+ All Categories
Home > Documents > MATERIALS PROPERTY PREDICTIONS USING MACHINE...

MATERIALS PROPERTY PREDICTIONS USING MACHINE...

Date post: 07-Jul-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
35
MATERIALS PROPERTY PREDICTIONS USING MACHINE LEARNING: RECENT EXAMPLES AND FUTURE OUTLOOK NOMAD SUMMER: A HANDS-ON COURSE ON TOOLS FOR NOVEL-MATERIALS DISCOVERY 28th September 2017, 9:00 AM Physics Department (Lise-Meitner-Haus), Humboldt-University, Berlin Ghanshyam Pilania Theory Department Fritz Haber Institute of the Max Planck Society & Materials Science and Technology (MST) Division Los Alamos National Laboratory
Transcript

MATERIALS PROPERTY PREDICTIONS USING MACHINE LEARNING:

RECENT EXAMPLES AND FUTURE OUTLOOK

NOMAD SUMMER: A HANDS-ON COURSE ON TOOLS FOR NOVEL-MATERIALS DISCOVERY

28th September 2017, 9:00 AM Physics Department (Lise-Meitner-Haus), Humboldt-University, Berlin

Ghanshyam PilaniaTheory Department

Fritz Haber Institute of the Max Planck Society &

Materials Science and Technology (MST) DivisionLos Alamos National Laboratory

AGE OF DATA, ML & AI

Medical applications

Transportation

Robotics Speech recognition Finance and marketing

Recommender systems Facial recognition Board games

INFORMATICS: IN THE PAST

Steel production (India & Sri Lanka)

Kepler’s Laws (Johannes Kepler)

Data-driven Nursing (Florence Nightingale)

Periodic Table (Dimitri Mendeleev)

Hume-Rothery Rules Hall-Petch Relationship

Chem/Bio Informatics Polymer Informatics

Materials Informatics

6th Century BC 17th Century 19th Century 19th Century Mid 20th Century Late 20th Century Early 21st Century

DATA DRIVEN NURSING

“Far More Than a Lady With a Lamp” The New York Times, March 3, 2014

INFORMATICS: IN THE PAST

Steel production (India & Sri Lanka)

Kepler’s Laws (Johannes Kepler)

Data-driven Nursing (Florence Nightingale)

Periodic Table (Dimitri Mendeleev)

Hume-Rothery Rules Hall-Petch Relationship

Chem/Bio Informatics Polymer Informatics

Materials Informatics

6th Century BC 17th Century 19th Century 19th Century Mid 20th Century Late 20th Century Early 21st Century

MATERIALS BIG-DATAA PARADIGM SHIFT

A. Agrawal and A. Choudhary, APL Mater. 4, 053208 (2016)

MATERIALS INFORMATICS: TODAYMoore’s Law

Computational Power Algorithms & Methods Development High throughput Exp. Materials Genome Initiative

Open-Source Materials Databases

and many more…

DATA TO INSIGHTS AND PREDICTIONS

Design • Efficient enumeration • Targeted Search • Adaptive Optimization

Laborious computations

Materials Propertyand/or

FingerprintMachine Learning

Experiments

A Mannodi-Kanakkithodi et al. Sci. Rep. 6, 20952 (2016)

RECENT HIGHLIGHTS

Chem. Mater. 29, 2574 (2017)

Understanding Radiation Damage Resistance

Chemistry of MaterialsMsc: cm5b04109

The following graphic will be used for the TOC:

1

Chem. Mater. 28, 1304 (2016) & J. Phys. Chem. C 120, 14575 (2016)

Learning Models for Dielectric Breakdown StrengthLearning Bandgaps Solids

Sci. Rep. 6 19375 (2016) & Comput. Mater. Sci. 129 156 (2017).

Pred

icte

d H

SE g

ap

Computed HSE gap

Sci. Rep. 6, 20952 (2016) & Comput. Mater. Sci. 125 123 (2016).

Designing Polymer Dielectrics for Energy Storage

• Phenomenological model discovery for intrinsic dielectric breakdown strength of insulators using machine learning

• Multi-fidelity machine learning models for bandgap prediction

Sci. Rep. 6 19375 (2016) & Comput. Mater. Sci. 129 156 (2017).

Pred

icte

d H

SE g

ap

Computed HSE gap

Chemistry of MaterialsMsc: cm5b04109

The following graphic will be used for the TOC:

1

Chem. Mater. 28, 1304 (2016) & J. Phys. Chem. C 120, 14575 (2016)

• Phenomenological model discovery for intrinsic dielectric breakdown strength of insulators using machine learning

Chemistry of MaterialsMsc: cm5b04109

The following graphic will be used for the TOC:

1

Chem. Mater. 28, 1304 (2016) & J. Phys. Chem. C 120, 14575 (2016)

EXAMPLE 1

DIELECTRIC BREAKDOWN

Rapid reduction of resistance of an electrical insulator under the presence of extreme electric field

+ + + + + + + +

— — — — — — — —

E-fielde-

PREDICTING BREAKDOWN FIELD

Predicting intrinsic electrical breakdown field of an insulator from first principles is difficult…

Determined by the balance between energy gain (E-field to e) and loss (e to phonon) of the electron

Can the breakdown field be estimated rapidly using a simple heuristic model ? Consider 82 binary octets (ex. ZnO, NaCl, …)

Fröhlich, Nature 151, 339 (1943)Sun. et al., Appl. Phys. Lett. 101, 132906 (2012)C. Kim, G. Pilania, R. Ramprasad, Chem. Mat. 28, 1304 (2016).

Dependence of Chemistry?

FIRST PRINCIPLES CALCULATIONS

Alkali metal halides

Transition metal halides

Post-transition metal halides

Alkaline earth metal chalcogenides

Transition metal oxides

Group IV

Group III-V Group II-VI

C. Kim, G. Pilania, R. Ramprasad, “From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown”, Chem. Mat. 28, 1304 (2016).

LEARNING FROM DATA

Easily accessible material properties

Band gap (Eg)Phonon cutoff frequency (ωmax)Mean phonon frequency (ωmean)

Bulk modulus (M)Dielectric constant, electron (εe)Dielectric constant, total (εtot)

Nearest neighbor distance (dNN)Density (ρ)

Intrinsic breakdown field of 82 binary octets (by DFT)

Correlation analysis & Machine learning

Fb = f(A, B, …)

FEATURE CREATION

8 primary features

Band gap (Eg)Phonon cutoff frequency (ωmax)Mean phonon frequency (ωmean)

Bulk modulus (M)Dielectric constant, electron (εe)Dielectric constant, total (εtot)

Nearest neighbor distance (dNN)Density (ρ)

187,952 compound features

96 featureswith 1 function

ex) ln(Eg)

4,480 unique featureswith 2 functionsex) εtot2/exp(dNN)

183,368 unique featureswith 3 functions

ex) ln(ωmax)exp(M)/Eg2

8

1296

96

96

9696

12 prototypical functions

x, x-1, x2, x-2,

x3, x-3, x1/2, x-1/2,

ln(x), 1/ln(x), ex, e-x

Ghiringhelli, et al., Phys. Rev. Lett. 114 105503 (2015)

FEATURE SELECTION USING LASSO

187,952 compound features

LASSO-based down-selection

DiscardYes

No

36 features

Featuren (n=1~187,952)

Survive

Highlycorrelated?

(based on LASSO* coefficient)

Ranking Feature

Absolute Pearson

correlation /w lnFb

1 lnEg lnωmax / dNN1/2 0.899

2 (Eg ωmax)1/2 0.890

3 lnEg ωmax1/2 0.890

4 Eg1/2 lnωmax 0.889

5 Eg1/2 / dNN 0.885

6 lnEg / dNN2 0.883

7 lnEg / exp(dNN) 0.880

8 Eg1/2 / lndNN 0.879

9 ωmax Eg1/2 / lnωmean 0.871

10 (ωmax / Eg)1/2 0.869

… … …

36 (εtot Eg)1/2 0.480

*LASSO: Least absolute shrinkage and selection operator R. Tibshirani et al, “Regression shrinkage and selection via the Lasso” J. R. Stat. Soc. Ser. B 58, 267 (1996).

Ghiringhelli, et al., Phys. Rev. Lett. 114 105503 (2015)

PREDICTION MODEL

Model formula: Fb=24.442 exp{0.315(Eg ωmax)1/2}

Predicted intrinsic breakdown field in MV/m

Band gap in eVPhonon cutoff frequency in THz

Correlation

Entirely based on heuristic not a law! But practically useful in estimating electrical breakdown field strength.

Mac

hine

Lea

rnin

gDFT

C. Kim, G. Pilania, R. Ramprasad, Chem. Mat. 28, 1304 (2016).

APPLICATION TO PEROVSKITES

C. Kim, G. Pilania, R. Ramprasad, J. of Phys. Chem. C 120, 14575-14580 (2016).

209 PerovskitesPrediction of

breakdown fieldCompounds with

highest breakdown field

Contours: Breakdown field (MV/m)

Boron containing compounds appear highly promising

Fb = f(Eg, ωmax)

SUMMARY: EXAMPLE 1Intrinsic dielectric breakdown field of 82 binary octets are obtained by using quantum mechanical calculations.

Phenomenological models as a function of Eg & ωmax are developed using machine learning method.

Application to perovskites predicts boron containing compounds as promising high breakdown strength materials

Chemistry of MaterialsMsc: cm5b04109

The following graphic will be used for the TOC:

1

• Multi-fidelity machine learning models for bandgap prediction

Sci. Rep. 6 19375 (2016) & Comput. Mater. Sci. 129 156 (2017).

Pred

icte

d H

SE g

ap

Computed HSE gap

EXAMPLE 2

MULTI-FIDELITY INFORMATION FUSION

Given limited computational resources, how to tune the cost-accuracy trade-off for optimal predictions?

Method A Method B Method C

Accuracy: High Medium Low

Cost: High Medium Low

Implications for materials genomics:➢ High through chemical space explorations ➢ Rational materials design and discovery

MULTI-FIDELITY LEARNING FOR BANDGAPS OF SOLIDS

• A property of interest for many applications, including energy harvesting, energy storage, catalysis, scintillation and device physics

• A natural hierarchy of “DFT and beyond” approaches provides different options for the “cost-accuracy” trade-offs

➢ Standard local and semi-local XC functionals do not provide a good description of the bandgaps

➢ Hybrid functionals and beyond-DFT techniques are extremely expensive

Jacob's ladder of DFT exchange-correlation (XC) functionals

by John P. Perdew

Perdew et al. J. Chem. Phys. 123, 062201 (2005).

HSE

PBE

AN EXAMPLE OF ELPASOLITES• A class of Materials with potential

applications in energy harvesting and scintillation

• Exhibiting flexible chemistry, amenable to combinatorial synthesis

• Variable chemistry on a fixed cubic lattice makes this class an ideal test case for machine learning

• A dataset of 600 Elpasolites

• DFT computed PBE bandgaps used as low fidelity data and HSE06 bandgaps were taken as high fidelity data

600 PBE

250 HSE

Computed

200 PBE

200 HSE

Training

50 HSE

Validation Prediction

350 HSE F. P. Doty, P. Yang, and M. A. Rodriguez, Elpasolite scintillators, Sandia Natl. Lab2012 (2012).

DETAILS OF THE FEATURE SET

Dey et al. Comput. Mater. Sci. 83, 185 (2014).T. Gu, W. Lu, X. Bao, and N. Chen, Solid State Sci. 8, 129 (2006).G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, T. Lookman, Sci. Rep. 6 19375 (2016).

The Feature Space

Low fidelity training data

High fidelity training data

High fidelity predictions

• Elemental electronegativity, • First ionization potential, • Empirical radius and • Pettifor's Mendeleev number

(for each of the species occurring at A, B, B' and X sites)

DETAILS OF THE LEARNING MODEL• We employ a co-kriging model within a Bayesian framework

L. Le Gratiet and J. Garnier, Int. J. Uncertain. Quantif. 4, 365 (2014).G. Pilania, A. Mannodi-Kanakkithodi, B. P. Uberuaga, R. Ramprasad, J. E. Gubernatis, T. Lookman, Sci. Rep. 6 19375 (2016).

Independent Gaussian Processes

K =

THE COST-ACCURACY TRADE-OFF

G. Pilania, J. E. Gubernatis, T. Lookman Comput. Mater. Sci. 129 156-163 (2017).

RM

S Er

ror

(eV

) on

the

Val

idat

ion

Set

(Uns

een

Dat

a)

110HSE130PBE

40HSE130PBE

110HSE200PBE

180HSE200PBE

200 PBE

200 HSE

Training

nc

ne

nc > ne

Pred

icte

d H

SE g

ap (e

V)

Computed HSE gap (eV)

Pred

icte

d H

SE g

ap (e

V)

Computed HSE gap (eV)

Pred

icte

d H

SE g

ap (e

V)

Computed HSE gap (eV) Computed HSE gap (eV)

Pred

icte

d H

SE g

ap (e

V)

THE COST-ACCURACY TRADE-OFF

G. Pilania, J. E. Gubernatis, T. Lookman Comput. Mater. Sci. 129 156-163 (2017).

CURRENT STATE-OF-THE-ART

Chan and Ceder, Phys. Rev. Lett. 105, 196403 (2010).R. Ramakrishnan et al. J. Chem. Theory Comput. 11, 2087 (2015).

Use PBE bandgap as a feature in ML

Lee et al. Physical Review B 93, 115104 (2016).

Linear fit DFT v/s experiments

Setyawan et al. ACS combinatorial science 13, 382-390 (2011).

L. Ward et al. NPJ Comp. Mater. 2, 16028 (2016).L. Weston and C. Stampfl, arXiv preprint arXiv:1708.08530, (2017).

Anions

Results are averaged

over the B-site

Catalysis Scintillation Energy harvesting

A reliable Intermediate Filter for Application Specific Screening

G. Pilania, J. E. Gubernatis, T. Lookman Comput. Mater. Sci. 129 156-163 (2017).

PRACTICALLY USEFUL FOR CHEMICAL SPACE EXPLORATIONS

NEXT CRITICAL STEPS…Multi-fidelity learning

Pl Pm Ph

Decreasing number of training data points Increasing computational cost and accuracy

Learning

f(Fi1, Fi2, …, FiN, {Pli }, {Pm

i } ) = Ph

i

The learning problem

a b

New data from computations

and/or experiments

Feature extraction

or fingerprinting

Next candidate selection

ML model training,

validation and prediction

Exploration vs exploitation

tradeoff balancing

Feature/ descriptor database

uncertainty quantification

Learning framework

Adaptive learning &

design

Material

Material 1

Material 2 . . .

Material N

Fingerprint

F11, F12, … F1M

F21, F22, … F2M . . .

FN1, FN2, … FNM

Low Medium High

Pl1 Pm

1 Ph1

Pl2 Pm

2 Ph2

. . . . . .

. . .

PlN Pm

N PhN

Material X PhX = ?

Model input : Optional input : Model output :

Fingerprint vector FX Pl

X and/or PmX

PhX

Prediction model

• Use uncertainties for adaptive design (active learning)

• Tune the trade-offs between exploration and exploitation

NEXT CRITICAL STEPS…• Use uncertainties for adaptive

design (active learning)

• Tune the trade-offs between exploration and exploitation

Multi-fidelity learning

Pl Pm Ph

Decreasing number of training data points Increasing computational cost and accuracy

Learning

f(Fi1, Fi2, …, FiN, {Pli }, {Pm

i } ) = Ph

i

The learning problem

a b

New data from computations

and/or experiments

Feature extraction

or fingerprinting

Next candidate selection

ML model training,

validation and prediction

Exploration vs exploitation

tradeoff balancing

Feature/ descriptor database

uncertainty quantification

Learning framework

Adaptive learning &

design

Material

Material 1

Material 2 . . .

Material N

Fingerprint

F11, F12, … F1M

F21, F22, … F2M . . .

FN1, FN2, … FNM

Low Medium High

Pl1 Pm

1 Ph1

Pl2 Pm

2 Ph2

. . . . . .

. . .

PlN Pm

N PhN

Material X PhX = ?

Model input : Optional input : Model output :

Fingerprint vector FX Pl

X and/or PmX

PhX

Prediction model

• Multi-objective optimization to systematically explore Pareto-optimal set

• Improved ways of incorporating domain knowledge in machine learning models

LEARNING FORM OTHER COMMUNITIES

Surrogate-Based Modeling and Optimization

Slawomir KozielLeifur Leifsson Editors

Applications in Engineering

Springer Tracts in Mechanical Engineering

Emiliano IulianoEsther Andrés Pérez Editors

Application of Surrogate-based Global Optimization to Aerodynamic Design

Springer Proceedings in Mathematics & Statistics

Slawomir KozielLeifur LeifssonXin-She Yang Editors

Solving Computationally Expensive Engineering ProblemsMethods and Applications

Slawomir Koziel · Leifur Leifsson

Simulation-Driven Design by Knowledge-Based Response Correction Techniques

Heike Trautmann · Günter RudolphKathrin Klamroth · Oliver SchützeMargaret Wiecek · Yaochu JinChristian Grimme (Eds.)

123

LNCS

101

73

9th International Conference, EMO 2017Münster, Germany, March 19–22, 2017Proceedings

EvolutionaryMulti-CriterionOptimization

NEXT CRITICAL STEPS…

Materials problems are different! Still, many already existing methods can be useful to solve materials challenges

AcknowledgementsCo-workers & Collaborators:

Funding & Computational ResourcesHosts at the Fritz Haber Institute

J. Gubernatis T. Lookman J. Theiler A. K. M.-Kanakkithodi

C. Kim R. Ramprasad

M. Scheffler L. Ghiringhelli


Recommended