+ All Categories
Home > Documents > Mathematical Applications for the Management, Life, and...

Mathematical Applications for the Management, Life, and...

Date post: 21-May-2020
Category:
Upload: others
View: 27 times
Download: 1 times
Share this document with a friend
88
Instructor Solutions Manual Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States Mathematical Applications for the Management, Life, and Social Sciences NINTH EDITION Ronald J. Harshbarger University of South Carolina Beaufort James J. Reynolds Clarion University of Pennsylvania University of South Carolina Beaufort
Transcript

Instructor Solutions Manual

Australia • Brazil • Japan • Korea • Mexico • Singapore • Spain • United Kingdom • United States

Mathematical Applications for the Management, Life, and Social

Sciences

NINTH EDITION

Ronald J. Harshbarger University of South Carolina Beaufort

James J. Reynolds

Clarion University of Pennsylvania University of South Carolina Beaufort

© 2009 Brooks/Cole, Cengage Learning ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher except as may be permitted by the license terms below.

For product information and technology assistance, contact us at Cengage Learning Academic Resource Center,

1-800-423-0563

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to [email protected]

ISBN-13: 978-0-547-16993-4 ISBN-10: 0-547-16993-0 Brooks/Cole 10 Davis Drive Belmont, CA 94002-3098 USA Cengage Learning products are represented in Canada by Nelson Education, Ltd. For your course and learning solutions, visit academic.cengage.com Purchase any of our products at your local college store or at our preferred online store www.ichapters.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient: Cengage Learning has provided you with this product (the “Supplement”) for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the “Course”), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements. Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, or distributed, except that portions of the Supplement may be provided to your students in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third party. Test banks, and other testing materials may be made available in the classroom and collected at the end of each class session, or posted electronically as described herein. Any

material posted electronically must be through a password-protected site, with all copy and download functionality disabled, and accessible solely by your students who have purchased the associated textbook for the Course. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt. All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an “as is” basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State’s conflict of law rules. Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in the United States of America 1 2 3 4 5 6 7 11 10 09 08 07

Chapter 0: Algebraic Concepts Exercise 0.1 __________________________________________________________________

1. { , , , }x x y z a�

2. 3 {1, 2,3, 4,5,6}�

3. 12 {1, 2, 3, 4,...}�

4. 5� {x: x is a natural number greater than 5}

5. 6 {1, 2, 3, 4, 5}�

6. 3��

7. {1, 2, 3, 4, 5, 6, 7}

8. {7, 8, 9}

9. {x: x is a natural number greater than 2 and less than 8}

10. {x: x is a natural number greater than 6}

11. A� � since � is a subset of every set. A B� since every element of A is an element of

B. B B� since a set is always a subset of itself.

12. A� � since � is a subset of every set. ( )A B A� � B

since a set is always a subset of itself. B B�

13. No. c � A but c � B.

14. No. 12 � A but 12 B� .

15. D � C since every element of D is an element of C.

16. E F� since every element of E is an element of F.

17. A � B and B � A. (Also A = B.)

18. and . (Also .)D F F D D F� � �

19. A � B and B � A. Thus, A = B.

20. A D�

21. D � E because 4 � E and 4 � D.

22. F = G

23. A and B are disjoint since they have no elements in common. B and D are disjoint since they have no elements in common. C and D are disjoint.

24. �

25. A�B = {4, 6} since 4 and 6 are elements of each set.

26. { , , }A B a d e� � , since a, d and e are elements of each set.

27. A�B = � since they have no common elements.

28. {3}A B� �

29. AB = {1, 2, 3, 4, 5}

30. { , , , , , , , }A B a b c d e i o u �

31. AB = {1, 2, 3, 4} or AB = B.

32. A B � {x:x is a natural number not equal to 5}

For problems 35 - 46, we have U = {1, 2, 3, . . . , 9, 10}.

33. A = {4, 6, 9, 10} since these are the only elements in U that are not elements of A.

34. B = {1, 2, 5, 6, 7, 9}since these are the only elements in U that are not elements of B.

35. B = {1, 2, 5, 6, 7, 9} A� B = {1, 2, 5, 7}

36. {4, 6, 9, 10}{1, 2, 5, 6, 7, 9}

{6, 9}

ABA B

� � � �

37. AB = {1, 2, 3, 4, 5, 7, 8, 10} 9}( ) {6,A B �

38. {3, 8}( ) {1, 2, 4, 5, 6, 7, 9, 10}A BA B� �

� �

39. A = {4, 6, 9, 10} B = {1, 2, 5, 6, 7, 9}

{1, 2, 4, 5, 6, 7, 9, 10}A B �

40. {4, 6, 9, 10}{4, 3, 8, 10}

{3, 4, 6, 8, 9, 10}( ) {1, 2, 5, 7}

ABA BA B

�� � �

41. B = {1, 2, 5, 6, 7, 9}, C = {1, 3, 5, 7, 9} A� B = {1, 2, 3, 5, 7, 8}� {1, 2, 5, 6, 7, 9} = {1, 2, 5, 7} (A� )B C = {1, 2, 3, 5, 7, 9}

Chapter 0: Algebraic Concepts

1Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

42. {1, 3, 5, 8, 7, 2}{1, 2, 5, 6, 7, 9}{1, 3, 5, 7, 9}

{1, 2, 3, 5, 6, 7, 9}( ) {1, 2, 3, 5,

ABCB CA B C

� � � �

� � 7}

43. B = {1, 2, 5, 6, 7, 9}, A� B = {1, 2, 3, 5, 7, 8} � {1, 2, 5, 6, 7, 9} = {1, 2, 5, 7} (A� )B �C = {3, 4, 6, 8, 9, 10}� {2, 4, 6, 8, 10} = {4, 6, 8, 10}

44. {2, 3, 4, 6, 8, 10}( ) {2, 3, 8}

B CA B C �� �

45. A – B = {1, 3, 7, 9} – {3, 5, 8, 9} = {1, 7}

46. A – B = {1, 2, 3, 6, 9} – {1, 4, 5, 6, 7} = {2, 3, 9}

47. A – B = {2, 1, 5} – {1, 2, 3, 4, 5, 6} = �

48. A – B = {1, 2, 3, 4, 5} – {7, 8, 9} = {1, 2, 3, 4, 5}

49. a. L = {2000, 2001, 2004, 2005, 2006} H = {2000, 2001, 2006} C = {2001, 2002, 2003}

b. H� L c. C is the set of all years when the percentage change (from low to high) was 35% or less. d. H = {2002, 2003, 2004, 2005} C = {2000, 2004, 2005, 2006} H C = {2000, 2002, 2003, 2004,

2005, 2006} H C is the set of years when the high was less than or equal to 11,000 or the percent change was less than or equal to 35%.

e. L = {2002, 2003} L�C = � L�C is the set of years when the low was less than or equal to 8,000 and the percent change was more than 35%.

50. a. A = {O, L, P} B = {L, P} C = {O, M, P} b. B A� c. {O, P}; this is the set of cities with at least 2,000,000 jobs in 2000 or 2025 and projected annual

growth rates of at least 2.5%. A C� �

d. B is the set of cities with less than 1,500,000 jobs in 2000.

51. a. From the table, there are 100 white Republicans and 30 non-white Republicans who favor national health care, for a total of 130. b. From the table, there are 350 + 40 Republicans, and 250 + 200 Democrats who favor national health care,

for a total of 840. c. From the table, there are 350 white Republicans, and 150 white Democrats and 20 non-whites who oppose

national health care, for a total of 520.

52. a. From the table, 250 white Republicans and 150 white Democrats oppose national health care, for a total of 400. b. From the table, there are 750 whites and there are 20 non-whites who oppose national health care. The total

of this group is 770. c. From the table, there are 200 non-white Democrats who favor national health care.

53. a. The key to solving this problem is to work from "the inside out". There are 40 aides in E � F. This leaves 65 – 40 = 25 aides who speak English but do not speak French. Also we have 60 – 40 = 20 aides who speak French but do not speak English. Thus there are 40 + 25 + 20 = 85 aides who speak English or French. This means there are 15 aides who do not speak English or French.

U

E F

2540 20

15b. From the Venn diagram E�F has 40 aides. c. From the Venn diagram EF has 85 aides. d. From the Venn diagram E F � has 25 aides.

Chapter 0: Algebraic Concepts

2 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

54. There are 14 advertisers in the intersection of the sets. Since 30 advertised in These Times and U.S. News and we already have 14 in the center, 16 advertised in These Times and U.S. News and not in World. Since 26 advertised in World and U.S. News and we already have 14 in the center, 12 advertised in World and U.S. News and not in These Times. Since 27 advertised in World and These Times and we already have 14 in the middle, 13 advertised in World and These Times and not in U.S. News. 60 advertised in These Times and we have already accounted for 43, so 17 advertised in These Times only. 52 advertised in U.S. News and we have already accounted for 42, so 10 advertised in U.S. News only. 50 advertised in World and we have already accounted for 39, so 11 advertised in World only.

UU.S. News

10

12 1311

These Times

World

1617

14

7

a. In the union of the 3 publications we have 10 + 16 + 17 + 14 + 12 + 13 + 11 = 93 advertisers. Thus, there are 100 – 93 = 7 who advertised in none of these publications.

b. There are 17 advertisers in the These Times circle that are not in an intersection. c. In the union of U.S. News and These Times we have 10 + 12 + 16 + 14 + 17 + 13 = 82 advertisers.

55. Since 12 students take M and E but not FA, and 15 take M and E, 3 take all three classes. Since 9 students take M and FA and we have already counted 3, there are 6 taking M and FA which are not taking E. Since 4 students take E and FA and we have already counted 3, there is only 1 taking E and FA but not taking M also. Since 20 students take E and we already have 16 enrolled in E, this leaves 4 taking only E. Since 42 students take FA and we already have 10 enrolled in FA, this leaves 32 taking only FA. Since 38 students take M and we already have 21 enrolled in M, this leaves 17 taking only M. a. In the union of the 3 courses we have 17 + 12 + 3 + 6 + 32 + 1 + 4 = 75 students enrolled. Thus, there are

100 – 75 = 25 students who are not enrolled in any of these courses.

UMath

17

12 1

4

Fine Arts

Economics

632

3

25

b. In M E we have 17 + 12 + 3 + 6 + 1 + 4 = 43 enrolled. c. We have 17 + 32 + 4 = 53 students enrolled in exactly one of the courses.

56. Start by filling in the parts of the diagram for AL, since we have more information about it. 21 liked AL only. Since 30 liked AL but not PT, 9 liked AL or PT exclusively. 25 liked PT or AL but not DH, and 63 liked AL. That leaves 63 – (21 + 25 + 9) = 8 in the intersection of all 3. Since 18 liked PT and DH, only 10 liked PT and DH but not AL. Since 27 liked DH, 27 – (9 + 8 + 10) = 0 liked DH. And since 58 liked PT, 58 – (25 + 8 + 10) = 15 liked PT only.

UAL

21

9 100

PT

DH

2515

8

22

UAL

21

9 100

PT

DH

2515

8

22a. The number of students that liked PT or DH is 25 + 15 + 9 + 8 + 10 + 0 = 67.

b. The number that liked all three is 8. c. The number that liked only DH is 0.

57. (a) and (b)

U

A�

A� B�

O�

B�AB�

AB�

Rh�

A B

O�

Chapter 0: Algebraic Concepts

3Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Exercise 0.2 __________________________________________________________________

18. ( 5)( 3) ( 2)(3) 15 ( 6)9 2 7

15 6 21 37 7

� � � � � ��

� � ��

1. a. Note that 110 10 � �� �� �

� �, where � � is

irrational and 110

� is rational. The product

of a rational number and an irrational number is an irrational number.

� � �� �

19. | 5 2 | | 7 | | 3 | | 7 | 3 7 43�

| 5 2 | | 3 | 3� � � � �

� � � ��

b. –9 is rational and an integer.

c. 9 3 33 1� � . This is a natural number, an

integer, and a rational number. 20. 2 2

| 3 | 4 11|| | 3 | 7 || | 3 7 | 46

| || 25 9 | |16 | 1| 5 3 |4 116 4

� � � � �� �

��

� � �� �

� � ��

d. Division by zero is meaningless.

2. a. 0 06� is rational and an integer.

21. 2

2

( 3) 2 3 6 9 6 6 9 334 4 34 2 3

� � � � � �� � �

� �� �b. rational c. rational 22.

2

2

6 4( 3)( 2) 36 ( 12)( 2) 36 24��

6 36 4 6 96 6 4

12 43

� � � � � �� �

� �� �

� � ��

d. rational

3. a. Commutative b. Distributive

4. a. Associative

23. 2

2

4 5 2 3 16 5 6 17 171

��

5 16 1 115 4� � � � � � �

� �� ��

b. Additive identity

5. a. Multiplicative identity

b. Additive inverse 24. 2 2

3 2(5 2) 3 2 3 3� 14 4 3 3( 2) 2 3

� � � �� � � � c.

6. a. Multiplicative inverse � �� � � b. Commutative

25. The entire line

7. –14 < –3

26. The interval notation corresponding to 0x � is [0, )� .

8. 3.14 �

9. 1 10.333 0.33333 3� �� � ���

27. (1, 3]; half-open interval � �� �

28. [–4, 3]; closed interval

10. 1 1 53 2 6� �

29. (2, 10); open interval

30. [2, );� half-open interval

11. 8 > 2

31. 3 5x� � �

12. (12 = 12) | 9 3 | | 9 | | 3 |� � � � �

32. x > –2

13. 2 23 10 2 3 20 9 20 11� � � � � � � � � �

33. x > 4

34. 0 5x� � 14. 2( 3) 10 2 9 20 29� � � � � �

15. 24 2 4 4 8 4

2 2 2� �

� � � 35. ) ( 3 4( , 4) ( 3, , )�� � � � ��

1 2 3 43 5� 1� 02� 16.

2 2(4 2) 6 36 18� 2 2 2�

� �

36. [–4, 17) � [–20, 10] = [–4, 10]

17. 16 ( 4) 16 4 20 2 8 ( 2) 8 2 10� � �

� � �� � �

4 6 8 10 126

� 2� 04�

Chapter 0: Algebraic Concepts

4 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

37. x > 4 and 0x � = (4, ) �

38. x < 10 and x < –1 is x < –1 or ( , 1)�� � .

39. [0, ) [ 1, 5] [ 1, )� � � � �

40. ( , 4)�� (0, 2) = ( , 4 )

)

��

41. ( ,0) (7,�� �

42. x > 4 and x < 0

The intersection is the empty set.

43. –0.0000385850105

44. 0.404787025

45. 9122.387471

46. 11.80591621

47. 6

2500 2500 3240.1845090.771561[(1.1 ) 1]

� ��

48. 1591.712652

49. a. $300.00 + $788.91 = $1088.91 b. 0.25[1088.91 – 0.05(1088.91)] = $258.62 c. Retirement: 0.05(1088.91) $54.45

State tax Retirement $54.45Local tax 0.01(1088.91) $10.89

Federal tax 0.25(1088.91 54.45) $258.62Soc. Sec. tax 0.0765(1088.91) $83.30

Total Withholding $461.71

�� �

� �� � �

� �

�Take-home: 1088.91 – 461.71 = $627.20

50. a. 1995 1960 35t � � �

1 2 3 4 5 61� 02� b. � � � �20.04 35 0.56 35 1.29$30.69 million

E � � �

� c.

� � � �2

2012 1960 52

0.04 52 0.56 52 1.29$80.33 million

t

E

� � �

� � �

1 2 3 4 5 61� 02�

51. a. Formula (2) is a closer approximation 1 2 3 4 5 61� 02� � �

� � � �� �

3 2

0.3179 6 13.85 15.7574%

0.0194 6 0.1952 6

0.8282 6 13.6315.7624%

P

P

� � �

� �

� �

1 2 3 4 5 61� 02�

b. (1): 17.665%; (2): 28.983% Formula (2) seems too high, formula (1) seems more accurate. 1 2 3 4 5 61� 0 7

52. a. � �� �� �

2.31 10.5 31.26 55.515 n

Upper: 1.05 55.515 58.29 inches

Lower: 0.95 55.515 52.74 inches52.74 58.29

H

H

� � �

� �

i ches

1 2 3 4 5 61� 02�

b. � �� �� �

2.31 5.75 31.26 44.54 n

Upper: 1.05 44.5425 46.77 inches

Lower: 0.95 44.5425 42.32 inches42.32 46.77

H

H

� � �

� �

25 i ches

53. a. 1 0 850$77,101 6 ,$160,851 $349,700

$349,700

II

I

� �� �

b. 782 � �

� �

782.50 0.15 31,850 5$4386.254386.25 0.25 77,100 31,850$15,698.75

T

T

� � �

� � �

�c. � �4386.25, 1 ,5 698.75

Exercise 0.3 ___________________________________________________________________

1. 256 � � � �� � � �� �44 4 4 4 4� � � � � � �

2. 125� � � 35 1 5 5 5� � � � �

3. 2 2 64� 62 1 2 2 2 2� � � � � � � � � �

4. 32� � � � �� �� �� �� �52 2 2 2 2 2� � � � � � � �

5. 22

1 1393

� � �

6. 1 16�

6�

Chapter 0: Algebraic Concepts

5Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

7. � �23 3 3 9� � �� � 1

2 2 2 4� � � �� � � �� � � �� � � �� �

8. 3 3

3

2 2 8� �

3 273� �� �� �

9. 5 3 5 3 86 6 6 6�� � �

10. 8

8 3 53

7 7 77

�� �

11. 8

8 9 19

10 110 101010

� �� � �

12. � �

4 4 44 1 3

2 3 12 3

5 5 5 5 55 55 5

�� ��

� � � ��

13. 3�� � � �33 3 33 3 9

6

14. 2 � � 23 ( 3) ( 2)2 2�� � � �� �

15. 2 22 3 9� �

� � 3 2 4

�� � � �� �� � � �

16. 4 42 5 5

5 2

��� � � � � �� � �� � � � � ��� � � � � �

4

2

17. 2 3 2( 3) 66

1( )x x xx

� � �� � �

18. 44

1xx

� �

19. 2 02 2

1 1 xxy z xy y

� � � � �

20. 2 0 1xy� � ( )

21. 3 4 3 4 7x x x x�� � �

22. 5 5 1a a a a�� � � 6

23. 5 3 5 3 22

1x x x xx

� � � �� � � �

24. 5 2 5 ( 2) 77

1y y y yy

� � � � � �� � � �

25. 8

8 4 44

x x xx

�� �

26. 5

5 ( 1) 5 1 61

a a a a� � a

� �� � �

27. 5

5 ( 7) 127

y y yy

� �� � �

28. 3

3 ( 4) 3 4 14

y y y y yy

�� � � � �

� � � � �

29. 4 3 3 4 12( )x x x�� �

30. 3 2 3 ( 2) 66

1( )y y yy

� � � �� � �

31. 2 2( ) 2xy x y�

32. m 3 3 3(2 ) 2 8m m� � 3

33. � �

4 4

5 4 5 4 20

1 65

2 2 6 1x x xx

� � � � �� �� �

34. 3 3

3 3 3 3 3 9

512� 8 8 512

( )a a a a� � � � �� �� �

35. � �842 4 8 4

42 216

xx y x yy

�� � �� �

36. � � � �3 35 3 5 5 )

1515

32 ( 32)( 32)

1 132768 32768

x x

xx

� � ( 33

1 x� �

� � � ��

� � � ��

37. � �� �3 2 5 4 3 5 2 4

22 2

2

8 2 16

1616

a b a b a b

aa bb

� � � � �

� � �

� � � �

38. � �� �2 1 3 1 2 ( 3) 1 ( 1)

1 22 2

3 2 6

1 1 66 6

m y m y m y

m ym y my

� � � � � � � �

� �

� � �

� � �� �� � � � �� �� �� �� �

39. 2

2 1 22 2 2

2 222 yx x y

x2x

x x y xy� �� � � � ��

40. � � � �3 2

3 2 5 45 4

3 2

5 4 8 2

88 22

8 42

a b ca b c a ba b

a b cca b a b

��

�� � �

� �� � � � �

41. 33 9

2 6 9 6 9 6� 1 1 1x xy y x y x y

� �

� �� � �� �

� �

Chapter 0: Algebraic Concepts

6 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

42. 32 2 3 ( 2)( 3)

3 3

6

36 6 3

( )

1

3

x x xy y y y

yx x y

�� � � � �

� �

� �� � �� �

� �

� � �

x�

43. 3 32 1 4 2 6 4

4 3 0 6 4 2

18 12

6

a b c b a ca b c a c b

a cb

� �� � �

� � � � � �� �� � � � � �

� � � � � �

3

44. 21 40

2 4 10

42

x yx y

�� �

� �

� �� �� �

21 4 40 ( 10)

2

5 30 2

2 5 2 30 2

( 5)( 2) ( 30)( 2)2

10 6010 60

4(1/ 2)

(16 )(16) ( ) ( )

1(16)1

256 256

x y

x yx y

x y

x yx y

� � � � �

� � �

� � � � �

� � � �

� �� � �� �� �

� �

� �

45. a. 2

2 2 2 2 2 4

1 12 1 1 12 2(2 ) (2 ) 4 2

xx x x x x

� � � � � �x

b. � �� � � � � �

2

2 2 2 2 2 4

12 1 1 1 14 4 162 2 2

xx x xx x x

� � � � �

c. 2

2 2 2 4

12 1 122 2xx x x x

� � � �

d. � �

� �2

2 22 2 2

2 1 12 2 2 4 8� � 2

x x xx xx

� � � � � �

46. a. � �

1 2 1 21 2 2 2 3 4

2 2 2 4

1x2 2 2 22 82

x x xx xx

� � � �� � � � � �� � � �

b. 1 2

1 1 2 2 2 42 4

2 12 22 4

x x xx x

� �� � � � � �� � �

c. 2 1 1 ( 2)( 1) 1 2

2 2 2 2 2

22

1 ( 2) 2 ( 2) 4

(2 ) 2(2 ) 2

2 2

x x xx x x

x x

� � � � � �

� � � �

� � � � �

� �

� �

d. 2 1 1 ( 2)( 1) 1 2

2 2 221 1 2 2

(2 ) 2 22 2

124

x x xx x x

x

� � � � � �

� � �

� �

� �

47. 11 xx

��

48. 22

1 xx

��

49. 3 3 3(2 ) 2 8 3x x x� �

50. 2 2 2(3 ) 3 9 2x x x� �

51. 22 2

1 1 1 14 4(4 )

xx x

�� � �

52. 44 4

3 3 1 32 2(2 )

xx x

�� � �

53. 3 3

33

12 82x x x� �� � � � �� �

� �

54. 2 2 2

22

( ) 13 93x x x

9x� �� � � � �� �

� �

55. 1.2 4 2.0736xy �

56. 3.7 3 50.653xy� � �

57. 1.5 5 0.1316872428xy � �

58. 0.8 9 7.450580597xy� � � �

59.

5

5

1200, 0.12, 5(1 )

1200(1 0.12)1200(1.12)$2114.81

n

P i nS P i� � �

� �

� �

��

I = S – P = 2114.81 – 1200 = $914.81

60. 1800P � , 0.10i � , 7n )

$1707

)

1800

7

7

0.10)1.10)1.9487171.69

ni� �

3507.69

(11800(11800(1800($3507

S P� �

���

I S P .69� � � � �

Chapter 0: Algebraic Concepts

7Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

I = S – P = 9607.70 – 5000 = $ 7.

63. S = 15,000, n = 6, i = 0.115

64. S

61. 0, �

460 70

6

6

500 0.115, 6(1 )

5000(1 0.115)5000(1.115)$9607.70

n

P i nS P i� �

� �

� �

��

6

6

(1 )15,000(1 0.115)15,000(1.115)$7806.24

nP S i �

� �

� �

��

= 80,000, n = 20, i = 0.105

62. 800P � , 0.105,i � 20n � 20

20

(1 )80,000(1 0.105)80,000(1.105)$10,860.37

nP S i �

� �

� �

��

20

20

)0.105)

1.105)92.99

ni� �

5892.99�

(1800(1800(58

S P� �

��

I S� � 800� � $5092.99 P65. � �456.1 1.074 tI �

� �52

Year 1970 1990 2002. -value 10 30 42. Income

$931.3 $3883.2 $9146.2(in billions)

. 456.1 1.074 $18,676billion. Yes.

t

I � �

ab

cd

66. � �0.50274 1.1626 tS �

Year 1990 2000 2006. -value 40 50 56. Predicted Shares 208.2362 939.4191 2319.751

. Too low; excessive activity (ups or downs) is caused by active trading.

tab

c

67. � �

18831 7.892 1.097 ty ���

. Year 1990 2003 2007value 10 23 27

Predicted number of 456 971 1143

endangered species

t �a

b. ; Year 2007: 27t �� � 27

1883 1143.097

y �� � Year 2020: 40t � ; � � 40

1883 15761 7.892 1.097

y �� ��

1 7.892 1�

Increase between 2007 and 2020 is 1576 1137 439� � species d also contribute. c. There are only a limited number of species and hopefully environmental protection woul

d. Same answer as c. To find the upper limit, which is 1883, compute y for large t-values: Year 2050 2100 2200

value 70 120 220Predicted number of

1860.5 1882.8 1883endangered species

t �

Chapter 0: Algebraic Concepts

8 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

68. � �

73.921 5.441 1.515 tp ���

. Year 2001 2004 2007value 6 9 12

% of U.S. Households51.0% 65.5% 71.3%

with Internet

t �a

b. ; Year 2008: 13t �� � 13

73.92 72.1%1 5.441 1.515

p �� ��

; Year 2011: 16t �� � 16

73.92 73.4%1 5.441 1.515

p �� ��

Increase between 2006 and 2009 is 73.4% 72.1% 1.3%� � . As more households use the Internet, there are fewer who do not have it. The market for Internet is becoming saturated. c. See answer to part b. To find the upper limit, which is 73.92%, compute p for large t-values:

Year 2050 2100 2200value 55 105 205

% of U.S. Households73.92 73.92 73.92

with Internet

t �

69. � �30.58 1.102 tH �

a. 10t � corresponds to 1970 b. � �1030.58 1.102 $80.8 billionH � �

c. � �4530.58 1.102 $2418.9 billionH � �

d. � �5530.58 1.102 $6388.9 billionH � �

Exercise 0.4 ___________________________________________________________________

1. a. Since 216 256

3 9� � �� �� �

we have 256 16 .9 3

b. 1.44 1.2�

2. a.

� �5 5 53 3 3 3 /( 2� � 5

3 35

32 1 32 32 3 )

32 (2) 8

� � � � � �

� � � � � �

b. 4 5 416 1048576� � � The square root of a negative number is not real.

3. a. � �33 / 4 3416 16 2 8� � �

b. � 33/ 2( 16) 16�

�� � � � The square root of a

negative number is not real.

4. a. � �1/ 3 1/ 33

1 127 27327

� �� � � � � � �

b. � �33 / 5 3532 32 2 8� � �

5. 22 / 3 2 / 3 2

38 27 27 3 9� �27 8 8 2 4

� � �� � � �� � �� �� � � � � �� � � � � �� ��� �

6. 33/ 2 34 4 2 8

� 9 9 3 27

� �� � � �� �� �� � � �� �� � � �� �

7. a. � �22 / 3 238 8 2 4� � �

b. � �� �

� � � �

2 / 32 / 3

2 23

1881 1

428

�� ��

1� � �

��

8. a. � �

2 / 32 / 3 2 2

3

1 1 1 1848 28

� � � � �

b. � � � �2 22 / 3 38 8 2 4� � � � � � �

Chapter 0: Algebraic Concepts

9Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

9. � �4 / 949 (6.12) 6.12 2.2370� �

10. � �1/1212 4.96 4.96 1.1428� �

11. 3 3/m m� 2

12. 3 5 5 / 3x x�

13. � �1/ 44 2 5 2 5 2 / 4 5 / 4 1/ 2 5 / 4m n m n m n m n� � �

14. 5 3 3/ 5x x�

15. 67 / 6 7x x�

16. 11/ 5 115y y�

17. 5 / 45 / 4 4 5

1 1 14 4 4

xx

1

x� �� �� � � � �� �

� �

18. 35 / 3 5

3 5

1x xx

� � �� � � �

19. 1/ 4 1/ 2 (1/ 4) (1/ 2) 3 / 4y y y y�� � �

20. 2 / 3 1/ 5 (2 / 3) (1/ 5) (10 /15) (3 /15) 13/15x x x x x� �� � � �

21. 3/ 4 4 (3 / 4) (16 / 4) 19 / 4z z z z�� � �

22. 2 / 3 2 ( 2 / 3) 2 ( 2 / 3) (6 / 3) 4 / 3x x x x x� � � � �� � � �

23. 3/ 2 1 ( 3 / 2) (2 / 2) 5 / 25 / 2

1y y y yy

� � � � �� � � �

24. 2 5 / 3 2 (5 / 3) ( 6 / 3) (5 / 3)

1/ 31/ 3

1z z z z

zz

� � � � �

� � �

� �

25. 1/ 3

(1/ 3) ( 2 / 3) 3 / 32 / 3

x x x xx

� �� � � �

26. 1/ 2

( 1/ 2) ( 3 / 2) ( 1/ 2) (3 / 2) 2 / 23 / 2

x x x xx

�� � � � �

� � � � x�

27. 5 / 2

( 5 / 2) ( 2 / 5)2 / 5

( 25 /10) (4 /10) 21/1021/10

1

y yy

y yy

�� � �

� � �

� � �

28. 4 / 9

(4 / 9) (1/12) (16 / 36) (3 / 36) 13/ 361/12

x x x x� x

� �� �

29. 2 / 3 3 / 4 (2 / 3)(3 / 4) 2 / 4 1/ 2( )x x x� � � x

30. 4 / 5 3 (4 / 5)(3) 12 / 5( )x x x� �

31. 1/ 2 2 1 1( )x xx

� �� �

32. 2 / 3 2 / 5 ( 2 / 3)( 2 / 5) 4 /15( )x x x� � � �� �

33. 4 264 8x x�

34. 36 3 6 3 233 364 64 4x y x y x� � � � � � y�

35. 4 5 4 4

4 4

2 2

128 64 2

64 2

8 2

x y x y y

x y y

x y y

� �

� � � �

36. 33 35 8 5 83

33 2 2 23

32 2 2

54 54

3 2

3 2

x z x z

x x z z

xz x z

� � �

� � �

37. 8 5 6 3 2 23 3

3 6 3 23 3 3

2 2 23

40 8 5

8 5

2 5

x y x y x y2x y x y

x y x y

� �

� � � �

38. 5 5

2

2

32 32

4 2

4 2

x y x y

x x y

x xy

� � �

� � �

39. 3 2 5 2

5 2

2

12 3 36

36

6

x y x y x y

x y

x y x

� �

� � �

40. 32 2 4 2 4 2333 3 3

2 23 3 3 3

16 3 48 48

2 6 2 6

x y x y x y x y

x x y x xy

� � � � �

� � � �

41. 5 3 2 4 2 2

2

3 2

63 28 9 7 4 7

3 7 2 7

42

x y x y x y xy x y

x y xy x y

x y x

� � �

� �

� �

42. 10 17 18 11

18 11

9 5

9 5

10 30 300

300

10 3

10 3

xz x z x z

x z

x z z

x z z

� �

� � �

� � �

43. 3 12 2 10 5

2

12 4 29 327

x y x y xy xy

� �

Chapter 0: Algebraic Concepts

10 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

44. 7 4 7 4 5 4

17 2 1617 2

5 4 2 2

816

2 2

8

250 250 12518 918

125 5 539

5 53

xy z xy z y zx y xx y

y z y y zxx

y z yx

� �

� �� �

45. 4 9 5 4

448 24 17

32 16 2181 3162

a b b b b ba aa

� � �

46. 33 4 3 2 23 43 3 3

32 323

23

16 162128 8128

2

x y x y xx yyy

x y

� �� � �

y��

��

47. 9 9

9 1

( )

9 119

x x

x

A AA A

x

x

��

48. 20

20 1

( )

20 1120

x

x

B BB B

x

x

��

49. � � / 77

/ 7 1

x x

x

R R

R R

17

7

x

x

50. � �3

3 1/ 2 1

3/ 2 1

3 / 2 1

(( ) )( )

3 12

23

x

x

x

x

T T

T TT TT T

x

x

51. 2 3 2 3 63 33 3 3

�� � �

52. 5 8 5 8 40 2 10 108 88 8 8 64� � � � � �

4

53. 2

2

m x m m x mxxx x xmx

�� � �

54. 3 3 3 25

2 2 2

5 5 52 24 4

x w x x w x x w x xxwxxw x w

� � �x

55. 3 32 23 3

3 3 3 35 4 3 23

3 32 2

23 3

m x m m xmx x x x x

mx mxxx x

� � ��

� �

56. 2 3 3 2 3 3 2 34 3 4 4 4

22 5 2 3 4 84 4 4

y z mx y z mx y zmxyzy z y z y z

� � �

57. 2 / 32 / 33 2

2 2 1 23 33

xxx

�� �� � � �

58. 3 / 4

3/ 43 / 44 3

2 2 2 23 333

x xxx

��� � �

� � � �

59. 1/ 2 3/ 23 3 3x x x x x� � � 60. 1/ 2 1/ 3 (1/ 2) (1/ 3)3

(3 / 6) (2 / 6) 5 / 6

x x x x xx x

� � �

� �

61. 1/ 23 32 2

x x�

62. 3

1/ 3 34 4 43 3 3

xx x� �

63. 1/ 21/ 2

1 1 12 2 2

xx

1x

� � � �

64. 3/ 23/ 2 3

1 1 12 2 2

xx

x� �

� � �

65. a. 17 / 2 17178.5 10 102

R I� � � �

b. 17 8.510 10 316, 227,766I � � �

c. 8.25

1.15067.10

89

10 10 14.12510

II

� � �

Chapter 0: Algebraic Concepts

11Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

10/10 1/1010 (10 ) 2066. a. 10D D D 55 /6.75 .75p t� �� � 70. a. 100 11/ 20 116 6.75t t� b. Year Population

1970 30 43.821980 40 51.342000 60 64.16

tb. 10 321 10 1584.89I � �

c. 10 140

10 10140 32 108210 32

1

(108)(1/10) 10.8

10

10 10 1010

10 106.31 10

II

�� � �

� �

2010 70 69.84 Change from 1970 to 0

ge from 200

198 : 7.52% Chan 0 to 2010: 5.68% The greater percentage change was during the 1970’s. As more roads and streets are paved, fewer are left to be paved. c. When a t-value makes since you cannot pave o han 100% of the roads.

71. k = 25, t = 10,

67. a. 5

1000 1100

rS � �� �� �� �

b. 56.61000 1 $1173.26

100S � �� � �� �

� � 100%,p �

m re t

68. a. 100 21210.21 , so 29100

L x� � 0 98q �

)

/0

10 / 25

2 / 5

(2 )

98(22 )

74 kg

t kq q �

� �0.2129 115 78.5 yearsL � � b.

98(�a. 10013/100 130.924 0.92P t t� � b. Year Population

2005 5 1.1392010 10 1.2462045 45 1.5162050 50 1.537

69. t

n support, both in terms of space and food.

Change from 2005 to 2010: 9.39% Change from 2045 to 2050: 1.39% By 2045 and 2050 the population is much larger than earlier in the 21st century, and there is a limited number of people that any land ca

72. k = 5600, t = 10,000

74. x = 10

, 0 40q � /

010,000 / 5600

25 /14

(2 )

40(2 )40(2 )11.6 g

t kq q �

��

73. 00.03(10)5)

P

0.3

(2.5)

30,000(2.30,000(2.5)39,491

htP�

��

0.1

0.1(10)

1

2000(2 )2000(2 )2000(2 )

120002

$1000

xS �

� �

75. a. ; at t = 0 we have

(0.7)500(0.02)t

N �0(0.7) 1� . Thus, N 1500(0.02) 10.� �

b. �5(0.7) 0.16807500(0.02) 500(0.02) 259N � �

Chapter 0: Algebraic Concepts

12 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Exercise 0.5 __________________________________________________________________

1. 210 3x x� � a. The largest exponent is 2. The degree of the

polynomial is 2. b. The coefficient of 2x is –1. c. The constant term is 10. d. It is a polynomial of one variable x.

2. 7 4 95 2x x� �a. The largest exponent is 9. The degree of the

polynomial is 9. b. The coefficient of 9x is –2. c. The constant term is 7. d. It is a polynomial of one variable x.

3. 2 37 14x y xy z� a. The sum of the exponents in each term is 3

and 5, respectively. The degree of the polynomial is 5.

b. The coefficient of 3xy z is –14. c. The constant term is zero. d. It is a polynomial of three variables;

x, y, and z.

4. 5 2 32 7 5 6x x y y� � a. The sum of the exponents of each term is

5, 5 and 6, respectively. The degree of the polynomial is 6.

b. The coefficient of 6y is –5. c. The constant term is 0. d. It is a polynomial of two variables; x and y.

5. 5 2 5 2 3x x� �a. n

na x means 52 a� . b. 3 0a � (Term is 30x ) c. 2

d3 a� �

. 0 5a � � , the constant term.

6. 7 35 4 1x x� �a. 3 5a �b. 4a � � (Term is –4x ) 1

c. 2 0a �d. 017 a� �

7. . 2

2 2

4When 2, 4 4( 2) ( 2) 8 4 12

x xx

x x

�� �

� � � � � � � � � �

8. 2 23 4 2x y x� �

2 23 3 4( 4)� � � �

y When x = 3 and y = –4,

. 2 3( 4) 27 64 24 13� � � � � � �

9. 2

2

22

When 5 and 3, 2( 5) ( 3) 10 3 7 .

25 6 31( 5) 2( 3)

x yx y

x y

��

� � � �� � � � �

� � ��� � �

10. 161

yy�

When y = –3, 16( 3) 48 121 ( 3) 4

� �� � �

� �.

11. � � � �� �1.98 74.7 1.09 1 0.80 74.7 58 56.8

147.906 3.6406 56.8 87.4654� � � �

� � � �

12. � � � �� �� �

� �

360

0.083 0.07100,000

1 1 0.083 0.07

0.00581100,000 663.42380.87576

! "# $# $� �% &

! "� �# $% &

13. � � � �2 216 7 5 5 21 2pq p pq p pq p� � � � � 2

14. � � � �� � �

3 2 2 2 2 3

3 3 2 2 2 2

3 2 2

3 4 3 7

3 7 4 3

4 7

x x y x y x

�x x x y x y

x x y

� � �

� � � �

� � �

15. � � � �2 2 2 2

2 2 2 2

2 2

4 3 5 3 4 8

4 3 5 3 47 3

m n m n

m n m nm n

8

� � � � �

� � � � � �

� � �

16. � � � �2 2 2 2

2 2 2

2 2

4 2 11 11 2 4

4 2 11 11 2 46 6 22

rs r s rs rs rs r s

rs r s rs rs rs r srs r s rs

� � � � �

� � � � � �

� � �

2

17. � � � �� �

8 4( 5) 8 4 20

12 3 12 3

q q q q

q q

� � � � � � � � �

� � � � � �

18. � �3 3 3 3

3 3

3 3 3

3 3 6

3x x x x x x x x

x x x x x

! " ! "� � � � � � �% &% &� � � � �

Chapter 0: Algebraic Concepts

13Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

19. � � � �

� �

2 2 2

2 2 2

2 2

2

1 1 1

1 1 1

1 1

1

x x x x x

x x x x x

x x x x x

x

! "� � � � � � �% &! "� � � � � � � �% &

� � � � � � � �

� �

x

"&

5

20. �"& � � �3 2 3 2 3 2

3 2 3 2 3 2

3 2 3 2 3 2

3 2

1

1

11

y y y y y y

y y y y y y

y y y y y yy y

! " !� � � � � �% & %! " !� � � � � � �% & %

� � � � � � �

� � �

21. � �� �3 2 3 25 7 35 35x x x� � x�

22. � �� �� �2 3 2 2

2 2 3

5 6

3 2 4

( 3) (2) (4)24

x y xy x y2x x x y y y

x y

� � � � � � � � � �

� �

23. � � � �3 2 2 3 2 2 139 13 3 3r s r s r s rs� �� � �

24. � � � �3 2

3 44 3

15 315 55

m n mm n mnmn n

� �� � � �

25. � �2 2 4 2 3 22 2ax x ax ab ax a x a bx� � � � � 2

26. � � � �1/ 2 1/ 22 2 1/ 2 13 4 9 16 25

5� � �� � � � �

27. 2

2

(3 4)(2 3) 6 9 8 126 12

y y y y yy y

� � � � � �

� � �

28.

2

2

(4 1)( 3)4 ( ) 4 ( 3) ( 1)( ) ( 1)( 3)4 12 34 13 3

x xx x x xx x xx x

� �� � � � � � � �

� � � �

� � �

29. � �� �� �� �

2 2

2 2 4

2 4

4 2

6 1 2 2

6 2 4 2

6 2 5 2

12 30 12

x x

x x x

x x

x x

� �

� � � �

� � �

� � �

30. � �� �� �� �

3 3

6 3 3

6 3

6 3

2 3 2 5

2 2 5 6 15

2 2 15

4 2 30

x x

x x x

x x

x x

� �

� � � �

� � �

� � �

31. � � � �� �2 2 24 3 16 2 4 3 9 16 24 9x x x x x� � � � � � �

32. 2(2 5)y � 2 2

2

(2 ) 2(2 )(5) (5)4 20 25

y yy y

� � �

� � �

33. 2 2

2 4 2

4 2

1 1 1� �� �� �� �

2( )2 2 2

14

x x x

x x

� � � �� � � �� � � �� � � �

� � �

34. � �� � � � � � � �

23 3

2 23 3 3 3

6 6 3 3

0.3

2 0.3 0.

0.6 0.09

x y

x y x y

x y x y

� � � � �

� � �

3

35. 2 2

2 2

9(2 1)(2 1) 9 (2 ) 1

9 4 1 36 9

x x x

x x

! "� � � �% &! "� � � �% &

36. 2 2

2 2

3(5 2)(5 2) 3 (5 ) 2

3 25 4 75 12

y y y

y y

! "� � � �% &! "� � � �% &

37. 2 2

2

(0.1 4 )(0.1 4 ) (0.1) (4 )0.01 16

x x xx

� � � �

� �

38. 2

2 22 2 2 4( )3 3 3 9

x x x x� �� � � �� � � �� �� � � �� �� � � �

� �

39. 2

2

(0.1 2)( 0.05) 0.1 0.005 2 0.100.1 1.995 0.10

x x x x xx x

� � � � � �

� � �

40. 2 2 2

(6.2 4.1)(6.2 4.1) (6.2 ) (4.1)38.44 16.81

x x xx

� � � �

� �

41. 2

2

3 2

3

2 4 2

2x 4 82 4

8

x xxx

x x xx

� ��

� � �� �

42. 2 2

3 2 2

2 2

3 3

a ab ba ba a b ab

a b ab ba b

� ��� �

3� ��

43. 5 3

3

6 4

8 6 3

8 6 4 3

2 5 5

5 10 252 5 3 10 5 25

x xx x

x x xx x xx x x x x

� ��

� �� �� � � �

Chapter 0: Algebraic Concepts

14 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

44. 7 4 2

3

10 7 5 3

7 4

10 7 5 4 3 2

2 5 51 2 5 5

2 5 53 5 2 5 5 5

x x xxx x x x

x x xx x x x x x

� � ��� � �� � �

� � � � � �

2 �

5

)

45. a. 2

2

2

(3 2) 3 2(3 2) 59 12 4 3 6 49 21 13

x x xx x x xx x

� � � � �

� � � � � � �

� � �

b. 2

2 2

(3 2) (3 2)(3 2) 5(3 2) (3 2) 5 5

x x xx x

� � � � �

� � � � � �

46. a. 2 2

2 2

2

(2 3)(3 2) (5 2)( 3)6 5 6 (5 17 66 5 6 5 17 6

12 12

x x x xx x x xx x x x

x x

� � � � �

� � � � � �

� � � � � �

� � �b. 2 3(3 2) 5 2( 3)

2 9 6 5 2 6 14x x x x

x x x x� � � � �

� � � � � � � � x

47. 2 3 4 2

2

2 3 4

2 2 2

2

18 6 126

18 6 126 6 6

3 2

m n m n m nm n

m n m n m nm n m n m n

m m n

� �

� � �

� � �

2

48. 2 2 2 216 4 8 16 4 8

4 4 44 2

4x xy x x xy x

xy xy xy x

yx yy y

� �� � �

� � �

49. 8 4 5 7

5 2

8 4 5 7

5 2 5 2 5 2

3 2 2

24 15 69

24 15 69 9 9

8 5 23 3 3

x y x y x yx y

x y x y x yx y x y x y

x y xy y

� �

� � �

� � �

50. 2 2 2

2 2 2

27 18 96

27 18 96 6 6

9 332 2

x y xy xyxy

x y xy xyxy xy x

xy y

� �

� � �

� � �

y

3

3

51. 3 3 2 2

3 2

( 1) 3( )(1) 3( )(1) 13 3 1

x x x xx x x

� � � � �

� � � �

52. 3 3 2 2

3 2

( 3) 3(3)( ) 3(3) 39 27 27

x x x xx x x

� � � � �

� � � �

53. 3 3 2 2

3 2

(2 3) (2 ) 3(2 ) (3) 3(2 )(3) 38 36 54 27

x x x xx x x

3� � � � �

� � � �

54. 3 3 2 2

3 2

(3 4) (3 ) 3(4)(3 ) 3(4) (3 ) (4)27 108 144 64

x x x xx x x

� � � � �

� � � �

3

55.

2

3

3 2

2

2

2 5 2 1

2 2 2 4

5 5 10

11

x x

1

1

x x x

x xx xx x

xx

� �� � �

�� � �� �

���

Quotient: 2 112 52

x xx

� � ��

56.

4 3 2

5 4 3 2

5 4

4 3

4 3

3 2

3 2

6 1 0 0 0 5

0 0

x x x xx x x x x x

x xx xx x

x xx x

� � � �7� � � � � �

�� �� �

��

2

2 5

6 7 6 6

x xx x

xx

� �� �

��

13�

Quotient: 4 3 2 1361

x x x xx

� � � � ��

57.

2

2 4 3

4 2

3 2

3

2

2

3 1 1 3 1

3 1

3 3 4 1

14 2

x xx x x x

x xx x x

x xx xx

x

� �� � � �

�� � �

�� � �� �

Quotient: 22

4 23 11

xx xx� �

� � ��

Chapter 0: Algebraic Concepts

15Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

58. ) 3 2 2( 5 6) ( 2x x x� � � �

2 3 2

3

2

2

5 2 5 0

2 5 2 6 5 10 2 4

xx x x x

x xx xx

x

�� � � �

�� �

��

6

Quotient: 2

2 452

xxx

�� �

59. � �1/ 2 1/ 2 3 / 2 2 / 2 4 / 2 22 2 2x x x x x x� � � � � x

60. � � � �� � � �� �2 / 3 5 / 3 1/ 3 2 / 3 5 / 3 2 / 3 1/ 3 3 / 3 3 / 3 1x x x x x x x x x xx

� � � � � �� � � � � � � �

61. 2 � �� �1/ 2 1/ 2 1/ 2 1/ 2 1/ 21 2 2 2x x x x x x x� � � � � � � � �

62. � �� � � �� � � �� � � �� � � �� �1/ 3 1/ 2 2 / 3 3 / 2 1/ 3 2 / 3 1/ 3 3 / 2 1/ 2 2 / 3 1/ 2 3 / 2

3 / 3 11/ 6 7 / 6 4 / 2 11/ 6 7 / 6 2

4 3 4 3 4 3

4 3 4 3 4 3 4 3

x x x x x x x x x x x x

x x x x x x x x

� � � � � � � � � �

� � � � � � � �

63. � �� � � �2 23 3 (3) 9x� � x x x� � � �

64. � �� � � � � �2 21/ 5 1/ 2 1/ 5 1/ 2 1/ 5 1/ 2 2 / 5x x x x x x x� � � � � x �

65. 1/ 2 3 / 2 1/ 2 2 0 2 2(2 1) (2 1) (2 1) (2 1) (2 1) 4 4 1 1 4 4x x x x x x x x�! "� � � � � � � � � � � � � �% & x

66. 5 / 3 8 / 3 5 / 3 5 / 3 8 / 3 5 / 3 5 / 3

3 / 3 0

(4 3) (4 3) 3(4 3) (4 3) (4 3) (4 3) (3)(4 3)

(4 3) 3(4 3) 4 3 3 4

x x x x x x x

x x x x

� �! "� � � � � � � � � �% &� � � � � � � �

x

67. 55 R x� 71. a. 4000 x� b. 0.10x

68. 215R x� , 65 15,000C x� �c. 0.08(4000 )x�

a. Profit 215 (65 15,000)150 15,000

P x xx

� � � �� �

d. 0.10 0.08(4000 )x x� � or 320 0.02x�

72. a. y = 10 cc – amount of 20% solution = 10 – x b. x = 1000: 150(1000) 15,000150,000 15,000$135,000

P � �� ��

b. Amount of ingredient = (% concentration) �' (#cc) = 0.20x

c. Amount of ingredient in y = (% concentration) (#cc) = 0.05(10 – x)

69. a. 49.95 0.49C x� �b. � �49.95 0.49 132 $114.63C � � �

d. Total amount of ingredient in mixture is (b) + (c). Total amount: 0.20 0.05(10 ) 0.50 0.15x x x� � � �

70. a. 1500 18.50C x� �b. 45.50R x�c. � �45.50 1500 18.50

27 1500P x

x� � �

� �

73. (15 2 )(10 2 )V x x x� � �

Chapter 0: Algebraic Concepts

16 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

74. a. The number of nickels increases by 1. Thus (A3) = A2 + 1 b. Let N be the number of nickels and D be the

number of dimes. Then N + D = 125, or, if we know the number of nickels, D = 125 – N.

c. (B2) = 125 – A2 d. Let V be the value of the coins. Then

D . 0.05 0.10V N� �e. (C2) 0.05*A2 0.10*B2� �f. nickels = 91, dimes = 34

75. a. Lengths decrease by one. Thus (A3) A2 1� � . b. Width = 50 – Length c. (B2) 50 A2� � d. (C2) A2 B2� � e. Your spreadsheet will give Length = 33,

Width = 17.

76. 20.73 2.69 3.06y t t� � �

Year value Subscribers2000 10 103.02001 11 121.02002 12 140.52003 13 161.42004 14 183.82005 15 207.72006 16 233.02007 17 259.8

t � Year value Subscribers2008 18 288.02009 19 317.72010 20 348.92011 21 381.52012 22 415.62013 23 451.12014 24 488.12015 25 526.6

t �

77. 20.119 4.200 30.25M t t� � �

a. Year value CPI2000 30 263.352001 31 274.812002 32 286.512003 33 298.442004 34 310.612005 35 323.032006 36 335.672007 37 348.56

t � Year value CPI2008 38 361.692009 39 375.052010 40 388.652011 41 402.492012 42 416.572013 43 430.882014 44 445.432015 45 460.23

t �

b. In 2013, M is greater than $425. c. The government could enact some form of national health care or insurance.

Exercise 0.6 __________________________________________________________________ 1. � �2 2 29 12 18 3 3 4 6ab a b b b a a b� � � � �

2. 2 � �2 2 28 160 4 4 2 40a b x bx a b x bx� � � � �

3. � �2 2 3 24 8 2 2 2 4 3x xy xy x x y y� � � � �

4. 2 � �3 2 2 3 212 4 8 4 3 2y z yz y z yz y z yz� � � � �

5. � � � � � � � �� �� �

3 2 2

2

7 14 2 4 7 2 2 2

2 7 2

x x x x x x

x x

� � � � � � �

� � �

6. � � � �� � � �

� �� �

2 2 2 2

2

2

5 20 4 5 20 4

5 4 4

5 4

y x y x y x y x

y x y

x y

� � � � � � � �

� � � �

� � �

Chapter 0: Algebraic Concepts

17Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

7. � � �� � � �

� �� �

6 6 6 6

6

6

�x m xy my x m xy my

x m y x m

x m y

� � � � � � �

� � � �

� � �

8. � � � �� �� �

3 2 2

2

5 5 1 5 1

1 5

x x x x x x

x x

� � � � � � �

� � �

9. � ��2 8 12 6 2x x x x� � � � � �

10. � ��2 2 8 4 2x x x x� � � � �

11. 2 87 10x x� �2 27 8 56

x x� �

7 10x x� �

The factors –14x and +4x give a sum of –10x.

� � � �

� �

2 27 14 4 87 2 4

2 (7 4)

x x xx x x

x x

� � � �

� � � �

� � �

82

12. 2 Two expressions whose product is

2

12 11 2x x� �

� �212 (2) 24x x� and whose sum is 11x are 8x and 3x. So,

� � � �� �� �

2 212 11 2 12 3 8 23 4 1 2 4 1

4 1 3 2

x x x x xx x x

x x

� � � � � �

� � � �

� � �

13. � � 22 2 210 25 2 5 5 5x x x x x� � � � � � � �

14. 9 Two expressions whose product is

26y� and whose sum is 12y are 6y and 6y.

24 12y y� �

� �24 (9) 3y

So,

� � � �� �� � � �

2 2

2

4 12 9 4 6 6 92 2 3 3 2 3

2 3 2 3 2 3

y y y y yy y y

y y y

� � � � � �

� � � �

� � � � �

15. � � � �� ��

2 22 249 144 7 12

7 12 7 12

a b a b

a b a b

� � �

� � � �

16. � � � �� ��

2 22 216 25 4 5

4 5 4 5

x y x y

x y x y

� � �

� � �

17. a. 2 89 21x x� �9 ( 8) 7

2 22x x The factors 24x and –3x give a sum of 21x.

� � �

9 21x x� �

� � �� �� �

2 29 24 3 83 3 8 1 3 8

3 8 3 1

x x xx x x

x x

� � �

�8 �� � � �

� � �

b. 829 22x x� �2 29 8 72

x x� �

9 22x x� �

The factors 18x and 4x give a sum of 22x.

� � �� �� �

2 28 9 18 4 89 2 4

2 9 4

x x xx x x

x x

� � � �

�2� � � �

� � �

18. a. 210 99 63x x� �10 ( 63)

2 2630x x The factors –105x and 6x give a sum of –99x.

� � � �

10 99 63x x� �

� � �� �� �

105 6 6321 3 2 21

2 21 5 3

x x xx x x

x x

� � �

� � � �

2 2105 2

� �

b. 210 27 63x x� �

2(10 )( 63)

Two expressions whose product is

2630x x� and whose sum is 27

� �x� are –42x and 15x. So,

� � � �� � � �

15 42 633 21 2 3

2 3 5 21 .

x x xx x x

x x

� � �2 2105 2

�10 27 63x x� �

� � � �

�� �

c. 210 61 63x x� �10 ( 63)

2 2630x x

The factors 70x and –9x give a sum of 61x. � � � �

10 61 63x x� �

� � � �� �� �

70 9 637 9 7

7 10 9

x x xx x x

x x

� � �2 21010

� � � �

�� �

d. 210 9 63x x� �

2(10 )( 63)

Two expressions whose product is

2630x x� and whose sum is 9x are 30x and –21x. So,

� �

10 9 63x x� �

� � � �� �

30 21 633 21 3

3 10 21 .

x xx

x x

� � �

� �

2 21010

xx x

� � � �

�� �

19. � �24 4x x x x 1� � �

20. � �5 3 3 22 18 2 9x x x x� � �

Chapter 0: Algebraic Concepts

18 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

21. � � �� �� �

3 2 2

2

4 5 20 4 5 4

4 5

x x x x x x

x x

� � � � � � �

� � �

22. � � � �� � � �

� �� �

3 2 3 2

2

2

2 3 6 2 3 6

2 3 2

3 2

x x x x x x

x x x

x x

� � � � � � � �

� � � �

� � �

23. � �� �2 6 3 2Note that two numbers whose product is 6 and whose sum is 1 are

3 and 2.

x x x x� � � � �

� ��

24. � �� �2 6 8 4 2Since two numbers whose product is8 and whose sum is 6 are 4 and 2.

x x x x� � � � �

25. � � � �� �2 22 8 42 2 4 21 2 7 3x x x x x x� � � � � � � � 26. � �2 23 21 36 3 7 12x x x x� � � � �

Two numbers whose product is 12 and whose sum is are and . So,

. 7�

3 7x x� �3�

� �12 �4�

� �x � �2 3 3 4x � �

27. � �� �� �

3 2 2

2 2

2

2 8 8 2 4 4

2 2 2 2

2 2

x x x x x x

x x x

x x

� � � � �

� � � �

� �

28. � � � �23 2 216 64 16 64 8x x x x x x x x� � � � � � �

29. 12

22 6x x� �2 ( 6)2 2x x The factors 4x and –3x give a sum of x.

� � �

2 6x x� �

2 22

2 3

xx x

� �

� �

� � �� �� �

4 3 62 2 3

2

x xx

x x

� � �

� �

�2

2

30. 2 6 2 13x x� �

Two expressions whose product is 2(2 )(6) 12x x�

2 1 and whose sum is 13x are 12x

and x. So, � � �

� �� �

2 23 6 2 12 62 6 1

6 2 1 .

x x x x xx x x

x x

� � � � � �

� � � �

� � �

�6

31. � � � �� �2 23 3 36 3 12 3 4 3x x x x x x� � � � � � � �

32. � �2 24 8 60 4 2 15x x x x� � � � � Two numbers whose product is –15 and whose sum is –2 are –5 and 3. So, � � � �� �24 2 15 4 5 3x x x x� � � � � .

33. � � � ��3 22 8 2 4 2 2 2x x x x x x x �� � � � � �

34. � �� �2 2 2 216 81 (4 ) (9 ) 4 9 4 9z w z w z w z w� � � � � �

35. 210 19 6x x� �2 210 6 60

x x� �

10 19 6x x� �

The factors 4x and 15x give a sum of 19x.

� � �� �� �

2 210 4 15 62 5 2 3 5 2

5 2 2 3

x x xx x x

x x

� � � �

�� � � �

� � �

36. 526 67 3x x� �

2(6 )( 35) 2

Two expressions whose product is

210x x� and whose sum is 67x are 70x and –3x. So,

� �

6 67 35x x� �

� � �� �� �

3 70 351 35 2 1

2 1 3 35

x xx x x

x x

� � �

2 263 2

x�

� � � �

�� �

37. 29 47 10x x� �2 29 10 90

x x� �

9 47 10x x

The factors –45x and –2x give a sum of –47x.

� � � �� �� �� �� �

2 29 45 2 109 1 5 2 1 5

1 5 9 2

or 5 1 2 9

x x xx x x

x x

x x

� � � �

� � � �

� � �

� �

� �

38. 210 21 10x x� �

2(10 )( 10)

Two expressions whose product is

2100x x� and whose sum is 21x are 25x and –4x. So,

� �

10 21 10x x� �

� � � �� �� �

25 4 105 2 2 5

2 5 5 2

x x xx

x x

� � �2 2105 2x x

� � � �

�� �

39. � � � �� �� �� �� �� �

2 24 4 2 2

2 2 2 2

2 2

16 4

4 4

2 2 4

y x y x

y x y x

y x y x y x

� � �

� � �

� � � �

Chapter 0: Algebraic Concepts

19Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

40. � � � �� �� �� �� �

28 4 2 4 4

4 2 2

81 9 9 9

9 3 3

x x x x

x x x

� � � � � �

� � � �

41. � � � �� �

2 24 2 2 2 2 2

2

2 2

8 16 2 4 4 4

( 2)( 2)

( 2) ( 2)

x x x x x

x x

x x

� � � � � � � �

� � �

� � �

42. 2 481 18x x� �1)( ) 8

Two expressions whose product is 4 4(8 1x x� and whose sum is 218x� are

29x� and 29x� . So,

� �� �� �� � � �� �� � � �

4 2 2

2 2 2

2 2

2 2

9 9 81

9 9

9 9

3 3

3 3 .

x x x

x x x

x x

x x

x x

� � �

� � �

� � �

� � � �

� � �

� �

9

3 3x x

� �

4 218 81x x� � �

43. � � � �� �� �� ��

4 2 2 24 5 1 4 1 1

2 1 2 1 1 1

x x x x

x x x x

� � � � �

� � � � �

44. 4 23 4 Two expression whose product is

44

x x� �

4( )( 4)x x� and whose sum is 23� � x� are 2 24 and .x x�

4 23 4x x� � So,

� �� �� ��

4 2 2

2 2 2

4 4

1 4

1 2

x x x

x x x

x x x

� � �

� � �

� � � �

� ��

1

2

�2

45. 1 ? = (x + 1)

3/ 2 1/ 2 1/ 2 2 / 2 1/ 2( 1) (x x x x x x� � � � � )

46. � �

1/

� �

1/ 4 3/ 4 1/ 4 2 / 4

1/ 4 1/ 2

2 4 2 1 2

2 1 2

x x x x

x x

� � �

� �2? 1 2x� �

47. � � � �3 2 3 1 31 1x x x x x x� � � �� � � � �

? 1

x� �

48. � �211 1x x x x� �� � � 2? 1 x� �

49. � �� � � �� � � � � �� �� �

1/ 2 1/ 23 2 2

1/ 2 2 / 22 3 2

1/ 22 3 3

1/ 22 3

3

3 2 3

3 2 3

3 6 2

3 7 3

? 7 3

x x x x x

x x x x x

x x x x x

x x x

x x

� � � � �

! "� � � � � �# $% &

! "� � � � � �% &

! "� � �% &� �

50.

� � � � � �1/ 3 2 / 3 1/ 34 4 1 4 1 4 1 (?)x x x x� �� � � � �

� � � �1/ 3 2 / 34 4 1 4 1x x x�� � �

� � � �� �� � � �� �� � � �� �

1/ 3 3 / 3

1/ 3 1

1/ 3

1/ 3

4 1 4 4 1

4 1 4 4 1

4 1 4 4 1

4 1 ( 1)? 1

x x x

x x x

x x x

x

� � � �

� � � �

� � � �

� � �

� �

51. � �33 23 3 1 1x x x x� � � � �

52. The expression 83 26 12x x x� � �

8 2 .x x� � �

is a perfect cube 3( )a b� with a = x and b = 2. So,

� �3 3 26 1x x� � 2

53. � � � �

� �

3 2 3 2

3 2 2

3

12 48 64 3 4 3 16 4

3 (4) 3 (4) 4

4

x x x x x x

x x x

x

3

3

� � � � � � �

� � � �

� �

54. The expression 73 29 27 2y y y� � �

7 27 ( 3)y y

is a perfect cube 3( )a b� with a = y and b = 3. So,

33 29 2y y� � � � � .

55. � �� �3 3 3 264 4 4 4 16x x x x x� � � � � � �

56. � �� �3 3 3 28 1 (2 ) (1) 2 1 4 2 1x x x x x� � � � � � �

57. � �� �3 3 3 227 8 3 (2 ) 3 2 9 6 4x x x x� � � � � � � x

58. � �� �3 3 3 2216 ( ) (6) 6 6 36a a a a a� � � � � � �

59. � �1P P r t P rt� � �

60. 2 3

2

2 3 2 3cm m c mR m � �� � � �� �

� �

61. � �2S cm m m c m� � � �

Chapter 0: Algebraic Concepts

20 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

62. � �� �

2 3 2

2

64 32 4 4 16 8

4 4

V x x x x x x

x x

� � � � � �

� �

65. a. � �300R x x� � b. 300P x� �

63. a. In the form px we have �p� . x = 10,000 – 100p

�10,000 100p66. � �

� � � �� �� � � �

22

2 2

r r x

r r x r r x

r x x x r x

� �

� � � � �! " ! "% & % &� � � �

b. If 38p � , then . 10,000 100 38 6200x � � � �

64. � � � �� ��� �� �

2 2

2

R r r R r

R r R r r

R r R r

� � �

� � � �

� � �

Exercise 0.7 ___________________________________________________________________

1. 3 3 3 3 3

3 3

18 2 29

x y x y yzx z x z

� � 10. 2 4 2 2 4

2 3 3 4

2 2 4 4

2 2 2 2

25 4 10015 15 225

25 (4 ) 425 (9 ) 9

ac ad a c da c abc a bc

a c d da c abc abc

� �

� �

2. 4 5 3 4 4

3 3

15 15 ( )230 15 (2)

a b a b ab aba b a b

� �

11. 8 16 4 12 8( 2) 4( 3) 8 4 323 3 6 3 3( 2) 3 3

x x x xx x x x� � � � �

� � � � �� � � �

3. 3 1( 3 ) 13

yy

� 3 9 3( 3 )x y xx y x�

� �� �

12. 2( 4) (2 3) ( 2)( 2) (2 3)1 ( 2) 1 ( 2)

( 2)(2 3)

x x x x xx x

x x

� � � � �� � �

� �� � �

4.

2

2

6 8 ( 4)( 2) 2( 4)( 4) 416

x x x x xx x xx

� � � � �� �

� � ��

5. 2

2

2 1 ( 1)( 1) 1( 3)( 1) 34 3

x x x x xx x xx x

� � � � �� �

� � �� � 13.

� �

2

2

7 12 9 313 13 4

( 4)( 3) 3(3 1)(3 1)( 4) 13 3 3 9

x x xx x

x x xx xx x

� � ��

� �� � �

� �� �

� � � �

6. 2

2

5 6 ( 3)( 2) (3 )( 2)(3 )(3 ) (3 )(3 )9

( 2)3

x x x x x xx x xx

xx

� � � � � � �� �

� � � ��� �

��

x

7. 3 3 2 2 2 2

2 2 2 2

6 15 3 (2 5) 2 5x 33 9 3 ( 3)

x y x y x y xy yyx y x y x y y

� � �� �

�� �

14. 2

2

4 4 6 8 4( 1) ( 4)( 2)4 4 8 ( )8 8

22

x x x x x xx xx x

xx

1x x� � � � �

� � �� � ��

��

8. 2 2 3 2

2 2 2 2

4 ( 4 )1 22 (1 2 )

4x y x y x y y x y x� yx y x y x y y

� �� �

�� �

15. 2 2 2

2 2 2

2

2

2 18 2 2 82 8 5 4 6 9( 2)( 1) 2( 9) ( 4)( 2)

( 4)( 1) ( 3)( 3)2( 4)( 2)( 1) 2( 3)( 3) ( 2)

2( 2)( 2) ( 1) ( 3)( 3)( 1)( 3)( 1)( 3)

x x x x xx x x x xx x x x x

x x x xxx x x x xx x x x xx xx x

� � � � �� �

� � � � �� � � � � �

� � �� � � ��

� � � � � �� � �

� � � �� �

� �� �

9. 3 4 42 53 2 3 3 2

2

6 16 15 6 118 9 9

2 2 151 132 2 5 201 1

x x y yy y x y y

x yy

x

x xy y

� � � �

� � �

� � � �

Chapter 0: Algebraic Concepts

21Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

16. 2 2

2 3 2 2

5 6 125 4 6 2 1

x x x x x x3

x x x x x x� � � � �

� �� � � � �

2

2

3

2

3

2

2

( 6)( 1) ( 4)( 3) (1 )(1 )( 4)( 1) ( 1)( 1)( 6)( 1) ( 3)(1 )

( 1)( 1) ( 3)( 1)

( 1)( 1) ( 3)

( 1)

x x x x x xx x x xx xx x x

x xx x x

x xx xx x

� � � � � �� � �

� � � ��

� � ��

� � � ��

� � ��

x

17. 2 2

2

2 2

15 4 15 147 7 414

15 2 151 4 2

ac a ac b dbd bd ab d

c b bc

� � �

� � �

2

18. 16 4 16 3 6 16 3( 2)2 3 6 2 4 2 4

12

x xx x x x

� �� � � � �

� � � ��

19. 2 2

2 2

2 2

2

2

2 1 4 37 7 35

2 1 357 ( 1) 4 3

( 1)( 1) 35 57 ( 1) ( 3)( 1) 3

y y y yy y y

y y yy y y y

y y y yy y y y y

� � � ��

� �� �

� � �

� �� � �

� � � �

20. 2 2

2 2

2

6 3 124 12 12

6 ( 4)(4 ( 3) 3 ( 4)2 1

4 2

3)

x x xx y xy x x

x x xxy x x x

y y

��

� � �

� �� �

� �

� �

21. 2 2

2

2 2

2

6 91 3

6 31 1( 9)

( 3)( 2) ( 3)1 1( 3)(

( 3)( 2)3

x x xx x

x x x xx

x x x xx x

x x xx

� � ��

�� � �

� �� �

� � �� �

� � �� � �

��

3)

22. 2

2

2 7 3 (2 1)( 3) 1( 3)(2 1)(2 1) 34 1

12 1

x x x xxx x xx

x

� � � �� � � �

� � ��

��

23. 2 2

2 2 2( 2)( 1)2 2

2( 2)( 1)

11

x x x xx xx x x x

xx x

x

� � 2� �

� �� � � ��

�� �

��

24. 2 2 2 2

4 19

4 1 4 ( 1)9 9 9

3(3 )(3 )

13

x x x�x x x x

xx x

x

� �� �

� � � ��

�� �

��

� ��

25.

2 2

2 2 22

a2 2

( 4 4)( 2)

4 4( 2)

4( 1)( 2)

a a a a aa a a a a a

a a aa a

aa a

aa a

� � ��� � � �

� �� � �

��

��

��

��

26.

2

2 ( 1) 2 ( 1)( ) 21 1 1 1

21

( 1)( 2)1

x x x xxx x x x

x xx

x xx

� � ��

� � � �� � �

� ��

�� �

��

27.

2

2

1 1 111 1 1 1 1

111

1

1x x x x xx

x x x xx x x x

xx x

x

� �� � � � � � �

� � �� � � �

��

� � ��

28. 2

2

1 2 1 21 1 ( 1)

( 1) 2( 1) ( 1)

2 ( 1)( 2)( 1) ( 1)2

x xx x x xx x

x xx x x xx x x xx x x x

xx

� �� � �

� � ���

� �� �

� � � �� �

� ��

Chapter 0: Algebraic Concepts

22 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

30. 2

2

2

1 13 6 ( 2) 3( 2)2

3( 1)3 ( 2) 3 ( 2)

3 33 ( 2)

b b b bb b b bb b

b bb b b b

b bb b

� �� � �

� � ��

�� �

� �

� ��

29. 2 2

2

2

4 5 4 53 6 4 8 3( 2) 4( 2)

4 4 53( 2) 4 4( 2) 316 1512( 2)

a a a ax x x x

a ax xa a

x

� � �� � � �

� � �� �

��

3�

31. 3 1 4 4 3 1 4 42 4 3 6 5 10 2( 2) 3( 2) 5( 2)

3 1 3 5 4 2 5 ( 4) 3 22( 2) 3 5 3( 2) 2 5 5( 2) 3 2(45 15) 40 6 24

30( 2)79 9

30( 2)

x x x x x xx x x x x x

x x xx x xx x x

xxx

� � � �� � � � �

� � � � � �� � � � �

� � � � � �� � � � � �� � � �

��

��

32. 2

2 2

2 1 5 4 2 1 5 44 2 2 2(2 1) 2 (2 1)2

(2 1) 5(2 1) 2( 4)2 (2 1) 2 (2 1) 2 (2 1)2 10 5 2 8 2 9

2 (2 1) 2 (2 1)

x x x xx x x x x xx x

x x x xx x x x x xx x x x x x

x x x x

� � � �� � � � �

� � ��� � �

� � �� � �

� � � � � � �� �

� �13

33. 2 2 2

2 2

4 2 4 2( 2)( 2) ( 2)( 1) ( 2)( 1)4 2 3 2

1 4 2 2 ( 2)( 2) 1 ( 2)( 1) 2 ( 2)( 1) 2( ) (4 8) ( 4 4) 9 4

( 2)( 1)( 2) ( 2)( 1)( 2)

x x x xx x x x x xx x x x x

x x x x xx x x x x x x x xx x x x x x

x x x x x x

� �� � � � �

� � � � � �� � � � �2� � �

� � � � �� � � � � � � � �

� � � � � � �� �

� � � � � �

��

34. 2 2 2

2 2 2 2 2 2

3 2 2 3 2 3 2 2

2 2

3 2

3 2 3 2 3 ( 2) 2( 2) 3( 2) ( 2)3 3( 2)( 2)4 4 4 ( 2) ( 2) ( 2) ( 2) ( 2) ( 2) ( 2)

3 6 2 4 3( 4 4)( 2) 3 6 2 4 3( 2 4 8 4 8)( 2) ( 2) ( 2) ( 2)

3 6 2

x x x x x xx xx x x x x x x x x x

x x x x x x x x x x x x x xx x x x

x x

2 x� � � �� � � � � � � �

� �� � � � � � � � � �

� � � � � � � � � � � � � � � �� �

� � � �

� ��

3 2 2

2 2

4 3 6 12 24 12 24 14 20( 2) ( 2) ( 2) ( 2)

x x x x x x xx x x x

� � � � � � � ��

� � � �

35. 3 2 3 2 2 3

2 2 2

2

3 3 3

2 2

2 3 2 3 3 )1 13 3 3 36 2 7 3

3 3

2

2 (3x x x x x x x x x x x xx x x x

x x x x x xx x

� � � � � � � � � �� � � � �

� � � �� � � � �

� �� �

x �

36. � �� �3 3

2 2 2 3 3 2 3 33

3 3 3 3 3

21 13 ( 1) 3 ( 1) 3 ( 1) 1 3 3 1 411 1 1 1 1 1

x xx x x x x x x x x x x xxx x x x x x

� �� � � � � � � � � �� � � � � � �

� � � � � �3

3 1

Chapter 0: Algebraic Concepts

23Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

37. 3 21 3

141

3 9 2 7 13 14(3) 14(3) 6

� �� � � �

38. 1 1 14 4 2

4 4 8� ��

39. 1 1 1 1

( ) ( )

x y x y

x y x y xy xy x y xyxy y x

� � �� � � �

� � �

40. 5 3

2

1 14 3

12 30 36 6612 3 4 3 4

y y

y

yy y y

� �� � �

� � �

41. 1 2 1

13 2 3

1 1 1

2

2

3 2

2 2

2 ( 1)2 ( 1)

2 ( 1) 1( 1)2 ( 1) 3 ( )2 12

(2 1)( 1) 1(2 1)

x xx x x

x x

x xx x x

x x xx x x xx xx xx x xx x x

� �

� � �� �

� � �

� � ��

� �

��� � �

� ��

� �

42

. 2

210

1

1 ( 2)( 1)6 ( 2)(

x

x

x xx x x

� � ��

� � � �1)

2

2

2

2

2

3 2 2

3 2

2

2

( 2)( 1) 2( 1)( 6)( 2)( 1) 10( 2)

2 2 2 2( 2 6 12)( 1) 10( 2)

3 4( 8 12)( 1) 10 20

3 48 12 8 12 10 20

( 4)( 1)7 14 8

( 4)( 1)( 4)( 3 2)

1

x x xx x x x

x x x xx x x x x

x xx x x x

x xx x x x x x

x xx x x

x xx x x

xx

� � � ��

� � � � �

� � � � ��

� � � � � �

� ��

� � � � �

� ��

� � � � � � �� �

�� � �

� ��

� � ��

�3 2

1( 1)( 2)

xx

x x

� ��

�� �

43. 1

( )1

1 or

ab ba a

a a a ba ba b a a a b

aaa

� � �� � �

�� �

44. 1 2

11 1 ( 1) 1

1 11 1 1

1 1

xx x x

x x x xxx x x

�� � � � �

� �� �

� �� �

� �

45. 2

2 139

2

9

6x

x

x x�

� �

� �

2

29 13 21 9

2

2

2

2

2

9( 3)( 2) 9

9 13

( 3)( 2) 9( 2)( 2)

( 3)( 2) 92

( 3) 9

xx x

x x xx

x x xx x

x x xx

x x

�� �

� �� � �

� ��

� � �� �

�� � �

��

� �

46. 2

2 5 23

2 2

3 35 4 3

xx

x xx x x

�� � �

�� � �

� �22

2

2 2

2

2 2

2

3 ( 5) 3 5

( 4)( 1) 3 ( 4)( 1) 32 ( 2)( 1)

( 4)( 1) 3 ( 4)( 1) 32

( 4) 3

x x x xx x x x x x

x x x xx x x x x x

xx x

� � � � � �� �

� � � � � �

� � � �� �

� � � � � ��

�� �

47. a. 1 1

2 1 12

1 1 1(2 3 ) 123 122

� �� � � � � � �� � � � � � �� � � �

� � � �

b. 2 2

1 1 2 1 1 5 25(2 3 )2 3 6 36

� � � � � �� � � � �� � � �� � � �

Hint: Work inside ( ) first when adding or subtracting is involved.

48. a. 2 2 1/ 2 1/ 2 1/ 2 1(3 4 ) (9 16) 255

� � �� � � � �

b. 2 2 12 2

1 1 1� (2 3 )

4 9 132 3�� � �

��

49. 1 1 2 1

1 1

2 2 or 21( )

a b

ab

a b ab b a b aabab

� �

�� �� � � �

50. 2 2

4 2

12 2 4 2 2 2

2 2 4 21

2 2 5 2 2 3

1( )

( )

xx y

x y

5x xy x y x y xx y x y

x y x x y x

� �

�� �� � �

� � � �

Chapter 0: Algebraic Concepts

24 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

57. a. Avg. cost

2

4000 55 0.11 1

4000 55 0.1

xx

x xx

� � �

� ��

51. 1 1 1 1 211 1 1

x x x x xx

��

x x x

� � � �� � �

� � �

52. 2

2

2

2

3 3 3 3 3 3� 33 3

( 3 3) 3 33

x x x x xxx x

x xx

� � � �� �

�� �

� � ��

b. Total cost = (Avg. cost)(number of units) 24000 55 0.1x x� � �

58. a.

2

40,500 190 0.2

0.2 190 40,500

xx

x xx

� �

� ��

53.

� � � �( ) ( )

1

x h x x h x x h xh h x h x

x h x hh x h x h x h x

x h x

� � � � � �� �

� �� �

� �� � � �

�� �

b. Total cost = (Avg. cost)(number of units) 20.2 190 40,500x x� � �

59. 2

2

2

2

2

2

2

3 1813 ( 3)

( 3) 3( 3) 18( 3)

6 9 3 9 18( 3)

9( 3)

SVt t

t tt

t t tt

t tt

� � �� �

� � � ��

� � � � ��

��

54. 9 2 3 9 2 3 9 2 99 2 3 ( 9 2 3)

2 2( 9 2 3) 9 2 3

h h hh h h h

hh h h

� � � � � �� �

� � � �

� �� � � �

55. 1 1 1 1 1 1bc ac aba b c a bc b ac c ab

bc ac ababc

� � � � � � � �

� ��

60. � � 11 1

1nii

�� ��

� �

� �

� � � �

� � � �

1

1

1 1

1 1

1 1

1 1

1 1 1

n

n

n

n

i ii i

i ii

i ii

i i

i

� �� �

� � ��

� � ��

! "� � �% &�

56. a. 1 1 d q p d q p d p q pq pq pq pq pq

� �� � � � � �

b. The reciprocal is .pqq p d� �

Chapter 0: Algebraic Concepts

25Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 0 Review Exercises _____________________________________________________

1. B = {1, 2, 3, 4, 5, 6, 7, 8}. Since every element of A is also an element of B, A is a subset of B.

2. No. 3 { : 3}x x � �

3. A and B are not disjoint since each set contains the element 1.

4. A = {1, 2, 3, 9} B = {2, 4, 9} A B = {1, 2, 3, 4, 9}

5. {4, 5, 6, 7, 8, 10}� {1, 3, 5, 6, 7, 8, 10} = {5, 6, 7, 8, 10}

6. A = {1, 2, 3, 9} B = {1, 3, 5, 6, 7, 8, 10} A = {4, 5, 6, 7, 8, 10} A �B = {5, 6, 7, 8, 10} ( )A B � = {1, 2, 3, 4, 9}

7. {4, 5, 6, 7, 8, 10} {2, 4, 9} = {2, 4, 5, 6, 7, 8, 9, 10} ( )A B = {2, 4, 5, 6, 7, 8, 9, 10} = {1, 3} A�B = {1, 2, 3, 9}� {1, 3, 5, 6, 7, 8, 10} = {1, 3} Yes.

8. a. 1 16 63 3

� illustrates the commutative

property of addition.

� �

b. illustrates the associative property of multiplication. 2(3 4) (2 3)4� � �

c. 1 (6 9) 2 33

� � � illustrates the distributive

property.

9. a. irrational b. rational, integer c. meaningless

10. a. 3.14 � b. –100 < 0.1 c. –3 > –12

11. | 5 11 | | 6 | ( 6) 6� � � � � � �

12. 244 2 11 10 22 11 100 242 100 142� � � � � � � � �

13. 2 3( 3) ( 1) 9 ( 1) 10� � � � � � �

14. (3)(2)(15) (5)(8) 90 40 50 5(4)(10) 40 40 4

� �� � �

15. 2 [3 (2 | 3 |)] 11 2 [3 (2 3)] 112 [3 ( 1)] 112 [3 1] 11 2 4 11 9

� � � � � � � � � �� � � � �� � � � � � � �

16. 2 24 ( 4) 3 16 16 3 32 3 29� � � � � � � � � � � � �

17. 24 3 4 9 13

44 4� �

� �

18. 5

5

( 2.91) 208.6724 10.6286� 19.63313.29

� �� �

6

19. a. [0, 5], closed

1 2 3 41 5 6� 02�

b. [–3, 7), half open

0 2 44 6 8 10� 2�6�

c. (–4, 0) open

1 2 35� 4� 3� 1� 02�

20. a. ,1 )( 1 61 1x�� � �

b. 2, ][ 1 812 8x�� � �

c. 1x � �

21. a. 03

81� � �� �

� �

b. 3 5 22

1 12 2 242

� �� � � �

c. 9

64 4096 3

44

� �

d. 3 4 11 1 1 7� �

7 7 7

� �� � � � � �� � � �� � � � � �

� �

22. a. 5 7 5 ( 7) 22

1x x x xx

� � �� � � � �

b. 8

8 ( 2) 102

x x x� � x� � �

c. 33 3 3 9( )x x x�� �

d. 4 2 (4)( 2) 88

1y� � ( )y yy

� �� �

e. 3 2 y� �3 2 ( )( ) 6( )y y� �� � �

Chapter 0: Algebraic Concepts

26 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

There are other correct methods of working problems 23–28.

23. 2 2 2 2 4 4 6 2 2

2 3 2 2 4 6 2 2 2 4

(2 ) ( 1)(2) ( 1)36(3 ) 3 2 3

xy x y x y x y� �

x y x y x y

� � � �

� � � �

� � �� �

24. � � � � � �� � � �2 2 2 82 22 4 2 4 4 8 8

4 4

2 2 3 9 1 9yy3 3 2 4 4

x y x y x yx x

� �� �� � �� � � � � � � �� �� � �� � � � � � � �� �

� � � � � � � �� ��

25. 2 22 2

1 2 4

x2 2 4

y yy x x

� � � �� �� � � �� �� �

26. � �� � � � � � � �

04 2 2 8 4

2 2 2 2 8 4 44 2 2 4 2 2

1 1x y z4

x zx y z yx y z x y z

� � � � � �� �

� �� � �

�� �

27. 1 13 4 2 4 ( 3) 2 ( 3) 7

2 3 3 2 ( 3) 7

333 3

1x y z y z y z x

xx y z x y z

� �� � � � � � �

� � � � � �

� � � � � �� �

� � � � �� � � � �

���

28. 22 2 2 2 4

2 2

5( )2 2 2 2 2 3

x2

y x x x x x x xy y y y yx y y

� � � � � � �� � � � � � � �� � � � �� � � � �� � � � � � � �� �� �� � � � � � � �� � � � � � y

��

29. a. 33 364 ( 4) ( 4) 4� � � � � � � � �

b. 2

2

4 249 77

� �2

c. 7 1.9487171 1.1�

30. a. 1/ 2x x�

b. 3 2 2 / 3x x�

c. 1/ 441/ 4

11/ x xx

�� �

31. a. 32 / 3 2x x�

b. 1/ 2 1 xxxx

� � �

c. 3/ 2x x x� � �

32. a. 5 2 5 2 5 22 22 2

xy x xy x yxx x

� � �x

b. � �

2 2 23 3 3

2 2 3 33 3 3

2 23 3

2 2

x y y x y y x yyx xyx xy x y x x y

y x y x yx y x

� � �

� �

33. 1/ 2 1/ 3 (3 / 6) (2 / 6) 5 / 6x x x x�� � �

34. 3/ 4

3/ 4 ( 7 / 4) 4 / 47 / 4

y y y y� y

�� � �

� � �

35. 4 1/ 4 (16 / 4) (1/ 4) 17 / 4x x x x�� � �

36. 11/ 34 / 3 7 / 3 11/ 3

1 1 xx x x� � �� �

37. 4 / 5 1/ 2 (4 / 5)(1/ 2) 2 / 5( )x x x� �

38. 1/ 2 2 4 1/ 2 4 2 4 2 8( ) ( ) ( )x y x y x� � y

39. 3 5 2 4 212 4 3 2 3x y x y xy xy xy

� � �

40. 6 9 6 8 3 41250 625 2 25 2x y x y y x y y

� � �

41. 4 4 4 103 3

3 3 3 93 3

33 3

2 4 2 23

2 4 2 23

24 45

8 3 9 5

2 3 9 5

2 27 5

6 5

x y x y

x y xy x y xy

xy xy xy xy

x y x y

x y x y

� � � �

� � �

� �

42. 2 3 3 5 5 8

4 8

2 4

16 8 128

64 2

8 2

a b a b a b

a b a

a b a

� �

� �

43. 3 6

2 2

4

524 2

13

x yx y xy

xy� �

44. 4 3 3

7 4310

32 3 4 316 43 33 36

x y yx x xy yy y yxy

� � � �x xy

Chapter 0: Algebraic Concepts

27Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

45. (3 5) (4 7) 3 5 4 7 2x x x x x� � � � � � � � � �

46. 2 2(1 ) [ (2 )] ( 2)x x x x x x x x x x� � � � � � � � � � �

47. 3 3

3

(3 4 3) (5 4 1)4 4 4

x xy xy x yx xy y� � � � � �

� � � �

48. 3 4 2 1 4 3 2 5(4 )(6 ) 24 24 5xy x y x y x y� �� �

49. 2 2(3 4)( 1) 3 3 4 4 3 7 4x x x x x x x� � � � � � � � �

50. 2 2(3 1)( 2) 3 6 2 3 5 2x x x x x x x� � � � � � � � �

51. 2 2(4 1)( 2) 4 8 2 4 7 2x x x x x x x� � � � � � � � �

52. 2

2

(3 7)(2 1) 6 3 14 76 11 7

x x x x xx x

� � � � � �

� � �

53. 2 2 2 2(2 3) (2 ) 2(2 )(3) 3 4 12 9x x x x x� � � � � � �

54. 2 (4 3)(4 3) 16 9x x x� � � �Difference of two squares

55. 2

2

2

4 3 2

4 3 2

3 2 1

32 2 6 2 2 5

x xx

x xx x xx x x x

� ��

� �� �� � � �3

56. 3 3 2(2 1) 8 12 6 1x x x x� � � � � Binomial cubed

57. 2 2

2 2 3

3 2 2

3 3

x xy yx y

x y xy yx x y xyx y

� � �� �

� �

Difference oftwo cubes

58. 2 3 3 4 2

22 2

4 3 6 2 3 322

x y x y x y xy xyx y

� �� � �

59.

2

2 4 3

4 2

3 2

3

2

2

3 2 3 1 3 2 4

3 3 2 3 42 2

3 33 3

3 7

x xx x x x

x xx x x

4x x

x xx

x

� �� � � �

�� � �

�� � �� �

� �

Quotient is 22

7 33 2 31

.xx xx�

� � ��

60.

3 2

4 3 2

4 3

3 2

3 2

2

2

2 7 3 4 5

3 5 3 2 2 6

7 7 2

21

x x xx x x x x

x xx xx x

x xx x

xx

� � �� � � �

�� �� �

��

� 1

Quotient is 3 2 212 73

x x xx

� � � ��

.

61. 4 / 3 2 / 3 1/ 3 6 / 3 3 / 3 2( )x x x x x x� x� � � � �

62. � �� � � � � �2 2

( )

2

x a x x a x x a x

x a xx a x

x a

� � � � � � �

� � �� � �� �

63. 14 3 32 (2x x x x )� � �

64. 2 2 2 3 2 2 2

2 2 2

2 2 2

2 2

4( 1) 2( 1) 2( 1) [2 ( 1)]2( 1) (2 1)2( 1) (1 )2( 1) (1 )(1 )

x x x xx xx xx x x

� � � � � � �

� � � �

� � �

� � � �

65. 2 2 24 4 1 (2 ) 2(2 ) 1 (2 1)x x x x x 2� � � � � � �

66. 216 9 (4 3 )(4 3 )x x x� � � �

67. 4 2 2 2 22 8 2 ( 4) 2 ( 2)( 2)x x x x x x x� � � � � �

68. 2 4 21 ( 7)( 3x x x x )� � � � �

69. 123 2 (3 2)(x x x x )� � � � �

70. � �� �2 5 6 3 2x x x x� � � � �

71. � �� �2 10 24 12 2x x x x� � � � �

72. 212 23 24x x� �

212 ( 24) 288

Two expressions whose product is

2x x and whose sum is 23

� � �x� are 32x� and 9x . So,

32 2 94

3)

xx x

12 23 24x x� � 123 ((4

� 2 243) 8(4 3)(3 8).

x xx

x x

� � �� � � �

�� �

Chapter 0: Algebraic Concepts

28 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

2

)

73. 4 2 2 2 2

2 2

2

2 2

16 72 81 (4 ) 2(4 9) 9(4 9)[(2 3)(2 3)](2 3) (2 3)

x x x xxx x

x x

� � � � � �

� �

� � �

� � �

78. 4 3 2

2 2

3

2

2 ( 4)3 2 9 4

( 2) (3 2)(3 2)(3 2)( 1) ( 2)( 2)

(3 2)( 1)( 2)

x x x xx x x

x x x xx x x x x

x xx x

� ��

� � �� � �

� �� � � �

��

� �

74.

2 / 3 4 / 3 4 / 3

2 / 3 4 / 3 4 / 3 2 / 3

(?)( 1

x x xx x x x

� � �

� � �

� �

� � �2 / 3? 1x� �

79. 2

2 2 2

3 1

2

2

3 1 1 6 312 1 2 36 6 6

6 9 16

x xx x xx x x

x xx

� � � � � �

� ��

75. a. 2 22 4 2( 2) 2

x x xx x x

� �� � �

b. 2 3 3 4 2 3

2 2 3 2

4 6 2 (2 3 )(2 3 )

x y x y x y xy2 3

2 (2 3 )2 3

y xy xy x yxy xy

x y

� ��

� ��

��

80. 21 2 1 4 ( 2)( 2) 4

2 4 4( 2) 4( 2)x x x x x

x x� � � � � �

� � �x� � �

x

81. 2

2

2 3 3 2

2

2

2

2 4 1( 1) ( 1)( 1) 1

( 2)( 1) ( 4) ( 1)( 1)( 1)( 1)

2 4 2( 1)

( 2 2)( 1)

x xx x x x

x x x x x x xx x x

x x x x x x xx x

x xx x

� �� �

� � �

� � � � � � ��

� �

� � � � � � ��

� � ��

76. 2 4 2 2

2 4 2 2 2 2

4 16 ( 4) ( 4)( 4)4 16 4 ( 16)

( 4)( 2)( 2)( 4)( 4)

( 2)( 2)( 4)

x x x x x x xx x x x x x

x x xx x x

x xx x

� � � � �� � �

� � � �� � �

�� �

� ��

77. 2 2

2 2

6 9 3 47 12 4 3( 3)( 3) ( 4)( 1) 3( 4)( 3) ( 3)( 1) 3

x x x xx x x x

x x x x xx x x x x

� � � ��

� � � �� � � � �

� � �� � � � �

82. 2 2

1 1 12 ( 2)( 1) ( 3)( 1) 22 2 3

x x x xx x x x x xx x x x

� �� � � � �

� � � � � �� � � �1

2 2 2

2

( 1)( 3) ( 2) ( 1)( 3) 4 3 2 2 3( 2)( 1)( 3) ( 2)( 1)( 3) ( 2)( 1)( 3) ( 2)( 1)( 3)

4 ( 4)( 2)( 1)( 3) ( 2)( 1)( 3)

x x x x x x x x x x x xx x x x x x x x x x x x

x x x xx x x x x x

� � � � � � � � � � � �� � � �

� � � � � � � � � � � �

� �� �

� � � � � �

83. 2 2 21 1

12 21

1

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)1 ( 1) ( 1)

x xx

x

x x x x x x x xx x x x x x x

� �

� � � � � � � �� � � �

� � � �

3

84. 2

2

1 12 1 2

2 1 21 1

11

xx

xx

x x x xxx x

� �

� �

�� �� �

� �� x�

85. 3 3 1 3( 1)( 1) 3( 1)11 1

x x x x xxx x

� � � �� � � �

�� �

86. 4 4 ( 4) 4 4 22 4 2( 4) 2( 4) 2( 4) 4

x x x x x x x xx x x x x x x x x x

� � � � � � � �� � � � �

� � � � � � � � � �

Chapter 0: Algebraic Concepts

29Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

87. a. R: Recognized C: Involved E: Exercised

Numbered statement indicates solution for that question.

UR

5

22 315

E

C

2010

30

95

1. 30 2. 50 – 30 = 20 3. 52 – 30 = 22 4. 30 + 22 + 20 + 5 = 77 5. 37 – 22 = 15 6. 77 + 15 + 3 = 95

b. So, 10 exercised only. 200 (95 5 22 30 20 3 15) 10� � � � � � � �c. So, 100 exercised or were involved in the community. 63 70 (3 30) 100� � � �

88. � �0.75 15 63.8 52.55%� � �

89. � �22 25 5 2 25 3 25 9� � � � � � � 6

90. (1.0075) 11000.0075

n

S! "�

� # $% &

a. 36(1.0075) 1(36) 100

0.0075

0.30865100 $4115.270.0075

S! "�

� # $% &! "� �# $% &

b. 240(1.0075) 1(240) 100

0.0075

5.00915100 $66,788.690.0075

S! "�

� # $% &! "� �# $% &

91. � �176.896 1.00029 HB �

a. � �5759176.896 1.00029939.577 thousand beds939,577 beds

B �

��

b. � �5000176.896 1.00029753.969 thousand beds753,969 beds

B �

��

92. h 1.922 0.5190.000595 or 47.7h s s� �

a. � �1.9220.000595 50 1.096 inchesh � �

b. � �0.51947.7 4.5 104.12 mphs � �

93. a.

11.0065

0.006510,0001 (1.0065 n�)

0.0065 1.006510,0001 1.0065

0.0065(1.0065)10,0001.0065 1

65(1.0065)1.0065 1

n

n

n

n

n

n

n

R! "

� # $�% &! "

� �# $�# $% &

! "� # $�% &

��

b. 48

48

48

0.006510,000 243.19 1 (1.0065)

65(1.0065) 243.191.0065 1

R

R

! "� �# $�% &

� ��

94. 1/S kA� 3

a. 3S k A� b. Let 1S be the number of species on 20,000

acres. Then 3 20,000 . Let 2S be the number of species on 45,000 acres. Then

1S k�

3

3 20,000

2

1

2 1

45000

2.25 20,000

2.25

2.2531

k

SS S

� �

� �

� �

3

3

3

1.

S k�

95. � �3002

2

Profit 30 0.001 4

0.001 26 300

x x x

x x

� � �

� � � �

Chapter 0: Algebraic Concepts

30 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

96. Value $1, 450,000 0.0025x� � 97. � � � �� � � �� � � ��2 2600 13 0.5 0.5 1200 26 or 0.5 50 24 or 25 0.5 24 or 50 12 0.5 �x x x x x x x x x� � � � � � � � � � � x

98. a. � �1, 200,000 12,000 1001, 200,000 12,000 12,000

100 1 100 100p pC

p p p�

� �� � � �

� �

b. If 12,000(0) 00, 0.100 0 100

p C� � � ��

The cost of removing no pollution is zero.

c. 12,000(98) $588,000 100 98

C � ��

d. The formula is not defined when p = 100. We are dividing by zero. The cost increases as p approaches 100. It is cost prohibitive (or maybe not feasible) to remove all of the pollution.

99. 2 21200 56 8000 1200 56 8000 56 1200 8000

1 1x x x x x

x x x x x� �

� � � � � �

Chapter 0 Test _________________________________________________________________

1. a. A = {6, 8} B = {3, 4, 6} A B = {3, 4, 6, 8} b. {3, 4}, {3, 6}, and {4, 6} are disjoint from

B. c. {6}, and {8} are non-empty subsets of A.

2. 0 4� � � 3 2 4 15 2(4 2 ) 3 0 12 3 1 ( 4) 116 4 1 21

� � � � � � � �� � � �

3. a. 4 4 8x x x � �b. 1, f 0 0 i x x� �

c. 1/ 2x x�

d. 5 2 110

1 o 0( ) rx xx

� ��

e. 7 ( 3) 30� � 27 3 2a a a a� �� �f. 1 3 5 /1/ 2 / 6x x x � �

g. 2 / 3

1 13 2 xx

h. 33

1 xx

��

4. a. 1/ 5 5x x �

b. � � 3

4 3or43 / 4 3 4 1 or x x x

x

�� ��

5. a. 55

1xx

� �

b. 38 2 24 6 21

1 3 6

x y x xyx x y

�� �

� �� �� �

� �

6. a. 5 5 5x5 55 5

x xxx x

� �x x�

b. 2 3 4 2b a a 2 2

24 2 6

2 6

a b a b a b

a b ab

� � �

c. 1 1 1 2x11 1

x xxx x

x� � �� �

� ��

7. 8x3 52 7 5x x� � �a. Degree is 5. b. Constant is –8. c. Coefficient of x is –5.

8. In interval notation, ] ( 2,3� ( 2, ) ( ,3 ]� � � �� �

1 2 3 41 5 6� 0

9. a. (4 1x x3 2 28 2 2x x )� � � b. 12)( 22 10 24 ( )x x x x� � � � � c. 3 (3 226 13 6 (2 )x x x x )� � � � � d. 26 )3 5 3

3

2 32 2 (1 12 (1 4 )(1 4 )

x x x xx x x

� � �

� � �

10. A quadratic polynomial has degree two. (c) is the quadratic.

) ( 3� �2 24 4 ( 34 3 9

2, when 3

x x

x

� � � � �� � �

)

� � � �

2�

Chapter 0: Algebraic Concepts

31Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

11. 2 3 2

3

2

2

2 1 1 2 7

2 2 2 7

12 6

xx x x

x xx xx

x

�� � �

�� �

��

Quotient: 2

2 62 11

xxx�

� ��

12. a. 4 5(9 3 ) 4 45 15 19 45y y y y y� � � � � � �

b. 2 4 7 6 93 (2 3 ) 6 9t t t t t� � � � �

c. 2

2

3 2

3 2

5 2 4 1

5 24 20 8 4 21 13

x x

2

xx x

x x xx x x

� ��

� � �

� �

� � �

d. 2

2

(6 1)(2 3 ) 12 18 2 318 15 2

x x x xx x

� � � � � �

� � � �

x

e. 2 2(2 7) 4 28 49m m m� � � �

f. 6 4

2 2

4

3 ( 3))�

( 3)( 3 39 3

3( 3)

x x x xx xx x

xx

� �� �

� ��

��

g. 4 3 4 6

6 3

99 9 9

7

81x x x x x

x x� � � �

h. 4 2 4 2 68 8 8 8

x x xx x x x

� � � �� � �

� � � �

i. 2 2

1 32 3 3

xx x x x

�� �

��

2 2

1 3( 3)( 1) ( 3)

( 1) 3( 1)( 3)( 1)

3 3 4 3( 3)( 1) ( 3)( 1)

xx x x x

x x xx x x

x x x x xx x x x x x

�� �

� � �� � �

�� �

� � � � �� �

� � � �

13. 1 1

21 or

(1 )x y

x

xy y x y� xy xy y xyy xy

� �� �

� ��

14. a. Construct a Venn diagram:

b. 0 students ate only breakfast.

UB

0

20 14030

L

D

355

90

c. 320 – 145 = 175 175 students skipped breakfast.

15. 4 4

80 80

0.08 0. (20)

1000 1 1000 14 4

1000(1 0.02) 1000(1.02) 4875.44

x

S � � � �� � � �� � � �� � � �

� � � �

08

In 20 years, the future value will be about $4875.44.

Chapter 0: Algebraic Concepts

32 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 0 Extended Applications _________________________________________________

I. 1. 250,000 0.36 90,00050,000 0.3 15,00090,000 15,000 75,000

� �� �

75,000 voters read the newspaper but do not watch the news.

2. 75,000 newspaper35,000 cable news15,000 both

125,000

125,000 read the newspaper or watch the cable news or both.

3. Number of Cost per VoterTotal CostVoters Reached ReachedPamphlet 125,000 $112,500 $0.90Television 50,000 $40,000 $0.80Newspaper 90,000 $27,000 $0.30

II. a.

1 Price per unit Number of units2 100 3003 2 0.50 100.50 2 1 2994 3 0.50 101.00 3 1 2985 4 0.50 101.50 4 1 297

A B

A BA BA B

� � � � �� � � � �� � � � �

b. Profit

( 2 58)* 2 12,6000( 3 58)* 3 12,707.5( 4 58)* 4 12,814

( 5 58)* 5 12,919.5

C

A BA BA B

A B

� � �� � �� � �� � �

Chapter 0: Algebraic Concepts

33Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

c. Abbreviated table: Price per unit Number of Units Income Profit 100 300 30000 12600 102 296 30192 13024 104 292 30368 13432 106 288 30528 13824 108 284 30672 14200 110 280 30800 14560 112 276 30912 14904 114 272 31008 15232 116 268 31088 15544 118 264 31152 15840 120 260 31200 16120 122 256 31232 16384 124 252 31248 16632 126 248 31248 16864 128 244 31232 17080 130 240 31200 17280 132 236 31152 17464 134 232 31088 17632 136 228 31008 17784 138 224 30912 17920 140 220 30800 18040 142 216 30672 18144 144 212 30528 18232 146 208 30368 18304 148 204 30192 18360 150 200 30000 18400 152 196 29792 18424 154 192 29568 18432 156 188 29328 18424

d. Price per unit = $154, Maximum profit = $18,432

Chapter 0: Algebraic Concepts

34 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 1: Linear Equations and Functions Exercise 1.1 __________________________________________________________________

1. 4 7 8 24 7 7 8 8 2 7 8

4 994

x xx x x

x

x

� � �� � � � � � �

� �

� �

x

2. 2 3 22 722 4 220 4

5

x xxx

x

� � �� ���

3. 8 8( 1)8 8 8

8 8 87 0

0

x xx x

x xxx

� � �� � �� � �� �

4. 32 0

0

x x x xx xxx

� � ����

5. 3 2443 4(24) 96

32

x

xx

� �

� � �� �

6. 1 12616 6(12)

672

x

x

x

��

�� �� � �� �� �

� �

7. 2( 7) 5( 3)2 14 5 15

2 5 15 142 29

292

x x xx x x

x x xx

x

� � � �� � � �

� � � �� �

� �

8. 3( 4) 4 2( 2)3 12 4 2 43 12 25 12 0

5 12125

x xx xx xx

x

x

� � � �� � � �� � �� �

9. 5 2 742 6

5 26 4 62 6

15 24 2 715 2 24 7

13 171713

x x

x x

x xx x

x

x

�� �

7�� � �� �� � �� � �

� � �� � �

���

10. 2 213 2

2 26 1 63 24 6 3 6

0

x x

x x

x xx

�� �

�� � �� �� � �� � �

� � ��

���

11. 1 22 63 31 42 63 3

3 1 6 4 183 18 6 4 1

15 55 1

15 3

x x x

x x x

x x xx x x

x

x

� �� � � �� �� �

� � � �

� � � �� � � � �

� ��

� � �

Chapter 1: Linear Equations and Functions

35Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

12. 3 2 114 3 3 6

3 1 2 214 3 3 18

3 1 2 236 36 14 3 3 18

27 12 36 24 427 12 24 4051 12 40

x x

x x

x x

x xx xx

( � �� � � �� �� �

� � � �

� � �� � � �� � �� � �

� � � �� � � �� �

���

51 5252 / 51

xx��

13. 33(5 ) 5 (2)533 10

10 3311 33

3

xx xx

x xx x

xx

�� � �� �� �

� �� � � �

� � ��

Check: ?

?

33 3 25(3)

30 215

2 2

��

x = 3 is the solution.

14. 3 3 73

3 3( 3) ( 3)(73

3 3 7 214 24

6

xx

xx xx

x xxx

��

��� �� � �� ��� �� � �� � �

)

Check: ?3(6) 3 7

(6) 321 73

��

15. 2 2 52 5 3 2(2 5)

xx x

� �� �

Multiply each term by 6(2x + 5). 12 (8 20) 15

12 8 20 15x x

x x� � �

� � �

54 5 or 4

x x� �

Check: � �

� � � �5 ?4

5 54 4

?

2 2 52 5 3 4 10

10 2 510 20 3 15

10 1 2 5 1 and 30 3 3 15 3

� �� �

� ��

� � �

54

x � is the solution.

16. 3 1 2 14 3x x

� � �

LCD is 12x. 3 1 2 1(12 )x(12 ) (12 ) (12 )

4 336 3 8 12

5 24245

x x xx x

���

Check:

x xx

x

� � � � � � �� � �� � � � � � �� � � � � � �

� � �� � �

� � � �?

24 245 5

?

?

3 1 2 14 3

5 1 2 58 4 3 24

5 1 2 524 24 24 248 4 3 2

15 6 16 5

� � �

� � �

� � � � � � � �� � �� � � � � � � �� � � � � � � �

� � �4

17. 2 1 5 21 3 6 1

2 2 1 51 3 6

2( 1) 1 51 3 6

1 523 6

xx xxxx

x

� � �� ��

� ���

� ��

� �

There is no solution.

Chapter 1: Linear Equations and Functions

36 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

18. 2 643 3

2 6( 3) ( 3)(4) ( 3)3 3

xx xxx x x

x x

� �� �

� � � �� � � � �� � � �� �� � � �

6

Not defined for 3x � . No solution.

2 4 122 6

3

x xxx

� � �� � �

19. 3.259 8.638 3.8(8.625 4.917)3.259 8.638 32.775 18.6846

3.259 32.775 8.638 18.684636.034 10.0466

10.0466 0.27936.034

x xx x

x xx

x

� � � �� � � �

� � �� ��

� � �

20. 3.319(14.1 5) 9.95 4.646.7979 16.595 9.95 4.651.3979 16.595 9.95

51.3979 26.5450.516

x xx xx

xx

� � �� � �� �

��

21. 0.000316 9.18 2.1(3.1 0.0029 ) 4.680.000316 9.18 6.51 0.00609 4.68

0.000316 0.00609 6.51 4.68 9.180.006406 7.35

7.35 1147.3620.006406

x xx x

x xx

x

� � � �� � � �

� � � �� �

�� � �

22. 3.814 2.916(4.2 0.06 ) 5.33.814 12.2472 0.17496 5.33.814 17.5472 0.17496

3.98896 17.54724.399

x xx xx xxx

� � �� � �� ���

23. 3 4 154 3 15

3 154 4

3 154 4

x yy x

xy

y x

� �� � � �

�� �

� �

� �

24. 3 5 255 3 2

3 55

x yy x

y x

� �� � � �

� �

5

25. 32 9 2(11)2

18 3 223 18 2

2263

x y

x yy x

y x

� �� �� �� �

� �2� � �

� � �

26. 3 152 3x y� �

LCD is 6. 3 16 6(5 ) 62 3

9 30 230 9 2

3 110 15

x y

x yy x

y x

� � � �� �� � � �� � � �

� �� � �

� � �

27. S P P r tP r t S P

S PtP r

� �� �

��

28.

� �1

y b mx ay b m x a

y mx am b

��

�� � �

� � �

29. � �3 1 23 3 2

3 12

11

x xx xx

x

� � �

� � �� � �

30. � �2 12 2 1

2 13

1x xx xx

x

� � �

� � �� � �

� �

31.

� � � � � �1 12 2

1 2 92 8

2 8

4

xx

xx

� �� �

� � � �

� �

32.

� �� � � � � �

17 421

1 121

xx

x 21x

� � �� � �

� � � � �

Chapter 1: Linear Equations and Functions

37Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

33. � �

� � �

3 12

23 1 2 2

3 3 2 43 4

1

xx

x xx xx

x

�� �

� � �

� � �� � �

� �

34. 1 1 12

12

1 21 or

x x

x x

x xx x

�� � �

��

� �� � � �1

35. � �

� �� � � �1 12 2

2 1 3 4 12 2 3 4 1

2 5 4 12 5 1

2 62 6

3

x xx x

x xx

xxx

� � � �

� � � �� � �

� � �� �

� � � �

� �

-6 -5 -4 -3 -2 -1 0

36. � �7 4 2 17 4 2 25 4 2

5 665

x xx xx

x

x

� � �

� � �� � �

� �

� �

-6 -5 -4 -3 -2 -1 0

37.

� �

� �� � � �

3 323 2 33 6 2

61 6 1

6

x x

x xx xx

xx

�� �

� � �

� � �� �

� � � �

� �

-12 -10 -8 -6 -4 -2 0

38.

� �

2 1052 5 102 50 53 50

503

x x

x xx xx

x

�� � �

� � � �

� � � �� �

� �

-20 -19 -18 -17 -16 -15 -14

39. � �

� �

� �� � � �� �1 15 5

2 13 112 124 6 3

9 2 12 8 19 2 12 8 89 2 4 85 2 8

5 105 10

2

xx x

x x xx x xx xx

xx

x

�� �� �� � �� �� �� � � �

� � � �

� � � �� � �� �

-2 -1 0 1 2 3 4

40.

� �� � � �� �1 111 11

4 112 3 123 2

5

16 36 6 511 36 6

11 4211 42

4211

12x x

x xx

xx

x

� � �� � �� � �� � �

� � �� �

���

-2 -1 0 1 2 3 4 41. 648,000 1800

387,000 648,000 18001800 648,000 387,000 261,000

261,000 145 months1800

y xx

x

x

� �� �� � �

� �

42. Fully depreciated means 810,000 2250 0

2250 810,000360 months

xxx

� ���

Chapter 1: Linear Equations and Functions

38 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

43.

� �

0.663175.393

0.663 19.8175.393

19.8 0.663 19.137175.393

19.137 175.393$3356.50

I r

I

I

II

� �

� �

� � �

44. a. 33 18 49518 495 6 165

33 11

p dd dp

� �� �

� �

b. When d = 12,460, 6(12,460) 165 74,925

11 11p �� �

6811 lbs/sq in.p �

45. R C� for breakeven point 20 2 792018 7920

440 packs or 220,000 CD's

x xx

x

� ��

46. 4 81 29970P x� �0P � if 81 29970 0

81 29970370 systems

xxx

� ���

47. 170,500 5.76170,500 $29,600

5.76

x

x

� �

48. Let the pre-tax price of the car be P. Then 0.06 21,0411.06 21,041

21,0411.06

19,850

P PP

P

P

� ��

Therefore, the tax on the car is 0.06. 0.06(19,850) = 1191 We could also find the tax by subtracting the pre-tax price from the total price: 21,041 – 19,850 = 1191 $1191.00

49.

� �959 1000 456.8

959 1000 75 456.8959 75000 456.8

959 75456.878.68%

C IC

CCC

� �

� �

� ���

50. 1.052 18,691.2850,000 1.052 18,691.28

68,691.28 1.052$65,295.89

B WWW

W

� �� ���

51. 93 69 89 97 906

2 348 5402 192

96

FE FE

FEFEFE

� � � � ��

� ���

A 96 is the lowest grade that can be earned on the final.

52. Let x = the lowest score on the final. If the 52 earned during the semester is not replaced,

83 67 52 90 805

292 400108.

x

xx

� � � ��

� ��

This indicates that a grade of 80 is not possible under these circumstances. If the grade of 52 is replaced with the final score x, then

83 67 90 805

x x� � � ��

2 240 4002 160

80

xxx

� ���

53. x = amount in safe fund 120,000 – x = amount in risky fund Yield: 0.09x + 0.13(120,000 – x) = 12,000 0.09 15,600 0.13 12,000

0.04 360090,000

x xxx

� � �� � �

x = $90,000 in 9% fund 120,000 – 90000 = $30,000 in 13% fund.

54. x = amount in safe fund 145,600 – x = amount in risky fund Yield: 0.10 0.18(145,600 ) 20,000

0.10 26, 208 0.18 20,0000.08 6208

77,600

x xx x

xx

� � �� � �

� � ��

x = $77,600 in 10% fund 145,600 – 77,600 = $68,000 in 18% fund.

Chapter 1: Linear Equations and Functions

39Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

55. Reduced salary: 2000 – 0.10(2000) = $1800 Increased salary: 1800 + 0.20(1800) = $2160 160 = R% of 2000

160 8=2000 100

R �

$160 is an 8% increase.

60. Let T be the tax and B be the amount of the monthly bill. If 0 6B 0,� � then 0.02 .T B�If 60 80,B� � then 0.04 .T B�If then 80,B � 0.06 .T B�

61. a. 2010 1995 15� � b. 6.205 11.23 150

11.23 143.79512.8

ttt

� ���

c. 2008

56. a. 3 100100

3 100(100)3 10,000

3333 (rounded)

xxxx

���

62. 75.75 0.74p t� �

b. 63 10001000

63 1000(1000)63 1,000,000

15,873 (rounded)

xxxx

���

a. 2010 1975 35t � � � b. � �75.75 0.74 35 49.85%p � � � c. 75.75 0.74 0

75.75 0.74102.4

tt

t

� ���

In 1975 103 2078� � the model ceases to be effective.

57. 40 20 160020 1600

80

x xxx

� ���

63. 90.2 41.3A h� � a. 90.2 41.3 110

41.3 19.80.48

hhh

� ���

60 70 80 90 100 110 120

58. 20 78 3378 136 or

d dd

d d

� ��� �

b. 90.2 41.3 10041.3 9.8

0.24

hhh

� ���

6

64. 1.337 24.094WC t� � 4 5 6 7 8 9 10 1.337 24.094 30

0.337 24.094 300.337 5.906

17.53

t tt

tt

� � �� � �

� �� �

59. 695 5.75 9005.75 205

35.65

ttt

� ���

He could buy 35 tapes.

Exercise 1.2 __________________________________________________________________ 1. a. For each value of x there is only one y.

b. ) * 7, 1,0,3,4.2,9,11,14,18,22D � � �

* )0,1,5,9,11, 22,35,60R �

4. No, the relation is not a function because the x-value 1 has two y-values, 4 and 9. D = {–1, 0, 1, 3}, R = {0, 2, 4, 6, 9}

5. The vertical line test shows that graph (a) is a function of x, and that graph (b) is not a function of x.

c. (0) 1, (11) 35f f� �

2. a. (9)f is an output of f .

6. (b) is a function since for each x there is one y. b. x is not a function of y. For there are two x’s.

0y �

7. If 33y x� , then y is a function of x.

3. This is a function, since for each x there is only one y. * )1, 2,3,8,9D � , * )4,5,16 R � �

8. If 26y x� , then y is a function of x.

Chapter 1: Linear Equations and Functions

40 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

9. If 2 3y x� , then y is not a function. If, for example, 3x � , there are two possible values for y.

10. y is not a function. For 0x � , there are two y’s.

11. R(x) = 8x – 10 a. R(0) = 8(0) – 10 = –10 b. R(2) = 8(2) – 10 = 6 c. R(–3) = 8(–3) – 10 = –34 d. R(1.6) = 8(1.6) – 10 = 2.8

12. 2( ) 3 2h x x x� �

a. 2(3) 3(3) 2(3) 27 6 21h � � � � �

b. 2( 3) 3( 3) 2( 3) 27 6 33h � � � � � � � �

c. 2(2) 3(2) 2(2) 12 4 8h � � � � �

d. 21 1 1 3 2

� � 3 26 6 6 36 6

3 12 9 136 36 36 4

h� � � � � �� �� � � � � �� � � � � �

� � � � � �

13. 2 ( ) 4 3C x x� �

a. 2 � (0) 4(0) 3 3C � � �

b. 2 ( 1) 4( 1) 3 1C � � � � �

c. 2 ( 2) 4( 2) 3 13C � � � � �

d. 23 34 3 6� ��

2 2C � � �� � � �� � �� � � �

14. 3( ) 100R x x x� �

a. 3(1) 100(1) 1 100 1 99R � � � � �

b. 3(10) 100(10) (10) 1000 1000 0R � � � �

c. 3(2) 100(2) 2 200 8 192R � � � � �

d. 3( 10) 100( 10) ( 10)1000 ( 1000) 0

R � � � � �� � � � �

15. 3 4( )f x xx

� �

a. 3

12

1 1 4 1 638 � 2 2 8 8

f � � � �� � � � � � �� � � � �� � � �

b. 3 4(2) 2 8 2 62

f � � � � �

c. 3 4( 2) ( 2) 8 2 62

f � � � � � � � � ��

16. 2 1( ) xC xx�

a. 21 1 0(1) 01 1

C �� � �

b. � �21 312 4 4

1 1 12 2 2

1 11 32 2

C� � �� � � � � � �� �

� �

c. 2( 2) 1 4 1 3( 2)2 2

C � � �2

� � � � �� �

17. 2( ) 1f x x x� � � a. 2(2 1) (3) 1 3 3 13f f� � � � � �

(2) (1) 7 3 10f f

� � � �(2) (1) (2 1)f f f

� � �

b. 2( ) 1 ( ) ( )f x h x h x h� � � � � � c. No. This is equivalent to a. d. 2( ) 1f x h x x h� � � � �

( ) ( )

No. f x h f x h� � � e. 2

2 2

2

2

( ) 1 ( ) ( )1 2

( ) 1( ) ( ) 2

(1 2 )( ) ( ) 1 2

f x h x h x hx h x xh h

f x x xf x h f x h xh h

h x hf x h f x x h

h

� � � � � �

� � � � � �

� � �

� � � � �� � �

� �� � �

18. 2( ) 3 6f x x x� � a. 2(3 2) (5) 3 5 6 5 75 30 45f f� � � � � � � � �

2(3) 2 (3 3 6 3) 2 27 18 2 11f

� � � � � � � � � �(3 2) (3) 2f f

So, � � � .

b. 2

2 2

2 2

( ) 3( ) 6( )3( 2 ) 6 63 6 3 6 6

f x h x h x hx xh h x h

x xh h x h

� � � � �

� � � � �

� � � � �

c. 2( ) 3 6f x h x x h� � � �( ) ( )

So, f x h f x h� � �

d. 2 2( ) ( ) 3 6 3 6f x f h x x h h� � � � �( ) ( ) ( )

So, f x h f x f h� � �

e. 2

2 2

( ) 3( ) 6( )3 6 3 6 6

f x h x h x hx xh h x h

� � � � �

� � � � �

2 2 2

2

( ) ( )3 6 3 6 6 (3 6 )6 3 6

f x h f xx xh h x h x xxh h h

� �

� � � � � � �

� � �

2( ) ( ) 6 3 6

6 3 6

f x h f x xh h hh h

x h

� � � ��

� � �

Chapter 1: Linear Equations and Functions

41Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

19. 2( ) 2f x x x� � a. 2

2 2

( ) ( ) 2( )2 4 2

f x h x h x hx xh h x h

� � � � �

� � � � � �

b. 2 2

2 2

2

( ) ( )( ) 2( ) ( 2 )

2 4 2 24 2

f x h f xx h x h x x

2x h x xh h x xh xh h

� �

� � � � � �

� � � � � � �

� � �

2( ) ( ) 4 2

1 4 2

f x h f x h xh hh h

x h

� � � ��

� � �

20. 2 ( ) 2 3f x x x� � �

a. 2

2 2

2 2

( ) 2( ) ( ) 32( 2 ) 32 4 2

f x h x h x hx xh h x h

x xh h x h

� � � � � �

� � � � � �

� � � � � � 3b.

2 2 2

2 2 2

2

( ) ( )2 4 2 3 (2 32 4 2 3 2 34 2

f x h f xx xh h x h x xx xh h x h x xxh h h

� �

� � � � � � � � �

� � � � � � � � �

� � �

)

2( ) ( ) 4 2

4 2 1

f x h f x xh h hh h

x h

� � � ��

� � �

21. Since (9, 10) and (5, 6) are points on the graph: a. (9) 10f �b. (5) 6 f �

22. a. From the figure, g(0) = 0. b. There are three values of x that satisfy

( ) 0g x � .

23. a. The coordinates of Q = (1, –3). Since the point is on the curve, the coordinates satisfy the equation. b. The coordinates of R = (3, –3). They satisfy

the equation. c. The ordered pair (a, b) satisfies the equation.

Thus 2 4 . b a a� �d. The x values are 0 and 4. These values are

also solutions of 2 4 0 . x x� �

24. a. The point (1, 1) does not lie on the graph. The coordinates do not satisfy the equation. b. From the graph, the coordinates of point R

are (1, 2). These coordinates do satisfy the equation.

c. If P(a, b) is a point on the graph, then 22b a� .

d. The x-coordinate of the point whose y-coordinate is 0 is 0. This value of x does satisfy the equation 20 2x� .

25. 2 4y x� � There is no division by zero or square roots. Domain is all the reals, i.e., {x : x � Reals}. Since , the range is reals 4� or

2 20, 4 4x x� � �

* ): 4y y � .

26. Domain: all reals Range: reals 1� �

27. 4y x� � There is no division by zero. To get a real number y, we must have 4 0x � � or 4x � � . Domain: 4x � � . The square root is always nonnegative. Thus, the range is * )0 . : reals, y� �y y

28. Domain: all reals Range: reals 1�

29. * ): : 1, 2D x x x� �

30. Domain: real s 3� �

31. * ): : 7 7D x x� � �

32. Domain: 3 3x� � �

33. ( ) 3f x x� , 3( )g x x� a. 3( )( ) 3f g x x x� � � b. 3( )( ) 3f g x x x� � � c. 3 4( )( ) 3 3f g x x x x� � � �

d. 3 2

3 3( )f xxg x x

� �� �� �

� �

Chapter 1: Linear Equations and Functions

42 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

34. 1( ) , ( )f x x g xx

� �

a. 1( )( ) ( ) ( )f g x f x g x xx

� � � � �

b. 1( )( )f g x xx

� � �

c. 1( ) ( ) ( ) xf g f x g x xx x

� � � � � �

d. 1

( )( / )( )( ) x

f x xf g x x xg x

� � �

35. ( ) 2f x x� , 2( )g x x�

a. 2( )( ) 2f g x x x� � �

b. 2( )( ) 2f g x x x� � �

c. 2 2( )( ) 2 2f g x x x x x� � � �

d. 2

2( )f xxg x

� ��� �

� �

36. 2( ) ( 1) , ( ) 1 2f x x g x� � � � x a.

2

2

2

( )( ) ( ) ( )( 1) 1 2

2 1 1 24 2

f g x f x g xx x

x x xx x

� � �

� � � �

� � � � �

� � �

b. 2

2 2

( )( ) ( ) ( )( 1) (1 2 )

2 1 1 2

f g x f x g xx x

x x x

� � �

� � � �

� � � � � �2

x

c. ( )( ) ( ) ( ) ( 1) (1 2 )f g x f x g x x x� � � � � �

d. 2( ) ( 1)( / )( )

( ) 1 2f x xf g xg x x

�� �

37. 3 , ( ) ( 1)f x x� � ( ) 1 2g x x� � a. 3 3( )( ) (1 2 ) (1 2 1) 8f g x f x x x� � � � � � �� b. ) 3 3( )( ) (( 1) ) 1 2( 1g f x g x x� � � � ��c. 3 3( ( )) (( 1) ) [( 1) 1]f f x f x x� � � � � 3

6d.

� � � �

3 3( )( ) ( 1) ( 1) ( 1)

( ) ( )

f f x x x x

f f x f f x

� � � � � � �

� �! "% &

38. 3( ) 3 , ( ) 1f x x g x x� � � a. 3 1

3 3

( )( ) ( ( )) (3( 1) 3 3

f g x f g x f xx x

)� � �

� � � �

b. 3 3

( )( ) ( ( )) (3 )(3 ) 1 27 1

g f x g f x g xx x

� �

� � � �

c. ( ( )) (3 ) 3(3 ) 9f f x f x x x� � � d. 2

2

( ) ( )( ) ( ) ( )3 3 9

f x f f x f x f xx x x

� � � �

� � �

39. ( ) 2f x x� , 4( ) 5g x x� �

a. 4 4( )( ) ( 5) 2 5f g x f x x� � � ��

b. 4

2

( )( ) (2 ) (2 ) 5x16 5

g f x g xx

� � �

� �

c. ( ( )) (2 ) 2 2f f x f x x� �

d. � � � �

( )( ) 2 2 4

( ) ( )

f f x x x xf f x f f x� � � �

� �! "% &

40. 3

1( ) , ( ) 4 1f x g x xx

� � �

a.

3

( )( ) ( ( ))1(4 1)

(4 1)

f g x f g x

f xx

� � ��

b. 3

3 3

1( )( ) ( ( ))

1 44 1

g f x g f x g

1

x

x x

� �� � � �� �

� � � � �

c. � � 9

3

93 3 11

1 1 1( ( ))xx

f f x f xx

� �� � � �� �� �

d. 2

3 3 6

( ) ( )( ) ( ) ( )1 1 1

f x f f x f x f x

x x x

� � � �

� � �

41. a. (20) 103,000f � means it will take 20 years to pay off a debt of $103,000 (at $800 per month and 7.5% compounded monthly.) b. (5 5) (10) 69,000f f� � �

(5) (5) 80,000f f;

� � ; No. c. It will take 15 years to pay off the debt, i.e.,

89,000 (15)f� .

Chapter 1: Linear Equations and Functions

43Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

42. a. From the table, the monthly payment is $775.30 if they refinance for 20 years, i.e. . 775.30 (20)f�b. From the table, . the value

of (10)f is the monthly payment to repay a $100,000 loan in 10 years when the interest rate is 7%.

(10) 1161.09f �

c. (5 5) (10) 1161.09f f� � �(5) (5) 1980.12 1980.12 3960.24f f� � � � (5 5) (5) (5)f f f� � �

43. a. means that in 1950 there were 16.5 workers supporting each person receiving Social Security benefits.

(1950) 16.5f �

b. (1990) 3.4f �c. The points based on known data must be the

same and those based on projections might be the same.

d. Domain: 195 Range: 1.9 1

0 2050t� �6.5n� �

44. a. and . These values represent the opening value and the closing value, respectively, for the Dow Jones average on October 4, 2007.

(0) 14,023f � (6.5) 13,968f �

b. The domain is 0 6.5t� � . The range is approximately 13,950 to 14,050.

c. There are six t-values that satisfy Answers will vary. ( ) 14,000.f t �

45. a. (95) 1,000,000, (95) 600,000f g� �b. . This was the number

of prisoners in 2000. (100) 1, 200,000f �

c. . This was the number of parolees in 1990.

(90) 500,000g �

d. 500,000 . There were this many more in

prison than were out on parole.

� � (100) 1,200,000 700,000f g� � ��

e.

is greater. Possible reason is increased prison capacity but parolee level is constant.

� �� �

(93) 900,000 600,000 300,000

(98) 1,100,000 600,000 500,000

f g

f g

� � � �

� � � �

� � (98)f g�

46. a. (1970) 30,000,000f �b. . There were

10,000,000 women in the labor force in 1930.

(1930) 10,000,000f �

c. . The labor force increased 16,000,000.

(1990) (1980) 16,000,000f f� �

47. a. Since the wind speed cannot be negative, 0s � . b. (10) 45.694 1.75(10) 29.26 10 29.33f � � � � �

At a temperature of –5°F and a wind speed of 10 mph, the temperature feels like

29.33 F� + . c. (0) 45.694f � , but (0)f should equal the

air temperature, –5°F.

48. 5 1609 9

C F� �

a. C is a function of F. b. Mathematically, the domain is all reals. c. Domain: * )

Range:

: 32 212F F� �

* ) : 0 100C C� �

d. 5 160(40) (40)9 9200 160 40 4.44

9 9

C

C

� �

�� � � +

49. 2( ) 300 0.1 1200C x x x� � �

a. 2(10) 300(10) 0.1(10) 12003000 0.1(100) 12003000 10 1200$4210

C � � �� � �� � ��

b. The value C(100) is the total cost of producing 100 units.

c. 2(100) 300(100) 0.1(100) 1200$32,200

C � � ��

50. a. � � � � � �� �

22000 47 2000 0.01 2000 8000

94000 0.01 4,000,000 8000$46,000

P � � �

� � �

�b. � �

� � � �� �

2

5000

47 5000 0.01 5000 8000

235,000 0.01 25,000,000 8000$23,000

P

� � �

� � �

� �

c. � �5000P is negative, which means it is not profitable for the company to product 5000 units.

Chapter 1: Linear Equations and Functions

44 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

51. 7300( )100

pC pp

��

56. When k = 0.02, we have 3 and

3( )W L kL�

( ) 0.02W L L�2( 20)( ) 5L L t� �

a. Domain: * ) : 0 100p p� �0

10t �

� , 0 20t� � .

So, 32( 20)( )(W L�

b. 7300(45) 328,500(45) $5972.73100 45 55

C � � ��

) ( ( )10

t W L t! "# $% &

) 0.02 50 t� � �

� . c. 7300(90) 657,000(90) $65,700

100 90 10C � � �

57. ( )R f C� ( )C g A� d. 7300(99) 722,700(99) $722,700

100 99 1C � � �

a. � � � �( )f g x f C R� ��

e. 7300(99.6) 727,080(99.6) $1,817,700100 99.6 0.4

C � � ��

In each case above, to remove p% of the particulate pollution would cost ( )C p .

b. � � ( )g f x� is not defined. c. A is the independent variable and R is the

dependent variable. Revenue depends on money spent for advertising.

58. a. sanding the door 52. 0.6( )

0.4 0.6nR n

n�

� b. painting the door

c. sanding the door and then painting a. 0.6(1) 0.6(1) 0.6

0.4 0.6(1) 1.0R � � � d. painting the door and then sanding

� e. painting the door with two coats

b. 0.6(2) 1.2(2) 0.750.4 0.6(2) 1.6

R � � ��

59. length = x width = y L = 2x + 2y

1600 = xy or 1600yx

1600 32002 2 2L x xx x

� �� � � �� �� �

c. Improvement is 0.75 – 0.6 = 0.15. The percentage improvement is 0.15 25%0.6

� .

60. Let x = the length of the base.

Then 12

x = the height. Bottom: 2x sq. ft.

Sides: 21 12 2

x x x� � sq. ft. for each of 4 sides for

a total of 2 214 2

53. a. A is a function of x. b. A(2) = 2(50 – 2) = 96 sq ft

A(30) = 30(50 – 30) = 600 sq ft c. For the problem to have meaning we have

0 < x < 50.

54. a. is a function of x. 2( ) (108 4 )V x x x� �2

x x� sq. ft.

Top: 2

x sq. ft Cost:

2� 2 2 22 2(2 ) 7.5

ttom sides p

C x x x x x� �� � �

( )

bo

1.5

to

b.

2(10) (10) (108 4(10))100(108 40) 100(68)6800 cubic inches

V � �� � ��

2(20) (20) (108 4(20))400(108 80) 400(28)11, 200 cubic inches

V � �� � ��

61. Revenue = (no. of people)(price per person) Example: 30 10

31 9.8032 9.60

RRR

� � �

Solution: R = (30 + x)(10 – 0.20x)

c. The values for x must be such that 0 27x� � , otherwise the volume would be less than or equal to 0.

55. a. 2

2

( ( )) (1000 10 )(1000 10 )180(1000 10 ) 200

100169,800 1600

P q t P ttt

t t

� �

�� � � �

� � �

62. Let x = number of $10 increases. Then ( ) (360 10 )(50 )

Rent/unit #rented

R x x x� � �

� �.

b. q(15) = 1000 + 10(15) = 1150 P(q(15)) = $193,575

Chapter 1: Linear Equations and Functions

45Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Exercise 1.3 ___________________________________________________________________

1. 12� � 3 4x y

x-intercept: y = 0 then x = 4. y-intercept: x = 0 then y = 3.

y

2x - y +17 = 0

-8 -6 -4 -2x

5

10

20

2. 90� �

x-intercept: y = 0 then x � y-intercept: x = 0 then 18y

6 5x y15.

� � 3. 60� � 5 8x y

x-intercept: y = 0 then y-intercept: x = 0 then

12.x �7.y � � 5.

4. 7 02 1x y� � � x-intercept: y = 0 then x � � y-intercept: x = 0 then y � x-intercept: y = 0 then y-intercept: x = 0 then

8.5.17.

8.5.x � �17.y �

2 4

2

4

y

3x'� 4y � 12

x

5. 0x y5. 3 23 2 0x y� �

x-intercept: y = 0 then x = 0 Likewise, y-intercept is y = 0.

-2 2

-2

2

x

y

-12

y

6x - 5y = 90

10 20x

-6

-18

-24

6

6. 4x + 5y = 8

x-intercept: y = 0 then x = 2

y-intercept: x = 0 then 85

y �

-10

y

5x - 8y = 60

4 12 16 20x

-5

-15

-20

5

-1 1 2 3

-1

1

2

x

y

4x'� 5y � 8

7. � � � �22,11 and 15, 17�

2 1

2 1

17 11 28 415 22 7

y ymx x� � � �

� � �� � �

Chapter 1: Linear Equations and Functions

46 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

8. � � �6, 12 and 18, 24� � � � �� �� �

2 1

2 1

24 12 12 118 6 12

y ymx x

� � �� �� � � �

� � � �

9. � � � �3, 1 and 1,1� �

� �2 1

2 1

1 1 2 11 3 4 2�

y ymx x

� ��� � � � �

� � �

10. �n , 3 � �5,6 a d 1� �

� �2 1

2 1

3 6 9 31 5 6

y ym

x x� � � �

� � � �� � � 2

11. (3, 2) and (–1, 2) 2 1

2 1

2 2 0 0)�

3 ( 1 4y ymx x� �

� � �� � �

12. 2 1

2 1

2 2 44) 0

��

�, undefined

4 (y ymx x� � �

� �� � �

13. A horizontal line has a slope of 0 .

14. The slope of a vertical line is undefined.

15. �nd 1 2 � �3,2 a ,�The rate of change is equivalent to the slope of the line.

2 1

2 1

2 2 0 01 3 4

y ymx x� �

� � �� � � �

16. d , 4� � � �11, 5 an 9� �The rate of change is equivalent to the slope of the line.

� �2 1

2 1

4 5 19 11 20

y ymx x

� � �� �� � �

� � �

17. a. Slope is negative. b. Slope is undefined.

18. a. 0 m �

b. � �2 1

2 1

5 1 6 3� � 2 0 2

y ymx x

� ��� �

� �

19. 7 1 7 1b , ,3 4 3 4

y x m� � � � �

20. 4 1 4 1, , 3 2 3 2

y x m b� � � �

2

4

6

-2

-4

-6

y

2 4 6 -6 -4 -2

x

4 1

3 2y x� �

21. , 3b3 or 0 3, 0y y x m� � � ��

2

4

6

-2

-4

-6

y

2 4 6-6 -4 -2

x

3y �

22. y = –2 horizontal line m = 0, b = –2

2

4

6

-2

-4

-6

y

2 4 -6 -4 -2

6

x

2y � �

23. x = –8 Slope is undefined. There is no y-intercept.

8x � �

7 13 4

y x� �2

4

6

-2

-4

-6

y

2 4 6 -6 -4 -2

x

4

8

12

-4

-6

-12

y

4 8 12 -12 -8 -4

x

Chapter 1: Linear Equations and Functions

47Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

24. 12

x � � vertical line

m is undefined; there is no y-intercept.

25. 2x + 3y = 6 or y = 2 22, , 23 3

x m b� � � � � .

26. 3 2 18

2 3 13 92

x yy x

y x

� �� � � �

� �

8

3 , 92

� m b� �

27. 1 1, 3; 3y x� 2 2

m b� � � �

28. 4m � , b = 2, 4 2y x� �

2

1

3

4

y

x

y = 4x + 2

5

6

1 2 3 4 5

2 4 6 -6 -4 -2

x

12

x � �

2

4

6

-2

-4

-6

y

29. 1 2,2

m b� � �

12x2 3 6x y� �

2

4

6

-2

-4

-6

y

2 4 6 -6 -4 -2

x2

y � � �

-2 2 4

-4

-2

2

x

y

y �'�2x'� 12

30. 2 2, 1, 13 3

m b y x� � � � � � �y

6

-3 -2 -1 1 2 3

-5

-4

-3

-2

-1

x

y

y = - x - 123

4

2

-2

-4

-6

2 4 6 -6 -4 -2

x

3 2 18x y� �

-3 -2 -1 1 2 3

-5

-4

-3

-2

-1

x

y

y = x + 312

Chapter 1: Linear Equations and Functions

48 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

31. � �

(2, 0), 50 5 2

5 10

P my xy x

� �

� � � �

� � �

32. 1(1, 1), 3

m � �

11 ( 1� )31 43 3

y x

y x

� � �

� � �

33. � � 31,44

,P m� �

34 ( ( 1)� � )43 194 4

y x

y x

� �

� �

34. (3, –1), m = 1 ( )m x1 1

1 1( 3)1 3

4

y y xy xy x

y x

� �� � �� � �

� �

-3 -2 -1 1 2 3

-5

-4

-3

-2

-1

x

y

y = - 5x + 10

4y x� �

-4 -2 2 4x

y

-2

-4

-6

2 35. P(–1, 1), m is undefined

x = –1

-3 -2 1 2 3

-3

-2

-1

1

2

3

x

y

x �'�1

-4 -2 2 4x

-4

-2

2

4

y

1 43 3

y x� � �

36. (1, 1), m = 0; horizontal line, y = 1

-4 -2 2 4x

-4

-2

2

4

y

y = 1

2

1

3

4

y

x

5

6

1 2 3 4 5

7

8

y = x +34

19 4

37. 1 2(3, 2), ( 1, 6)

6 2 21 3

2 2( 3)2 4

P P

m

y xy x

� � � � � �

� �� �

� � �� �

Chapter 1: Linear Equations and Functions

49Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

38. (–4, 2), (2, 4), 4 2 2 12 ( 4) 6 3

m �� � �

� �

14 ( 231 243 31 103 3

y x

y x

y x

� � �

� � �

� �

)

39. 1 2(7, 3), (–6, 2)P P� �

2 3 1 16 7 13 13

13 ( 7)13

1 7 313 131 32 or 13 32

13 13

m

y x

y x

y x x y

� �� � �� � �

� � �

� � �

� � � � �

40. (10, 2), (5, 7), 7 2 15 10

m �� � �

7 1( 57 5

12

y xy x

y x

� � � �� � � �

� � �

)

41. 3 2 63 32

x y

y x

� �

� � �

2 3 62 23

x y

y x

� �

� �

Lines are perpendicular since 3 2– 12 3

� �� � � �� �� �� �� �

.

42. 5 2 85 42

x y

y x

� �

� �

10 4 85 22

x y

y x

� �

� �

Lines are parallel since the slopes are equal.

43. 6 4 126 124 4

x y

y x

� �

� �

3 2 63 32

x y

y x

� �

� �

or 3 32

y x� �

Lines are the same.

44. 5 4 74 5 7

5 74 4

x yy x

y x

� �� � �

� � �

4 75

y x� �

Lines are perpendicular since 5 4– 14 5

� �� � � �� �� �� �� �

.

45. If 3x + 5y = 11, then 3 115 5

y x� � � . So,

35

m � � . A line parallel will have the same

slope. Thus, 35

m � � and P = (–2, –7) gives

3( 7) ( ( 2))5

y x� � � � � � which simplifies to

3 41x5 5

y � � � .

46. Through (6, –4), parallel to 4x – 5y = 6 Find the slope of 4x – 5y = 6.

5 4 64 65 545

y x

y x

m

� � � �

� �

Use the same slope. 4( 4) ( 6)54 2445 54 445 5

y x

y x

y x

� � � �

� � �

� �

47. If 5x – 6y = 4, then 5 4� � . Slope of the

perpendicular line is

6 6y x

65

� . Thus 65

m � � and

P = (3, 1) gives 61 ( 3)x5

y � � � � which

simplifies to 6 23x � . 5 5

y � �

48. (–2, –8), perpendicular to x = 4y + 3 Find the slope of x = 4y + 3.

4 31 34 414

y x

y x

m

� � � �

� �

Slope of new line is 14

1 4� � � .

( 8) 4( ( 2))8 4 8

4 16

y xy x

y x

� � � � � �� � � �

� � �

Chapter 1: Linear Equations and Functions

50 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

49. a.

b. 0 = 360,000 – 1500x 360000 2401500

x � � months

In 240 months, the building will be completely depreciated.

c. (60, 270,000) means that after 60 months the value of the building will be $270,000.

50. a. t = 20 represents the year 1980 + 20 = 2000. In the year 2000, the per capita tax burden is expected to be $62

� � � �20 2.25 20 17.69 $62.69T � � �

.69 100 $6, 269� � .b.

51. 5.74 14.61y x� �a. 5.74, 14.61m b� �b. In 1995, when x = 0, 14.61% of the U.S.

population had Internet. c. The percentage of the U.S. population with

Internet is changing at the rate of 5.74% per year.

52. 32.88 0.03p t� �a. 0.03, 32.88m b� � �b. The slope represents the annual 0.03%

decrease of high school seniors who smoke. c. The p-intercept represents the 32.88% of

high school seniors who smoked in 1975.

53. 6.9 3.18y x� �

120 240

180,000

360,000

x

y

360, 000 1500y x� � a. 6.9 3.18m b� � � b. The percent of the U.S. population with

internet service is changing at the rate of 6.9% per year.

c.

54. 85.79 2.39p t� � a. 2.39 85.79m b� � � b. Every year, the percentage of high school

seniors who smoke goes down 2.39%. c. In 1975, 85.79% of high school seniors

smoked.

55. ( ) 0.762 85.284M x x� � � a. 0.762 85.284m b� � � b. In 1950, 85% of the unmarried women

became married.

5 10 15 0 25 30

102030

50

80

c. The annual rate of change is 0.762%� . For each passing year the percent of unmarried women who get married decreases by 0.762%.

56. � �141.1 45.78 1S H� � �91.2 41.3

A H� �

a. When H = 0.40, 141.1 45.78(1 0.4)141.1 45.78(0.6) 113.6

S � � �� � �

91.2 41.3(0.4) 107.7 FA+

� � � + b. According to the Summer Simmer Index,

the effect of a relative humidity of 40% is to make 100°F seem like 113.6°F. The other model indicates that the 100°F seems like 107.7°F.

c.

2

7060

40

t

T(t)

T(t) = 2.25 t + 17.69

� �141.1 45.78 1S H� � �

0.2 0.4 0.6 0.8 1.0

20

40

60

80

120

100

H

y

91.2 41.3A H� �

Chapter 1: Linear Equations and Functions

51Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

64. a. Yes

b. 0.13 0.11 0.026 5

m �� �

� �0.13 0.02 6

0.02 0.01y x

y x� � �

� �

57. 0.78 1.316F M� �a. 0.78m � b. For each $1 increase in male earnings, the

female’s earning increases by only $0.78. c. � �0.78 60 1.316

45.484 thousand=$48,484

F � �

� c. The values in the table fit the model.

65. (x, p) is the reference. (0, 85000) is one point. 1700 17001

m �� � �

p – 85,000 = –1700(x – 0) or p = –1700x + 85,000

58. ( ) 56.009 0.758p x x� �a. 0.758 m � �b. The percentage of U.S. high school seniors

who used marijuana decreases at a rate of 0.758% per year.

66. P = (age, hours of sleep) 1 (18, 8) Choose 2 (14

P �, 9)P �

59. 16.37 0.0838y x� �

9 8 114 18 4

98 ( 18) o2

m

y x x

�� � �

�1 1r 84 4

y

60. 9.19 0.9191y x� �

61. a. � �

� �

105 1.05 and 676,527100527 1.05 6761.05 182.80

m

B WB W

� �

� � �

� �

� � � � � � � �

or 1 25x � 4 2

y � �

b. � �(850) 1.05 850 182.80$709.70

B � �

67. (t, R) is the ordered pair.

1 27 , 11 , (6, 19)2

P P� �� �� �� �

7 52 2

19 11 8 16 3.26 5

m �� � � �

19 3.2( 6) or 3.2 19.2 19R t R t� � � � � � or R = 3.2t – 0.2

62. a. � �0.025 80,000 2000p y� � y b. c 0.025 30 0.75p c� � � �

63. a. and � �1985,113.2 � �2005,324.9

� �

324.9 113.2 211.7 10.5852005 1985 20

113.2 10.585 198510.585 220,898.025

m

y xy x

�� � �

�� � �

� �

68. Pairs: (0, 960,000) and (240, 0) 0 960,000 4000

240 0960,000960,000 4000

m

by x

�� � �

��� �

b. The consumer price index for urban consumers increases at the rate of $10.59 per year.

69. 1 2(200, 25) (250, 49)

49 25 24 0.48250 200 50

25 0.48( 200) or 0.48 71

P P

m

y x y x

� ��

� � ��

� � � � �

Exercise 1.4 _______________________________________________________________

1. 2.

10�

2 4 1y x x� � �

10�

10

10

10�

10�

10

10

24y x� �

Chapter 1: Linear Equations and Functions

52 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

10�

4 3 21 14 3 3 8y x x x� � � �3.

10�

10

10

4.

5.

6.

7.

8.

9.

10.

10�

10�

10

10

3 3y x x� �

10�

10�

10

10

3 26y x x� �

11.

10�

5�

5

10

2

3 74

xyx�

��

10�

5�

5

10

2

3 74

xyx�

��

10�

10�

10

10

3 20.1 0.3 2.4 3y x x x� � � �

10�

10�

10

10

3 20.1 0.3 2.4 3y x x x� � � �

12.

10�

10�

10

10

2 41

xyx�

��

10�

10�

10

10

2 41

xyx�

��

4�

40�

10

6

4 34 6y x x� � �

13. a.

100�

3 20.01 0.3 72 1y x x x� � � 50�

2000�

4000

80

10�

10�

10

10

2

121

xyx

��

b.

10�

3 20.01 0.3 72 150y x x x� � � �

10�

10

10

10�

10�

10

10

2

81

yx

��

5�

3 12 1y x x� � �

20�

20

5

Chapter 1: Linear Equations and Functions

53Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

14. a.

b. Standard viewing window

15. a.

b. Standard Window

16. a.

b. Standard viewing window

17. a. y-intercept 0.03� � x-intercept: 0. 001 0.03

30xx��

100�

3 20.01 0.15 60 700100

x x xy � � � ��

50�

50

100

b.

5�

0.1�

0.1

40

0.001 0.03y x� � 18. y = 50,000 – 100x

a. The equation is linear, so use the x- and y-intercepts of the line graph to determine an appropriate range. (y-intercept: 50,000; x-intercept: 500)

b. Window: x-min = –100 y-min = –10,000 x-max = 600 y-max = 60,000 Graph using the window in part (b).

10

19 – 22. Complete graphs can be seen with

different windows. A hint is to look at the equation and try to determine the max and/or min of y. Also, find the x-intercepts.

19. � �20.15 10.2 10y x� � � � There is no min. Max value of y = 10. x-intercepts: 2

2

0

( 10.2)

10.2

x

x

� �

� �

� �10.2 8 or 2.2 orx x

0.15( 10.2) 110 66.66

0.1566.66 8

x �

, � ,

0�

18.2� , �

10�

10

10

3 20.01 0.15 60 700100

x x xy � � � ��

100�

10000�

60000

600

50, 000 100y x� �

200�

0.02�

0.06

200

2

15400

xyx

��

10�

10�

10

10

2

15400

xyx

��

200�

0.06�

0.01

400

2

801700

xyx

��

5�

� �20.15 10.2 10y x� � � �

10�

15

20

10�

10�

10

10

2

801700

xyx

��

Chapter 1: Linear Equations and Functions

54 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

20. A suggested window is shown below.

As the graph shows, more of the features of the graph are now visible.

21. If x = 0, y = –42.

A suggested window is shown below.

22. 3 233 120

20x x xy � � �

A suggested window is shown below.

As the graph shows, closer detail of the features of the graph are now available.

23. 4 8 4 8

x yy x

� �� �

24. 5 85 8

x yy x� �� � �

10�

2 42y x x� � �

50�

10

10

10�

10�

10

10

5 8y x� � �

25. 2

2

2

4 2 52 4

522

x yy x

y x

� �

5� � �

� � �

10�

10�

10

10

2 522y x� � �

25�

3 219 62 84020

x x xy � � ��

75�

75

15

26. 2

2

2

6 3 83 6

823

x yy x

y x

� �

8� � �

� � �

10�

10�

10

10

2 832y x� � �

20�

3 233 12020

x x xy � � ��

100�

500

50

27. 2

2

2

6 22 6

1 32

x yy x

y x

� �

� �

� �

10�

10�

10

10

212 3y x� �

10�

10�

10

10

212 3y x� �

Not linear

10�

10�

10

10

4 8y x� �

28. 2

2

2

3 4 84 3

3 24

x yy x

y x

� �

8� � � �

� �

10�

10�

10

10

234 2y x� �

Chapter 1: Linear Equations and Functions

55Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

29.

� � � �

3 2

3 2

3 2

( ) 3 2

( 2) 2 3 2 2 8 12 2 1

3 3 33 2 0.7343754 4 4

f x x x

f

f

� � �

� � � � � � � � � � � �

� � � � � �� � � �� � � � � �� � � � � �

8

Use your graphing calculator, and evaluate the function at these two points. If either of your answers differ, can you explain the difference?

30. 2

2

2

2( )1

(3) 2(3) 3(3)(3) 1 2

( 4) 2( 4)( 4) 4.84 1

x xf xx

f

f

��

��

� ��

� � �� � � �

� �

31. As x gets large, y approaches 12.

When x = 0, y = –12, x intercepts at ± 1.

32.

33. 2

2

6 ( 3)( 2))( 2

x� �

What happens to y as x approaches –3? –2? ( 3 )5 6

x x xyx xx x

� �� �

� �� �

34.

35. 6 21 06 21

21 76 2

xx

x �

� ��

36. 12 28 028 712 3

x

x

� �

� � �

37. 0

� �� �

2 3 105 2 0

2 or 5

x xx x

x

� �

� � �

� �

38. 42

2

6 46 4 4

x xx x� �

0� � �

6

The graphing calculator approximation is 1.215, 0.549.x x� � �

39. Find the zeros and find the x-intercepts are equivalent statements. Use a graphing calculator’s TRACE or ZERO. a.-b. Graphing calculator approximation is 1.1098x � � , 8.1098 .

10�

14�

14

102

2

12 121

xyx

��

40. The x-intercepts and zeros are the same. a.-b. Graphing calculator approximation is

1.5495, 3.5495x � � .

41. a.

00

60

70

0.78 1.316F M� �

00

60

70

0.78 1.316F M� �

5�

2�

2

5

3

4

94 9

xyx

��

5�

2�

2

5

3

4

94 9

xyx

��

b. If males average $50,000, then females earn $37,684.

c. � � � �62.5 0.78 62.5 1.31647.434 thousand $47, 434

F � �

� �

15�

10�

10

15

2

2

65 6

x xyx x

� ��

� �42. a.

00

60

50

1.05 18.691B W� �

00

60

50

1.05 18.691B W� �

10�

6�

6

102

2

49

xyx�

��

b. When whites average $50,000 income, blacks only average $33,809 income.

c. � � � �77.5 1.05 77.5 18.69162.684 thousand = $62,684

B � �

Chapter 1: Linear Equations and Functions

56 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

43. a.

b. 0E � when 0p� � . 0 10 44. t 2112 16S t� �

a.

b. From the graph above, the ball has an estimated maximum height of 196 feet when t = 3.5 seconds.

45. a.

b. The rate is 0.08� . As more people become aware of the product, there are fewer to learn about it.

46. 20 0.4 L x� �

a. x-intercept: 50x � , y-intercept: 20y � b. The rate is decreasing because the number

of words learned is increasing.

47. a. x-min = 0, x-max = 120

50�

50,000�

300,000

150

210, 000 100E p p� � b. y-min = 15, y-max = 80 c.

015

80

120

� �78.92 0.987xP �

015

80

120

� �78.92 0.987xP � d.

00

80

130

� �78.92 0.987xP �

00

80

130

� �78.92 0.987xP �

2�20�

250

10

2112 16S t t� � e. The percentage decreases from 78.9% in

1890 to 16.4% in 2010.

00

30,000

400,000

28, 000 0.08R x� � 48. a. x-min = 0, x-max = 30 y-min = 0, y-max = 750 b.

00

380

20

20.73 2.69 3.06y x x� � �

00

380

20

20.73 2.69 3.06y x x� � �

c. It continues to increase, but will eventually

exceed the population of the U.S.

00

30

60

20 0.4L x� � 49. a.

00

50, 000

100

285,000 2850Cp

� �

b. Near p = 0, cost grows without bound. c. The coordinates of the point mean that the

cost of obtaining stream water with 1% of the current pollution levels would cost $282,150.

d. The p-intercept means that the cost of stream water with 100% of the current pollution levels would cost $0.

Chapter 1: Linear Equations and Functions

57Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

50. a. 52. a.

0110

210

40

3 20.0043 0.24 0.585 199.8y x x x� � � �

0110

210

40

3 20.0043 0.24 0.585 199.8y x x x� � � �

0110

210

40

3 20.0043 0.24 0.585 199.8y x x x� � � �

00

100,000

100

8100100

pCp

��

b. C increases rapidly as p gets close to 100.

b. � �30 117.39 millions 117,390,000 short tons

y �

c. The coordinates (98, 396900) indicate that the cost to remove 98% of the particulate pollution cost $396,900.

c. It increases dramatically. Planners should account for a huge increase in carbon monoxide.

d. The p-intercept is (0, 0). The meaning is that it costs nothing to remove none of the particulate pollution.

51. a.

00

38,000

48

3 20.1384 9.660 27.17 1005y x x x� � � �

00

38,000

48

3 20.1384 9.660 27.17 1005y x x x� � � � b. Increasing. The per capita federal tax burden is increasing. Exercise 1.5 __________________________________________________________________

1. Solution: � � 1, 2� � 4. No solution, since the graphs do not intersect.

5�

5�

5

5

1 : 4 2y y x� �

2 : 1y x y� �

5�

5�

5

5

1 : 4 2y y x� �

2 : 1y x y� �

5�

5�

5

5

1 : 4 2y y x� �

2 : 1y x y� �

5�

5�

5

5

2 : 3 4 4y x y� �

31 4: 3y y x� �

5�

5�

5

5

2 : 3 4 4y x y� �

31 4: 3y y x� �

5�

5�

5

5

2 : 3 4 4y x y� �

31 4: 3y y x� �

2. Solution: � �3,1

5. Solution: � �2,2

5�

5�

5

5

2 : 3 10y x y� �

1 : 2 5y x y� �

5�

5�

5

5

2 : 3 10y x y� �

1 : 2 5y x y� �

5�

5�

5

5

2 : 3 10y x y� �

1 : 2 5y x y� �

10�

10�

10

10

1 : 2 2y y x� �

12 2: 1y y x� �

6. Solution: � �1,1� 3. Infinitely many solutions.

10�

10�

10

101 : 2y x y� � �

2 : 2 1y x y� � �

5�

5�

5

5

1 : 2 4y x y� �

12 2: 2y y x� � �

5�

5�

5

5

1 : 2 4y x y� �

12 2: 2y y x� � �

5�

5�

5

5

1 : 2 4y x y� �

12 2: 2y y x� � �

Chapter 1: Linear Equations and Functions

58 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

7. Solution: No solution, since the graphs do not intersect.

8. Solution: Infinitely many solutions.

10�

10�

10

10

1 : 2 3y x y� �

2 : 4 2 6y x y� �

10�

10�

10

10

1 : 3 10y y x� �

52 2: 3y y x� �

9.

84

103

3 2 64 8 Solve for . 2

Substitute for this variable in 3 –2(2)=6first equation and solve for 3 6 4 10the other variable.

x yy y y

xx

x

� �� � �

� � ��

The solution of the system is 10 and 2 , or 3

x y� �10 , 2� �� � .

3� �

10. 3 6x 4 3 5x y

�-. � �/Substitution: 2x �4(2) 3 5

3 31

yyy

� �� � �

The solution of the system is , 2x � 1y � or � �2,1 .

11.

Solve for y:

� �

2 23 4 6 Solve for . 2 2

Substitute for this variable in 3 4 2 2 6second equation and solve for 3 8 8 6the other variable. 11 14

14 /11

x yx y y y x

x xx x

xx

� �� � � �

� � �� � �

��

14 6� 2 2

11 11y � �� �� �

� �

The solution of the system is 1411

x � and 611

y � , or 14 6,11 11� �� � . � �

12. x y 4 32 3 19x y

� �-. � �/Substitution: 4 3y x� �

� �2 3 4 3 192 12 9 19

14 282

x xx x

xx

� � �

� � ���

� �4 2 3 5y � � �

The solution of the system is and 2x � 5y � , or � �2,5 .

Chapter 1: Linear Equations and Functions

59Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

13. 3 4 1 Multiply 1st equation by 3. 9 12 32 3 12 Multiply 2nd equation by 4. 8 12 48

Add the two equations. 17 51Solve for the variable. 3Substitute for this variable in 3(3) 4 1either original equa

x y x yx y x y

xxy

� � � �� � � �

��

� �tion and 4 8

solve for the other variable. 2yy� �� �

The solution of the system is 3x � and 2y � � , or � �3, 2� .

14.

1711

5 2 4 10 4 82 3 5 10 15 25

11 17

x y x yx y x y

yy

� � 0 � �-. � � � � � �/

� �

� �

17 51 4 22 3 5 2 5 211 11 11 11

x x x x � � �� � � 0 � � 0 � 0� �� �

The solution of the system is 211

x � and 1711

y � � , or 2 17,11 11� ��� �� �

.

15. 4 3 5 Multiply first equation by 3. 12 9 153 2 4 Multiply second equation by 4. 12 8 16

Add the two equations. 1Substitute for this variable in 4 3(1) 5either original equation and 4 8sol

x y x yx y x y

yx

x

� � � � � � � �� � � �

�� � � �

� � �ve for the other variable. 2x �

The solution of the system is x = 2 and y = 1.

16. 2 3 3 6 93 6 6 3 6 6

0 3

x y x yx y x y� � 0 � �-

. � � � � � �/�

No solution.

17.

527128

7

0.2 0.3 4 0.20 0.3 42.3 1.2 Multiply 2nd equation by 0.3. 0.69 0.3 0.36

Subtract the two equations. 0.49 3.64Solve for the variable.Substitute, solve for .

x y x yx y x y

xx

y y

� � � �� � � �

� �� �� �

The solution of the system is 52 128and ,7 7

x y� � � � or 52 128,7 7

� �� �� �� �

.

18. 0.5 3 0.5 30.3 0.2 6 1.5 30

27

x y x yx y x y

x

� � 0 � � � �-. � � � �/

� �0.5 27 313.5 3

10.5

yyy

� �

� �� �

The solution of the system is and 27x � 10.5y � � , or � �27, 10.5� .

Chapter 1: Linear Equations and Functions

60 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

19. 5 72 2 1 Multiply first equation by 6. 15 21 6

8 3 11 Multiply second equation by 7. 56 21 77

Add the two equations. 71 71Substitute for this variable in 1either original equ

x y x yx y x y

xx

� � � � � �� � � �

��

ation and 8(1) 3 11solve for the other variable. 3 3

1

yyy

� ���

The solution of the system is x = 1 and y = 1, or (1, 1).

20. 1 12

2 1 13 3

x y

x y

- � �11.1 � �1/

0 2 22 3

0 1

x yx y

� � � �� �

No solution.

21. 4 6 4 4 6 42 3 2 Multiply second equation by 2. 4 6 4

Add the two equations: 0 0

x y x yx y x y� � � �� � � � � � �

There are infinitely many solutions. The system is dependent. Solve for one of the variables in terms of the

remaining variable: 2 23 3

y � � x . Then a general solution is 2 2,3 3

c� ��� �

c �� , where any value of c will give a

particular solution.

22. 0 6 4 169 6 24

x yx y� �-

. � �/

36 24 9636 24 96

0 0

x yx y

� � � �� �

There are infinitely many solutions. The system is dependent.

23–26 Use the standard window and graph each equation. Use the TRACE or INTERSECT feature to find

the solution.

23. 382

3 14

xy

xy

- � �11.1 � �1/

24. 293

253

xy

xy

- � �11.1 � �1/

10�

10�

10

10

12 93

y x� � �22 53

y x� �

10�

10�

10

10

13 14

y x� �

23 82

y x� � �

Solution: (3, 7)

Solution: � � 4, 2

Chapter 1: Linear Equations and Functions

61Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

25. 1

2

: 5 3 2: 3 7 4

y x yy x y

� � �-. � �/

Solution: (–1, 1)

26. 1

2

: 4 5 3: 2 7 6

y x yy x y

� � �-. � � �/

Solution: 1 , 12

� �� �� �

10�

10�

10

10

15 23 3

y x� � �

23 47 7

y x� � �

10�

10�

10

10

14 35 5

y x� �

22 67 7

y x� �

27.

The solution is x = –17, y = 7, z = 5.

Eq. 1 2 2 Steps 1, 2, and 3 of the systematic Eq. 2 3 8 procedure are completed.Eq. 3 2 10 Step 4: 5

x y zy z

z z

� � �� � �

� �From Eq. 2 3(5) 8 or 7From Eq. 1 2(7) 5 2 or 17

y yx x� � � �� � � � �

28.

Solution: (0, 2, –3)

2 2 10 4( 3) 10 2(2) 2( 3) 104 10 12 10 4 6 13 9 2 10 10

3 0

x y z y xy z y x

z y xz x

� � � � � � � � � � � � �� � � � � � � � � �� � � � � �

� � �

0

29.

Step 3: ( 3)� Eq 2 added to Eq. 3 gives 2z = –2 or z = –1.

The solution is x = 4, y = 12, z = –1 or (4, 12, –1).

Eq. 1 8 0 Steps 1 and 2 of the systematic Eq. 2 4 8 procedure are completed.Eq. 3 3 14 22

x y zy z

y z

� � �� �� �

From Eq. 2 4( 1) 8 or 12From Eq. 1 12 8( 1) 0 or 4

y yx x� � � �� � � � �

30.

Solution: (–11, 5, –2)

3 8 20 3 8 20 3 8 203 11 2 6 22 2 6 22

2 7 4 2 7 4 13 26 2

x y z x y z x y zy z y z y zy z y z z z

� � � 0 � � � 0 � � �� � 0 � � 0 � �� � � 0 � � � 0 � � 0 � �

2 6( 2) 22 3(5) 8( 2) 202 12 22 15 16 20

2 10 31 205 11

y xy x

y xy x

� � � � � � �� � � � �

� � �� � �

Chapter 1: Linear Equations and Functions

62 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

31.

Step 2:

Eq. 1 4 2 9 Step 1 is completed.Eq. 2 5 2 2Eq. 3 4 28 22

x y zx y z

x y z

� � �� � � �� � �

Step 3 is also completed.

Step 4:

4 2 9 Eq. 1Eq. 4 4 11 ( 1) Eq. 1 added to Eq. 2Eq. 5 26 13 ( 1) Eq. 1 added to Eq. 3

x y zy z

z

� � �� � � � � � �

12

z � � from Eq. 5.

From Eq. 4 14 11 or2

y y� �� � � � �� �� �

–9

From Eq. 1 14( 9) 2 9 or 442

x x� �� � � � � �� �� �

The solution is x = 44, y = –9, 1 1or 44, 9,2 2

z � �� � � �� �� �

.

32.

Solution: (14, 4, 2)

3 0 3 0 3 0 3 02 8 2 8 2 8 2

2 6 6 2 10 2 10 3 62

x y z x y z x y z x y zx y z x y z y z y zx y z y z y z z

z

� � � 0 � � � 0 � � � 0 � � �� � � 0 � � � 0 � � 0 � �� � � 0 � � � � 0 � � � � 0 �

0 �2(2) 8 3(4) 2 0

4 8 12 2 04 14 0

14

y xy x

y xx

� � � � �� � � � �

� � ��

8

33. ( ) 40.74 742.65, ( ) 47.93 725f x x h x x� � � �

40.74 742.65 47.93 72517.65 7.19

2.455 during 1998

x xx

x

� � ���

� � � �2.455 2.455 $842.67 billionh f� �

34. ( ) 0.081 8.97, ( ) 0.282 3.10B x x H x x� � � �a. 0.081 8.97 0.282 3.10

5.87 0.20129.2 in 2000

x xx

x

� � ���

� � � �29.2 29.2 11.3 million of eachH B� � b. Hispanics

00

30

50

BlacksHispanics

00

30

50

BlacksHispanics

Chapter 1: Linear Equations and Functions

63Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

35. a. 1800 Total number of tickets x y� �b. 20x � revenue from $20 tickets c. 30y � revenue from $30 tickets d. Total Revenue 20 30 42,000x y� �e. Multiply equation from part (a) by 20� .

20 20 3600020 30 42000

10 6000600

x yx y

yy

� � � �� �

��

Substitution into equation from part (a) gives 1200x � . Sell 1200 of the $20 tickets and 600 of the $30 tickets.

36. x � amount invested at 10%, y � amount invested at 12% a. 500,000x y� �b. 0.10x c. 0.12y d. 0.10 0.12 53,000x y� �e. 500,000

1.2 530,000

0.2 30,000$150,000

x yx y

yy

� � � �� �

��

150,000 500,000$350,000

xx

� ��

Invest $350,000 at 10% and $150,000 at 12%.

37. x = amount of safe investment. y = amount of risky investment. x + y = 145,600 Total amount invested 0.1x + 0.18y = 20,000 Income from investments The solution is the solution of the above system of equations. 145,600

1.8 200,000 (10) second equation

0.8 54, 400 Subtract equations 68,000 Solve for or amount of risky investment.

x yx y

yy y

� �� �

��

Substituting y = 68,000 into one of the original equations we have x + 68,000 = 145,600 or x = $77,600. Solution: Put $77,600 in a safe investment and $68,000 in a risky investment.

38. Let A = loan for product A and B = loan for product B.

237,000 237,000 153,000 237,00069,000 69,000 $84,000

2 306,000$153,000

A B A B BA B A B B

AA

� � 0 � � � �� � 0 � � �

��

Chapter 1: Linear Equations and Functions

64 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

39. x = amount invested at 10%. y = amount invested at 12%.

470,000 470,000 200,000 470,0000.10 0.12 51,000 1.2 510,000 270,000

0.2 40,000$200,000

x y x y xx y x y x

yy

� � 0 � � � �� � 0 � � � � �

� � ��

40. Let B = amount borrowed from bank and L = amount borrowed from life insurance.

100,0001.2 109,0000.2 9,000

$45,000

B LB L

LL

� �� �

��

45,000 100,000$55,000

BB� ��

$55,000 borrowed from the bank and $45,000 borrowed from life insurance.

41. A = ounces of substance A. B = ounces of substance B.

Required ratio 35

AB� gives 5A – 3B = 0.

Required nutrition is 5%A + 12%B = 100%. This gives 5A + 12B = 100. The % notation can be trouble. Be careful! Now we can solve the system.

5 3 05 12 100

15 100 Subtract first equation from second.100 2015 3

A BA B

B

B

� �� �

� �

Substituting into the original equation gives 205 3 0 or 43

A A� � .� � �� �� �

The solution is 4 ounces of substance A and 263

ounces of substance B.

42. x = number of glasses of milk y = number of quarter-pound servings of meat 0.1 3.4 7.15 34 71.5 Substitution: 71.5 348.5 22 73.75 8.5 22 73.75 8.5(71.5 34 ) 22 73.75

607.75 289 22 73.75607.75 267 73.75

267 5342

x y x y xx y x y y y

y yyyy

� � 0 � � � �� � 0 � � � � �

� � �� �� � �

y

x = 71.5 – 34(2) = 71.5 – 68 = 3.5 The proper nutrition would be provided with 3.5 glasses of milk and 2 servings of meat.

Chapter 1: Linear Equations and Functions

65Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

43. x = population of species A. y = population of species B. 2x +y = 10,600 units of first nutrient 3x + 4y = 19,650 units of second nutrient

8 4 42,400 (4) first equation3 4 19,650

5 22,750 Subtract 4550 Solve for

x yx y

xx x

� � � �

��

Substituting x = 4550 into an original equation we have 2(4550) + y = 10,600. So, y = 1500. Solution is 4550 of species A and 1500 of species B.

44. x = number of cubic centimeters of 40% solution y = number of cubic centimeters of 10% solution

25 25 Substitution: 250.40 0.10 0.28(25) 0.40 0.10 7 0.40(25 ) 0.10 7

10 0.40 0.10 710 0.30 7

0.30 310

x y x yx y x y y y

y yyyy

� � 0 � � � �� � 0 � � � � �

� � �� �� � �

x y

The biologist should mix 10 cc of 10% solution with 15 cc of 40% solution.

45. x = amount of 20% concentration. y = amount of 5% concentration. x + y = 10 amount of solution 0.20x + 0.05y = 0.155(10) concentration of medicine Solving this system of equations: 10

0.25 7.75 (5) second equation

0.75 2.25 Subtract equations 3 Solve for

x yx y

yy y

� �� �

��

Substituting into the first equation we have x + 3 = 10 or x = 7. The solution is 3 cc of 5% concentration and 7 cc of 20% concentration.

46. A = dosage of medication A B = dosage of medication B 8 5 8 5 0 24 15 06 2 50.6 6 2 50.6 24 8 202.4

23 202.4 8.8

A B A B A BA B A B A B

BB

� 0 � � 0 � �� � 0 � � 0 � �

��

Each dosage of medication should be 5.5 mg of A and 8.8 mg of B.

8 5(8.8) 08 44 0

8 445.5

AA

AA

� �� �

��

Chapter 1: Linear Equations and Functions

66 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

47. x = number of $40 tickets. y = number of $60 tickets.

16,000 40 40 640,000 6,000 16,00040 60 760,000 40 60 760,000 10,000

20 120,0006,000

x y x y xx y x y x

yy

� � 0 � � � � � �� � 0 � � �

��

48. x = lbs of peanuts y = lbs of cashews

100 Substitution: 1002.80 5.30 3.30(100) 2.80(100 ) 5.30 330

280 2.80 5.30 3302.50 50

20

x y xx y y y

y yyy

� � � �� � � � �

� � ���

y

The wholesaler should mix 20 pounds of cashews with 80 pounds of peanuts.

49. x = amount of 20% solution to be added. 0.20x = concentration of nutrient in 20% solution. 0.02(100) = 2 is the concentration of nutrient in 2% solution. 0.20 2 0.10( 100)

0.20 2 0.10 100.1 8 or 80cc of 20% solution is needed.

x xx x

x x

� � �� � �

� �

50. Let x = the number of gallons of 13.5% washer fluid.

0.135 0.11(200) 0.13( 200)0.135 22 0.13 26

0.005 4800 gallons

x xx x

xx

� � �� � �

��

51. x = ounces of substance A, y = ounces of substance B, and z = ounces of substance C.

15

5 15 12 100 Nutrition requirementsDigestive restrictionsDigestive restrictions

x y zx zy z

� � ���

Since both x and y are in terms of z, we can substitute in the first equation and solve for z. So, 5z + 3z + 12z = 100 or 20z = 100. So, z = 5. Now, since x = z, we have x = 5.

Since 15

y z� , we have y = 1. The solution is 5 ounces of substance A, 1 ounce of substance B, and

5 ounces of substance C.

Chapter 1: Linear Equations and Functions

67Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

52. Let x = the number of glasses of skim milk

y = the number of 14

lb servings of meat

z = the number of 2-slice servings of bread.

0.1 3.4 2.2 10.5 34 22 105 34 22 1058.5 22 10 94.5 85 220 100 945 14 10 44

20 12 61 20 12 61 2670 1770 7980

x y z x y z x y zx y z x y z y zx y z x y z y z

� � � 0 � � � 0 � � �� � � 0 � � � 0 � �� � � 0 � � � 0 � � � �

34 22 105 34 22 1055 22 5 22 22 53; (3) 1; 105 34 66 57 7 7 7 7 7

960 28802670 1770 7980 7 7

x y z x y z

y z y z z y x

y z z

� � � � � �

� � 0 � � 0 � � � � � � � �

� � � � �

The solution is: (5, 1, 3). The requirements will be met with 5 glasses of milk, 1 serving of meat and 3 servings of bread.

53. A = number of A type clients. B = number of B type clients. C = number of C type clients. A + B + C = 500 Total clients 200A + 500B + 300C = 150,000 Counseling costs 300A + 200B + 100C = 100,000 Food and shelter To find the solution we must solve the system of equations. Eq. 1 500Eq. 2 2 5 3 1500 Original equation divided by 100Eq. 3 3 2 1000 Original equation divided by 100

500 Eq. 1Eq. 4 3 500 ( 2) Eq. 1 added to Eq. 2Eq. 5 2 500 ( 3) Eq. 1 added to

A B CA B CA B C

A B CB C

B C

� � �� � �� � �

� � �� � �

� � � � �

5 1000 13 3 3

1000 33 5

Eq. 3

500 Eq. 13 500 Eq. 4

Eq. 4 added to Eq. 5200

A B CB C

CC

� � �� �� �

� � �

Substituting C = 200 into Eq. 4 gives 3B + 200 = 500 or 3B = 300. So, B = 100. Substituting C = 200 and B = 100 into Eq. 1 gives A + 100 + 200 = 500. So, A = 200. Thus, the solution is 200 type A clients, 100 type B clients, and 200 type C clients.

54. A = number of type A clients B = number of type B clients C = number of type C clients

Substitution gives 180 type A clients, 90 type B clients, and 180 type C clients.

200 500 300 135,000450 450

300 200 100 90,000 300 100 45,000 2 450100 200 45,000 500 90,000

450 180

A B CA B C A B C

A B C B C B CB C C

A B C C

� � �

� � � � � �- -1 1� � � � � � �. .1 1� � � � � � �/ /

� � � 0 �

Chapter 1: Linear Equations and Functions

68 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Exercise 1.6 ______________________________________________________________

7. R = 27x 1. a. � �

( ) ( ) ( )68 34 680034 6800

P x R x C xx xx

� �

� � �

� �

a. m = 27 b. 27; each additional unit sold yields $27 in

revenue. b. � � � �3000 34 3000 6800 $95,200P � � � c. In each case, one more unit yields $27.

8. R = 38.95x 2. a. � �

( ) ( ) ( )430 210 3300220 3300

P x R x C xx xx

� �

� � �

� �

a. m = 38.95 b. 38.95MR � . Each additional unit sold adds

$38.95 to the total revenue. b. � � � �500 220 500 3300 $106,150P � � � c. The revenue from each additional unit sold

is $38.95 whether 50 are currently being sold or 100 are currently being sold.

3. a. ( ) ( ) ( )80 (43 1850)37 1850

P x R x C xx xx

� �� � �� �

9. R(x) = 27x, C(x) = 5x + 250 a. ( ) 27 (5 250) 22 250P x x x x� � � � �

b. The total costs are more than the revenue.

(30) 37(30) 1850 $740P � � � � b. m = 22 c. Marginal profit is 22. d. Each additional unit sold gives a profit of

$22. To maximize profit sell all that you can produce. Note that this is not always true.

c.

So,

( ) 0 or 37 1850 0P x x� � �

1850 5037

x � � units is the break-even

point.

10. ( ) ( ) ( )20 (21.95 1400)

1.95 1400

P x R x C xx x

x

� �� � �� � �

4. a. ( ) ( ) ( )385 (85 3300)300 3300

P x R x C xx xx

� �� � �� � a. 1.95 so the company is losing

money on every item produced and sold. MP � �

b. (351) 300(351) 3300 $102,000P � � � b. Stop production, P(x) is never positive. c. To avoid losing money, profit must be at

least 0. 0 300 3300

3300 30011

xx

x

� ���

11. (x, P) is the correct form. 1

2

(200, 3100)(250, 6000)6000 3100 58250 200

3100 58( 200) or 58 8500

PP

m

P x P x

��

�� �

�� � � � �

The marginal profit is 58.

5. C(x) = 5x + 250 a. m = 5, C-intercept: 250 b. 5MC � means that each additional unit

produced costs $5.

12. C = 54x + b, use the fact that (50, 8700) is on the line to solve for b, the fixed costs. 8700 54(50)

6000b

b� ��

The cost function is C(x) = 54x + 6000.

c. Slope = marginal cost. C-intercept =fixed costs.

d. $5, $5 ( 5MC � at every point)

6. ( ) 27.55 5180C x x� �

20 40 60 80 100

2,000

4,000

6,000

8,000

12,000

10,000

x

C

C(x) = 54x + 6000

a. m = 27.55, b = 5180 (C-intercept) b. Marginal cost = $27.55. The cost of each

additional unit is $27.55.

c. 27.55m MC� � C-intercept = FC = $5180

d. Regardless of the production level, the cost of each additional unit is $27.55.

Chapter 1: Linear Equations and Functions

69Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

13. a. 35 6600TC H� �b. 60 TR H�c.

� �60 35 660025 6600

P R CH HH

� �

� � �

� �

d. � � � �200 35 200 6600$13,600 cost of 200 helmets

C � �

� � � �200 60 200$12,000 revenue from 200 helmets

R �

� � � � � �200 200 200$12,000 13,600

$1600 loss from 200 helmets

P R C� �

� �� �

e. (300) 35(300) 6600$17,100 cost of 300 helmets

C � ��

(300) 60(300)$18,000 revenue from 300 helmets

R ��

(300) (300) (300)

18,000 17,100$900 profit from 300 helmets

P R C� �� ��

f. The marginal profit is $25. Each additional helmet sold gives a profit of $25.

14. a. ( ) 65 9800C x x� �

b. ( ) 100R x x�

c. � �( ) 100 65 9800 35 9800P x x x x� � � � �

d. � �(250) 65 250 9800 $26,050C � � �

� �250 $25,000R �

� �(250) 35 250 9800 $1050P � � � � The sale of 250 units gives revenue of $25,000 at a cost of $26,050. This results in a loss of $1050.

e. � � � �400 65 400 9800 $35,800C � � �

� �400 $40,000R �

� � � �400 35 400 9800 $4200P � � � The sale of 400 units gives revenue of

$40,000 at a cost of $35,800. This results in a profit of $4200.

f. The marginal profit is $35. Each additional unit sold increases the profit $35.

15. a. The revenue function is the graph that passes through the origin. b. At a production of zero the fixed costs are

$2000. c. From the graph, the break-even point is 400

units and $3000 in revenue or costs.

d. Marginal cost 3000 2000 2.5400 0

�� �

Marginal revenue 3000 0 7.5400 0

�� �

16. R(x) = 81.50x, C(x) = 63x + 1850 At the break-even point, R(x) = C(x), so 81.50 63 185018.50 1850

100 units

x xxx

� ���

17. R(x) = C(x) = 85x = 35x + 1650 or 50x = 1650 or x = 33. Thus, 33 necklaces must be sold to break even.

18. R(x) = 89x, C(x) = 1400 + 75x At the break-even point, R(x) = C(x), so 89 1400 7514 1400

100 sets of recaps

x xxx

� ���

19. a. R(x) = 12x, C(x) = 8x + 1600 b. R(x) = C(x) if 12x = 8x + 1600 or 4x = 1600

or x = 400. It takes 400 units to break even.

20. a. R(x) = 50x C(x) = 30x + 10,000 b. At the break-even point, R(x) = C(x), so

50 30 10,00020 10,000

500 watches

x xxx

� ���

21. a. ( ) ( ) ( )12 (8 1600)4 1600

P x R x C xx x

x

� �� � �� �

b. By setting P(x) = 0 we get x = 400. Same as 19(b).

22. a. ( ) ( ) ( )50 (30 10,000)20 10,000

P x R x C xx xx

� �� � �� �

b. 20 10,000 020 10,000

500

xxx

� ���

Same as 20(b).

Chapter 1: Linear Equations and Functions

70 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

23. a. 4.50 1045TC x� �b. 10TR x �c.

� �10 4.50 10455.50 1045

P R Cx x

x

� �

� � �

� �

d. Breakeven also means 0P � . 5.50 1045 0

5.50 1045190 units to break even

xxx

� ���

24. a. ( ) 0.80 1245C x x� �b. ( ) 4.95R x x�

c. � �( ) 4.95 0.80 12454.15 1245

P x x xx

� � �

� �d. From , we have

300x � units to break even. 4.95 0.80 1245x x� �

25. a. R(x) = 54.90x b. 1

2

(2000, 50000)(800, 32120)32,120 50,000 17,880 14.90

800 2000 120050,000 14.90( 2000) or14.90 20,200 ( )

PP

m

y xy x C x

��

� �� �

� �� � �� � �

c. From 54.90x = 14.90x + 20,200 we have x = 505 units to break even.

26. a. R(x) = 50x b. We have points (100, 4360) and (250, 7060)

on the cost function line. 7060 4360 2700 18

250 100 150( )

4360 18(100)4360 18002560 fixed costs

( ) 18 2560

m M

C x mx bb

bb

C x x

�� � �

�� �� �� �� �� �

C� 29.

c. At the break-even point, R(x) = C(x), so 50 18 2560

32 256080

x xxx

� ���

27. a. $

x

FC

TR

VC

TC

BE

P

b. TR starts at the origin and intersects TC at the break-even (BE). FC is a horizontal line

from the vertical intercept of TC. VC starts at the origin and is parallel to TC.

28. a. $

x

FC

TR

VC

TC

BE P

b. The upper line must be TC. The horizontal line for FC is drawn from the y-intercept of TC. VC starts at the origin and is parallel to TC. The lower line on the original graph must be P. The x-value of the BE occurs at the point where P crosses x-axis. You can then mark this point on R (using the same x-value) and use it to draw TR (going through the origin and BE).

If price increases, then the demand for the product decreases.

30. If the price increases, then the supply will increase.

31. a. If p = $100, then q = 600 (approximately). b. If p = $100, then q = 300. c. There is a shortage since more is demanded.

32. a. If p = $200, then q = 400. b. If p = $200, then q = 700. c. There will be a surplus since more is

supplied.

Chapter 1: Linear Equations and Functions

71Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

37. (q, p) is the correct form. 1

2

(10000, 1.50)(5000, 1.00)

1 1.50 0.50 0.00015000 10000 5000

PP

m

��

� �� � �

� �

Note: m > 0 for supply equations. p – 1 = 0.0001(q – 5000) or p = 0.0001q + 0.5

33. Demand:

Supply: 2 10

There will be a surplus of 9 units at a price of $60.00.

2 5 2002(60) 5 200

5 8016

p qqqq

� �� �

��

60 2 102 50

25

p qqqq

� �� �

��

38. (q, p) is the correct form. 1

2

(100,000, 30)(80,000, 25)

25 30 0.0002580,000 100,000

PP

m

��

�� �

30 0.00025( 100,000)30 0.00025 25

0.00025 5

p qp q

p q

� � �� � �

� �

34. Demand: 2 100

Supply: 50

There will be a shortage at a price of $14.

14 2 1002 86

43

p qqqq

� �� �

��

35 20 335(14) 20

207

p qqqq

� �� �� �

350140�

39. a. The decreasing function is the demand curve. The increasing function is the supply curve. b. Reading the graph, we have equilibrium at

q = 30 and p = 25.

40. a. 20

b. 40 35. Remember that (q, p) is the correct form. 1

2

(240, 900)(315, 850)850 900 50 2315 240 75 3

PP

m

��

�� � � � �

Note: m < 0 for demand equations.

c. Surplus of 20 (40 – 20 = 20)

41. a. Reading the graph, at p = 20 we have 20 units supplied. b. Reading the graph, at p = 20 we have 40

units demanded. �

2900 ( 240) or3

2 10603

p q

p q

� � � �

� � �

c. At p = 20 there is a shortage of 20 units.

42. Surplus

43. By observing the graph in the figure, we see that a price below the equilibrium price results in a shortage.

36. (q, p) is the correct form. 1

2

(2500, 1)(3500, 0.90)

0.90 1 0.1 0.00013500 2500 1000

PP

m

��

� �� � � �

1 0.0001( 2500)1 0.0001 0.25

0.0001 1.25

p qp q

p q

� � � �� � � �

� � �

44. At the market equilibrium point, Demand = Supply, so

2 320 8 2318 1031.82 3202(31.8) 320 $256.40

q qq

qp qp

� � � ���

� � �� � � �

Chapter 1: Linear Equations and Functions

72 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

45. 341 12 3 328 Required condition.

3 168 2 68 Multiply both sides by 6 to simplify.–5 –100

20

q qq q

qq

� � � �� � � �

��

Substituting into one of the original equations gives 12 (20) 28 18.p � � � �

Thus, the equilibrium point is (q, p) = (20, 18).

46. At the market equilibrium point, Demand = Supply, so

480 3 17 80400 20

20480 3480 3(20) $420

q qq

qp qp

� � ���

� �� � �

47.

Substituting q = 10 into one of the original equations gives p = 180. Thus, the equilibrium point is (q, p) = (10, 180).

4 220 15 30 Required condition.190 19

10 Solve for .

q qq

q q

� � � ���

48. Demand: (45, 10), (20, 60) Supply: (35, 30), (70, 50)

60 10 50 220 45 25

10 2( 45)10 2 90

2 100

m

p qp q

p q

�� � �

� �� � � �� � � �

� � �

50 30 20 470 35 35 7

430 ( 35)7

4 107

m

p q

p q

�� �

� � �

� �

Supply = Demand 4 107

q � = –2q + 100 4 (35) 10 307

p � � �

q = 35 Market equilibrium point: (35, 30)

49. Demand: (80, 350) and (120, 300) are two points. 350 300 580 120 4

m �� � �

1 15 5( ) or 300 ( 120) or 4504 4

p p m q q p q p q� � � � � � � � � �

Supply: (60, 280) and (140, 370) are two points. 280 370 960 140 8

m �� �

9 91 1 8 8( ) or 280 ( 60) or 212.5p p m q q p q p q� � � � � � � �

Now, set these two equations for p equal to each other and solve for q. 9 58 4212.5 450 Required for equilibrium.9 1700 10 3600 Multiply both sides by 8 to simplify.

19 1900100

q qq q

qq

� � � �� � � �

��

Substituting q = 100 into one of the original equations gives p = 325. Thus, the equilibrium point is (q, p) = (100, 325).

Chapter 1: Linear Equations and Functions

73Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

50. Demand: (10,75), (30, 25) Supply: (35, 80), (5, 20) 25 75 50 2.530 10 20

75 2.5( 10)75 2.5 25

2.5 100

m

p qp q

p q

� �� � � �

�� � � �� � � �

� � �

20 80 60 25 35 30

20 2( 5)20 2 10

2 10

m

p qp q

p q

� �� �

� �� � �� � �

� �

Demand = Supply –2.5q + 100 = 2q + 10 p = 2(20) + 10 = 50 20 = q Market equilibrium point: (20, 50)

51. a. Reading the graph, we have that the tax is $15. b. From the graph, the original equilibrium was (100, 100). c. From the graph, the new equilibrium is (50, 110). d. The supplier suffers because the increased price reduces the demand.

52. a. 0 (tax decreases units sold by 50) b. Yes, because fewer units are demanded.

53. New supply price: p = 15q + 30 + 38 = 15q + 68 Required condition

Substituting q = 8 into one of the original equations gives p = 188. Thus, the new equilibrium point is (q, p) = (8, 188).

15 68 4 22019 152

8

q qqq

� � � ���

54. With the $56 tax/unit, supply becomes

At the equilibrium point,

p = 17(17.2) + 136 = 428.40. Market equilibrium point: (17.2, 428.40)

17 80 56 17 136p q q� � � � �480 3 17 136

344 2017.2

q qq

q

� � ���

55. New supply price: 10 5 1520 20q qp � � � � �

20 20

50020

15 65 Required condition300 13002 1000

500 Thus, 15 40.

q q

q qqq p

� � � �� � � �

�� � � �

The new equilibrium point is (500, 40).

56. With the $15 tax/unit, supply becomes

At the equilibrium point, 3

. Market equilibrium point: (250, 800)

3 35 15 3 50p q q� � � � �

3(250) 50 800p � � �

50 8 280011 2750

250

q qqq

� � � ���

Chapter 1: Linear Equations and Functions

74 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

57. Demand: 210060

qp � �� Supply: 540

120qp �

New supply: 540 1 540 60 600120 2 120 120 120

q q qp � �� � � � �

600 2100120 60

1200 600120

Required condition600 2 4200 Multiply both sides by 1203 3600

1200 Thus, 15.

q q

q qqq p

� � �

�� � � �

�� � �

The new equilibrium quantity is 1200. The new equilibrium price is $15.

58. With the $2 tax/unit, supply becomes 1 18 2 1045 45

p q q� � � � � . Demand: 1 23010

p q� � �

1 110 23045 10

11 220 180090

q q

q q

� � � �

� 0 �

1 (1800) 230 5010

p � � � � . Market equilibrium point: (1800, 50)

Chapter 1: Linear Equations and Functions

75Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 1 Review Exercises ______________________________________________________

For this set of exercises we will not give reasons for any steps or list any formulas. 1. 3 8 23

3 31313

xx

x

� ��

2. 2 8 3 513

13

x xxx

� � �� �

� �

3. 6 3 5( 2)6 9

6 3 5( 2)18 186 9

3(6 3) 10( 2)18 9 10 20

8 29298

x x

x x

x xx x

x

x

� ��

� �� � ��� � �� � �

� � �� � �

� �

� �

���

4. 1 122 2 3

12 3 3 29 1

19

xx

x xx

x

� � �

� � �� �

� �

5. 6 63 5 2 3

6(2 3) 6(3 5)2 3 3 5

3 5 3 28

x xx xx x

x xx

�� �� � �� � �� � �

6. 2 5 1 117 3 2( 7)

6(2 5) 2( 7) 3( 11)12 30 2 14 3 33

12 2 3 14 33 307 49

7

x xx xx x xx x x

x x xxx

� �� �

� �� � � � �� � � � �

� � � � �� �� �

There is no solution since we have division by zero when x = –7.

7. 3 6 2 103 2 4

2 43

2 43 3

y xy x

xy

y x

� � � �� � �� �

� � �

8. � �3 9 4 33 9 12 4

7 213

x xx x

xx

� � �

� � ���

-2 -1 0 1 2 3 4

9.

� �

2 45

25 55

2 5 203 20

203

x x

x x

x xx

x

� �

� � 4� �� �� �

� �� �

� �

-9 -8 -7 -6 -5 -4 -3

10. � �

� � � �

� �

25 1 63

23 5 1 3 63

15 3 2 615 3 2 12

13 151513

x x

x x

x xx x

x

x

� � �

� � � �

� � �

� � �� �

� �

-3 -2 -1 0 1 2 3 11. Yes.

12. 2 9y x� , is not a function of x. If x = 1, then 3y � , .

13. Yes.

Chapter 1: Linear Equations and Functions

76 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

14. 9y x� � Domain: 9 0x� � or 9 x� or 9x � . Range: Positive square root means 0y � .

15. 2 ( ) 4 5f x x x� � �

a. 2( 3) ( 3) 4( 3) 5 9 12 5 2f � � � � � � � � � �

b. 2(4) (4) 4(4) 5 16 16 5 37f � � � � � � �

c. 21 1 1 1 292 5 � 4 5

2 2 2 4 4f � � � � � �� � � � � �� � � � � �� � � � � �

16. 2 1( )g x xx

� �

a. 2 1( 1) ( 1) 1 1 01

g � � � � � � ��

b. 2

12

1 1 1 1 12 2� � 2 2 4 4

g � � � �� � �� � � �� � � �

c. 2 1(0.1) (0.1) 0.01 10 10.01� 0.1

g � � � �

17. 2

2

2 2

2

2

( ) 9( ) 9( ) ( )

9 9 2( ) 9( ) ( ) 9 2

(9 2 )( ) ( ) 9 2

f x x xf x h x h x h

x h x xh hf x x xf x h f x h xh h

h x hf x h f x x h

h

� �

� � � � �

� � � � �

� �

� � � � �� � �

� �� � �

18. y is a function of x. (Use vertical line test.)

19. No, the graph fails vertical line test.

20. f(2) = 4

21. x = 0, x = 4

22. a. 1,0,1,3,4 , 2, 4,7 8 * )2,D � � � * )3, ,R � �

b. (4) 7 f �c. ( ) 2f x � if 1, 3x � � d.

e. No. For 2y � , there are two values of x .

23. ( ) 2( ) 3 5,f x x g x x� � � a. 5x x2 2( ) (3 5) 3f g x x x� � � � � ��

b. 2 2 2 2

3 53 5 3 5orf x xxg xx x x x

� � �� �� �

� �� �

c. 3 52 2( ( )) ( )f g x f x x� � � d. 3 5)( ) (

3(3 5) 59 20

f f x f xx

x

� �� � �� �

24. 5x + 2y = 10 x-intercept: If y = 0, x = 2 y-intercept: If x = 0, y = 5

-2 2 4 6

-2

2

4

x

y

5x'� 2y � 10

25. 6x + 5y = 9

x-intercept: If y = 0, 9 36 2

x

y-intercept: If x = 0 or

� �

9y �5

-1 1 2 3

-1

1

2

x

y

6x'� 5y � 9

26. x = –2 x-intercept: x = –2 There is no y-intercept.

-3 -2 -1 1 2 3 4 5

-4

-2

4

6

8

x

y

-3 -1 1

-1

1

x

y

x �'�2

Chapter 1: Linear Equations and Functions

77Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

27. 1 2(2, 1); ( 1, 4)4 ( 1) 3 1

1 2 3

P P

m

� � �� � � �

� �� � �

28. (–3.8, –7.16) and (–3.8, 1.16) 7.16 1.16 8.32

)

Slope is undefined. 3.8 ( 3.8 0

m � � �� �� � �

29. 2x + 5y = 10

2 22, , 2b 5 5

y x m� � � � � �

30. 3 34 2

y � or x � � 4 23

y x� � �

4 , 2 3

m b� � �

31. m = 4, b = 2, y = 4x + 2

32. 1 1, 3, 3x 2 2

m b y� � � � � �

33. 2( 2, 1),5

2 21 ( 2) or5 5

P m

y x y x

� � �

� � � � �95

34. (–2, 7) and (6, –4) 4 7 11�

6 ( 2) 8117 ( ( 2)) or811 178 4

m

y x

y x

� �� �

� ��

� � � �

�� �

35. , 1� The line is vertical since the x-coordinates are the same. Equation: x = –1

1 2( 1, 8); ( 1 )P P� �

36. Parallel to y = 4x – 6 means m = 4. y – 6 = 4(x – 1) or y = 4x + 2

37. P(–1, 2); 4 12� or

to 3x y2 �

3 3� 4

43

42 ( 1) or3

4 103 3

y x

m

y x

y x

� �

� � �

� �

38. 2 3x2 22 3 0;x y x y x� � � � � � � �

10�

10�

10

10

2 2 3y x x� � � �

39.

10�

10�

10

10

3 27 5415

x xy � ��

40. a.

15�

700�

500

25

� �� ��6 3 15y x x x� � � � �

b.

10�

10�

10

10

� �� ��6 3 15y x x x� � � � �

c. The graph in (a) shows the complete graph. The graph in (b) shows a piece that rises toward the high point and a piece between the high and low points.

41. 2 42xy x� � � is a parabola opening upward. a.

15�

50�

50

15

2 42y x x� � �

b.

c. (a) shows the complete graph. The y-min is too large in absolute value for (b) to get a complete graph.

10�

10�

10

10

2 42y x x� � �

Chapter 1: Linear Equations and Functions

78 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

46. 3 2 52 3 12

Then, 9 6 154 6 24

13 393

3(3) 2 52 4

2

x yx yx yx y

xxyyy

� �� �� �� �

��

� �� �� �

Solution: (3, –2)

42. 3xyx�

or 3x � � ; Domain: 0, 3

0; 3 0x x� � �x x� � �

43. Trace approximates 7.2749, 0.2749x x� � �

44. 4 2 63 3 9

Then, 12 6 186 6 18

18 362

4(2) 2 62 2

1

x yx yx yx y

xxyyy

� �� �� �� �

��

� �� � �

Solution: (2, 1)

47. 6 3 12 1

6 3( 2 1) 16 6 3 1

3 1

x yy x

x xx x

� �� � �

� � � �� � �

No solution.

45. 2 19

Solution: (10, –1)

2 12Then, 4 2 38

2 12

5 5010

2(10) 191

x yx yx yx y

xxyy

� �� �� �� �

��

� �� �

48. 4 3 253 8 6 506 4(10) 3 253

13 2 12 39 6 36 3 213

47 470 7110

x y x y yx y x y y

x yx

� � � � � �� � � � � � � �

� ��

� �

Solution: (10, –71)

49. 2 3 5 Steps 1 and 2: Nothing to be done.11 21 Step 3: 2 3 5

5 9 13 11 2146 92

Step 4: 2 11(2) 21 2( 1) 3(2) 51 1

Solution is 1, 1, 2.

x y zy z x y zy z y z

zz y x

y xx y z

� � �� � � � �� � � �

� � �� � � � �

� � �� � � �

Chapter 1: Linear Equations and Functions

79Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

50. 12 Thus 92 3 7 2 27 7

3 3 7 0 2 20 or 1012 10 9 12

2 3 7 114 36 Solution: (11, 10, 9)

x y z zy z y

x y z y yx y z x

y z xz

� � � �� � � � � �

� � � � �� � � � � �

� � � �� � �

51. a. 1980+17=1997 b. 2007 1980 27x � � �c. 461 9.78 167.90

293.1 9.7829.97

1980+29.97=2009.97 in the year 2009.

xx

x

� ���

52. Student has total points of 91 + 82 + 88 + 50 + 42 + 42 = 395. Total of possible points is 300 + 150 + 200 = 650. To earn an A students need at least 0.9(650) = 585 points. Student must earn 585 – 395 = 190 points on the final. This is the same as 95%.

53. Diesel: 0.24 38,000C x� �Gas: 0.30 35,600C x� �0.24 38,000 0.30 35,600

0.06 240040,000

x xxx

� � ���

Costs are equal at 40,000 miles. A truck is used more than 40,000 miles in 5 years. Buy the diesel.

54. a. Yes b. No c. (300) 4 f �

55. a. (80) 565.44f �b. The monthly payment on a $70,000 loan is $494.75.

56. 2

( ) 180 200 ( ) 1000 10100xP x x x q t t� � � � � �

a. 2(1000 10 )( )( ) (1000 10 ) 180(1000 10 ) 200

100tP q t P t t �

� � � � � ��

b. 2

(15) 1000 10(15) 1150 units produced(1150)(1150) 180(1150) 200 $193,575

100

x q

P

� � � �

� � � �

57. 2

3

32 2

( 20)( ) , ( ) 50 , 0 2010

( 20) ( 20)( )( ) 50 0.02 5010 10

tW L kL L t t

t tW L t W

�� � � � �

� � � �� �� � � �� � � �

� � � ��

Chapter 1: Linear Equations and Functions

80 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

58. a. b. means that the thunderstorm is two �9.6,2� miles away if the flash and thunder are 9.6 seconds apart. 59. 60. a. (x, P) is the required form.

1 2(200, 3100), (250, 6000)

6000 3100 2900 58250 200 50

P P

m

� ��

� � ��

3100 58( 200) or

( ) 58 8500P xP x x� � �

� �b. For each additional unit sold the profit

increases by $58.

61. 71.72 1401.36A x� �a. Yes. b. 71.72m � , A-intercept is 1401.36 c. In 1990 (the year that corresponds to 0x � ),

the average annual cost per consumer was $1401.36

d. The average annual cost per consumer rises by about $71.72 per year.

62. � � � � �, : 0,32 and 100,212C F �

212 32 180 9100 0 100 5

m �� �

��

Using ,y mx b� �9 32.5

F C� �

63. a.

b. Algebraically, 0y � if 6) 02 3 2120 20 .x x x x20 (� � � �

Answer: 0 6x� �

64. a. 2

2

2

1960( 10)

101960

101960

v hvh

vh

� �

� �

� �

b. 2210(210) 10 12.5 cm

1960h � � �

65. x = amount of safer investment and y = amount of other investment.

1500000.095 0.11 15000

x yx y� �� �

Solving the system: 0.11 0.11 16500

0.095 0.11 15000

0.015 1500100000

x yx y

xx

� �� �

��

Then y = 50000. Thus, invest $100,000 at 9.5% and $50,000 at 11%.

66. x = liters of 20% solution y = liters of 70% solution

40.2 0.7 1.4

43.5 7

2.5 3 1.21.2 4

2.8

x yx yx yx y

y yx

x

� �� �� �� �

� �� �

Answer: 2.8 liters of 20%, 1.2 of 70%.

4 8 12 16 20

1

2

3

4

5

t

d

d'�0

100�

700

8

2 3120 20y x x� �

20 40 60 80 100

20

40

60

80

100

Ta

Hc

90c aH T� �

0

20�

100

500

2

101960

vh � �

Chapter 1: Linear Equations and Functions

81Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

67. 1 : 4 5, : 2 8S p q D p q� � � � � 68. a. – c.

Demand6 420p q� �

(30, 240)Market Equilibrium

Supplyp � 6q'� 60

10 20 30 40 50 60

60120180240300360420

q

p

a. : 53 4 5 : 53 2 814 48 2 28

12 14

S q D qq qq q

� � � � �� �� �

b. Demand is greater.

There is a shortfall. c. Price is likely to increase.

69. C(x) = 38.80x + 4500, R(x) = 61.30x a. Marginal cost is $38.80. b. Marginal revenue is $61.30. c. Marginal profit is $61.30 – 38.80 = $22.50. d. 61.30 38.80 4500

22.50 4500200 units to break even.

x xxx

� ���

70. FC = $1500, VC = $22 per unit, R = $52 per unit a. C(x) = 22x + 1500 b. R(x) = 52x c. P = R – C = 30x – 1500 d. 22MC � e. 52MR � f. 30MP � g. Break even means 30x – 1500 = 0 or x = 50.

71. 100 200 1 200 0 1Supply: Demand:200 400 2 200 600 21 1100 ( 200) 0 ( 600)2 21 1 3002 2

m m

p q p q

p q p q

� �� � � �

� �

� � � � � � �

� �

� �

So, 1 1 300 or 300.2 2

q q q� � � � The equilibrium price is 1 (300) $150.2

p � �

72. New supply equation: 8 2 1010 10q qp � � � � �

Demand: 1500 15010 10

10 15010 102 140 or 70010

700 10 8010

q qp

q q

q q

p

� �� � � �

� � � �

� �

� � �

Solution: (700, 80)

Chapter 1: Linear Equations and Functions

82 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 1 Test _________________________________________________________________

1. 4 3 62

8 6 127 18

187

xx

x xx

x

� � �

� � ��

2.

2 2

3 441

3( 1) 4 ( 1) 4 ( )3 3 4 4 4

7 337

xx x

x x x x xx x x x

x

x

� ��

� � � �

� � � �� �

� �

3. 1 54 9 7

7(3 1) 5(4 9)21 7 20 45

38

xxx xx x

x

3 ��

�� � �� � �

� �

4. 2

2

2 2

2

2

( ) 7 5 2( ) 7 5( ) 2( )

7 5 5 2 4 2 ( ) 7 5 2

( ) ( ) 5 4 2( ) ( ) 5 4 2

f x x xf x h x h x h

x h x xh hf x x x

f x h f x h xh hf x h f x x h

h

� � �

� � � � � �

� � � � � �

� � �

� � � � �� �

� � �

5.

� �

21 3 223

23 1 3 3 223

3 2 9 667 63

9

t t

t t

t ttt

� � �

� �� � �� �� �

� � �� �

� �

6. 5x – 6y = 30 x-intercept: 6 y-intercept: –5

-4 -2 2 4 6 8

-4

-2

2

4

6

x

y

5x'� 6y � 30

7. 7x + 5y = 21 x-intercept: 3

y-intercept: 215

-4 -2 2 6

-4

-2

2

4

6

x

y

7x'� 5y � 21

8. ( ) 4 16f x x� � a. 4 16 0x � �

� �

4 16x Domain: 4x � � ; Range: 0y For range, note square root is positive.

b. (3) 12 16 2 7f � � �

c. (5) 20 16 6f � � �

9. (–1, 2) and (3, –4) 4 2 6 3

3 ( 1) 4 232 ( ( 1))

23 1

2 2

m

y x

y x

� � � �� � �

� ��

� � � �

�� �

-9 -8 -7 -6 -5 -4 -3

10. 5 4 155 154 45 1,4 4

x y

y x

m b 5

� �

� � �

� � �

Chapter 1: Linear Equations and Functions

83Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

11. Point (–3, –1) a. Undefined slope means vertical line. x = –3

b. 1to 24

y x2 � � means m = –4.

Thus, y + 1 = –4(x + 3) or y = –4x – 13.

12. a. is not a function since for some x-values there are two y’s. b. is a function since for each x there is only

one y. c. is not a function for same reason as (a).

13. 3 2 24 5 212 8 812 15 6

7 12

3 2(2) 23 6

2

x yx yx yx y

yy

xxx

� � �� �� � �� �

� � ��

� � �� �� �

4

Solution: (–2, 2)

14. 2( ) 5 3 , ( ) 1f x x x g x x� � � � a. 2( )( ) (5 3 )( 1)fg x x x x� � �b. ( ( )) ( 1) ( 1) 1 2g g x g x x x� � � � � � �c.

2

2

2

( )( ) ( 1)5( 1) 3( 1)5 10 5 35 7 2

f g x f xx x

3x x xx x

� �

� � � �

� � � � �

� � �

15. R(x) = 38x , C(x) = 30x + 1200 a. $30MC � b. ( ) 38 (30 1200)

8 1200P x x x

x� � �� �

c. Break-even means P(x) = 0. 8x = 1200 or x = 150 units

d. $8MP � . Each additional unit sold increases the profit by $8.

16. a. R(x) = 50x b. (100) 10(100) 18000

$19,000C � �

It costs $19,000 to make 100 units. c. 50 10 18000

40 18000450 units

x xxx

� ���

17. S : p = 5q + 1500, D : p = –3q + 3100 5 1500 3 31008 1600 or 200

q qq q� � � �� �

p(200) = 5(200) + 1500 = $2500

18. y = 720,000 – 2000x a. b = 720,000

The original value is $720,000. b. m = –2000.

The building is depreciating $2000 each month.

19. x = number of reservations 0.90 360

400xx��

Accept 400 reservations.

20. x = amount invested at 9% y = amount invested at 6% x + y = 20000 Amount 0.09x + 0.06y = 1560 Interest 0.09 0.09 18000.09 0.06 1560

0.03 240$8000

x yx y

yy

� �� �

��

Invest $8000 at 6% and $12000 at 9%.

Chapter 1: Linear Equations and Functions

84 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 1: Linear Equations and Functions

85Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning

Chapter 1 Extended Applications __________________________________________________

I. 1. Revenue per case = $1000 Annual fixed costs = $180,000 + 270,000 = $450,000

Annual variable costs = 1($380 15 20 ) $4004

x x� � � � , where x is the number of operations per year.

2. Break-even occurs when Revenue = Total Costs1000 450,000 400600 450,000

750

x xxx

� ���

The hospital must perform 750 operations per year to break even.

3. We have (70 operations/month)(12 months/year) gives 840 operations/year with a savings of (840 operations)($50 savings) = $42,000 on supplies. However, leasing the machine would cost $50,000. Thus adding the machine would reduce the hospital’s profits by $8000 a year at the current level of operations. (Note that 1000 operations must be performed each year to cover the cost of the machine: [($50)100) = $50,000].)

4. Profit = Revenue – Cost

At current level of operations, the annual profit is:

With (40 new operations/month)(12 months/year) = 480 new operations/year, the new level of operations is 840 + 480 = 1320. The advertising costs are ($10,000/month)(12 months/year) = $120,000 per year. At the new level of operations, the profit would be:

( ) 1000 (450,000 400 )600 450,000

P x x xx

� � �� �

(840) 600(840) 450,000504,000 450,000$54,000

P � �� ��

(1320) 600(1320) 450,000 120,000792,000 570,000$222,000

P � � �� ��

The increase in profit is $222,000 – 54,000 = $168,000.

5. Each extra operation adds $1000 – 400 = $600 of profit. If the ad campaign costs $10,000 per month it must

generate $10,000 per month 216$600 per operation 3

� operations/month to cover its cost.

6. Recall that the break-even point for leasing the machine is 1000 operations per year. If the ad campaign meets its projections, 1320 operations per year will be performed, with a savings of (320)($50) = $16,000 on medical supplies by leasing the machine. They should reconsider their decision. (Note that this example illustrates that if the assumptions on which a decision was made change, it may be time to take another look at the decision.)

II. Answers will vary.

Chapter 1: Linear Equations and Functions

86 Harshbarger Mathematical Applications, 9E, Complete Solutions Manual, © 2009 Brooks/Cole, Cengage Learning


Recommended