+ All Categories
Home > Education > Math in the News: 10/3/11

Math in the News: 10/3/11

Date post: 25-May-2015
Category:
Upload: media4math
View: 896 times
Download: 0 times
Share this document with a friend
Description:
In this issue of Math in the News, we look at the UARS satellite, which recently crashed after over a decade of service. What were the factors that made it so difficult to predict where it would land?
Popular Tags:
18
10/3/11
Transcript
Page 1: Math in the News: 10/3/11

10/3/11

Page 2: Math in the News: 10/3/11

The UARS Satellite• The Upper

Atmosphere Research Satellite (UARS) was launched in 1991. Its mission was to study what at the time was termed the “ozone hole” in the upper atmosphere.

Page 3: Math in the News: 10/3/11

The UARS Satellite• This video shows the

deployment of this satellite from the Space Shuttle Discovery back in 1991.

• The UARS looks stationary, but it is moving at the same speed as the Space Shuttle, around 17,000 mph.

Go to

http://www.nasa.gov/multimedia/videogallery/index.html?collection_id=71371&media_id=109209591

Click on “NASA Archives: About UARS.”

Page 4: Math in the News: 10/3/11

The UARS Satellite• This video gives an

overview of the role that UARS played in the management of the ozone hole problem and how it has been alleviated. (Note: This video is 17 minutes in length.)

Go to

http://www.nasa.gov/multimedia/videogallery/index.html?collection_id=71371&media_id=109209591

Click on “UARS and Discovery.”

Page 5: Math in the News: 10/3/11

The UARS Satellite• As a result of the

data obtained from the UARS, global levels of CFCs have reached a plateau since the satellite’s launch.

Launch of UARS

Page 6: Math in the News: 10/3/11

The UARS Satellite• The UARS was

decommissioned in 2005. Since it was originally scheduled for a three-year mission, it outlived its mission by over a decade.

• When decommissioned a satellite is allowed to continue its orbit, but with no further intervention.

Page 7: Math in the News: 10/3/11

The UARS Satellite• We think of space travel

as movement through a vacuum. If this were really the case, then given enough energy, a satellite would continue orbiting the Earth indefinitely.

Page 8: Math in the News: 10/3/11

The UARS Satellite• But a satellite, like any

other spacecraft, is subject to solar wind, which is made up of subatomic particles and photons. Like the wind that can slow down an airplane, solar wind acts as a drag on the motion of a satellite, slowing it down.

Page 9: Math in the News: 10/3/11

The UARS Satellite• As the satellite slows

down, its orbit around the Earth shrinks. The is an example of a decaying orbit.

Page 10: Math in the News: 10/3/11

The UARS Satellite• If solar wind was a drag

on the satellite, even more dramatic changes occur when the satellite enters the Earth’s atmosphere. Here, a much more dense collection of gases and other particles not only slow down the satellite but eventually cause it to break apart.

Page 11: Math in the News: 10/3/11

The UARS Satellite• This is where it becomes

difficult to predict where the satellite will ultimately land. There are two main reasons for this. Let’s look at the first.

Page 12: Math in the News: 10/3/11

The UARS Satellite• There are a number of

detectors around the Earth. As the satellite passes each detector, its expected path past the next detector is determined. When the satellite is not detected, that means it descended somewhere between the two detectors. So, there is a margin of error introduced.

Page 13: Math in the News: 10/3/11

The UARS Satellite• The second reason

that it becomes difficult to predict the satellite’s descent is the Earth’s atmosphere, which changes the path of the satellite. Imagine throwing a paper airplane past a fan. You cannot accurately predict where the airplane will land because of the deflection from the fan.

Page 14: Math in the News: 10/3/11

The UARS Satellite• As a result, there is a

degree of uncertainty about where exactly a satellite’s begins its descent. Let’s estimate that this uncertainty is 15 minutes in duration. Let’s also assume that the satellite is traveling at a speed of 17,000 mph.

Page 15: Math in the News: 10/3/11

The UARS Satellite• Now let’s assume that

the satellite is at an altitude of 100 miles when it begins its descent. We can use this freefall function to determine the range of where the the satellite debris will land. (All distance units shown are in feet.)

Page 16: Math in the News: 10/3/11

The UARS Satellite• Solve this quadratic

equation for t to find out the time the satellite will be in the air before it comes to a crashing halt.

Page 17: Math in the News: 10/3/11

The UARS Satellite• Use this value for t to

find the horizontal displacement of the satellite. One it enters the atmosphere its speed is no longer 17,000 mph. Assume a horizontal speed of 600 mph.

Page 18: Math in the News: 10/3/11

The UARS Satellite• So the total range of

where the satellite can land has increased to 4,280 miles.


Recommended