakers (2) Test tubes (6) Test tube rack Thermometer Stirrers Water Milk Vinegar Cabbage Juice (phenol red) Baking Soda Calcium Chloride 250 mL Beaker

Before Preparation Teacher will prepare test tubes, all of which contain purple cabbage juice, about 5-

10 ml depending on the size of test tubes.Engage Teacher may demonstrate different changes (both physical and chemical) in front

of students without telling what is happening. Play YouTube video Properties of Matter Rap – Justin Bieber “Boyfriend

EL8_2016 M-DCPS Department of Science 32

Page 32: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherREMIX” and have students identify how many examples of physical and chemical properties they noticed.

During Explore Teacher will direct to students to work together for this option. Teacher will explain that students will have 5 test tubes filled with cabbage

juice to test materials for reactions. Teacher will list what each test tube is to test. Students will write their predictions as to what they think will happen. Students will test 5 liquids/materials with the cabbage juice:

o Test tube 1: water (5 ml)o Test tube 2: vinegar (5 ml)o Test tube 3: baking soda (a pinch or ¼ a small spoonful)o Test tube 4: calcium carbonate (¼ a small spoonful)o Test tube 5: milk (5 ml)

Teacher will instruct students on how to mix materials and how to take the temperature of each test tube before and during the reaction.

Be sure students clean the thermometer between each reaction to avoid cross reactions.

Students will write down their observations.Explain

The teacher will facilitate student discussions of the Guiding Questions. The teacher will write vocabulary on the board and ask students to use these

terms during their discussions:Substance Temperature Change of StateMixture Solution PropertySolid Liquid Gas

After Elaborate The teacher will give a demonstration at the end of the activity that involves

mixing vinegar, purple cabbage juice, milk, baking soda, and calcium chloride into a beaker and recalling the initial temperature students mentioned for the liquids. Students will make predictions, discuss, and explain the physical and/or chemical changes they think are involved (Predict/Observe/Explain).

Have a student helper share out the temperature after the test tubes have been mixed.

Ask students to share their observations. Ask students to refer back to the Problem Statement and discuss what are some

indicators that a chemical change has occurred?Expected results: If you begin with room-temperature vinegar, the temperature will drop. There is also a gas produced.

Explain to students that a change in temperature is a sign that a chemical reaction has occurred. Introduce the term endothermic to describe a reaction in which the temperature decreases.

Remind students that in chemical reactions, new substances are formed. Ask students if they observed anything that might be considered a new substance. Students should recognize the bubbles of carbon dioxide gas as a new substance.

You may also want to talk about how purple cabbage juice is also used to tell whether or not something is an acid or a base, and tell students it is something they will also be learning about. When the cabbage juice changes color, it is a chemical change resulting in either blue (bases) or red (acids).

EL8_2016 M-DCPS Department of Science 33

Page 33: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherEvaluate Students will write a Claim-Evidence-Reasoning Conclusion to the lab activity

using evidence to support their reasoning as to whether a chemical or physical change occurred in each combination.

SSA Connection:1. Hilary put some ice cubes in a glass of water, and the ice cubes melted. What is

the best evidence she can use to show that the melting of the ice is a purely physical change and not a chemical change?A. Even though the ice and the liquid water look different, they can be shown to

be made of the same molecules.B. When liquid water is put into the freezer and cooled long enough, it will

change into a solid form.C. She did not need to add any extra heat in order to get the ice to melt in the

glass of water.D. Although ice is more difficult to see through than liquid water, it does not

change color when it melts.

2. Which of the following is an example of a chemical change?A. freezing water to make iceB. boiling water to make steamC. making salt water from salt and waterD. separating water into hydrogen and oxygen

3. Which of the following events involves a chemical change?A. A cake rises in the oven.B. Salt is dissolved in warm water.C. A pencil is broken into two pieces.D. Sandy water is filtered to extract the sand from the water.

4. Which of the following is an example of a chemical change?A. A rock breaks into pebbles.B. Wood burns and becomes charcoal.C. Water boils and changes from a liquid to a gas.D. Dry ice (solid carbon dioxide) sublimes into carbon dioxide gas.

5. Julian mixes two test tubes of unknown liquids and observes a temperature increased from 18º C to 27ºC. What type of change might Julian have observed?

A. A physical change because the liquids didn’t change color.B. A chemical change because the volume of the liquids increased.C. A physical change because the starting liquids created a new liquid.D. A chemical change because the reaction generated heat as a result.

Reading Passage Answer Key1. C 2. B 3. A

EL8_2016 M-DCPS Department of Science 34

Page 34: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherCONSERVATION OF MASS

(STEM 3.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.P.9.1 Explore the Law of Conservation of Mass by demonstrating and concluding that mass is conserved when substances undergo physical and chemical changes. (Assessed as SC.8.P.9.2)SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA) (Also assesses SC.8.P.9.1 and SC.8.P.9.3.)

Background information:The “Law of Conservation of Mass” states that when matter goes through a physical or chemical change, the amount of matter stays the same before and after the changes occur. In other words, matter cannot be created or destroyed.

Materials: Graduated Cylinder Erlenmeyer Flask Balloon Baking Soda Triple Beam Balance Spoon Vinegar A stopper

Before activity:

What the teacher will do:Engage:Allow students opportunity to answer Assessment Probe "Burning Paper", share thoughts, and teacher demonstrates probe activity.

Mimic the assessment probe by burning a small piece of paper inside of an Erlenmeyer flask with a stopper. Ask students:

What happened to the paper? Is there the same amount of matter in the beaker before and after? Where did the matter go? How can you tell? What type of change did you observe: physical or chemical?

Have students use the background information to develop a problem statement.During activity:

What the teacher will do:Explorea. Monitor students to make sure they are remaining on task and are following proper

lab protocol.b. Review the experimental design diagram by asking individual students in groups to

explain the different parts of the experiment. Follow laboratory procedural plan; making sure to model proper laboratory

safety and use of equipment. While walking around, ask students within their group what is the temperature

in the thermometer to make sure they remember how to read it. Emphasize importance of data collection by groups. Calculate the percent error for your results and show work. Come up with

possible sources of error to mention when drawing conclusions. Percent error = Initial Mass – Final Mass X 100

EL8_2016 M-DCPS Department of Science 35

Page 35: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher Initial Mass

c. Have students use the Discussion Questions provided to apply the exploration to expected learning.

Answer Key:1. Name the reactants: Baking Soda and Vinegar2. Name the products: Sodium Acetate, Water, and Carbon Dioxide3. Name the gas produced: Carbon Dioxide4. Compare the mass of the closed system before and after the reaction. Explain your

results. (The mass of the closed system before and after the reaction were the same because matter cannot be created nor destroyed

5. Were any new elements introduced into the closed system? Where did the gas come from? Explain. NO. The law of conservation of mass states that in any chemical reaction, matter is neither created nor destroyed. Therefore, in a balanced chemical equation you must have the same number of atoms of each element on either side of the equation. The gas came from the baking soda and vinegar.

6. What evidence did you observe to indicate that a chemical reaction took place? (Bubbles indicated that a chemical reaction took place, also a new substance was form and gas was given off which inflated the balloon)

7. After the gas was released, what happened to the mass of the system and why? (The mass of the system decreased because the system was no longer closed. Some matter escaped (the gas) which caused the mass to decreased

8. Did your results support this statement? Why/Why Not?After activity:

What the teacher will do:

ExplainHave students complete the Claim-Evidence-Reasoning to respond to their OWN problem statement.

ElaborateAs the law of conservation states, matter cannot be created or destroyed, although it may be rearranged. The mass of a closed system will remain constant, regardless of the process acting inside the system.

Ask students to infer whether or not the mass of the final reaction (gas escaped) will be greater in a closed system or in an open system?

Design and create a model to describe the flow of energy and cycling of matter in a food web. How does the model demonstrate the Laws of Conservation of Mass and Energy?

Evaluate:Create a poster that defines and illustrates the Law of Conservation of Mass.

SSA Connection

1. A student adds water and sugar to a jar and seals the jar so that nothing can get in EL8_2016 M-DCPS Department of Science 36

Page 36: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacheror out. The student then finds the mass of the jar containing the water and sugar. After some sugar dissolves, the student finds the mass of the jar and its contents again.

What will happen to the mass of the jar containing the water and sugar after some of the sugar dissolves?

A. The mass will stay the same.B. The mass will increase.C. The mass will decrease.D. The mass will depend on how much sugar dissolves.

2. Joey is performing an experiment in science class. He mixes two liquids in a test tube, and gas bubbles appear at the surface of the test tube. Which of the following describes what most likely is taking place?

A. A physical change is causing a change in phase from liquid to gas.B. A chemical change has caused the liquids to undergo combustion and gas is

escaping.C. A physical change is causing the solution to exhibit different properties than

the original substances.D. A chemical change has resulted in the production of a new substance, which

is being given off as a gas.

3. Suppose you put popcorn kernels into an airtight popcorn popper and measure the mass of the popper and measure the mass of the popper with the kernels. After the popcorn has popped, what would you expect to find regarding the mass of the popper and the popcorn?

A. The mass after popping will be less than the original mass because the popped corn is less dense than the kernels.

B. The mass after popping will be equal to the original mass because the airtight container did not allow any materials to enter or leave the popper.

C. The mass after popping will be greater than the original mass because the volume of the popped corn is greater than that of the kernels.

D. The mass after popping will not be able to be determined accurately because of the steam that is released from the kernels during the popping.

EL8_2016 M-DCPS Department of Science 37

Page 37: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAIR BAG CHALLENGE

An extension to the Conservation of Mass Lab(STEM 4.0)

Project Based STEM Activities - Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Tea

cher

Set

-Up

Engagement or Introduction:

Introduce the challenge and show video using the National Geographic: I Didn’t Know That – Air Bags video [2:43].

Standard Alignment:

SC.8.N.1.1: Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.

SC.8.N.2.2: Discuss what characterizes science and its methods.

SC.8.N.4.1: Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels.

SC.8.P.9.1: Explore the Law of Conservation of Mass by demonstrating and concluding that mass is conserved when substances undergo physical and chemical changes.

SC.8.P.9.2: Differentiate between physical changes and chemical changes.

SC.8.P.9.3: Investigate and describe how temperature influences chemical changes.

Suggested Student Timeframe:

2 block days /4 traditional days

Cross-Curricular Standards:

LAFS.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements or performing technical tasks.

EL8_2016 M-DCPS Department of Science 38

Page 38: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherLAFS.68.RST.2.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.

LAFS.68.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.

LAFS.68.WHST.3.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.

MAFS.8.SP.1.1: Construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. Describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

Step

1Id

entif

y th

e N

eed

or P

robl

em

Define Problem/ Scenario:

Your company wants to hire you to design a cost-effective airbag from nonflammable chemicals that will inflate quickly and prevent injury.

Expected Task: Build a prototype of an airbag that will prevent an egg from breaking simulating a car crash.

Step

2R

esea

rch

the

Nee

d or

Pro

blem

Research and Citations: Written information by the students about the addressing need or

solving the problem with citations noted.

Vocabulary: mass, volume, physical change, chemical change, law of conservation of mass, design, solution, test

Step

3D

evel

op

Poss

ible

So

lutio

n(s) Criteria: Costs: 10 mL of vinegar= $500

1 grams of baking soda= $100 Each group should consist of 3-4 students

Constraints: Air bag doesn’t explodeEL8_2016 M-DCPS Department of Science 39

Page 39: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher Protects passenger (egg) from a minimum vertical drop of 50 cm. Maximum amount of vinegar 50 mL and 5 grams of baking soda

Materials: Vinegar Baking soda Meter stick/measuring tape Electronic scale/triple beam balance Plastic sandwich bags Hard boiled eggs Clear plastic cups Graduated cylinders Masking tape Optional: shoebox or plastic container to hold air bag in place.

Step

4Se

lect

the

Bes

t Po

ssib

le

Solu

tion(

s)/

Building of the Product (Prototype, model or Artifact):

Brainstorm ways in which to create a chemical reaction that will sustain the impact of an egg being dropped from 50 cm. Think of ways to hold your air bag in the container to avoid the egg from bouncing out.

Step

6Te

st a

nd E

valu

ate

the

Solu

tion(

s)

Testing of the Product (Prototype, model or Artifact):

Test the air bag by dropping the egg from 50cm height for first trial. Repeat each drop by increasing the height by 5cm. Record the maximum height of the egg before it cracks and/or explodes the air bag. Record the height on the class chart.

Peer-Review Questions:

Did you the budget of materials play a role in your design? How? How did you choose which ratios of vinegar and baking soda to

try? What research did you use to design your air bag? What other designs did your team consider? What would you change to improve in the design of your air bag?

tep

7

Com

mun

icat

e th

e So

lutio

n(s)

Project Summary:

Each team will create a presentation (poster, PowerPoint, etc.) of their company’s airbag and the reason their airbag had the most efficient design.

Presentation of Final Solution:

Students will present their team’s air bag design and budget to the class. They will test to see the maximum height their air bag can maintain the egg passenger safe. A class data chart will be constructed where the ratio of vinegar and baking soda is recorded with respect to the maximum height the egg was “safe” per team.

Step

8R

edes

ign

Re-designing of the Prototype

Students will adjust or re-design their boat and re-test based on peer reviews, teacher input, and analysis of proposed solution.

EL8_2016 M-DCPS Department of Science 40

Page 40: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherTeacher Notes: Boiled eggs work best in order to avoid messes. Groups should be

given at least three eggs to test their prototype. Quart size bags may be used instead of sandwich size taking into

consideration the ratio of vinegar and baking soda will need to increase.

EL8_2016 M-DCPS Department of Science 41

Page 41: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherATOMIC MODELING

(STEM 2.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.P.8.1 Explore the scientific theory of atoms (also known as atomic theory) by using models to explain the motion of particles in solids, liquids, and gases. Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)

SC.8.P.8.7 Explore the scientific theory of atoms (also known as atomic theory) by recognizing that atoms are the smallest unit of an element and are composed of sub-atomic particles (electrons surrounding a nucleus containing protons and neutrons). Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)

Purpose: Students will explain that atoms are the smallest unit of an element and are composed of subatomic

particles by drawing and/or creating models of an atom. Students will describe size and charge of the subatomic particles proton, neutron, and electron.

Problem Statement / Research Question: How does atomic structure relate to the information on the periodic table?

Materials Handout, Periodic Table of Elements and coloring utensils

Procedure Before Preparation

Teacher will display an illustration of atoms in a pencil. Teacher will have handouts of student “Atomic Models” worksheet. Optional: Periodic Table for Elaborate activity.Engage Ask students to predict how many times they can cut a piece of paper (standard

8.5 x 11 paper cut into 11 inch strips works well) in half as many times as they can.

Provide students paper to test prediction and estimate number of total cuts required to get to the size of an atom.

Explain to students that the smallest unit of matter is called an “atom” and is smaller than the piece of paper they cut and cannot be seen by the human eye. http://www.quarked.org/parents/lesson1.html has a useful table to share with students and to use as a guide for this engage activity.

Explain to students that all states of matter (solids, liquids, and gases) are made up of atoms.

During Explore Show a picture of a pencil point and how the carbon atoms look at the

molecular level. Project the image Pencil Zoom. Ask students questions:

- What are the three different tiny particles that make up an atom?Protons, neutrons, and electrons.

- Which of these is in the center of the atom?Protons and neutrons are in the center (nucleus) of the atom. You may

EL8_2016 M-DCPS Department of Science 42

Page 42: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherwant to mention that hydrogen is the only atom that usually has no neutrons. The nucleus of most hydrogen atoms is composed of just 1 proton. A small percentage of hydrogen atoms have 1 or even 2 neutrons.

- What zooms around the nucleus of an atom?Electrons

- What are the charges of these particles?Proton—positive; electron—negative; neutron—no charge. The charge on the proton and electron are exactly the same size but opposite. The same number of protons and electrons exactly cancel one another in a neutral atom.

- How might atoms be arranged in solids, liquids, and gases?In solids, atoms are tightly packed and vibrating in place. In liquids, atoms are close together, but without regular arrangement. In solids, atoms are well separated with no regular arrangement.

Teacher will draw the current model of the atom and students will follow along.

Students will then create their own atomic models in their handout.Explain Students will make the connection between atoms and matter through

drawings and explanations in their handout. Teacher will circulate the classroom assisting students with misconceptions.

After Elaborate Students will be given a periodic table to read and look for other elements that

they have not created atomic models for to create their own examples of how an elements’ atoms combine to form a piece of matter.

Evaluate Teacher will evaluate student understanding of objectives based on the Claim-

Evidence-Reasoning conclusion that asks, “How does atomic structure relate to the information on the periodic table?”

SSA Connection1. Which of the following statements about atoms is TRUE?

A. They are the same for all elements.B. They are both stable and nonradioactive.C. They are arranged in the periodic table according to number of protons.D. They are made up of protons and electrons in a nucleus surrounded by

orbiting neutrons.

2. Why does the atomic mass of an element differ from the atomic number?A. Atomic number consists of only the number of neutrons. Atomic mass

also includes the number of protons.B. Atomic number consists of only the number of protons. Atomic mass also

includes the number of neutrons.C. Atomic number consists of only the number of protons. Atomic mass also

includes the number of electrons.D. Atomic number consists of only the number of electrons. Atomic mass

also includes the number of protons.

3. What subatomic particle(s) are found in the atom’s nucleus?

EL8_2016 M-DCPS Department of Science 43

Page 43: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherA. ProtonsB. NeutronsC. ElectronsD. Both Protons and Neutrons

4. Your science teacher has three samples of matter. Each sample is the exact same substance. However, one is a solid, one is a liquid, and one is a gas. Which of the following would be correct?

A. The solid sample has the most thermal energy and so the particles in that sample are moving the most.

B. The liquid sample has the most thermal energy and so the particles in that sample are moving the most.

C. The gas sample has the most thermal energy and so the particles in that sample are moving the most.

D. All three samples have the same amount of energy; they are just different temperatures.

5. How does the formation of ice in the freezing compartment of a refrigerator demonstrate the particulate nature of matter?A. As the particle energy of matter decreases, the motion of the atoms in a

given space decreasesB. As the particle energy of matter decreases, the motion of atoms in a given

space increasesC. As the particle energy of matter increases, the motion of atoms in a given

space decreasesD. As the particle energy of matter increases, the motion of atoms remains

unchanged

EL8_2016 M-DCPS Department of Science 44

Page 44: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

PERIODIC TABLE OF ELEMENTS(STEM 2.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.P.8.6 Recognize that elements are grouped in the periodic table according to similarities of their properties. Assessed as SC.8.P.8.5 (Cognitive Complexity: Level 1: Recall)

Purpose: Students will be introduced to the basic information given for the elements in most periodic tables: the

name, symbol, atomic number, and atomic mass for each element. Students will focus on the first 20 elements to create an imaginary periodic table that is modeled off of

the Periodic Table of Elements commonly used. Students will identify trends in the periodic table by explaining that elements in the same groups have

similar properties.

Problem Statement / Research Question: How is the periodic table useful for scientists?

Guiding Questions: How do we organize what we know about matter, elements, and atoms? What is the Periodic Table and how is it useful? What trends do we see in the Periodic Table?

Materials Handout, Periodic Table of Elements, and Textbook

Procedure Before Activity

Preparation Print out student handouts, periodic table, and project periodic table on the board.Engage Have students make observations of the Lithium and water demonstration on

Discovery Education: Lithium. Project an image of the Periodic Table for students to locate Lithium (Li) and

ensure students can read the Periodic Table.

During Activity

Explore Students should use the periodic table to make predictions about all of the

following metals with water prior to viewing any of the clips. Students should be given the opportunity to revise predictions for upcoming reactions after observing the previous video clip.o Sodium o Potassium o Rubidium o Cesium

Students will work in groups of 2-3 to read through the “Imaginary Periodic Table” clues.

Students will fill in their periodic table based on the clues, which require them to

EL8_2016 M-DCPS Department of Science 45

Page 45: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherunderstand how the periodic table is organized.

After Activity Elaborate Students will research examples of families of elements that have common

characteristics. Students will read and complete Color Coding the Periodic Table handout.

Evaluate Teacher will evaluate student understanding of objective based on written

conclusion in C-E-R that answers the question, “How is the periodic table useful for scientists?”

Students should be able to explain how elements are arranged (increasing in order of atomic number; elements with similar characteristics are grouped in families).

SSA Connection:

1. Which of the following statements regarding the periodic table of elements is true?

A. The periodic table does not list all of the known elements in the universe.B. The properties of elements can be predicted by their positions in the

periodic table, but how the elements react with each other cannot be predicted.

C. All elements on the periodic table are made up of the same fundamental particles: protons, neutrons and electrons.

D. All nonliving things consist of elements on the periodic table; all living things consist of things that are not listed on the periodic table.

2. In the modern periodic table, which of the following describes atoms with similar chemical behavior and properties?

A. They have similar atomic masses.B. They are located in the same group.C. They are located in the same period.D. They have the same number of isotopes.

3. Using the periodic table, which of the following pairs of elements should you expect to have the most similar properties?

A. Aluminum (Al) and Silicon (Si)B. Sulfur (S) and Selenium (Se)C. Sodium (Na) and Nitrogen (N)D. Hydrogen (H) and Helium (He)

EL8_2016 M-DCPS Department of Science 46

Page 46: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Imaginary Periodic Table Answer Key

1 18

1 L 2 13 14 15 16 17 Ba

2 Sp Gl B Lv Ab Br Re Si

3 Bu Bw Xi Cc Bl Sk P Sb

4 V ToTransition Elements

F M Po Mo Lo Sm

5 Ex Sc Dk Cn Na E If Hu

Coloring Coding the Periodic Table KeyAdapted from the Texas Center for Educational Technology

1. Groups 2. Periods3. Metals4. Metalloids5. Gases or Non-Metals6. Alkali

7. Alkaline Earth 8. Transition Metals9. Halogens10. Noble Gases11. Lanthanides12. Properties or characteristics

EL8_2016 M-DCPS Department of Science 47

Page 47: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherClay Elements, Molecules, and Compounds

(STEM 3.0)

SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a multitude of ways to produce compounds that make up all of the living and nonliving things that we encounter. (AA)SC.8.P.8.9 Distinguish among mixtures (including solutions) and pure substances (Assessed as SC.8.P.8.5)

Objectives: Students will model how elements combine in a multitude of ways to produce

compounds that make up all living and nonliving things. Students will differentiate among pure substances, mixtures and solutions.

Problem Statement / Research Question: How does a small set of elements combine to form molecules, compounds and mixtures, which are used in your daily lives?

Materials: Paper Towel Toothpicks

Modeling Clay Colored pencils

Background Information for the Teacher:This activity is used for students to gain an understanding that atoms of elements combine to form molecules and compounds. Since students can’t see atoms, molecules and compounds, they will create models of them using different colors of clay pieces to represent the different elements. Students should understand that some molecules are elements not compounds since they are only made up of only one type of element such as hydrogen gas. Mixtures consist of different types of elements and/or compounds that are physically blended but not chemically bonded together. When students complete this activity, they should be able to differentiate between elements, compounds and mixtures.

Before Activity PreparationBefore the activity, prepare the clay pieces that represent the different elements. Each group will need a bag, which contains six different colors of clay pieces. Each bag should contain the number of pieces for each color that are found on the color key card. Using small bags for each color works best so that way the different colors of clay pieces don’t stick together.

Engage: Show Study Jams Video: Elements and Compounds Study Jams Video: MixturesShow examples of elements, compounds and mixtures such as sample of salt, copper, saltwater, sand and water and beaker of air. The class should have a brief discussion about the video and the samples shown.

During Activity Explore: Students will complete the activity: Clay Elements, Molecules and CompoundsGuiding Questions:

1. What is an atom and what part of the model represents an atom?

EL8_2016 M-DCPS Department of Science 48

Page 48: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher2. How do atoms form molecules and compounds?3. What is the difference between molecules, compounds and mixtures?

During this activity, the teacher should walk around to ensure that students understand that the atoms (clay pieces) combine to form different types of molecules, compounds and mixtures.Suggestion: have each group save one of their models (teacher assigns) to share during the discussion.

Explain:Students will participate in a class discussion by sharing their answers to questions completed during activity and models that they created for a particular element, compound or mixture. The teacher should revisit the guiding questions to ensure that students don’t have misconceptions and have mastered the material.

After Activity Elaborate:Students will research and identify elements, molecules, compounds and mixtures that they use in their daily lives. They will create a drawing that represents a model of the element, molecule, compound or mixture and explain how they use each one in their daily lives.

Evaluate:Teacher will evaluate student understanding of objectives based on the Claim-Evidence-Reasoning conclusion for the essential questions: Explain how atoms of elements form molecules, compounds and mixtures that are used in your daily lives.

SSA Connection1. Which of the following is the best example of a heterogeneous mixture?

A. Lemonade made of water, lemonade powder mix, and sugar.B. An omelet made of scrambled eggs and cheddar cheese.C. Trail mix made of raisins, peanuts, and chocolate candies.D. A glass of ice water made of ice cubes and pure water.

2. Susie wants to make lemonade on a hot summer day. She mixes lemon juice, water, and sugar in a large container. Which of the following happens as she combines the ingredients?

A. They mix together to form a new compound.B. They mix together to form a homogeneous solution.C. The stirring motion causes them to break down into elements.D. The heavier items will not completely dissolve, creating a suspension.

3. Which statement best explains why silver nitrate (AgNO3) is classified as a compound?

A. Silver nitrate contains a metal.B. Silver nitrate can react with copper.C. Silver nitrate forms when three elements chemically combine.D. Silver nitrate forms a solution when mixed with water.

EL8_2016 M-DCPS Department of Science 49

Page 49: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

4. In the following diagram, the content of each container is shown as spheres representing atoms. Different shadings of the atoms represent different elements.

Which of the containers has only one pure substance shown?

A. IB. IIC. IIID. IV

Reading Passage Answer Key

1. D 2. A 3. D 4. C

EL8_2016 M-DCPS Department of Science 50

Page 50: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

EL8_2016 M-DCPS Department of Science 51

Page 51: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

Clay Model Compounds ---Color Key

Count the number of clay pieces you have for each color and match to the key. Use a crayon or colored pencil to color each clay piece. Match the colors to the numbers!

8-Hydrogen 3-Chlorine 10-Oxygen

2-Sodium 4-Carbon 2-Nitrogen

Names: ______________________________________

EL8_2016 M-DCPS Department of Science 52

Page 52: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSeparating Mixtures

(STEM 3.0)Project Based STEM Activities - Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Teac

her S

et-U

p

Engagement or Introduction:

What’s in a Mixture video from TED Ed: What’s in a mixture?Introduce the challenge and show video of a trailer truck spilling its contents and turning over on YouTube

Standard Alignment:

SC.8.N.1.1: Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.SC.8.N.2.2: Discuss what characterizes science and its methods.SC.8.N.4.1: Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels.SC.8.P.8.9: Distinguish among mixtures (including solutions) and pure substances.

Suggested Student Timeframe:

2 Block periods/4 traditional periods

Cross-Curricular Standards:

LAFS.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements or performing technical tasks.LAFS.68.RST.2.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.LAFS.68.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.LAFS.68.WHST.3.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.LAFS.8.SL.2.4: Present claims and findings, emphasizing salient

EL8_2016 M-DCPS Department of Science 53

Page 53: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherpoints in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.MAFS.K12.MP.3.1: Construct viable arguments and critique the reasoning of others.

Step

1Id

entif

y th

e N

eed

or

Prob

lem

Define Problem/Scenario:

Your company wants to be hired to transport building materials from Miami A tractor-trailer has accidently spilled the contents of its load on the road. The contents have mixed together and must be separated in order to complete the delivery.

Expected Task: Students draw up plans for a portable machine that can be built on site to clean up the spill of salt, sand, iron and wood chips.

Step

2R

esea

rch

the

Nee

d or

Pr

oble

m

Research and Citations:

Written information by the students about the need or problem being solved with citations noted. Students can view the video of the ways of separating mixtures from TED Ed.

Vocabulary: Compounds, mixtures, solutions, heterogeneous, homogeneous, distillation, chromatography, reverse osmosis, diffusion through semi-permeable membranes.

Step

3D

evel

op P

ossi

ble

Solu

tion(

s)

Criteria: -No more than four separation mechanisms.Constraints: - Machine must be portable.

- May not use electricity. (Alternatives: solar power, batteries, etc.)

Materials: 1000mL beaker, sand, soil, wood chips, iron fillings, water, coffee filters, magnets, hot plate, large chart, poster or bulletin board paper and markers.

Step

4Se

lect

the

Bes

t Po

ssib

le

Solu

tion(

s)/

Step

5

Building of the Product (Prototype, model or Artifact):

Brainstorm ways in which to design a machine that can separate the sand, salt, iron and wood chips. Create a sketch of the design of the machine that can be built onsite. Think of ways combine the separation mechanisms into one machine.

Step

6Te

st a

nd E

valu

ate

the

Solu

tion(

s)

Testing of the Product (Prototype, model or Artifact):

Test the different separation methods in a small scale.

Peer-Review Questions:

-How did you prioritize the substances to separate first?-How did you choose which design to build?-What research did you use to design your separation machine?-What other designs did you consider for your machine?-What would you improve in the design of your machine?

EL8_2016 M-DCPS Department of Science 54

Page 54: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

EL8_2016 M-DCPS Department of Science

Step

7C

omm

unic

ate

the

Solu

tion(

s) Project Summary:

Each team will create a sketch of their separation machine to present the most efficient way to separate the mixture using the vocabulary for the different methods of separating.

Presentation of Final Solution:

Students will present their team’s sketch of the design of their separation machine to the class and explain why it is the most efficient solution.

Step

8R

edes

ign

Re-designing of the Prototype

Students will adjust or re-design their machine and re-test based on peer reviews, teacher input, and analysis of proposed solution.

Teacher Notes: - May use this activity in combination with the Essentials lab- Safety precautions for the use of hot plates.- Staples are an easier substitute than iron fillings.- As a class decide which machine is most efficient and why?

55

Page 55: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherInvestigating the Effect of Light Intensity on Photosynthesis

Adapted from: State Adopted – Prentice Hall (Laboratory Manual B)(STEM 3.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.L.18.1 Describe and investigate the process of photosynthesis, such as the roles of light, carbon dioxide, water and chlorophyll; production of food; release of oxygen (Assessed as SC.8.L.18.4)

Objective/Purpose:1. To observe how light affects photosynthesis.2. To understand how photosynthesis in important to life.

Background Information:Photosynthesis is the process by which plants take carbon dioxide from the atmosphere, add water,

and use the energy of sunlight to produce sugar. Photosynthesis occurs in the chloroplast, an organelle in plant cells that contains the molecule chlorophyll. Chlorophyll absorbs the energy of sunlight. That light energy is converted to chemical energy through the steps of photosynthesis.

In order to carry out photosynthesis, a plant must have light. But, how much light must a plant have? Some plants need a lot of light. Others seem to thrive in shade. Does more light lead to more photosynthesis? In this investigation, you will examine how the intensity of light affects photosynthesis. You will also analyze the importance of photosynthesis and its need for our environment to survive.

Problem Statement/Research Question:Students should develop their own question to investigate. Sample questions include: “How does light affect photosynthesis?” “When is the rate of photosynthesis greatest in a day?” “How are animals dependent on the process of photosynthesis?”

Read the entire investigation. Then, work with a partner to answer the following questions.1. What are the products of photosynthesis? Which of these products is released from leaves as a

gas?2. What can you tell about photosynthesis if a leaf begins to produce more gas bubbles? Fewer gas

bubbles?3. What are the manipulated and responding variables in this experiment? Identify one controlled

variable.

Materials:Test tube Source of bright lightSodium bicarbonate solution Watch or clock with second indicator400-mL beaker Plastic glovesFreshly cut sprig of an evergreen (such as yew) or elodea

Hand lens

Forceps

Before activity:

What the teacher will do:Engage:Have students observe the process of photosynthesis with an aquatic plant.In groups, students should:

1. Write ten observationsEL8_2016 M-DCPS Department of Science 56

Page 56: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher2. Discuss as a group what factors may affect the rate of which the bubbles

move (indicator of rate of photosynthesis).3. Write three questions about what you saw4. Decide on a Problem Statement

During activity:

What the teacher will do:Explore:

Students should develop a hypothesis and method for testing the hypothesis. Monitor students to make sure they are remaining on task and are following

proper lab protocol. Follow laboratory procedural plan; making sure to model proper laboratory

safety and use of equipment. Emphasize importance of data collection by groups.

After activity:

What the teacher will do:Explain:Have students complete the Claim-Evidence-Reasoning to respond to their own problem statement

Elaborate:Students can use their findings to develop a sustainable ecosystem in a bottle.

Evaluate:Students can use their C-E-R and other resources to create a display, poem, song, etc. that summarizes the process of photosynthesis.

SSA Connection:1. Plants make sugar molecules, which contain a good deal of energy. Where do

they get the energy that goes into the sugar molecules?A. They harvest it from waterB. They manufacture it themselves.C. They trap the energy in light.D. They extract it from other cells.

2. If a plant had a mutation that kept it from making enough chlorophyll, how would it look different from other plants of its own kind?

A. It would have fewer leaves and a broader stem than the others.B. It would be smaller and not as green than the others.C. It would be larger and greener than the others.D. It would have more flowers and more leaves than the others.

3. Janelle needs to draw a diagram of the process of photosynthesis for homework. She begins by writing the equation for photosynthesis. Which of the following correctly shows the overall process of photosynthesis?

A. carbohydrate + oxygen + light energy → carbon dioxide + waterB. carbohydrate + water + light energy → carbon dioxide + oxygenC. carbon dioxide + water + light energy → carbohydrate + oxygenD. carbon dioxide + oxygen + light energy → carbohydrate + water

Reading Passage Answer Key1. A 2. C. 3.A 4.A

EL8_2016 M-DCPS Department of Science 57

Page 57: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherData (Tables and Observations):

Light Intensity

1 min 2 min 3 min 4 min 5 min Average

Room lightDim light

Bright light

Data Analysis (Calculations):1. Observing: From what part of the sprig (stem or needle leaves) did the bubbles emerge?2. Observing: When was the greatest number of bubbles produced?3. Expository: Explain the data produced in the experiment in relation to the levels of photosynthesis.

Results and Conclusions:1. Drawing Conclusions: How does the intensity of light affect the rate of photosynthesis? Was your hypothesis correct or not? Explain what occurred.2. Comparing and Contrasting: How do your results compare with those of your classmates? Are they similar? Are they different? Why might there have been differences in the numbers of bubbles produced? Can you identify any trends even if the actual numbers differ?3. Closure Activity:Students can make a Microsoft Power Point presentation about the importance of plants to our atmosphere, community and future. Include measures that can be implemented to save forests and stop global warming.

Extension:Perform the activity again using different colors of light. What effect does each color have on the rate of photosynthesis?

Notes for Teacher: Provide sprigs that are as freshly cut as possible. For better results, cut stems underwater

and keep the cut ends in water until use. Prepare a saturated solution of 7 g sodium bicarbonate per 100 ml water. Pour off the

solution, leaving any undissolved solid behind.

EL8_2016 M-DCPS Department of Science 58

Page 58: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherMaximizing Photosynthesis

(STEM 3.0)Project Based STEM Activities - Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Teac

her S

et-U

p

Engagement or Introduction:

Photosynthesis video; MIT Photosynthetic Cell Article “Artificial Leaf Makes Food from Sunlight”

Standard Alignment:

SC.8.N.1.1: Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.SC.8.N.2.2: Discuss what characterizes science and its methods.SC.8.N.4.1: Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels.SC.8.L.18.1: Describe and investigate the process of photosynthesis, such as the roles of light, carbon dioxide, water and chlorophyll; production of food; release of oxygen.

Suggested Student Timeframe:

1.5 Block periods/3 traditional periods

Cross-Curricular Standards:

LAFS.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements or performing technical tasks.LAFS.68.RST.2.4: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6–8 texts and topics.LAFS.68.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.LAFS.68.WHST.3.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.

EL8_2016 M-DCPS Department of Science 59

Page 59: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherLAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.

MAFS.8.F.2.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Step

1Id

entif

y th

e N

eed

or

Prob

lem

Define Problem/Scenario:

Scientists are deciding on which plants to take to a space station that will be self-sufficient. They need to choose a plant that creates the most amount of oxygen by absorbing the most light from their leaves.

Expected Task:

Create a structure and layout for a plant’s leaves to absorb the most light for photosynthesis.

Step

2R

esea

rch

the

Nee

d or

Pr

oble

m

Research and Citations: Research: Why Leaves Take Different Shapes

Vocabulary: Photosynthesis, light, plant cell, chloroplast, chlorophyll, oxygen, carbon dioxide, design, solution, test

Step

3D

evel

op P

ossi

ble

Solu

tion(

s)

Criteria: No more than four separation mechanisms. Must capture light efficiently Must be aesthetically desirable Must be conducive and sturdy enough to survive transport in

and out of spaceConstraints: Must be between 25 cm and 30 cm above the paper

Light will be placed above the center of the graph paper Leaf setup will be placed over any part of the graph paper the

group choosesMaterials: 6 Straws/Skewers

3 Plastic Bags 1 Pair of Scissors 1 Ruler 1 Meter of Masking Tape 1 Sheet of Graph Paper 1 smartphone/tablet with a Thermal Cam app (many free

options are available) Stand (2 liter soda bottle with skewer)

Step

4Se

lect

the

Bes

t Po

ssib

le

Solu

tion(

s)/

Step

5C

onst

ruct

a

Prot

otyp

e

Building of the Product (Prototype, model or Artifact):

Students will work in groups of 3-4 to build a setup with the materials given that adhere to all constraints.

EL8_2016 M-DCPS Department of Science 60

Page 60: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSt

ep 6

Test

and

Eva

luat

e th

e So

lutio

n(s)

Testing of the Product (Prototype, model or Artifact):

The group will test their design by placing their setup between the lamp and the graph paper. The Thermal Cam app will be used to determine how much light is making through the design and onto the paper.

Peer-Review Questions:

How did you choose which design to build? What research did you use to design your leaf? How did you prioritize the design of the leaf to the efficiency

of water distribution and food transport to the roots? What other designs did you consider for your leaf? What would you improve in the design of your set up?

Step

7C

omm

unic

ate

the

Solu

tion(

s)

Project Summary: Students will present their team’s design of their leaf design and

setup, as well as, the percentage of the leaf that absorbs light.

Presentation of Final Solution:

Students will present their team’s leaf design and set up and explain why the scientists should choose their design to take to the space station.

Step

8R

edes

ign

Re-designing of the Prototype

Students will adjust or re-design their set up and leaf design based on peer reviews, teacher input, and analysis of proposed solution.

Teacher Notes: The Thermal Cam app displays different colors when viewing the

design. Create a code for each color displayed: red, orange, yellow, green and blue.

EL8_2016 M-DCPS Department of Science 61

Page 61: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

CARBON CYCLE STATION GAME(STEM 3.0)

(Adapted from Resources for Educators from the National Center for Atmospheric Research http://www.ucar.edu )

Next Generation Sunshine State Standards Benchmark: SC.8.L.18.3 Construct a scientific model of the carbon cycle to show how matter and energy are continuously transferred within and between organisms and their physical environment. SC.8.N.1.5 Analyze the methods used to develop a scientific explanation as seen in different fields of science.

Purpose: Model the movement of carbon through the environment

Problem Statement / Research Question: How does carbon move through the environment? How can the carbon cycle become unbalanced?

Background Information for the teacher: The movement of carbon through various aspects of the natural environment is the focus of much scientific research. Global warming and climate change can be attributed to the increased amount of heat-trapping gases, such as carbon dioxide. Students must develop an understanding of how carbon moves through the environment in order to appreciate the complexity of developing solutions to address problems associated with climate change. In addition, since anthropogenic influences impact how much carbon is reintroduced to the active carbon cycle, students should recognize that human actions negatively affect the environment.

What is the Carbon Cycle?All living organisms are based on the carbon atom. Unique among the common elements of the Earth's surface, the carbon atom has the ability to form bonds with as many as four other atoms (including other carbon atoms) and to form double bonds to itself. Carbon compounds can be solid, liquid, or gas under conditions commonly found on the Earth's surface. Because of this, carbon can help form solid minerals (such as limestone), 'squishy' organisms (such as plants and animals), and can be dissolved in water or carried around the world through the atmosphere as carbon dioxide gas. The attributes of the remarkable carbon atom make possible the existence of all organic compounds essential to life on Earth.

Carbon atoms continually move through living organisms, the oceans, the atmosphere, and the crust of the planet. This movement is known as the carbon cycle. The paths taken by carbon atoms through this cycle are extremely complex, and may take millions of years to come full circle.

Modified with permission from Global Climates - Past, Present, and Future, S. Henderson, S. Holman, and L. Mortensen (Eds.). EPA Report No. EPA/600/R-93/126, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC. pp. 59 - 64.

EL8_2016 M-DCPS Department of Science 62

Page 62: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherMaterials:

7 Dice 7 Station Signs 7 Station Movement Directions Carbon Cycle Passport for Each Student Carbon Atom Model for Each Student Blank Bar Graph for Each Student

Before activity:

What the teacher will do:Teacher Preparation:Print and laminate station signs for durability. Place signs outside next to real life examples. For example, place “plant” station by flowers, plants or grass. Place “soil” station on the ground, etc. Place one die at each station.

Engage: Dirt for Lunch1. Have students list everything they are having or had for lunch.2. Ask students if they can name a food in their lunch that did not come from dirt?

Mention that no matter what you will eat or have eaten for lunch, ultimately they are eating dirt!

3. Have students create a concept map to attempt to figure out the ingredients in different foods and, as a group, trace each food’s origin back to the Earth.

4. Use a tuna fish sandwich for an example. The bread came from wheat grown in the dirt. Pickles are preserved cucumbers grown in the dirt. Lettuce was grown in the dirt. Mayonnaise came from eggs, which came from chickens that ate grains

grown in the dirt. Tuna living in the ocean eat smaller fish that eat zooplankton that eat

phytoplankton, which need nutrients from the decomposed bodies of dead plants and animals accumulated on the ocean floor and brought to the surface by currents.

5. Optional: As a group create a poster using an appropriate graphic organizer explaining “I Eat Dirt…Ask Me How”. Drawings, magazine cutouts, or computer graphics should be incorporated into the poster.

Optional: Study Jams-Carbon Cycle, TED Ed-Carbon Cycle, BBC-Carbon CycleDuring activity:

What the teacher will do:Explore:

1. Tell students that they are going to be carbon atoms moving through the carbon cycle.

2. Using the carbon atom model, have students draw in the protons, neutrons and electrons.

3. Students then wear the carbon atom model as they travel the Carbon Cycle.4. Categorize the places carbon can be found into these stations: Atmosphere,

Plants, Animals, Soil, Ocean, Deep Ocean, and Fossil Fuels. Point out the areas outside or in the room that are labeled with each station and contain the directions for movement from that station.

5. Assign students to each station randomly and evenly. Have students identify the different places carbon could go from that given station. Discuss the processes that allow for the transfer of carbon between stations. Students should make a line and roll the die individually to follow the directions for

EL8_2016 M-DCPS Department of Science 63

Page 63: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teachermovement from (or retention at) each station. Remind them that they are representing atoms of carbon moving through the carbon cycle and that they should record their movements on the data sheet.

6. Students will realize the routine movements (or non-movements) in the carbon cycle.

7. Once the carbon atoms (students) have had a chance to roll the die ten times, have each student create a bar graph using the data they collected. The bar graph should represent the number of times the carbon atom (student) was at each station.

8. Using graph paper, create a large bar graph recording the number of carbon atoms (students) at each station.

After activity:

What the teacher will do:ExplainHave students complete the Claim-Evidence-Reasoning to respond to the problem statement.

Elaborate/ExtendPresent students with the following scenario to research and solve.

Problem:Humans cause many combustion processes that dramatically increase the concentrations of acid-producing oxides in the Earth’s atmosphere. For example, when any type of fuel is burnt, several types of chemicals are produced. Power stations, factories, and automobiles burn fuels. Some of the gases that are released from these fuels, especially nitrogen oxides and sulfur dioxide, react with the tiny droplets of water in clouds to form sulfuric and nitric acids. The rain from these clouds then falls as very weak acid; this acid is commonly described as “acid rain.” While acid rain is not harmful to humans, acid rain does trigger inorganic and biochemical reactions that are harmful to the environment. Immediate, sustainable actions need to be taken to decrease the high concentrations of acid-producing oxides in the Earth’s atmosphere.

Task:Your mission is to develop and implement a feasible “Acid Rain Reduction Plan” for your school, family, or neighborhood community.

SSA Connection:

1. Which of the following processes would most likely release carbon dioxide into the environment?

A. building a wooden houseB. growing trees in the yardC. burning wood in a campfireD. chipping up wood for mulch

2. Fossil fuels such as natural gas and petroleum contain carbon. How did the carbon get into the fossil fuels?

A. It migrated into them from the rocks in which the fossil fuels are found.

EL8_2016 M-DCPS Department of Science 64

Page 64: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherB. It seeped out of coal buried near the fossil fuel deposits underground.C. It was in the air that was trapped underground when the fossil fuels

formed.D. It was once part of the organisms from which the fossil fuels formed.

3. Which of the following is NOT a way carbon dioxide returns to the atmosphere?

A. decay of organismsB. emissions by factoriesC. photosynthesisD. respiration

Reading Passage Answer Key1. B 2. A 3.C 4.A

EL8_2016 M-DCPS Department of Science 65

Page 65: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

The Carbon Cycle

THE ATMOSPHERE

You are currently a molecule of carbon dioxide in the atmosphere.

If you roll… Then you …

1 Stay in the atmosphere. Much of the carbon dioxide in the atmosphere moves through the atmosphere.

2 Go to plant. You are used by a plant in photosynthesis.

3 Stay in the atmosphere. Much of the carbon dioxide in the atmosphere moves through the atmosphere.

4 Stay in the atmosphere. Much of the carbon dioxide in the atmosphere circulates through the atmosphere.

5 Go to surface ocean.

6 Go to plant. You are used by a plant in photosynthesis.

EL8_2016 M-DCPS Department of Science 66

Page 66: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

PLANTS

BIOSPHERE

You are currently a carbon molecule in the structure of the plant.

If you roll… Then you …

1 Go to soil. The tree shed its leaves.

2 Stay in plant. You are a carbon molecule in the tree’s trunk.

3 Go to animal. The leaves and berries that the plant produced contain your carbon molecule and were eaten.

4 Stay in plant. You are a carbon molecule in the tree’s roots.

5 Stay in plant. You are a carbon molecule in the tree’s branches.

6 Stay in plant. You are a carbon molecule in the tree’s trunk.

EL8_2016 M-DCPS Department of Science 67

Page 67: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

ANIMALS

BIOSPHERE

You are currently a molecule of carbon in an animal.

If you roll… Then you …

1 Stay in animal. The carbon molecule is stored as fat in the animal.

2 Go to soil. The animal that consumed you died and your carbon molecule is returned to the soil.

3 Go to atmosphere. The animal that consumed you respired (breathed) you out as carbon dioxide.

4 Stay in animal. You are eaten by a predator.

5 Go to atmosphere. The animal that consumed you respired (breathed) you out as carbon dioxide.

6 Go to atmosphere. The animal that consumed you respired (breathed) you out as carbon dioxide.

EL8_2016 M-DCPS Department of Science 68

Page 68: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

SOIL

GEOSPHERE

You are currently a molecule of carbon dioxide in the soil.

If you roll… Then you …

1 Stay in the soil. Much of the carbon in the soil is stored there.

2 Go to plant. You are used by a plant in photosynthesis.

3 Go to fossil fuels. Your carbon molecule has been in the soil so long it turns into fossil fuels.

4 Go to the atmosphere.

5 Stay in the soil.

6 Go to fossil fuels. Your carbon molecule has been in the soil so long that it turns into fossil fuels.

EL8_2016 M-DCPS Department of Science 69

Page 69: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

SURFACE OCEAN

HYDROSPHERE

You are currently a molecule of carbon dioxide in the surface ocean.

If you roll… Then you …

1 Go to deep ocean.

2 Stay in the surface ocean.

3 Go to deep ocean. Your carbon atom was part of an ocean organism that has died and has sunk to the bottom of the ocean.

4 Stay in the surface ocean.

5 Go to the atmosphere.

6 Go to the atmosphere.

EL8_2016 M-DCPS Department of Science 70

Page 70: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

DEEP OCEAN

HYDROSPHERE

You are currently a molecule of carbon in the deep ocean.

If you roll… Then you …

1 Stay in the deep ocean.

2 Stay in the deep ocean.

3 Go to surface ocean.

4 Go to surface ocean.

5 Go to surface ocean.

6 Go to animal. An organism in the water has taken you up as food in the deep ocean.

EL8_2016 M-DCPS Department of Science 71

Page 71: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherThe Carbon Cycle

FOSSIL FUELS

GEOSPHERE

Fossil fuels are a rich source of energy that has been created from carbon that has been stored for many millions of years.

If you roll… Then you …

1 Stay in the fossil fuels.

2 Stay in the fossil fuels.

3 Stay in the fossil fuels.

4 Stay in the fossil fuels.

5 Go to the atmosphere. Humans have pumped the fuel that you are part of out of the ground and have used it to power their cars.

6 Go to the atmosphere.

EL8_2016 M-DCPS Department of Science 72

Page 72: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSCALE OF OUR UNIVERSE MODELING ACTIVITY

(STEM 4.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.E.5.3: Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition. (Also assesses SC.8.E.5.1 and SC.8.E.5.2.)SC.7.N.3.2: Identify the benefits and limitations of the use of scientific models.

LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.MAFS.7.RP.1.2: Recognize and represent proportional relationships between quantities.

Purpose of Lab/Activity: Students will identify the various celestial bodies in our universe by creating models as

proportional representations highlighting similarities or differences amongst those celestial bodies. Students will understand relative scales of the various distances of the Universe by incorporating a

scale in their model of the universe.

Problem Statement / Research Question: How can a model be used to describe the vastness (largeness) of our universe?

Materials (Suggested, but not limited to) Modeling clay String Paper (construction/ poster) Balloons Various spherical objects Markers Scissors Straws Register tape Protractors Computer/Internet Access

Procedures:Before Activity

Engage: Teacher will project http://htwins.net/scale2/ to introduce how large our universe

is and all that is inside. Teacher will ask students what else they think is inside the universe and how long

it would take to reach the outskirts of our solar system.During Activity

Explore Teacher must explain expectations and directions for activity: Students will be given a list of celestial objects they are to include in their model

(see student handout). And develop a problem statement Students will work in groups of 2-3 to create a scale to use to illustrate distances

between the objects. Students will gather any materials they wish to use to create their model of the

universe.

Tasks for groups to explore:1. Identify unique characteristics of celestial objects within the Universe2. Sort and classify the mass objects in the universe from least to greatest3. Sort and classify the distance of celestial objects within the universe in AU/light-

years

EL8_2016 M-DCPS Department of Science 73

Page 73: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherExplain

Students will research each celestial object Students will explain how they created their universe model Students will demonstrate their understanding of the scale of the universe by

explaining the different celestial bodies as each group presents their models, the audience must record notes about each celestial object

After Activity

Elaborate After activity, students will complete activity write up and discuss the benefits and

limitations of their model. Challenge the students by having the students use their notes and all celestial

objects from the word bank to sort them into a hierarchical organizer.(Students can use the diagram to take notes or further lesson extensions)

Evaluate Teacher will evaluate understanding of objectives based on student conclusions in

C-E-R.

SSA Connection:

1. Which statement about relative astronomical size is correct?

A. The diameter of Earth is bigger than the diameter of the Sun.B. Our Solar System is bigger than the Milky Way galaxy.C. Asteroids are the largest of the minor bodies in our Solar System.D. The orbit of our Moon is smaller than the dwarf planet Pluto.

2. It would be appropriate to use Astronomical Units (AU) to measure the distance between which of the following?

A. starsB. galaxiesC. countriesD. planets

3. Which of the following correctly describes the relationship between astronomical bodies in outer space?

A. Mars is larger than Earth.B. The Milky Way is much larger than our Solar System.C. The Moon is further away from the Sun than the asteroid belt.D. The orbits of planets are greater than the orbits of the satellites.

Reading Passage Answer Key1. A 2. A 3.A 4.D

EL8_2016 M-DCPS Department of Science 74

Page 74: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSTAR BRIGHT APPARENT MAGNITUDE LAB

(STEM 3.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.E.5.5 Describe and classify specific physical properties of stars: apparent magnitude (brightness), temperature (color), size, and luminosity (absolute brightness). AA (Cognitive Complexity: Level 2: Basic Application of Skills & Concepts)

SC.8.N.1.1 Define a problem from the 8th grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types: systematic observations, or experiments, identify variables. AA (Cognitive Complexity: Level 3: Strategic Thinking & Complex Reasoning)

Purpose: Students will demonstrate how distance affects the apparent magnitude and absolute brightness of

a flashlight and relate it to brightness of stars. Students will explain the apparent magnitude and absolute brightness of a star.

Problem Statement / Research Question: What determines the brightness of a star?

Materials (per group): 3 pencils 1 meter stick Tape 2 flashlights

Procedures:

Before Activity

Preparation: Have materials ready for students to use in groups or at stations Optional: separate each part of the activity (during and after) into stations.

Engage: Show the Discovery Education Video on Brightness & Luminosity [0:55] Review vocabulary and clarify the meaning of “absolute brightness” and

“apparent magnitude” as the terms to use. Ask students what other things emit light and are bright, such as stars to

transition to lab activity.During Activity Explore:

Teacher will pass out lab handouts and students will read background information.

Students will answer the pre-lab questions and teacher will begin a discussion on the purpose of the lab.

Students will work in groups of 3 to execute the lab activity. Teacher will monitor groups and ask students the following questions:

1. How does distance of the flashlight affect what you see?The closer the flashlight is, the brighter it appears; and the further away the flashlight is the dimmer it appears.

2. When the flashlights are the same distance from you, what do you see and why?When the flashlights are both close and both far their brightness is the same. This is because both flashlights are emitting the same amount of brightness since they are the same flashlight.

EL8_2016 M-DCPS Department of Science 75

Page 75: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher3. How does this activity relate to our objective and our knowledge about stars?This activity shows us how distance affects the observed brightness of a star. For example, stars that are really far away may be bright but don’t seem bright because of their distance. Stars that are closer to Earth seem brighter because there is less distance between the star and the Earth.

After Activity Explain: Students write their explanations and conclusions in their lab handout Students will answer the question: “What is the relationship between a star’s

apparent magnitude and distance from Earth?” in the C-E-R template

Elaborate: Watch Stargazing Basics: Understanding Star Magnitude in Astronomy Extension activity Science Net Links - Star Light, Star Bright Activity

modified student worksheet and answer sheet Use Interactive 3D night Sky (on promethean board/Smartboard) to locate

Ursa Minor and have students click on stars to get information to fill in their worksheet.

Additional option: To wrap up the lesson, you may use the step by step simulation Analyzing Stars with the HR Diagram to find relationships between star properties.

Evaluate: Evaluate student understanding and mastery of concept based on responses

for conclusion of lab.

SSA Connection:1. Which factor is NOT used to determine a star's apparent magnitude?

A. how big the star isB. how hot the star isC. how dense the star isD. how far away the star is

2. The observed brightness of a star depends on which factors?A. the star's temperature, size, and compositionB. the star's brightness, size, and distanceC. the star's shape, distance, and sizeD. the star's composition, shape, and temperature

3. The surface temperature of a star is indicated by which characteristic?A. shapeB. absolute brightnessC. colorD. size

4. Brandon learns that a star's luminosity is a measure of the star's absolute brightness, and is determined by a combination of the star's physical properties. Which of the following correctly describes the relationship between the luminosity of two stars that have the same radius?

EL8_2016 M-DCPS Department of Science 76

Page 76: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherA. The star that is hotter will have a lower luminosity.B. The star that is hotter will have a higher luminosity.C. The stars' luminosities will depend on how close they are to the Sun.D. The stars will have the same luminosity since their radii are the same.

EL8_2016 M-DCPS Department of Science 77

Page 77: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Star Brightness(STEM 4.0)

Project Based STEM Activities for Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Teac

her S

et-U

p

Engagement or Introduction:

Following the Star Bright Apparent Magnitude Lab or similar activity, students should reflect on how two identical flashlights are useful demonstrating apparent brightness, but not absolute brightness.

Standard Alignment:

SC.8.E.5.5: Describe and classify specific physical properties of stars: apparent magnitude (brightness), temperature (color), size, and luminosity (absolute brightness).

Suggested Student Timeframe:

1.5 blocks / 3 traditional periods

Cross-Curricular Standards:

LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound valid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.

MAFS.8.F.2.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Step

1Id

entif

y th

e N

eed

or

Prob

lem

Define Problem/Scenario:

In an effort to better engage students with the concept of stellar properties, a private space agency is funding a project to develop educational technology able to allow students to manipulate a model star. You have decided to apply for the project and well need to demonstrate your invention.

Expected Task: Develop and demonstrate an adjustable model that can simulate various components of a star to adjust the star’s magnitude and temperature.

Step

2R

esea

rch

the

Nee

d or

Pr

oble

m Research and Citations:

Written information by the students about the need or problem being solved with citations noted.

Vocabulary: apparent magnitude (brightness), luminosity (absolute brightness), star, temperature

EL8_2016 M-DCPS Department of Science 78

Page 78: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSt

ep 3

Dev

elop

Pos

sibl

e So

lutio

n(s)

Criteria: Teams should be comprised of 3-4 studentsModel should be easily adjustable (quickly interchangeable parts or adjustable parts)Model will demonstrate differences in luminosity based on size and colorThe size range that is demonstrated must have the largest star at least 100 times larger than the smallest star

Constraints: Only 1 light source is allowed in the modelDemonstrations of the model should be under 2 minutes in length and displayColors area limited to the colors of actual starsThe size rangeYou may be up to 5 interchangeable parts other than the main component, device or set-up for you model

Materials: Flash light or other light source Black construction paper Cardboard (individual panels or box) Tape/glue Scissors Colored plastic (clear plastic wrap and markers may substitute)

Step

4Se

lect

the

Bes

t Po

ssib

le

Solu

tion(

s)/

Step

5

Building of the Product (Prototype, model or Artifact):

Based on research and brainstorming of solutions, the students are to build a prototype or their model or product.

Step

6Te

st a

nd E

valu

ate

the

Solu

tion(

s)

Testing of the Product (Prototype, model or Artifact):

Students test the success of their prototype.

Peer-Review Questions:

How does the model account for various temperatures of stars?Can distance re a relevant variable in the model?What were alternative methods of modeling star size?

Step

7C

omm

unic

ate

the

Solu

tion(

s) Project Summary:

Written description of completed task and proposed solution to presented problem or scenario. This should include a product description similar to one that would be found in a sales catalogue.

Presentation of Final Solution: Demonstration of product with description.

Step

8R

edes

ign

Re-designing of the Prototype

Based on peer reviews, teacher input, and analysis of proposed solution, the students are to re-design and rebuild a prototype of their model, product, etc.

Teacher Notes: To wrap up the lesson, you may use the step by step simulation Analyzing Stars with the HR Diagram to find relationships between star properties.

EL8_2016 M-DCPS Department of Science 79

Page 79: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

THE MARTIAN SUN-TIMES(STEM 4.0)

Next Generation Sunshine State Standards Benchmark: SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions. (AA) (Also assesses SC.8.E.5.4 and SC.8.E.5.8.).

Background Information: Sources: NASA Solar System Exploration and http://nineplanets.org/mars.html Our Solar system is a part of a spiral galaxy called the Milky Way. It is comprised of our nearest star, the Sun, and the celestial bodies that surround it. There are eight (8) planets in our solar system – Pluto was downgraded to a dwarf planet in 2006 mainly because it orbits around the Sun in “zones of similar objects that can cross its path.” Pluto has a more distinguished recognition because dwarf planets orbiting the Sun beyond Neptune are referred to as plutoids. Of the eight remaining planets, there are four (4) inner “rocky” planets and four (4) outer “gas giants.” One of particular interest is Mars.Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming Mars may prefer this symbolism.) The name of the month March derives from Mars. Mars has been known since prehistoric times. Of course, it has been extensively studied with ground-based observatories. But even very large telescopes find Mars a difficult target, it's just too small. It is still a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!).Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The surface of Mars is therefore much colder than the Earth would be at that distance from the Sun.

Background Information:Distances in space can sometimes be hard to imagine because space is so vast. Think about measuring the following objects: a textbook, the classroom door, or the distance from your house to school. You would probably have to use different units of measurement. In order to measure long distances on Earth, we would use kilometers. But larger units are required for measuring distances in space. One astronomical unit equals 150 million km (1 AU = 150,000,000 km), which is the average distance from the Earth to the Sun.

EL8_2016 M-DCPS Department of Science 80

Page 80: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherMaterials:

Part 1 - various spherical objects of different sizes (i.e., basketball, softball, soccer ball, large marbles small marbles, beads, etc.

Part 2 - Computer with Internet accessPart 3 - receipt paper rolls (adding machine tape), meter stick, metric ruler, markers or colored pencils, scissors, protractor, construction paper

ObjectivesStudents will:

Explore the solar system Build a scale models various components of the solar system Gather, interpret, and compare information for the planets of our solar system.

Problem Statement / Research Question: How do models provide us with a better understanding of the Solar System?

Teacher note: Students are told that they are Earthling news reporters for an Internet newspaper called the

Martian Sun-Times. They will write articles for the newspaper comparing different planets to Earth.

It is recommended that you assign a team to each investigation. It is possible for students to collect data and answer the questions in one period if there is a computer for each group.

Another period will be necessary for them to discuss and write their article as well as develop their models. Encourage students to use their factual information but to consider one of the following formats when writing their articles: travel brochure, human or Martian interest - story, fashion report, disaster report, weather predictions, etc.

Students must gather information and create a display that summarizes the similarities and differences discovered for their category (task card) about the planets and the sun.

Students will be evaluated on the basis of effort, job performance, team participation and their literary contribution.

Your role will be to answer questions for students and assist students in their interpretations. As always is the case, it's important for you to have done the investigations before teaching them. Occasionally, you may need to further explain some science concept found in the "Stats" sheets. Before Activity

Engage:Part 1: Solar System Sizes

1. As a class, discuss the actual size of our solar system – the planets, moons, and the Sun. Note that all of the measurements in the table below are in thousands, and even hundreds of thousands, of kilometers.

2. Using a spreadsheet program or calculator, begin to calculate the needed data in column 3. Once done, discuss these ratios as a class.

3. To complete column 4, set Earth’s diameter to the size of a large marble and recalculate the sizes based on the ratios in column 3.

4. Try to think of objects that correspond to the calculated sizes.

EL8_2016 M-DCPS Department of Science 81

Page 81: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAnswers

Solar System Body

EquatorialDiameter

(kilometers)

DiameterCompared

withEarth's

Scaled DiametersScaled to…

Earth=Large Marble

(cm)

Everyday Object Representing Solar

System Body

Mercury 4,880 0.38 0.76 Small bead

Venus 12,100 0.95 1.9 Large marble

Earth 12,756 1 2 Large Marble

Mars 6,787 0.53 1.06 Small marble

Jupiter 143,200 11.2 22.4 Basketball

Saturn 120,000 9.4 18.8 Soccer ball

Uranus 51,800 4.1 8.2 Softball

Neptune 49,528 3.9 7.8 SoftballPluto (Dwarf

planet) ~2,330 0.19 0.38 Tiny bead

Moon 3,476 0.27 0.54 Tiny bead

Sun 1,392,000 109 218 Giant beach ball? (Very Large)

Source(s) www.perkins-observatory.org and www.flpromise.org

Part 2 –Reporters on AssignmentUsing the task cards, each group will research the answers to their tasks and develop their news presentation and model to demonstrate their findings in a creative, proportional, and logical manner.

- Task 1: Identify unique characteristics of celestial objects within the Solar System

- Task 2: Sort and classify the planets in the Solar System by composition- Task 3: Sort and classify the mass of the planets in the Solar System from least

to greatest (kg)- Task 4: Sort and classify the axis tilt of the planets in the Solar System from

least to greatest- Task 5: Sort and classify the distance of celestial objects within the Solar

System in AU- Task 6: Sort and classify the length of a year (revolution) of objects in the Solar

System from least to greatest number of daysTask 7: Sort and classify the average atmospheric temperature highs and lows of each planet from least to greatest

- Task 8: Sort and classify the length of a day (rotation) of objects in the Solar System from least to greatest number of hours

Part 3 - Solar System Scale Model : Students will use mathematical equations, measuring tools and skills to create an accurate scale model of the solar system.

EL8_2016 M-DCPS Department of Science 82

Page 82: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAsk students to brainstorm about all of the objects that they have seen or observed in the night sky. Then discuss with the class how far away they think these objects (stars, planets, or satellites) are. Reinforce to students that there are planets much closer to the Earth than stars other than our Sun.

During Activity

Explore1. As a class, decide what scale you will use to determine your measured distance

from the Earth to the Sun. This measurement will represent one Astronomical Unit (AU); (Ex: 10 cm = 1 AU).

2. Multiply your chosen AU standard by 40 to determine the length of adding machine tape needed to complete your scale model activity. (10 cm x 40 = 400 cm of tape).

3. Place your values in Table 2.TABLE 2: Scaled Distances of Planets

PLANET

Distance from the Sun in

Astronomical Units (AU)

Standard-Scale(chosen by

class/group)AU x scale

unit

Distance of Planet in the chosen scale.

(cm)

Mercury 0.4

Venus 0.7

Earth 1.0

Mars 1.5

Jupiter 5.2

Saturn 9.5

Uranus 19.5

Neptune 30.2

Pluto (Dwarf Planet) 40

4. Cut the adding machine tape to the appropriate length.Note: If you would like to include the Sun and Asteroid Belt, be sure to cut extra length (5 cm – 7cm should be adequate) at the start of your distance scale model. Students should also consider that the Sun’s size will not be to scale.

5. Mark one end of the tape to represent the Sun.6. Measure from the edge of your group’s drawn Sun the distances for each planet.

Place a dot where each planet should be placed. Include your scale on the model.Once all of the planets have mapped out, each group member should choose one or two planets to draw and color. Use your textbook or materials provided by your teacher as a reference.

EL8_2016 M-DCPS Department of Science 83

Page 83: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherExplain

Students will explain how they created their solar system model. Students will demonstrate their understanding by completing the results and

conclusion worksheet based on the presentations of the various groups Emphasize the importance of paying attention to the group presentations in order

to complete the results and conclusion worksheetResults and Conclusions:1. Why do you think scale models are important?2. Compare and contrast the distances of the inner and outer planets from the Sun3. Draw the planets by scale according to size (diameter) on the distance scale model.4.

After Activity

Elaborate

Part 4 - Martian Sun Times ReportersTeacher’s Procedure:1. Divide the class into eight different groups. Each person within the group will be

assigned a specific job, e.g. secretary, researcher(s), editor, organizer.2. Assign to each group one of the investigations to research. Use the factual

information obtained to prepare an article. This may consist of anyone of a variety of formats, e.g., a newspaper article, a travel brochure, a human –interest (or Martian interest) story, a fashion report, weather predictions.

Student Procedure:1. Your group will be assigned an investigation to research and present to class.2. Use the factual information obtained to prepare an article. This may consist of

anyone of a variety of formats, e.g., a newspaper article, a travel brochure, a human –interest (or Martian interest) story, a fashion report, weather predictions.

3. Your group will develop a model that is easy for readers to understand based on the information you gathered.

4. Each person within the group will be assigned a specific job, e.g. secretary, researcher(s), editor, organizer.

Summary of Investigations:Investigation I: Weather Forecasts for Earthlings and Martians. (Comparing weather for Mars and where you live).Compare temperatures and wind speeds on Mars and on Earth where you live, as well as noting the temperature ranges across the two planets.Investigation II : A Martian Summer Day (Comparing temperatures for summer on Mars and the place you live)Research the typical high and low summer temperatures for Mars. Compare temperatures for the current date on Mars and Earth based upon 30° N latitude.Investigation III: Stormy Mars: Dust Gets In My Eyes (Finding out about dust storms on Mars). Discover the effect of Martian dust storms on temperatures. Find out what might cause the storms and infer the length of one storm.Investigation IV: Probing Earth and Mars: What Should We Pack? (Finding out temperatures at various landing sites)If MASA (Martian Aeronautics and Space Administration) sent astronauts to Earth to places that match the latitude and longitude of Viking and Pathfinder landing sites,

EL8_2016 M-DCPS Department of Science 84

Page 84: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherwhere would they land and what weather conditions would they encounter?Investigation V: Life on Mars: Where's the Party? (Finding out about the possibility of life on Mars)Learn about the Martian meteorite that may show evidence of life there. Are any temperatures on Mars similar to Earth? Considering the environment of Mars what, would a Martian look like?Investigation VI: Getting to Mars: Are We There Yet? (Finding out about Mars' orbit and NASA Missions)Learn about planetary orbits and interplanetary travel. How long would a trip from Earth to Mars take? What are some of the next Martian missions planned?Investigation VII: Exploring Mars: Oh Water, Where Art Thou? (Finding out about water on Mars)Early observers of Mars thought they saw canals on the planet. There are no canals, but there is a lot of evidence of once– abundant water on Mars. Students will see current Mars images and compare them to water– formed features on Earth.

Extension:1. Allow students to imagine that they are living on one of the planets other than Earth.

They must assume the role of a travel agent who is trying to attract visitors to their home world. They must create an Interplanetary Travel Brochure.

Resources: http://www.ucls.uchicago.edu/MartianSunTimes/index.html) http://www.nineplanets.org/mars.html

Evaluate: Students will present to the other groups within the class as groups record information presented in their journals. A sample notetaking template is provided for students. It can be copied at 80% and pasted into their notebooks to complete upon presenting. If groups are finished with their work before they present, encourage students to complete the information in their journals for their own groups information as they wait for others.

SSA Connection:

1. A year is the amount of time it takes for a planet to orbit the Sun. If Earth is 1 astronomical unit (AU) away from the Sun, and Neptune is 30 astronomical units (AU) away from the Sun, how does the length of a year on Neptune compare to a year on Earth?

A. A year is the same amount of time for all planets.B. A year on Neptune is shorter than on Earth, since Neptune is bigger and orbits

the Sun faster.C. A year on Earth is shorter than a year on Neptune because Earth is closer to the

Sun.D. A year on Earth is shorter than a year on Neptune because Earth is smaller than

Neptune.

EL8_2016 M-DCPS Department of Science 85

Page 85: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher2. Saturn is 9.5 astronomical units (AU) from the Sun and Mars is only 1.5 AU from

the Sun. Saturn is also much larger than Mars. Based on this information, how does the average surface temperature on Mars compare to the average surface temperature on Saturn?

A. Since Mars is closer to the Sun than Saturn, it has a higher average surface temperature.

B. Saturn is larger than Mars and absorbs more light, so it has a higher average surface temperature.

C. Since both planets are more than 1 AU from the Sun, their average surface temperatures are equal.

D. Even though Saturn is further away, Saturn's rings cause it to have a lower average surface temperature.

3. The planets in our Solar System share some similarities, but their differences often outnumber the similarities. For example, one day on Neptune is only about 16.1 hours, and while Earth and Neptune both have natural satellites, Earth has only one moon, while Neptune has 13. Which of the following is also an accurate comparison of Earth and Neptune?

A. Neptune has a more solid surface than Earth.B. Earth has a shorter period of revolution than Neptune.C. Neptune has a longer period of rotation than Earth.D. Earth has a lower average temperature than Neptune.

4. The table below provides information about 4 planets.

Planet Period of Revolution(Earth Time)

Period of Rotation(Earth Time)

Earth 365 days 23.9 hoursMars 687 days 24.6 hoursMercury 88 days 59 daysVenus 225 days 243 days

Which of these planets has the longest year?

A. EarthB. MarsC. MercuryD. Venus

EL8_2016 M-DCPS Department of Science 86

Page 86: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Space Travel Tour Agency(STEM 3.0)

Project Based STEM Activities for Middle Grades Science

Project Based STEM (Science, Technology, Engineering and Mathematics) activities create a student-centered learning environment in which students investigate and engineer solutions to real-world problems, and construct evidence-based explanations of real-world phenomena within their science content. Students are also provided the opportunity to re-design models they have developed, based on peer feedback and reviews. Through these engineering practices within the content, students can gain a deeper understanding of science and are exposed to how STEM relates to their education and future career goals.

Teac

her S

et-U

p

Engagement or Introduction:

NASA Video What is a Planet? [7:53]YouTube Video Is Pluto a Planet? [4:44]

Standard Alignment:

SC.8.N.1.1: Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions.SC.8.N.2.2: Discuss what characterizes science and its methods.SC.8.N.4.1: Explain that science is one of the processes that can be used to inform decision making at the community, state, national, and international levels.SC.8.E.5.7: Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions.

Suggested Student Timeframe:

2 Block periods/4 traditional periods

Cross-Curricular Standards:

LAFS.68.RST.1.3: Follow precisely a multistep procedure when carrying out experiments, taking measurements or performing technical tasks.LAFS.68.WHST.2.4: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.LAFS.68.WHST.3.7: Conduct short research projects to answer a question (including a self-generated question), drawing on several sources and generating additional related, focused questions that allow for multiple avenues of exploration.LAFS.68.WHST.3.8: Gather relevant information from multiple print and digital sources, using search terms effectively; assess the credibility and accuracy of each source; and quote or paraphrase the data and conclusions of others while avoiding plagiarism and following a standard format for citation.LAFS.8.SL.2.4: Present claims and findings, emphasizing salient points in a focused, coherent manner with relevant evidence, sound

EL8_2016 M-DCPS Department of Science 87

Page 87: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teachervalid reasoning, and well-chosen details; use appropriate eye contact, adequate volume, and clear pronunciation.

MAFS.8.F.2.5: Describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). Sketch a graph that exhibits the qualitative features of a function that has been described verbally.

Step

1Id

entif

y th

e N

eed

or

Prob

lem

Define Problem/Scenario:

Your team owns a leading travel agency for Space Travel. Scientists and vacationers alike are interested in what is out there but need help or additional information that your agency can provide.

Expected Task: Your team has to research a planet or moon within our solar system and design a travel brochure to get future travelers to visit that planet. Adapted from NASA: Travel Agent

Challenge - Based on your research, create a mini suitcase of Space Travel Essentials for someone interested in visiting your planet.

Step

2R

esea

rch

the

Nee

d or

Pr

oble

m Research and Citations:

NASA Solar System ExplorationNASA Space Place - Planet Extreme Weather

Vocabulary: Gravity, temperature, atmosphere, minerals, rocks, orbital, rotational, moons, rings, distance

Step

3D

evel

op P

ossi

ble

Solu

tion(

s)

Criteria: The Brochure must have: Name of destination Distance from Sun Surface temperature range Orbital period (length of year in Earth days or years) Rotational period (length of day in Earth hours or days) Main components of the atmosphere Gravity Moons Rings Key attractions (volcanoes, hurricanes, craters, etc.) Any other interesting facts that visitors should be aware of Graphics (include at least three pictures)

Materials: Computers with internet access Construction paper Crayons, markers, colored pencils, etc. Scissors Glue and/or tape Student Page Rubric

EL8_2016 M-DCPS Department of Science 88

Page 88: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSt

ep 4

Sele

ct th

e B

est

Poss

ible

Sol

utio

n(s)

/St

ep 5

Con

stru

ct a

Pro

toty

pe Building of the Product (Prototype, model or Artifact):

Place students into groups of 2-4 students. Assign each group a planet (Mercury, Venus, Mars, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune). Assign remaining groups Earth’s Moon, Pluto, or Titan.

Step

6C

omm

unic

ate

the

Solu

tion(

s)

Testing of the Product (Prototype, model or Artifact):

Check that the information displayed on your brochure or in your suitcase aligns with the planetary or lunar facts researched.

Peer-Review Questions:

-What research did you use to design your brochure?-How did you prioritize the design of the brochure in relation to the planetary features?-How did you determine the contents of your suitcase?-What would you improve in the design of your brochure or suitcase?

Step

7C

omm

unic

ate

the

Solu

tion(

s)

Project Summary:

Students will present their brochure and suitcase to the class in a Gallery Walk. One student stays behind to answer questions while all other students from the group visit different planets.

Presentation of Final Solution:

Students will present their brochure and suitcase to the other groups where one member stays behind to explain and the others rotate around the room to other presentations. Encourage students to take notes when visiting the planets in their journals.

Step

8R

edes

ign

Re-designing of the Prototype

Students will adjust the contents of the suitcase challenge based on peer reviews, teacher input and creativity.

Teacher Notes: Recognize students who take notes.Discuss the differences in the destinations. Talk about the real possibilities of traveling to these planets in the future.

EL8_2016 M-DCPS Department of Science 89

Page 89: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Space Travel Tour Agency Brochure Rubric

Category 4 3 2 1

TitleThe title can be read clearly and is creative.

The title can be read clearly and describes the content well.

The title can be read clearly but is not creative.

The title is too small and/or does not describe the content of the project well.

Content

At least seven accurate facts are displayed on the brochure.

Five or six accurate facts are displayed on the brochure.

Three or four accurate facts are displayed on the brochure.

Fewer than three accurate facts are displayed on the brochure.

Graphics

All of the graphics used on the project reflect an exceptional degree of student creativity in the creation and display.

One or two of the graphics used on the brochure reflect student creativity in the creation and display.

The graphics are made by the student, but are based on the designs or ideas of others.

No graphics made by the student are included.

Attractiveness

The brochure is exceptionally attractive in terms of design, layout and neatness.

The brochure is attractive in terms of design, layout and neatness.

The brochure is acceptably attractive though it may be a bit messy.

The brochure is distractingly messy or very poorly designed. It is not attractive.

Grammar

There are no grammatical mistakes on the brochure.

There is one grammatical mistake on the brochure.

There are two grammatical mistakes on the brochure.

There are more than two grammatical mistakes on the brochure.

 

Total points out of a possible 20 points: ________________________________

EL8_2016 M-DCPS Department of Science 90

Page 90: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

WHAT CAUSES THE SEASONS?(STEM 3.0)

Benchmarks: SC.8.E.5.9: Explain the impact of objects in space on each other including: 1. The Sun on the Earth including seasons and gravitational attraction 2. The Moon on the Earth, including phases, tides, and eclipses, and the relative position of each body. (AA)SC.7.N.1.4: Identify test variables (independent variables) and outcome variables (dependent variables) in an experiment. (Assessed as SC.8.N.1.1)SC.7.N.3.2: Identify the benefits and limitations of the use of scientific models. (Assessed as SC.7.N.1.5

Overview:Because the axis of the Earth is tilted, the Earth receives different amounts of solar radiation at different times of the year. The tilt of the axis of the Earth, as well as the revolution around the sun produces the seasons. In this experiment, a simulated Sun—a light bulb—will shine on a thermometer attached to a globe. You will study how the tilt of the globe influences warming caused by the lighted bulb.

Objective: Compare simulated warming of your city by the Sun in the winter and in the summer. Explain the causes of the cycle of seasons on Earth.

How does the tilt of Earth affect the temperature on the Northern and Southern hemispheres?

Materials: Globe of the Earth Tape Metric ruler Thermometer Lamp with 100-watt bulb Ring stand and utility clamp 20-cm Length of string

EL8_2016 M-DCPS Department of Science 91

Page 91: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Before Activity

Preparation:

Engage:Provide students with visuals of extreme climates and ask if anyone has lived in a climate very different than that of Miami. Discuss possible reasons for the change in seasons. Accept all possible answers from students and readdress ideas at the end of the lab.

Common misconception notes: Students often believe that the seasons are caused due to the distance of Earth from the Sun and may be aware of the elliptical nature of Earth’s orbit. You may note at the end of the lab, when addressing this misconception that the Northern and Southern hemispheres have opposite seasons, which would disprove the distance from sun hypothesis. Additionally, you may note that Earth is actually farther from the sun during the summer than in the Northern hemisphere.

EL8_2016 M-DCPS Department of Science 92

Page 92: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher During Activity Explore:

Procedure:

1. Prepare the light bulb (simulated Sun).a. Fasten the lamp to a ring stand as shown in Figure 1.b. Stand the ring stand and lamp in the center of your work area.c. Position the globe with the North Pole

tilted away from the lamp as shown in Figure

d. Position the bulb at the same height as the Tropic of Capricorn. Note: The Sun is directly over the Tropic of Capricorn on December 21, the first day of winter.

2. Attach the thermometer to the globe.a. Use a location such as Alaska or Australia,

which are far from equator.b. Tape the thermometer to the globe with the tip of the thermometer at your

location. Place the tape about 1 cm from the tip of the thermometer.c. To keep the tip of the thermometer in

contact with the surface of the globe, fold a piece of paper and wedge it under the thermometer as shown in Figure 2.

3. Position the globe for winter (in the Northern Hemisphere) data collection.a. Turn the globe to position the North Pole (still tilting away from the

lamp), your location, and the bulb in a straight line.b. Cut a piece of string 10-cm long.c. Use the string to position your location on the globe at 10 cm from the

bulb (you may position farther, up to 20 cm, depending on the intensity of the lamp that you are using).

d. Do not turn on the lamp until after you have recorded the initial temperature.

4. Collect winter data.a. Record the initial temperature.b. After 5 minutes record the final temperature.c. Turn off the light.

5. Record the beginning and final temperatures (to the nearest 0.1°C).6. Position the globe for summer data collection.

a. Move the globe to the opposite side of the lamp.b. Position the globe with the North Pole tilted toward the lamp. Note: This

represents the position of the Northern Hemisphere on June 21, the first day of summer.

c. Turn the globe to position the North Pole, your location, and the bulb in a straight line.

d. Use the string to position your location on the globe 10 cm from the bulb.e. Do not turn on the lamp until after you have recorded the initial

temperature.7. Collecting summer data.

EL8_2016 M-DCPS Department of Science

Figure 1

Figure 2

93

Page 93: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher a. Let the globe and thermometer cool to the beginning temperature that you

recorded for the winter setup.b. When the globe and probe have cooled, begin data collection.c. Record the final temperature after 5 minutes. Turn the lamp off.

After Activity Explain:

Processing Data:1. In the space provided in the data table, subtract to find the temperature

change for each season.2. How does the beginning and final temperature change for summer

compare to the temperature change for winter?3. During which season is the sunlight more direct? Explain.4. What would happen to the temperature changes if the Earth were tilted

more than 23.5 degrees?5. As you move the globe from its winter position to its summer position, the

part of the globe closest to the bulb changes. Describe how it changes.6. What other factors affect the climate in a region?7. Identify the test variable, outcome variable, and any controlled variables

in the experiment.8. Why is this model useful for understanding the seasons and how is it

limited?9. What improvements can be made to this model of the seasons?

Elaboration:

Repeat the experiment for locations in the Southern Hemisphere and other areas (different latitudes) in the Northern Hemisphere to develop an understanding of climate zones.

Students illustrate the position of the Earth around the sun in an elliptical shape. Students must include the following vocabulary: tilt, rotation, revolution, year, winter, spring, summer, fall, equator, northern hemisphere, southern hemisphere.

Possible diagram:

Evaluate:

Develop a C-E-R response to the problem statement:How does the tilt of Earth affect the temperature on the Northern and Southern hemispheres?

EL8_2016 M-DCPS Department of Science 94

Page 94: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher SSA Connection:

1. During which season does the Northern Hemisphere of Earth receive the least amount of energy from the Sun?A. SpringB. SummerC. FallD. Winter

2. Which of the following statements correctly explains why we experience seasons?A. As the Earth moves away from the Sun, we change from summer to fall to

winter. As the Earth moves closer to the Sun, we change from winter to spring to summer.

B. As the Earth spins on its axis, we experience seasons. Each 1/4 spin of the Earth on its axis represents a change in season.

C. Earth's tilt on its axis means one hemisphere leans toward the Sun, causing it to experience warmer temperatures. As Earth revolves around the Sun, a different hemisphere leans toward the Sun, causes warmer temperatures in that hemisphere.

D. The Moon moving in front of the Sun causes temperatures on Earth to drop, which causes winter. When it moves behind the Sun, a rise in temperature causes summer.

3. In Alaska, there are few hours of daylight in the winter and few hours of night in the summer. Which statement best explains why this occurs?A. The Sun releases more heat in the summer.B. The Sun moves below the horizon in the summer.C. The Northern Hemisphere is closer to the Sun in the summer.D. The Northern Hemisphere is tilted away from the Sun in the winter.

4. The diagram below shows the relative positions of Earth and the Sun at a certain time of year.

Based on the diagram, which season is occurring in the Southern Hemisphere of Earth?

A. WinterB. SpringC. SummerD. Fall

Reading Passage Answer Key1. A 2. C. 3.B 4.A

EL8_2016 M-DCPS Department of Science 95

Page 95: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

DENSITY OF BLOCKS (STEM 2.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)SC.8.P.8.3 – Explore and describe the densities of various materials through measurement of their masses and volumes. Assessed as SC.8.P.8.4 – Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties are independent of the amount of the sample.

Background Information for the teacher:Density is a basic physical property of any sample of matter. It is much more important than other physical properties such as size or shape, in that the numerical value of density for a pure substance at a particular temperature and pressure is a constant and never changes! The density may be determined in the laboratory if the mass and volume of a sample can be determined. Density may be calculated by dividing the mass by the volume (d = m / V). It also may be thought of as the ratio of the mass to the volume. The density of water is important to know. It is 1.0 g/mL at 40C.

In this experiment, the student will measure the mass, volume, and the length of several rocks. They will then use their data to explore the relationship between the mass and volume of the rocks and calculate their density.

MaterialDensities of Common Substances

Source: Teacher Developed – Classroom TestedProvide students with the following information: You have been given blocks of equal volume. You may want to provide the Density Block samples or have students make cubes 2.54 cm x 2.54 cm x 2.54 cm

1. Based on the densities of the various substances listed in the data table above, ask students to make predictions whether the block made of the various materials would sink or float in water.

Block Prediction (sink or float) Observation (sink or float)

Acrylic

Aluminum

Brass

EL8_2016 M-DCPS Department of Science 96

Page 96: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher Copper

Oak

Pine

Polypropylene

PVC

Steel

Acrylic

EvaluateIf two blocks of pine were stacked on top of each other, would they sink or float? Explain.

Extensions:1.Students will explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15% saltwater

solution. Discover the relationship between density and the solute concentration.

EL8_2016 M-DCPS Department of Science 97

Page 97: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher Possible AnswersExplain Analysis Questions:

1. Which variable is considered the test variable (independent) variable in this lab activity? Type of rock

2. Which variable (s) is considered the outcome variable (dependent) variable in this lab activity? density

3. If the mass of the rock increases, what could happen to the density of each sample? Increase if volume stays same

4. If the volume of the rock increases, what would happen to the density of each sample? It would stay the same because the mass would also increase

5. Analyze your data: What do you observe about the relationship between mass and volume for the rocks with the larger densities and smaller densities? Give examples from the lab in your explanation. Larger densities have larger mass compared to the object’s volume; smaller densities have larger volume compared to the mass. Examples will vary

6. In terms of density, differentiate between an object which floats in water and an object which sinks in water. An object that floats in water is less dense than the water or less than 1 g/cm3 . An object that sinks has a greater density than water.

7. Show how one would set up a ratio to determine the mass of a substance with a density of 8.4g/mL and a volume of 2.0 mL. Determine the mass. 8.4g/mL = ?g/2.0 mL mass = 16.8 g

8. Show how one would set up a ratio to determine the volume of a substance with a density of 4.0 g/mL and a mass of 8.0 g. Determine the volume. 4.0 g/mL = 8.0 g/?mL volume = 2 mL

9. Based on the results of this lab, explain how unknown substances can be identified or distinguished from one another by using their densities. All substances have a specific density. If the mass and volume can be determined, then the substance can be found by comparing with substances of known densities.

Bonus question:10. Density of water is 1 g/ml or 1.0 g/cm3). What is the volume of a sample of water if the mass is

6g? Explain why this is so easy to figure out (think ratio). The density of water is a 1:1 ratio 6 g would mean 6 mL

EvaluateIf two blocks of pine were stacked on top of each other, would they sink or float? Explain: The blocks would float. The wood is still less dense than water. For example, if the mass doubles, so does the volume, keeping the density the same.Note: Use real examples for students to measure and test.

EL8_2016 M-DCPS Department of Science

www.sciencenet.org.uk/.../Chemistry/StructBond/c00195b.html

98

Page 98: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

CSI: Following the Hard Evidence Density Lab Revised by: University of Miami – Science Made Sensible Fellows

Florida Sunshine State Next Generation Standards Benchmark: SC.8.P.8.4 Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured for example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties are independent of the amount of the sample. (AA)SC.8.P.8.3 Explore and describe the densities of various materials through measurement of their masses and volumes.

Background Information for the teacher:Density is a basic physical property of any sample of matter. It is much more important than other physical properties such as size or shape, in that the numerical value of density for a pure substance at a particular temperature and pressure is a constant and never changes! The density may be determined in the laboratory if the mass and volume of a sample can be determined. Density may be calculated by dividing the mass by the volume (d = m / V). The density of water is important to know. It is 1.0 g/mL at 4oC.

In this experiment, the student will measure the mass, volume, and the length of several rocks. They will then use their data to explore the relationship between the mass and volume of the rocks and calculate the rocks’ density.

Time Frame: 1-1.5 hours

Materials:Demonstrations

Vegetable oil Karo syrup 1 can of coke 1 can of diet coke Aquarium/container to float cokes

Dry ice Container for dry ice demo Bubble wand and soap 1 large graduated cylinder (~1000ml)

Lab Activity Rocks, four types, including pumice

stone Plastic baggies or other container for

rocks triple beam scales

500ml graduated cylinders 250ml Flasks Eye droppers Paper towels Food Coloring dye (for demo also)

Pre-lab preparation:1) Color the water/oil/karo syrup demo with food coloring2) Select 4 rocks with very different densities as available. One should be pumice stone. Alter the

comic strip and student worksheet (clues) so that the “evidence” rock density matches the density of one of the types of rock you have available.

3) Gather and prepare demonstration supplies as desired.

Engage:

EL8_2016 M-DCPS Department of Science 99

Page 99: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher 1) Engage the students by discussing the topic of density as a class, explaining how it is a

relationship between mass and volume.2) Perform one or more of the following demonstrations:

a. Water/Oil/Syrup layering: Discuss with the class what you will be doing, and have them make predictions of how the three liquids will layer in the 1000ml graduated cylinder. Start with ~250ml of colored water in the cylinder, then add vegetable oil (~100ml) and finally add Karo syrup (~100ml). Discuss why the fluids became layered.

b. Coke vs. Diet Coke: Explain what you are going to do, and have your class predict whether the sodas will sink or float. In a clear container (aquarium) filled with water, place a regular coke or comparable soda. Discuss why the soda sank. Next, add the diet coke (it will float). Discuss why a can with the exact same volume will float because it has less mass and therefore is less dense.

c. Dry ice/bubbles: In a container that is at least 12 inches deep, place the dry ice. Add some water to speed up the sublimation process and make the gas visible to the students. Then, blow bubbles gently on top of the CO2 gas. Discuss with your class why the bubbles did not sink through the CO2, and how density applies to gases. (this is also useful at the end of the lab as they elaborate on the concept of density)

3) Engage the students further by reading the “CSI: Following the Hard Evidence” comic (source: http://www.pixton.com/SciMadeSensible).

Explore:1) Give the student all the supplies and the procedures worksheet. Discuss the concept of volume

displacement for determining the volume of non-geometric items.2) Have student complete the procedures while you assist and answer questions. You may need to

help them measure the volume of the pumice stone by pushing it completely under the surface of the water using a pencil.

Explain:1) Have students complete the analysis questions at the end of the lab.2) Discuss any questions as a class.

Elaborate/Extension:1) Students can explore the density of objects with identical masses, but different volumes. Discover

the relationship among mass, volume, and density.2) Students can explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15% saltwater

solution. Discover the relationship between density and the solute concentration.This is a good time to do the dry ice demo in order to elaborate that the property density applies to gases also.

EL8_2016 M-DCPS Department of Science 100

Page 100: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

EL8_2016 M-DCPS Department of Science 101

Page 101: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher MASS, VOLUME, DENSITY

(Comprehensive Science 3 Advanced)(STEM 2.0)

Florida Next Generation Sunshine State Standards Benchmark: SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)SC.8.P.8.3 – Explore and describe the densities of various materials through measurement of their masses and volumes. Assessed as SC.8.P.8.4 – Classify and compare substances on the basis of characteristic physical properties that can be demonstrated or measured; for example, density, thermal or electrical conductivity, solubility, magnetic properties, melting and boiling points, and know that these properties are independent of the amount of the sample. (AA)

Background Information:Density is a basic physical property of any sample of matter. It is much more important than other physical properties such as size or shape, in that the numerical value of density for a pure substance at a particular temperature and pressure is a constant and never changes! The density may be determined in the laboratory if the mass and volume of a sample can be determined. Density may be calculated by dividing the mass by the volume (d = m / V). It also may be thought of as the ratio of the mass to the volume. The density of water is important to know. It is 1.0 g/mL at 4 ºC.In this experiment, the students will measure the mass and volume of several materials. They will then use their data to explore the relationship between the mass and volume of the materials and calculate their density.Literature Connection: “Archimedes and the King’s Crown”

Time Frame: 1 hour

Materials (per pair of students):Safety goggles Graduated cylinder50 mL of isopropyl alcohol (colored red) Eyedropper50 mL of water (colored blue) Calculator50 mL of salt-water (colored green) Electronic balance or triple-beam balance

ProcedurePart A: Teacher Pre-Lab Preparation and Presentation

1. Color the isopropyl alcohol red by adding a few drops of red food coloring.2. Color the water blue by adding a few drops of blue food coloring.3. Prepare a saltwater solution by mixing four parts water to one-part salt by volume. Color the

solution green using a few drops of green food coloring.4. Show the students the three solutions and ask them to suggest a way to compare the masses of the

three liquids.5. Guide the discussion towards the realization that in order to compare the masses, equal volumes

would have to be massed. Ask students to predict how the masses of the different liquids would vary if the volume of each liquid is the same. Based on their predictions, have students formulate a hypothesis.

6. The topic of density as the relationship between mass and volume can now be introduced.

Part B: Student Procedure

EL8_2016 M-DCPS Department of Science 102

Page 102: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher1. On the electronic balance, mass the graduated cylinder and press "tare" to subtract the mass. If you

are using a triple beam balance, mass the graduated cylinder and record this mass to the nearest 0.01g. Record the mass of the empty cylinder in the Data Table.

2. Pour 10 mL of the red liquid into the graduated cylinder. Use an eyedropper to get the exact amount of 10.0 mL.

3. To get a precise measurement, place the cylinder on a flat surface, bring your “eye” down to the level of the liquid, and read the bottom of the meniscus.

4. Determine the mass of the 10.0 mL by reading the electronic balance directly, or if using a triple- beam balance, record the total mass (cylinder + liquid) in the Data Table. Then subtract the mass of the empty graduated cylinder from the mass of the cylinder and sample of liquid.

5. Record the mass of the sample of liquid on the Data Table in the appropriate location, e.g. Red Liquid, volume of 10.0 mL.

6. Calculate the density of the liquid by dividing the mass by the volume (10 mL).7. Record the density on the Data Table in the appropriate location, i.e. Red Liquid; volume of 10.0

mL.8. Add another 10.0 mL to the cylinder. You should now have a total of 20.0 mL (10 mL + 10 mL).9. Determine the mass of the 20.0 mL by reading the electronic balance directly, or if using a triple-

beam balance, record the total mass CL (cylinder + liquid) record in the Data Table. 10. Then subtract the mass of the empty graduated cylinder (CE) from the mass of the cylinder and

sample of liquid (CL). Record the mass of the sample of liquid on the Data Table11. Find the density again by dividing the mass by 20.0 mL and record it on the Data Table.12. Keep adding 10.0 mL of the red liquid, recording the mass and calculating the density by dividing

the mass by the amount of liquid in the cylinder until a total of 50.0 mL of the red liquid has been used.

13. Repeat the procedure for each of the other liquids, finding mass and density.14. Graph mass (y-axis) vs. volume (x-axis) for each liquid on the graph paper provided. Use a

different color for each of the liquid solutions.15. Draw a line of “best-fit” for the points of each solution.

Data AnalysisData Table for RED LIQUID

Volume(mL)

Mass of Empty Cylinder

CE

(g)

Mass of Cylinder and Sample of

LiquidCL

(g)

Mass of Sample of

LiquidCL- CE

(g)

Density (g/mL)

10.0

20.0

30.0

40.0

50.0

EL8_2016 M-DCPS Department of Science 103

Page 103: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherData Table for BLUE LIQUID

Volume (mL) Mass of Empty Cylinder

CE

(g)

Mass of Cylinder and Sample of

LiquidCL

(g)

Mass of Sample of

LiquidCL- CE

(g)

Density (g/mL)

10.0

20.0

30.0

40.0

50.0

Data Table for GREEN LIQUIDVolume (mL) Mass of Empty

CylinderCE

(g)

Mass of Cylinder and Sample of

LiquidCL

(g)

Mass of Sample of

LiquidCL- CE

(g)

Density (g/mL)

10.0

20.0

30.0

40.0

50.0

Analysis Questions:1. Which variable, mass or volume, is considered the test variable (independent variable) in this

experiment?2. Which variable, mass or volume is considered the outcome variable (dependent variable) in this

experiment?3. As the volume increases, what happens to the mass of each sample?4. Compare your density calculations for the red liquid. Should the density be the same in each

instance? Explain your answer. Will this also be true for the blue and green liquids?5. Analyze your data and determine which liquid is most dense and which one is least dense.

Focusing on the mass and volume of each liquid. Identify what the relationship is between mass and volume in terms of density.

EL8_2016 M-DCPS Department of Science 104

Page 104: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher1. Predict what would happen to the liquids, if you carefully poured each liquid into a clear

container. Write an explanation that differentiates the difference between each liquid of how and why they layered that way including the relationship of density to the location of each liquid.

2. In terms of density, differentiate between an object which floats in water and an object which sinks in water

3. Density of plain water is 1g/ml. What is the volume of a sample of water if the mass is 6.7g? Explain why this is so easy to figure out.

4. Show how one would set up a ratio to determine the mass of a substance with a density of 5.6g/mL and a volume of 3.7 mL. Then determine the mass.

5. Show how one would set up a ratio to determine the volume of a substance with a density of 2.6 g/mL and a mass of 5.5 g. Then determine the volume.

6. Based on the results of this lab, design an experiment demonstrating how unknown substances can be distinguished from one another by using their densities.

Home Learning:Students will complete the Analysis Questions.

Extensions:1. Have students explore the density of objects with identical volumes, but different masses (use

density cubes). Discover the relationship among mass, volume, and density.2. Have students explore the density of different liquids and/or solutions, e.g. 5%, 10%, 15%

saltwater solution. Discover the relationship between density and the solute concentration.

EL8_2016 M-DCPS Department of Science 105

Page 105: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherLiterature Connection:

“Archimedes and the King’s Crown”

An ancient story tells about a Greek king, a gold crown and an amazing scientist named Archimedes. The king had ordered a solid golden crown made. When the court goldsmiths presented it to him, he asked Archimedes to test it to make sure it was pure gold. Archimedes knew that pure gold was very soft. He could bite a piece of it, and his teeth would leave a dent in it. (But he also knew that the king would be mad if he returned a dented crown. He couldn't use THAT test.) Archimedes also knew that if he took equal volumes of gold and water, the gold would weigh 23 times more than the water. He COULD use this test. (The problem was measuring the volume of

the crown, an irregular object.).

One night, while filling his tub, for a bath, Archimedes accidentally filled it to the very top. As he stepped into it, water spilled out over the top. The idea struck him, that if he collected the water, and measured it, he would know the volume of his body. HE COULD USE THIS TO MEASURE THE CROWN! In other words, the amount of displaced water in the bathtub was the same amount as the volume of his body.Archimedes was so excited that he jumped out of the tub. He ran outside and down the street yelling "Eureka! Eureka! (One of the few Greek words I know!) I found the answer!"

www.sciencenet.org.uk/.../Chemistry/StructBond/c00195b.html/

All this was fine except in his excitement, Archimedes had forgotten to put on his clothes.

He was running down the street naked! Archimedes was able to get the volume of the crown and an equal volume of pure gold obtained, no doubt, from the King’s treasury. When he placed the two items into separate pans on a two-pan balance, well, I guess you can figure out the answer if I tell you that the goldsmith was put into jail!

EL8_2016 M-DCPS Department of Science 106

Page 106: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherPRECIPITATING BUBBLES

Review of the Scientific Method(STEM 3.0)

Florida Next Generation Sunshine State Standards Benchmark(s): SC.8.N.1.1 Define a problem from the eighth grade curriculum using appropriate reference materials to support scientific understanding, plan and carry out scientific investigations of various types, such as systematic observations or experiments, identify variables, collect and organize data, interpret data in charts, tables, and graphics, analyze information, make predictions, and defend conclusions. (AA)SC.8.P.8.5 Recognize that there are a finite number of elements and that their atoms combine in a multitude of ways to produce compounds that make up all of the living and nonliving things that we encounter. (AA) (Also assesses SC.8.P.8.1, SC.8.P.8.6, SC.8.P.8.7, SC.8.P.8.8, and SC.8.P.8.9.)SC.8.P.9.2 Differentiate between physical changes and chemical changes. (AA) (Also assesses SC.8.P.9.1 and SC.8.P.9.3.)

Background Information: (Reprinted from The Brain in Space: A Teacher’s Guide with Activities for Neuroscience, NASA, URL: http://science.nasa.gov/headlines/y2002/images/playingcatch/spacebrain.pdf)

Scientists aim to gain knowledge and reach an understanding of the world around them. To achieve this goal, scientists must be curious, make observations, ask questions, and try to solve problems. Early scientists tended to draw conclusions from observations that were largely speculative (e.g., that the Earth was flat or that the Sun circled the Earth). By the mid-sixteenth century, some scientists began to realize that using a systematic approach to obtaining information and solving problems could obtain far more knowledge. This resulted in a process which we call the Scientific Method.

Steps of a Scientific Method involving an experimental design Identify the problem. Collect information about the problem. Propose a hypothesis. Test the hypothesis by conducting experiments, making comparative observations, and

collecting data. Evaluate the data collected through investigation. Draw conclusions based on data and determine whether to accept or reject the hypothesis. Communicate results and ask new questions.

The problem is a statement of the question to be investigated. Observations and curiosity help to define exactly what problem should be investigated and what question(s) answered. Once a problem is defined, a scientist should collect as much information as possible about it by searching journals, books, and electronic information sources. This information will provide a basis for forming the hypothesis.

A hypothesis is often considered to be an “educated guess.” The word “guess” is inappropriate, however, because a hypothesis should be based on information gathered. A hypothesis can be defined more accurately as a “proposed” answer to the problem, based upon background information either gathered through research or through experience. The hypothesis is then tested through experimentation and observation. The results of experimentation provide evidence that may or may not support the hypothesis.

To be effective, experiments must be properly planned. The plan is called the procedure, which describes the things that actually will be done to perform the investigation. This is where decisions are made about

EL8_2016 M-DCPS Department of Science 107

Page 107: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherwhich variables will be tested and which will be kept constant, what to use as a control, how many samples to use, how large the sample sizes should be, safety precautions needed, and how many times to run the experiment.

Many scientists investigate questions that cannot be answered directly through controlled experiments in laboratories. For example, scientists studying global warming, the AIDS epidemic, and losses of biodiversity must use comparative methods to examine differences that occur in the natural world.

When developing the procedure for an experiment, consider the following:

1. Test only one variable at a time.A scientist wanting to find out “why trees shed their leaves in the fall” would have to consider the factors that affect trees, such as the type of tree, the amount of water they receive, the temperature, the length of daylight to which they are exposed, and the type of soil in which they are growing. These are the variables which can cause changes to occur in an experiment.

To obtain reliable results, only one variable should be tested at a time. All others should be kept constant, whenever possible. If the scientist’s hypothesis states that shorter daylight hours cause trees to shed their leaves in the fall, trees of the same age should be tested. They should be placed in the same size pots with the same type of soil, given the same amount of water, and kept at the same temperature. The only thing changed should be the number of hours of light to which different groups of trees are exposed. Any variable that the experimenter chooses to change, such as the hours exposed to light, is referred to as the test variable (independent variable). The change in the experiment that happens as a result of the test variable, such as the length of time that it takes for the leaves to fall, is referred to as the outcome variable (dependent variable).

2. Use controls.The control is used for comparing the changes that occur when the variables are tested. If a number of young oak trees are placed in a greenhouse and exposed to 10 hours of light to simulate fall conditions, how will the scientist know if a loss of leaves is due to the amount of light? It could be due to the temperature that he/she chose or the amount of carbon dioxide in the air. To avoid such uncertainty, two identical experiments must be set up: one in which the trees are exposed to 10 hours of light and the other, the control, in which they are exposed to light for a longer period of time to simulate summer conditions. All factors for the control are exactly the same as for the test except for the variable being tested—the amount of light given to each tree.

3. Use several samples.Using a number of samples prevents errors due to differences among individuals being tested. Some trees are heartier than others. If only a few trees are tested, some may lose leaves for reasons that are not related to the amount of light. This will produce misleading results. Larger numbers of samples will provide more accurate results.

4. Always use appropriate safety measures.Safety measures to be followed vary according to the type of experiment being performed. For example, laboratory-based experiments frequently require that participants wear protective clothing and safety goggles and that dangerous volatile chemicals be used only under a vented fume hood.

EL8_2016 M-DCPS Department of Science 108

Page 108: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher5. Repeat the experiment several times.To make valid conclusions, the scientist must have reproducible results. Ideally, comparable results should be obtained every time the experiment is run.

After the plan or procedure is complete, the experiment is run. It is essential that careful and accurate records be kept of all observations during an experiment. The recorded observations and the measurement comprise the data. It is always useful to present data in the form of charts, tables, or graphs, as these provide a visual way to analyze and interpret the results. When drawing graphs, the test variable (independent variable) is conventionally plotted on the horizontal axis, and the outcome variable (dependent variable) is plotted on the vertical axis. Analysis of data from the experiment allows the scientist to reach a conclusion. The scientist determines whether or not the data support the hypothesis and decides whether to accept or reject the hypothesis.

The conclusion should provide an answer to the question asked in the problem. Even if the hypothesis is rejected, much information has been gained by performing the experiment. This information can be used to help develop a new hypothesis if the results repeatedly show that the original hypothesis is inappropriate. After performing many investigations on a particular problem over a period of time, a scientist may come up with an explanation for the problem, based on all the observations and conclusions made. This is called a theory.

A Scientific Theory is an explanation, supported by data, of how or why some event took place in nature.

MAJOR CONCEPTS FOR THE TEACHER Our exhaled breath contains carbon dioxide gas. The carbon dioxide we exhale reacts with calcium hydroxide in solution to form insoluble calcium

carbonate and water. * Formation of calcium carbonate precipitate can be used as a test for the presence of carbon

dioxide. If carbon dioxide continues to be bubbled into limewater (calcium hydroxide solution) after a

period of time, the white precipitate disappears. The excess carbon dioxide forms carbonic acid in the water and the calcium carbonate reacts with the carbonic acid to form calcium ions and bicarbonate ions, which are soluble in water. **

Ca(OH)2 = calcium hydroxideCO2 = carbon dioxideCaCO3 = calcium carbonateH2O = waterH2CO3 = carbonic acid gasCa++ = calcium ionHCO3

+ = bicarbonate ion

Chemical Equations* Ca(OH)2 + CO2 CaCO3 + H2O ** CO2 + H2O + H2CO3

CaCO3 + H2CO3Ca++ 2HCO3+

This activity demonstrates the presence of carbon dioxide in exhaled air. In Activity 1, the teacher will blow through a straw into a solution of calcium hydroxide. The carbon dioxide in the exhaled air will combine with the calcium hydroxide to produce a white precipitate of calcium carbonate. In Part 2,

EL8_2016 M-DCPS Department of Science 109

Page 109: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacherstudents will attempt to reproduce the experiment. They will not be able to do so because they will only have water as their unknown liquid. They should conclude that the teacher had a liquid other than plain water, resulting in a chemical reaction that changed one or more substances in the teacher’s original solution.The second part of this activity involves designing an experiment to test the hypotheses determined in the class discussion. It may be handled in different ways depending on the age of the students.

Time Frame30-minute teacher preparation60-minute / student activity

MATERIALS 5 grams calcium hydroxide powder One liter of water Filter paper Filter funnel Flasks or small bottles Straws 25 mL or 50 mL graduated cylinder 125 mL Erlenmeyer flasks Test–tube rack Aluminum foil Stop watch Hot Plate Goggles

Procedure:Part 1: Lab PrepThe preparation of one liter of limewater(Should be prepared a day ahead of time): Teacher preparation

1. Add 10 grams calcium hydroxide Ca(OH)2 powder to 500 mL of water.2. Cover and shake well. Calcium hydroxide is only slightly soluble in water and 5 grams will

provide more solid than will dissolve.3. Allow the suspension formed to settle for a few minutes.4. To separate the limewater from the suspension, use the filter paper and filter–funnel apparatus to

filter the suspension.5. If the limewater filtrate is still slightly cloudy, filter for a second time, using a new filter paper.6. Keep the limewater tightly closed when not in use, as it will react with carbon dioxide from the air

and become cloudy.7. The calcium hydroxide and water suspension can be stored in a large bottle, and the limewater

filtered off when needed.8. The filtered limewater can be stored in smaller bottles or flasks, 250 mL in volume, for use in

class.

EngagePart 1:

1. Read the following background information

EL8_2016 M-DCPS Department of Science 110

Page 110: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherBACKGROUND Carbon dioxide comprises only 0.033 percent of Earth’s atmosphere, yet it is the principle inorganic source of carbon for living organisms. Carbon dioxide and water are the raw materials required by plants for the synthesis of sugars through photosynthesis. Organisms release carbon dioxide back into the atmosphere as a waste product of respiration and other cellular processes.

2. Say to students: It is important for scientists to make careful observations, and you will practice doing the same in this activity. Keep a record of all of your observations.

3. Everyone must wear safety goggles.4. Fill a 125 mL Erlenmeyer flask with 15 mL of teacher liquid (filtered limewater solution).5. Students record observations in notebook.6. Teacher will use a straw to bubble his/her breath into the liquid slowly for no more than 2

minutes. DO NOT blow vigorously as you do not want to spill the liquid! Be very careful not to allow any liquid to enter the mouth or eyes. Goggles are a must!

7. Organize students into cooperative lab groups of 3 – 4 members. Assign each member a role (see Group Roles in the front of the packet).

Data Analysis: Teacher Directed Part 11. Have group members discuss the following questions and place their answers on sticky notes. 2. Have one member of the group place their answers on the poster paper (one question/poster paper)

provided by the teacher. Have another member read the group answers when called upon.3. Questions for groups to answer:

a. What gases are present in exhaled air? Carbon dioxide gas (nitrogen, water vapor, and small amounts of oxygen are also present.)

b. What is the clear liquid? Limewater (calcium hydroxide)c. Why did a precipitate form? Why did the solution turn cloudy? There must have been a

chemical reactiond. If a chemical reaction took place, what two ingredients do you think reacted? The limewater

and the carbon dioxidee. How can we test for the presence of carbon dioxide? Bubble the gas into the clear limewater. f. What is a positive test for carbon dioxide? Limewater is a solution of calcium hydroxide. It

chemically reacts with carbon dioxide to form solid calcium carbonate (chalk).4. The responses from all groups will be discussed in class to ensure that all students understand the

experiment.

Data Analysis: Teacher Directed Part 21. Students will repeat the procedures demonstrated by the teacher.2. Each student group is to measure 15 mL of student liquid (water) into a 125 mL Erlenmeyer flask,

and record their observations in lab notebooks.3. Using a straw, the assigned member of each group will bubble his/her breath into the liquid

slowly for no more than 2 minutes. DO NOT blow vigorously to avoid spilling the liquid!4. Observe the contents after blowing through the straws for approximately 1 – 2 minutes. 5. Record observations in lab notebook. These observations will be

recorded as data.6. When the teacher is convinced that class knows exactly what

happened, he/she will say to the class, “Your teacher did the exact same experiment but got very different results!” His/her test tube has white precipitate.

EL8_2016 M-DCPS Department of Science 111

Page 111: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher7. The class now has a problem to solve: How can there be no white precipitate when the teacher

performed the same experiment?8. Groups will discuss what factors might affect the production of the precipitate (cloudy solution

which will settle into a white solid and clear liquid in time).9. Have groups propose a factor that might have affected the results.

Possible answers might be: Time—how long exhaled air was bubbled into the solution. Adults vs. teenagers Rate of bubbling Light vs. dark Temperature of the liquideither hotter or colder Different substanceThe factors identified are known as variables.

10. Each group will be assigned at least one of the variables to test.11. Use the following questions to guide the groups in the development of their group hypotheses and

experimental design:• Does the hypothesis offer an answer to the problem?

Yes, it does. The problem was, “Why was there a white precipitate when the teacher performed the experiment?” The hypothesis states that the teacher may have (choose a variable).

• Does the experiment have a control?Yes. The control is the average length of time that the students exhaled into the liquid (possibly about one minute).

• Which materials are needed? Are the materials readily available?• What conditions are being kept constant?

The conditions kept constant are the temperature of the liquid, the size of the straws, the rate of bubbling into the liquid and the amount of liquid used for each test (there may be human error here – may not blow at same rate consistently).

• What is the test variable (independent variable) being tested? This is the variable that the experimenter chooses to change.• What is the outcome variable (dependent variable) being measured? The outcome variable (dependent variable) is the presence or absence of precipitate present after exhaling into the container.• How will each group present its data? Presentation format will vary

12. Each group must submit to the teacher prior to any experimentation a proposed hypothesis; a draft procedure (which may be modified as students work through the

experiment); a draft data table

Procedure: Part 3 1. Groups will be provided with the needed materials to perform their experiments, collect data, and

draw conclusions.2. Each group must turn in a completed Laboratory Report.3. A post-experiment class discussion may be conducted to review the conclusions made by each

group. 4. Compare the experiments performed by each group of students. For each experiment designed,

discuss the variable tested, the control, the factors kept constant (controlled variables), and the results obtained. Note that the amount of limewater used and the size of the straws and flasks should be the same for each experiment. A chart, such as the one below, can be developed on an overhead projector.

EL8_2016 M-DCPS Department of Science 112

Page 112: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher5. Add any other variables tested to the chart as necessary.6. From the class observations, it can be concluded that only the length of time affects the amount of

precipitate formed. However, results have also varied based upon how vigorous the blowing was, i.e. amount of carbon dioxide introduced.

7. At this point, explain that excess carbon dioxide bubbled into limewater forms carbonic acid, which dissolves the precipitate of calcium carbonate. Place balanced chemical equation on the board.

8. The use of a Scientific Method, specifically an experimental design to systematically test different hypotheses will enable the students to determine which hypothesis is correct in answering a problem.

Evaluation:1. You will be evaluated according to the amount of effort expanded, your specific job performance,

your participation within the team, and on the final product—the laboratory write-up. 2. Your group’s experiment should be evaluated based on the appropriateness of the design you

initiated to test the group’s hypothesis (not whether the group actually found the “correct” solution.3. Students will be asked to test the hypothesis that “the length of time that air was blown into the

solution” caused the teacher’s results to be different. Each student in a group of four will use the same size tube and the same amount of lime water, run the experiment at the same temperature, use the same size straws, and attempt to bubble at the same rate. Students should estimate how long they exhaled into their liquid the first day. This could be the control time. One student in each group will blow into his/her tube for the control time. Each of the remaining students in the group should increase the control time by two to four minutes.

4. Explain why there was no change in the student liquid when carbon dioxide was exhaled into the liquid.

Home Learning:1. Work on designing and writing-up an experimental design for completion of Part 2.2. Work on the completion of the laboratory write-up, which may include data analysis, graphing,

and drawing conclusions after completion of Part 3.3. Discussion and provide examples of chemical changes

where new substances are formed as a result of atoms combining – some students may discuss that this is a result of electron bonds forming.

Extensions:

1. Have each group perform four more different experiments, to test several variables.

2. Do not share the final chemical equation with students. Additionally, challenge them to find the correct reaction mechanism.

EL8_2016 M-DCPS Department of Science 113

Page 113: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherGREENHOUSE GASES IN A BOTTLE

(STEM 2.0)

Next Generation Sunshine State Standard Benchmark: SC.8.L.18.3 Construct a scientific model of the carbon cycle to show how matter and energy are continuously transferred within and between organisms and their physical environment. SC.8.L.18.4 Cite evidence that living systems follow the Laws of Conservation of Mass and Energy. (AA)

Background Information for the teacher:Particles suspended in our atmosphere (aerosols) can absorb more sunlight or they can reflect the Sun's energy back into space. The Earth's temperature would be much colder without the CO2 in our atmosphere we have naturally. When we add more, the Earth warms up. The effects of atmospheric CO2 and aerosols on our planet's temperature are measurable with simple tools anyone can use. Greenhouse gases are carbon dioxide, methane, nitrous oxide, ozone (in the lower atmosphere), water vapor and CFCs. One greenhouse gas that has been increasing in the past 50 years is carbon dioxide. Loss of rainforests that take in carbon dioxide and the burning of fossil fuels by cars, factories and plants that releases carbon dioxide is part of the causes.CLAIM-EVIDENCE-REASONING-A persistent question with regard to the greenhouse effect is, "Why does the light energy from the Sun pass through the greenhouse gases in the layers of the atmosphere but are trapped once the infrared light returns to space after reflected off Earth?”

Materials:

Funnel Filter paper for measuring baking soda Graduated Cylinder Timer/Stopwatch Four: 500 mL clear water bottles with the

label removed Identical thermometers for each soda

bottle Duct tape

Source of carbon dioxide (CO2)-vinegar and baking soda

Modeling clay Measuring spoons Balloons 125 mL Erlenmeyer Flask 500 mL of room temperature water Optional Heat Lamps Triple-Beam Balance

Engage:Read or write on the board "Why does the light energy from the Sun pass through the greenhouse gases unhindered and the infrared energy radiated from the Earth is absorbed?"

Explain how a greenhouse is able to maintain a temperature at which plants are able to grow even though the temperature outside the greenhouse sometimes will not support plant life. Relate a greenhouse to how the Earth’s atmosphere traps heat. Identify the gases in the atmosphere that “act” like the glass in a greenhouse.Optional: Studyjams-Carbon Cycle, BBC-Carbon Cycle

Explore: Teacher Preparation:

EL8_2016 M-DCPS Department of Science 114

Page 114: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher1. Drill the caps of the bottles to the same diameter as your thermometer. Place the thermometers

through the holes in the caps several inches. Use the modeling clay to hold the thermometers in place and seal the hole.

2. Number bottles #1, #2, #3, and #4.

Procedure:For your source of carbon dioxide, use the following methods quickly to ensure CO2 is captured:

Bottles #1 and #2 - Carefully mix 10 grams of baking soda and 50 mL vinegar in a flask. Cover with balloon to capture the CO2. Add 50 mL water to bottle #1. Release the CO2 into bottle #1 and cover with cap quickly. Repeat the procedure for the bottle #2.

Bottles #3 and #4 – Pour10 grams of baking soda into each bottle. Now add 50 mL of water to each bottle.

3. Place the caps with thermometers onto the tops of the bottles. 4. Place bottles in sunlight. Make sure they receive the same amount of sun. NOTE: a heat lamp may

be substituted for the sun, but you must be very careful to place the bottles exactly the same distance from the lamp.

5. Shade the thermometers by putting a strip of opaque tape on the outside of the bottles. The tape must be the same length on all bottles.

6. Measure the temperature of the bottles over time. Record the temperature of each bottle every five minutes for a half hour

Data TableDry Wet

Elapsed Time in minutes

Bottle 1 Bottle 2 Bottle 3 Bottle 4

Initial51015202530

Explain:Conclusion1. Interpret the graph and identify a trend for the change in temperature for each container during the

experiment? Did both jars show the same change in temperature? Calculate the change in temperature for each jar.

2. Did your results support your hypothesis?3. Explain why the temperature of the covered jar showed an increase in temperature. What part of this

setup contributed to the increase in temperature?4. Explain how the covered jar setup represents an experimental model of the influences of the greenhouse

effect on the temperature of the Earth’s atmosphere. Identify what the light bulb and plastic wrap represent in this experimental model.

5. Identify the tested (independent), outcome (dependent) and controlled (constant) variables in this experiment.

6. In this experiment we only tested each setup one time (20 minute interval); explain why this will affect the validity of the data. How can we change this experiment so the data will be more valid?

EL8_2016 M-DCPS Department of Science 115

Page 115: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher7. Based on what you learned in this activity, can you connect this knowledge to the environmental issue

of the dangers of the greenhouse effect? Explain 8. Think about what humans do that increases the amount of greenhouse gases released into the

atmosphere and develop a list of ways that we can reduce the level of these gases.

EL8_2016 M-DCPS Department of Science 116

Page 116: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherIMAGINARY ALIEN LIFE FORMS

Adapted from Mars Critters http://ares.jsc.nasa.gov/ares/education/program/Data/marsCritters.pdf and

Solar System Activities: Search for a Habitable Planet http://solarsystem.nasa.gov/educ/docs/modelingsolarsystem.pdf

Next Generation Sunshine State Standards Benchmark: SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions. (AA) (Also assesses SC.8.E.5.4 and SC.8.E.5.8.); SC.7.L.15.2 Explore the scientific theory of evolution by recognizing and explaining ways in which genetic variation and environmental factors contribute to evolution by natural selection and diversity of organisms. (AA) (Also assesses SC.7.L.15.1 and SC.7.L.15.3.)SC.7.L.16.2 Determine the probabilities for genotype and phenotype combinations using Punnett Squares and pedigrees.

About This ActivityIn groups or as individuals, students will use their knowledge of Mars and living organisms to construct a model of a plant or animal that has the critical features for survival on Mars. This is a “what if” type of activity that encourages the students to apply knowledge. They will attempt to answer the question: What would an organism need to be like in order to live in the harsh Mars environment?

ObjectivesStudents will:• draw logical conclusions about conditions on Mars.• predict the type of organism that might survive on Mars.• use a Punnett Square to predict offspring genotype and phenotype• construct a model of a possible Martian life form.• write a description of the life form and its living conditions focusing on necessary structural adaptations for survival.

BackgroundTo construct a critter model, students must know about the environment with extremes in temperature. The atmosphere is much thinner than the Earth’s; therefore, special adaptations would be necessary to handle the constant radiation on the surface of Mars. Also the dominant gas in the Mars atmosphere is carbon dioxide with very little oxygen. The gravitational pull is just over 1/3rd (0.38) of Earth’s. In addition, Mars has very strong winds causing tremendous dust storms. Another requirement for life is food—there are no plants or animals on the surface of Mars to serve as food!

Scientists are finding organisms on Earth that live in extreme conditions previously thought not able to support life. Some of these extreme environments include: the harsh, dry, cold valleys of Antarctica, the ocean depths with high pressures and no Sunlight, and deep rock formations where organisms have no contact with organic material or Sunlight from the surface.

EL8_2016 M-DCPS Department of Science 117

Page 117: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherVocabulary

Ecology, adaptations, gravity, geology, atmosphere, radiation exposure, weather, environment, genotype, phenotypePart 1Materials

paper (construction, tag board, bulletin board, etc.) colored pencils glue items to decorate critter (rice, macaroni, glitter, cereal, candy, yarn, string, beads, etc.) pictures of living organisms from Earth Student Sheet, Mars Critters Student Sheet - Activity 1, If You Went to Mars Mars Fact Sheet (pg. 56)

ProcedureAdvanced Preparation

Gather materials. Set up various art supplies at each table for either individual work or small group work. This

activity may be used as a homework project. Review the “If You Went to Mars” sheet, Mars Fact Sheet, and the background provided above

along with the research conducted in the Martian Sun-Times activity or other desired research.Classroom Procedure

1. Ask students to work in groups to construct a model of an animal or plant that has features that might allow it to live on or near the surface of Mars.

2. Have them consider all the special adaptations they see in animals and plants here on Earth.3. They must use their knowledge of conditions on Mars, consulting the Mars Fact Sheet, If You

Went to Mars, and other resources such as web pages if necessary. Some key words for a web search might be “life in space” or “extremophile” (organisms living in extreme environments).

4. They must identify a specific set of conditions under which this organism might live. Encourage the students to use creativity and imagination in their descriptions and models.

5. If this is assigned as homework, provide each student with a set of rules and a grading sheet, or read the rules and grading criteria aloud and post a copy.

6. Review the information already learned about Mars in previous lessons.7. Remind the students that there are no wrong critters as long as the grading criteria are

followed.8. Include a scale with each living organism.9. Students select two different organisms that will mate.10. Revisit/Introduce Genetics:: Select one trait, the height of the “Mars Critter,” and generate a

Punnett Square to predict the genotype (genetic make-up) and phenotype (physical characteristics) of the offspring that the two organisms would produce, if mated. Students will learn more about this in upcoming topics. For simplicity – tell students that the height trait will have a paired allele, each parent giving one possible allele to the offspring and tall is dominant and expressed in the offspring when present. Complete a sample Punnett Square, as a reminder. Advanced students may explore incomplete dominance.

EL8_2016 M-DCPS Department of Science 118

Page 118: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherAs an extension, mate offspring and/or generate Punnett Squares for other characteristics.

Genotype PhenotypeTT (dominant tall) Talltt (recessive short) ShortTt (mixed hybrid) Tall

Teacher Guide

Source: www. exploringnature.org /db/detail.php?dbID=22&detID=2290

EL8_2016 M-DCPS Department of Science 119

Page 119: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherDescription and QuestionsUse another page if more space is needed.

1. The critter’s name:

2. Describe the habitat and climate in which your critter lives.

3. How does it move? Include both the form and method of locomotion. (For example: The miniature Mars Gopher leaps on powerful hind legs.)

4. What does it eat or use as nutrients? Is it herbivorous, carnivorous, omnivorous, other? What is its main food and how does it acquire this food?

5. What other creatures does it prey on, if any: How does it defend itself against predators?

6. How does your creature cope with Mars’ extreme cold, unfiltered solar radiation, and other environmental factors?

7. Suppose two Mar’s critters mated. One was Tall and the other was short. Using a Punnett Square, predict the offspring’s possible heredity of the tall gene. Each parent has two alleles for the height gene. Dad is homozygous tall (TT) and mom is short (tt). Predict the genotype (genetic make-up) and phenotype (physical characteristics) for the offspring

DadGenotype: _____% TT ____% tt ____% Tt

Phenotype: ______% Tall ______% short

Genotype PhenotypeTT (homozygous tall) Talltt (homozygous short) ShortTt (heterozygous) Tall Mom

EL8_2016 M-DCPS Department of Science

Offspring

120

Page 120: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherStudent

If You Went to Mars

From: “Guide to the Solar System.”By the University of Texas, McDonald Observatory

Mars is more like Earth than any other planet in our solar system but is still very different. You would have to wear a space suit to provide air and to protect you from the Sun’s rays because the planet’s thin atmosphere does not block harmful solar radiation. Your space suit would also protect you from the bitter cold, temperatures on Mars rarely climb above freezing, and they can plummet to -129oC (200 degrees below zero Fahrenheit). You would need to bring water with you, although if you brought the proper equipment, you could probably get some Martian water from the air or the ground.

The Martian surface is dusty and red, and huge duststorms occasionally sweep over the plains, darkening the entire planet for days. Instead of a blue sky, a dusty pink sky would hang over you.

West Rim of Endeavour Crater on MarsImage Credit: NASA/JPL-Caltech/Cornell/ASU

http://www.nasa.gov/mission_pages/mer/multimedia/gallery/pia11507.html

EL8_2016 M-DCPS Department of Science 121

Page 121: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Fourth planet from the Sun

Distance from the Sun:Minimum: 206,000,000 kilometersAverage: 228,000,000 kilometers

(1.52 times as far as Earth)Maximum: 249,000,000 kilometers

Eccentricity of Orbit: 0.093 vs. 0.017 for Earth (0.00 is a perfectly circular orbit)

Distance from Earth: Minimum: 56,000.000 kilometersMaximum: 399,000,000 kilometers

Year: 1.88 Earth years - 669.3 Mars days (sols) – 686.7 Earth days

Day: 24.6 Earth hours

Tilt of Rotation Axis: 25.2o vs. 23.5o for Earth

Size: Diameter: 6794 kilometers vs 12,76 kilometers for EarthSurface Gravity: 0.38 9 or ~ 1/3) Earth’s gravityMass: 6.4 x 1026 grams vs. 59.8 x 1026 grams for EarthDensity: 3.9 grams/mL vs. 5.5 grams/mL for Earth

Surface Temperature: ColdGlobal extremes: -125oC (-190oF) to 25oC (75oF)Average at Viking 1 site high 010oC (15oF); low -90oC (-135oF)

Atmosphere: Thin, un-breathableSurface pressure: ~6 millibars, or about 1/200th of Earth’s -Contains 95% carbon dioxide, 3% nitrogen, 1.5%argon, ~0.03% water (varies with season), no oxygen. (Earth has 78% nitrogen, 21% oxygen, 1% argon, 0.03% carbon dioxide.)Dusty, which makes the sky pinkish. Planet-wide dust storms black out the sky.

Surface: Color: Rust redAncient landscapes dominated by impact cratersLargest volcano in the solar system (Olympus Mons)Largest canyon in the solar system (Valles Marineris)Ancient river channelsSome rocks are basalt (dark lava rocks), most others unknownDust is reddish, rusty, like soil formed from volcanic rock

Moons Phobos (“Fear”), 21 kilometers diameterDeimos (“Panic”), 12 kilometers diameter

EL8_2016 M-DCPS Department of Science

MARS FACT SHEET

122

Page 122: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Part 2: Search for a Habitable PlanetNext Generation Sunshine State Standards:SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition. (AA)(Also assesses SC.8.E.5.1 and SC.8.E.5.2.)SC.8.E.5.7 Compare and contrast the properties of objects in the Solar System including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions. (AA)(Also assesses SC.8.E.5.4 and SC.8.E.5.8.)

Objective:This lesson focuses on characteristics of planets that make them habitable. Living creatures need food to eat, gas to breathe, and a surface that provides a comfortable temperature, gravity, and place to move around. These requirements are related to what the planet’s surface and atmosphere are made of, and how large (gravity) and close to the Sun (temperature) the planet is located. The inner planets are small (low gravity), relatively warm, and made of solid rock. Some of them have atmospheres. The outer planets are large (high gravity), cold, and made of gaseous and liquid hydrogen and helium. A creature that might be comfortable on a gas giant would not be comfortable on a small rocky planet and vise versa.

Vocabulary: habitable, life requirements, planet characteristics, surface and atmospheric composition (chemical examples) Time Required: One to two 45 minute class periods

Materials: Creature Cards Solar System Images and Script Planet Characteristics Table

Students will define the life requirements of a variety of creatures and learn that these relate to measurable characteristics of planets the creatures might inhabit. By evaluating these characteristics, students discover that Earth is the only natural home for us in our solar system and that Mars is the next most likely home for life as we know it.

EL8_2016 M-DCPS Department of Science 123

Page 123: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherProceduresActivity 1. Define Habitability and Design CreaturesThis lesson has students take the places of extraterrestrial creatures exploring our solar system in search of new homes. They define creature life requirements and relate them to planet characteristics in order to choose homes. Several of these creatures have life requirements quite unlike life as we know it, where water and carbon are essential, and some are downright impossible. The goals here are not to study biochemistry, but habitability of planets. Bizarre creatures had to be invented for them to find homes on some of the planets in our solar system. Another goal is to encourage creativity and teamwork in designing creatures and selecting planets. This activity is one that is outside of the box.

ENGAGE1. Set the stage by reading introduction:

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

First we need to know what makes a planet habitable so we can set up probes to measure the characteristics of various planets. The different requirements for life can be related to measurable planetary characteristics. What do creatures require to live?

EXPLORE2. Brainstorm on requirements and characteristics. Lead the students in producing a table similar to the

one below. Encourage free-thinking, there aren't specific right answers, but lead students to the following topics, among others.

Life requirements Planet characteristics food to eat surface & atmosphere composition gas to breathe atmosphere composition comfortable temperature temperature range ability to move surface type (solid, liquid, gas) gravity size

3. Ask students what kinds of probes might be used to measure these characteristics. Answers may range from general to specific and may be based on science fiction. Examples may include cameras, radar, thermometers, and devises to measure magnetics, altitude, and light in all wavelengths from radio waves, through infrared, ultraviolet, and X-ray to gamma-ray. [Secondary school classes might do one of the excellent activities on the electromagnetic spectrum or activities related to solar system missions.]

4. Divide students into six or more teams (more than one group can design the same creature). Explain that each team represents one of the six different types of creatures on our mission. Today we will make models of creatures having specific life requirements. Later we will collect data on a new planetary system in order to search for new homes.

5. Distribute one creature card to each team. Each card contains the information on a single line A-F below. Tell students that each team is supposed to create a creature that fits the characteristics on their creature card. Students may select art supplies (or drawing supplies) and should be able to complete their creatures in approximately 15-20 minutes. Students will name their creature ambassador and be ready to introduce it to the class. Encourage teamwork and creativity.

EL8_2016 M-DCPS Department of Science 124

Page 124: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher[Teacher, you may get questions on some of the food or gases. Handle these as they come, but do not provide this vocabulary ahead of time unless it comes up during brainstorming. Simply explain that they are various chemical elements or compounds. They are needed only for matching with planetary characteristics and should not be tested vocabulary.] 6. Ask each team to introduce their creature ambassador and to explain their creature's needs and any

specific features of the model. This will take longer than you expect because students really get involved with their creatures.

Creature Food Breathes Motion TemperatureA helium hydrogen flies coldB rock carbon dioxide flies hotC carbon oxygen walks moderateD methane hydrogen swims coldE water carbon dioxide walks moderateF carbon oxygen swims moderate

Assessment: Evaluate team presentations and collect descriptions of how their creature meets its life requirements.EXPLAINActivity 2. Tour solar system and evaluate for habitability

1. Prepare students for solar system tour. Tell students that they will have to take notes on the planets to report back later. Students will work in the same teams as when they made creatures. The grade level/ability will determine how the teacher structures the information gathering. Each team may record the information on all planets or on just one or two planets. Young students may simply compare planet characteristics to those on their creature cards and check off boxes of matching characteristics on the planet chart.

2. Distribute copies of the blank planet characteristics chart or put it on the blackboard/overhead. Show slides/photos of the planets and read the text provided below. For elementary students, exclude the data in parentheses. For secondary students, include the data. As you tour the planets, it may be necessary to repeat each section twice for younger students to get enough information to report.

3. Compile information on overhead or blackboard planet characteristics chart as teams report data they recorded on planet (size, surface type, composition, atmosphere and temperature). Attached table gives suggested answers. Students will probably be able to name the planets, but this is not a test. Alternatively, each student could fill in a chart to allow evaluation of listening skills. Also, students could work cooperatively to complete one chart per team.

4. Have teams compare the characteristics chart on the planets with the creature requirements on their creature card. Decide which planets (if any) would be suitable homes for their creature. Report their choices orally and explain, if necessary. Tabulate on the blackboard.Creature Planet(s)A 4, 5 (Saturn and Jupiter), but also 2,3 (Neptune and Uranus)B 8 (Venus)C, F 7 (Earth)D 2,3 (Neptune and Uranus)E 6 (Mars)

No creatures can live on planets 1 or 9 (Mercury or Pluto)

EL8_2016 M-DCPS Department of Science 125

Page 125: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher5. Ask students to create a finale or read the finale below.

Now that the creatures have evaluated habitable planets we will send down spaceships to check out the surfaces in detail. Creatures A, B, D and E find uninhabited planets that are just suited to their needs. They decide to settle on their chosen planets. Creatures C and F are both interested in the same planet. Creature F finds the salt water to be a perfect home for it, while creature C finds the land to be overpopulated and polluted. They decide that there isn't room for one billion more inhabitants and decide to look for a habitable planet in another solar system.

Assessment: Collect Planet Characteristics tables and compare with the suggested answers above. Do not require a perfect match, but allow students to think critically and creatively. Allow adaptations of the environment (such as turning water into hydrogen and oxygen) and other reasonable modifications.

EVALUATEWriting assignment: Ask students to write a paragraph explaining why the planet they found will or will not be suitable for their creature. The paragraph could be in the form of a news report to be sent back to their dying solar system.

EL8_2016 M-DCPS Department of Science 126

Page 126: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherCREATURE CARDS

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature A

Food Helium Breathes Hydrogen Motion Flies Temperature Cold

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature B

Food RockBreathes Carbon dioxideMotion FliesTemperature Hot

EL8_2016 M-DCPS Department of Science 127

Page 127: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature C

Food CarbonBreathes OxygenMotion WalksTemperature Moderate

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature D

Food MethaneBreathes HydrogenMotion SwimsTemperature Cold

EL8_2016 M-DCPS Department of Science 128

Page 128: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature E

Food WaterBreathes Carbon DioxideMotion WalksTemperature Moderate

We are space travelers from a distant star system. The crew of our spaceship includes six different types of creatures who live on different planets in that star system. Our star is expanding and getting very hot. Our home planets are heating up and soon we will need new places to live. It is our mission to find habitable planets for our six different types of creatures with different life requirements. In all we need to find new homes for five billion inhabitants.

Your task 1) Design a creature that fits the following needs for life. 2) Give it a name. and 3) Introduce it to the class and explain how it meets its needs for life.

Creature F

Food CarbonBreathes OxygenMotion SwimsTemperature Cold

EL8_2016 M-DCPS Department of Science 129

Page 129: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSearch for a Habitable Planet

Solar System Images and Script

Today we are traveling through an outer section of the Milky Way galaxy. There are many, many stars. We are approaching a medium-sized star, the type that often has habitable planets. As we draw closer we see that there are nine planets orbiting this star.

We will tour this planetary system and use our probes to measure planet characteristics in our search for a habitable planet. Record this information about your planet then when we have completed our tour we will collect all our results. We will evaluate our results to look for a new place to live.

We will now tour this new planetary system, starting from the outside and going toward the star: We are approaching the first planet.

The first “planet” is tiny (2350km). In fact, it was downgraded from a planet to a dwarf planet in 2006 mainly because it orbits around the Sun in “zones of similar objects that can cross its path.” It is made of rock and methane ice. It has almost no atmosphere (just a trace of methane) and is very cold (-230oC).

The second planet is a medium large (49,500km) and made of liquid hydrogen and helium. It has a thick atmosphere of hydrogen, helium and methane. It is very cold (-220 oC).

The third planet is very similar to the 2nd except that it has a small ring system. It is medium large (51,000 km) and made of liquid hydrogen and helium. It also has a thick atmosphere of hydrogen, helium and methane and is very cold (-210 oC).

The fourth planet is large (120,500 km) and has an extraordinary ring system. It has no solid surface, but is a giant mass of hydrogen and helium gas outside and liquid hydrogen inside. It is cold (-180 oC).

EL8_2016 M-DCPS Department of Science 130

Page 130: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherSearch for a Habitable Planet

Solar System Images and Script

The fifth planet is the largest (143,000 km) in this planetary system. Like the fourth, it is a gas giant made of hydrogen and helium with no solid surface. It is also cold (-150oC) in the upper atmosphere, but increases in temperature and pressure and becomes liquid in the interior.

The sixth planet is small (6786 km) and rock. There is some water ice in polar regions and a thin atmosphere of carbon dioxide. The temperature is moderate (-23oC).

The seventh planet is medium small (12, 750 km). The surface is made of liquid water and rock with some carbon compounds. The atmosphere is mostly nitrogen and oxygen with some carbon dioxide and water vapor. The temperature is moderate (21oC).

The eighth planet is also medium small (12,100 km). The atmosphere of carbon dioxide is so thick that we can’t see the rocky surface beneath it, but need our radar probes. The temperature is very hot (480oC).

The ninth planet is tiny (4880 km) and rocky. It has almost no atmosphere (just a hint of helium). Temperatures are generally hot, but extreme variable, ranging from -180oC on the space-facing side to 400oC on the star-facing side.

We have now finished our tour and it’s time to compile all of our data. Each team will report its results and we will make a comparison chart.

EL8_2016 M-DCPS Department of Science 131

Page 131: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherPLANET CHARACTERISTICS

(Teacher Key)

Size Surface Type and

Composition

Atmosphere Temperature Name

1 tiny 2350 km solid rock, methane ice

none (methane) very cold -230 C Pluto

2 medium large 49,500 km

liquid hydrogen, helium

thick hydrogen, helium, methane

very cold -220 C

Neptune

3 medium large 51,100 km

liquid hydrogen, helium

thick hydrogen, helium, methane

very cold -210 C

Uranus

4 large 120,500 km liquid hydrogen thick hydrogen, helium

cold -180 C Saturn

5 very large 143,000 km

liquid hydrogen thick hydrogen, helium

cold -150 C Jupiter

6 small 6786 km

solid rock, water ice

thin carbon dioxide

moderate -23 C Mars

7 medium small 12,756 km

solid rock, liquid water, carbon compounds

medium nitrogen, oxygen

moderate 21 C Earth

8 medium small 12,100 km

solid rock thick carbon dioxide

very hot 480 C Venus

9 tiny 4878 km solid rock none (helium) variable range -180 to 400 C

Mercury

EL8_2016 M-DCPS Department of Science 132

Page 132: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

PLANET CHARACTERISTICS

Size Surface Type and

Composition

Atmosphere Temperature Name

1

2

3

4

5

6

7

8

9

EL8_2016 M-DCPS Department of Science 133

Page 133: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherPLANETARY EXPLORATION & EXTREME LIFE FORMS

(Differentiated Lab)Revised by: University of Miami – Science Made Sensible Fellows

Next Generation Sunshine State Standards: SC.8.E.5.1 Recognize that there are enormous distances between objects in space and apply our knowledge of light and space travel to understand this distance. SC.8.E.5.3 Distinguish the hierarchical relationships between planets and other astronomical bodies relative to solar system, galaxy, and universe, including distance, size, and composition. SC.8.E.5.7 Compare and contrast the properties of objects in the solar system including the Sun, planets, and moons to those of Earth, such as gravitational force, distance from the Sun, speed, movement, temperature, and atmospheric conditions.

SC.7.L.15.3 Explore the scientific theory of evolution by relating how the inability of a species to adapt within a changing environment may contribute to the extinction of that species. SC.7.L.16.2 Determine the probabilities for genotype and phenotype combinations using Punnett Squares and pedigrees. SC.7.L.17.3 Describe and investigate various limiting factors in the local ecosystem and their impact on native populations, including food, shelter, water, space, disease, parasitism, predation, and nesting sites.

Objective: Students will research a planet in our solar system, including information about the atmosphere, surface conditions, etc. Then they will have to design an alien life form that would be adapted to live on their planet. They will present their planet research and alien life forms to the class. They will also use a Punnett Square to predict offspring genotype and phenotype.

Engage: Introduce adaption and extreme environments. Scientists are finding organisms on Earth that live in extreme conditions previously thought not able to support life. Some of these extreme environments include the harsh, dry, cold valleys of Antarctica and the bottom of the ocean under high pressure, no oxygen and no light. If life forms on other planets were to exist, what conditions would they face? How would they survive? What type of adaptations might they need? Explain that students will first research a planet, and then create a life form that had adapted to survive the conditions on their planet.

Materials: computers with internet access books on the planets construction paper markers/crayons/colored pencils

Teacher Notes: Assign one group to each planet excluding Earth. For the first part of the activity, students will research their planet, filling in a data sheet. All information can be found on the websites provided on the student handouts. Emphasize the importance of using appropriate internet sources, no Wikipedia. Once students have completed their planet worksheet, they should start on the alien life form worksheet. They will also draw their life form on construction paper. Groups will present both their planet research and their aliens including explanations of its specific adaptations that allow it to survive on their planet. Upper level students could be required to do a PowerPoint presentation.

EL8_2016 M-DCPS Department of Science 134

Page 134: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Name: ____________________________________ Date: ___________________ Pd: __________

Planet Research WorksheetFill in the worksheet below about your assigned planet; be sure to include units where necessary. Some helpful websites for your research are:

http://nineplanets.org/ http://solarsystem.nasa.gov/index.cfm www.windows2universe.org/our_solar_system/solar_system.html www.exploratorium.edu/ronh/weight/index.html

Planet: _____________________________ Planetary Symbol: ___________________________

Diameter: ___________________________ Mass: _____________________________________

Order from the Sun: ___________________ Distance from the Sun: _______________________

Gravity: ____________________________ Gravity compared to Earth: ___________________

If you weigh 100 lbs. on Earth, how much would you weigh on your planet? _________________

Temperature Range: ___________________Average Temperature ________________________

Length of Day (rotation period): _________ Length of year (revolution period): ______________

Tilt of axis: __________ Eccentricity of Orbit: ________ Number of Satellites: ________

What is the atmosphere like on your planet? What gases? Poisonous? Dry? Etc.

Describe the surface of your planet.

EL8_2016 M-DCPS Department of Science 135

Page 135: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherDescribe what your planet looks like including any unique features such as rings.

In complete sentences, list 5 additional interesting facts about your planet that are not already discussed on this worksheet.

EL8_2016 M-DCPS Department of Science 136

Page 136: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

Name: ____________________________________ Date: ___________________ Pd: __________

Extreme Alien Life FormsYou will create an alien life form that has adaptations enabling it to survive on your assigned planet. Keep in mind the information you learned about your planet during your research. Complete the questions below, and then draw your life form on the provided construction paper. Make sure to label the aspects of your life form that let it survive on your planet. Include your life form’s name, your planet, and your name and class period on the front of your drawing. You will be presenting your drawings to the class.

Your Planet:

The name of your life form:

Describe the habitat and climate in which your life form lives:

How does it move? Include both the form and method of locomotion. (For example: The miniature Mars Gopher leaps on powerful hind legs.)

What does it eat or use as nutrients? Is it herbivorous, carnivorous, omnivorous, or other? What is its main food and how does it acquire this food?

EL8_2016 M-DCPS Department of Science 137

Page 137: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

TeacherWhat other creatures does it prey on, if any? How does it defend itself against predators?

Describe other adaptations your life form has developed to cope with your planet’s unique environment.

Suppose two alien creatures mated. One was tall and the other was short. Using a Punnett Square, predict the offspring’s possible heredity of the tall gene. Each parent has two alleles for the height gene. Dad is homozygous tall (TT) and mom is homozygous short (tt). Predict the genotype (genetic make-up) and phenotype (physical characteristics) for the offspring.

Dad → ______ ______

______

EL8_2016 M-DCPS Department of Science

Offspring

138

Page 138: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher______

Mom ↑

The resulting offspring:

Genotype: __________% TT __________% tt __________% Tt

Phenotype: __________% tall __________% short

Genotype PhenotypeTT (homozygous tall) Talltt (homozygous short) ShortTt (heterozygous) Tall

EL8_2016 M-DCPS Department of Science 139

Page 139: Materials - Miami-Dade County Public Schoolsscience.dadeschools.net/middleSchool/documents/1617...  · Web viewMr. Logan Schroeder-Stephens. Student Advisor. ... Use an interrogative

Teacher

EL8_2016 M-DCPS Department of Science 140


Recommended