+ All Categories
Home > Documents > Mathematical Foundations of Neuroscience - Lecture 9. Simple...

Mathematical Foundations of Neuroscience - Lecture 9. Simple...

Date post: 30-Jun-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
85
Introduction Neurons Synapses Recap Mathematical Foundations of Neuroscience - Lecture 9. Simple Models of Neurons and Synapses. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 1/53
Transcript
Page 1: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Mathematical Foundations of Neuroscience -Lecture 9. Simple Models of Neurons and

Synapses.

Filip Piękniewski

Faculty of Mathematics and Computer Science, Nicolaus Copernicus University,Toruń, Poland

Winter 2009/2010

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 1/53

Page 2: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

Introduction

Hodgkin-Huxley model is fairly biologically accurate, but isvery slow - gating variables take most of the computing timePersistent instantaneous sodium + potassium ( INa,p - IK) ismore efficient (there is only one gating variable), but still itrequires two computations of exponential functions per step.This model is still far too slow for large simulations.Exponential function requires a lot of computing since:

ex = 1 + x +x2

2! +x3

3! +x4

4! + ...+x i

i! + ...

up to required accuracy

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 2/53

Page 3: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

Actually direct summation of the series

ex = 1 + x +x2

2! +x3

3! +x4

4! + ...+x i

i! + ...

would be numerically unstable, since both the numerator and de-nominator get very big. Instead it is better to express the i-th termwith the previous one:

termi =x i

i! =xi

x i−1

(i − 1)! =xi termi−1

The algorithm is then

t=1; s=1;for(i=1;i<n;i++) {t=t*x/i; s=s+t;}

which in any case requires a lot of processing.Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 3/53

Page 4: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

Simplified INa,p - IK

Recall the INa,p - IK model:

CmdVdt = I − gL(V − EL) − gNam∞(V )(V − ENa) − gKn(V − EK)

dndt = (n∞(V ) − n)/τn(V )

with Cm = 1, EL = −80, gL = 8, ENa = 60, gNa = 20,EK = −90, gK = 10,m∞(V ) = 1

1+exp(−20−V15 )

,n∞(V ) = 11+exp(−25−V

5 ), τn(V ) = 1,

I = 0.Most of the computations performed each step are due tocomputation of the exponential functions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 4/53

Page 5: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

Simplified INa,p - IK

Recall the INa,p - IK model:

CmdVdt = I − gL(V − EL) − gNam∞(V )(V − ENa) − gKn(V − EK)

dndt = (n∞(V ) − n)/τn(V )

with Cm = 1, EL = −80, gL = 8, ENa = 60, gNa = 20,EK = −90, gK = 10,m∞(V ) = 1

1+exp(−20−V15 )

,n∞(V ) = 11+exp(−25−V

5 ), τn(V ) = 1,

I = 0.Most of the computations performed each step are due tocomputation of the exponential functions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 4/53

Page 6: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

Simplified INa,p - IK

But we can try to approximate the sigmoid 11+exp(x) with

some simpler smooth function with similar properties.For example function:

f (x) ={

12(0.175·x−1)5 + 1; x < 0

12(0.175·x+1)5 ; x > 0

does a pretty good job and requires one branching instruction,5 multiplications (why?), one division and one or twoadditions/subtractions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 5/53

Page 7: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

15 10 5 0 5 10 150

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: Two plots, function f from previous slide (red) and 11+exp(x) sigmoid

(black). The approximation is crude, but the function is far easier to compute,is smooth and differentiable.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 6/53

Page 8: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

1 0.8 0.6 0.4 0.2 0 0.20.2

0

0.2

0.4

0.6

0.8

Figure: Phase portrait of the simplified INa,p - IK model withm∞(V ) = f ((−20 − V )/15) and n∞(V ) = f ((−25 − V )/2) and additional term= −9 added to the first equation. Compared with the original model.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 7/53

Page 9: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

1 0.8 0.6 0.4 0.2 0 0.20.2

0

0.2

0.4

0.6

0.8

Figure: Phase portrait of the simplified INa,p - IK model withm∞(V ) = f ((−20 − V )/15) and n∞(V ) = f ((−25 − V )/2) and additional term= −9 added to the first equation. Compared with the original model.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 7/53

Page 10: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

The source of complexityExample - simplified INa,p - IK

100 200 300 400 500 600 700 800 900 1000120

100

80

60

40

20

0

20

40

Figure: Comparison of the simplified (dashed line) and the original INa,p - IK

model in a cable equation simulation. The spike propagation velocity and theirshape are only slightly different.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 8/53

Page 11: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

The rule is therefore to avoid any exp, sin, log, tan etc.functions, since their evaluation requires costly seriesexpansionEven though we are still left with lots of possibilities, whichare not as limited as one might expectWe will begin with the simplest possible models, graduallyincreasing their complexityBy the end of the section we will study a model that is quiteefficient, though very accurately reproduces known spikingregimes

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 9/53

Page 12: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Integrate and fire

The basic idea underlying integrators is that they storeincoming current, and spike whenever the accumulatedmembrane potential exceeds some thresholdThis idea can be implemented with the so called integrate andfire neuron:

dVdt = I − gleak(V − Eleak)

Whenever V reaches certain value Vth an artificial spike isbeing generated (it is up to the programmer on how fancy thespike will be). After the spike V is set to VK (a reset value)and the simulation continues.Even though the model is very simple, it can mimic the morecomplex integrators (like the INa,p - IK) quite well.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 10/53

Page 13: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 50 100 150 200 250 300120

100

80

60

40

20

0

20V

Time (ms)

INa IK integrator

Leaky integrate and fireInput current

Figure: Comparison of the monostable INa,p - IK integrator with appropriatelytuned leaky integrate and fire neuron in response to excitatory and inhibitoryinput.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 11/53

Page 14: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 50 100 150 200 250 300120

100

80

60

40

20

0

20V

Time (ms)

INa IK integrator

Leaky integrate and fireInput current

Figure: Comparison of the monostable INa,p - IK integrator with appropriatelytuned leaky integrate and fire neuron in response to excitatory and inhibitoryinput.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 11/53

Page 15: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

120 140 160 180 200 220 240 26080

75

70

65

60

55

50

45

40V

Time (ms)

INa IK integrator

Leaky integrate and fireInput current

Figure: Comparison of the monostable INa,p - IK integrator with appropriatelytuned leaky integrate and fire neuron in response to excitatory input (closeup).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 12/53

Page 16: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600120

100

80

60

40

20

0

20V

Time (ms)

Leaky integrate and fireInput current

Figure: The leaky integrate and fire neuron in response to excitatory rampcurrent. The spiking frequency may get arbitrarily high.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 13/53

Page 17: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Neuromime

The spiking frequency of the leaky integrate and fire neuroncan get arbitrarily high, which is not accurate from biologicalpoint of view.This weakness was addressed by French & Stein in 1970, byintroducing the neuromimeIn this case the firing threshold is variable and depends onprevious activity (which is far more plausible from thebiological point of view).An input for neuromime is supplied to the first leakyintegrator. Its output is then compared with the dynamicalthreshold Θ. If it exceeds Θ a spike is generated.The output spike is supplied back to another leaky integratorwhich is responsible for providing Θ. Therefore Θ getsincreased, which causes further spikes less probable.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 14/53

Page 18: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

!

leakyintegrator

comparator

leakyintegrator

+ !0

Figure: A sketch scheme of the neuromime model

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 15/53

Page 19: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600120

100

80

60

40

20

0

20V

Time (ms)

NeuomimeDynamic thresholdInput current

Figure: A response of neuromime to the ramp current.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 16/53

Page 20: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600120

100

80

60

40

20

0

20V

Time (ms)

NeuomimeDynamic thresholdInput current

Figure: A response of neuromime to increasing step currents. Note the spikefrequency accommodation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 17/53

Page 21: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600120

100

80

60

40

20

0

20V

Time (ms)

NeuomimeDynamic thresholdInput current

Figure: A response of neuromime to increasing step currents. Note the spikefrequency accommodation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 17/53

Page 22: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600120

100

80

60

40

20

0

20V

Time (ms)

NeuomimeDynamic thresholdInput current

Figure: A response of neuromime to increasing step currents. Note the spikefrequency accommodation.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 17/53

Page 23: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Neuromime

Neuromime is the basic unit for Pulse Coupled NeuralNetworks (PCNN), an approach to build neural like circuitsfor image segmentation and processing.Unlike integrate and fire neurons, neuromime accommodatesits firing rate to the magnitude of input, but in contrast tobiological neurons it lacks important dynamical features likesubthreshold oscillations or excitation block.Lets now focus on a simple model that simulates a resonator.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 18/53

Page 24: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Resonate and fire

The resonate and fire neuron is given by a set of twoequations:

C dVdt = I − gleak(V − Eleak) − W

dWdt = (V − V1/2)/k − W

where V1/2 and k are parametersThe model simulates the phase space near a focus node, butcan also be equipped with artificial spike generationmechanism, whenever say V crosses certain Vth.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 19/53

Page 25: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 20 40 60 80 100 120 140 160 180 200120

110

100

90

80

70

60

50

40

30

20

V

Time (ms)

INa IK resonator

Resonate and fireInput current

Figure: Comparison of the monostable INa,p - IK resonator with appropriatelytuned leaky resonate and fire neuron in response to excitatory and inhibitoryinput.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 20/53

Page 26: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 20 40 60 80 100 120 140 160 180 200120

110

100

90

80

70

60

50

40

30

20

V

Time (ms)

INa IK resonator

Resonate and fireInput current

Figure: Comparison of the monostable INa,p - IK resonator with appropriatelytuned leaky resonate and fire neuron in response to excitatory and inhibitoryinput.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 20/53

Page 27: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 20 40 60 80 100 120 140 160 180 200120

110

100

90

80

70

60

50

40

30

20

V

Time (ms)

INa IK resonator

Resonate and fireInput current

Figure: Comparison of the monostable INa,p - IK resonator with appropriatelytuned leaky resonate and fire neuron. Good tuning of threshold allows to fireinhibitory induced (artificially generated) spikes.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 21/53

Page 28: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 20 40 60 80 100 120 140 160 180 200120

110

100

90

80

70

60

50

40

30

20

V

Time (ms)

INa IK resonator

Resonate and fireInput current

Figure: Comparison of the monostable INa,p - IK resonator with appropriatelytuned leaky resonate and fire neuron. Good tuning of threshold allows to fireinhibitory induced (artificially generated) spikes.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 21/53

Page 29: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Leaky integrate and fire and resonate and fire models are notvery useful for simulating real neurons. Neuromime can begood for engineering applications, but lacks many biologicalfeatures.The approach taken by Richard FitzHugh in 1961 was to getrid of all the ionic conductances, and mimic the phase planewith simple polynomial and a linear function (Jin-Ichi Nagumolater created an electrtical device that implemented the modelusing tunnel diodes). The model is defined:

dVdt = V − V 3 − W − I

dWdt = 0.08(V + 0.7 + 0.8W )

(in general the V nullcline is a third degree polynomial, whileW nullcline is linear).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 22/53

Page 30: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

2.5 2 1.5 1 0.5 0 0.5 1 1.5 21

0.5

0

0.5

1 Absolute refractory

Rela

tive

refr

acto

ryActivated

Regenerative

Dep

olar

ized

Hyp

erpo

lari

zed

Thr

esho

ld

Resting

W=

V+

0.7

0.8

W=

V−

V3/3

+I

Figure: An annotated phase portrait of the FitzHugh-Nagumo model.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 23/53

Page 31: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

3 2 1 0 1 2 31

0.5

0

0.5

1

1.5

2

Figure: Phase portraits of the FitzHugh-Nagumo model (as given in previousslide) for I = 0 and I = 0.5 the stable focus looses stability at some point inbetween.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 24/53

Page 32: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

3 2 1 0 1 2 31

0.5

0

0.5

1

1.5

2

Figure: Phase portraits of the FitzHugh-Nagumo model (as given in previousslide) for I = 0 and I = 0.5 the stable focus looses stability at some point inbetween.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 24/53

Page 33: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

FitzHugh-Nagumo model

The more general form for the model is

dVdt = V (a − V )(V − 1) − W − I

dWdt = bV − cW

by varying dimensionless parameters a, b and c one canobtain a system which has 1,2 or 3 intersections of nullclinesexhibiting most of the known dynamical neuronal properties.The system much like the INa,p - IK model undergoes all ofthe bifurcations discussed on previous lectures, but evaluationof the right hand side function requires only at most threemultiplications (one extra multiplication is required for thetime step) .

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 25/53

Page 34: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

FitzHugh-Nagumo model

The model is also a good choice for cable equation andgeneral reaction-diffusion systems

dVdt = α

∂2V∂x2 + V (a − V )(V − 1) − W − I

dWdt = bV − cW

The code implementing the FitzHugh-Nagumo cable equationmodel can fit on a single slide!Check out http://www.scholarpedia.org/wiki/images/ftp/FitzHugh_movie.mov

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 26/53

Page 35: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

function cableFN()ff=figure;N=1024; % Number of spatial compartments (spatial resolution)V=ones(1,N)*(-1); W=ones(1,N)*(-0.5); I=zeros(1,N); i=1;tau = 0.1; tspan = 0:tau:1000;% Second order derivative operator (sparse matrix)S=sparse([1:N 1:N 2:N 1],[1:N 2:N 1 1:N ],[-2*ones(1,N) ones(1,2*N) ]);for t=tspan

if (t>0) I(1,N/4+N/2)=30; end; % to ignite any interesting actionV = V + tau*((S*V’)’-V.ˆ3./3+V-W+I);W = W + tau*0.08*(V+0.7-0.8*W);if (mod(i,25)==0)

cla; hold on;plot(1:N,V+1,1:N,W/3-2,1:N,I/40-2.5,’Linewidth’,2);hold off; axis([1 N -3 4]); legend(’V’,’n’,’I’); drawnow;

end;i=i+1;

end;

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 27/53

Page 36: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

100 200 300 400 500 600 700 800 900 10003

2

1

0

1

2

3

4

VnI

Figure: A screen of the cable equation simulation done by the code onprevious slide.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 28/53

Page 37: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Simple Model of Eugene M. Izhikevich

Recall that the quadratic integrate and fire model with reset isa canonical model for the saddle-node homoclinic orbitbifurcation and depending on the reset value can exhibitvarious phenomena.E. Izhikevich noticed, that the important decision whether tospike or not is performed near the left knee of the ”cubic”nullcline, whereas the exact shape of the action potential isnot very important in large scale neural simulationsAs a result he combined a two parameter model of the leftknee of ”cubic” nullcline (approximated with the quadraticparabola) with the reset (which is performed on bothvariables).The resulting model, depending on parameters, can mimicdynamic behavior near many bifurcations.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 29/53

Page 38: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

sadd

le n

ode

on

inva

riant

circ

lesa

ddle

nod

e

homoclinic

Figure: Saddle-node homoclinic orbit bifurcation diagram and correspondingcanonical models with reset value.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 30/53

Page 39: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

sadd

le n

ode

on

inva

riant

circ

lesa

ddle

nod

e

homoclinicvreset

vreset

vreset

vreset

vreset

vreset

vreset

vreset

vreset

vreset

vreset

Figure: Saddle-node homoclinic orbit bifurcation diagram and correspondingcanonical models with reset value.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 30/53

Page 40: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

Simple Model of Eugene M. Izhikevich

The model defined as follows:

C dVdt =k(V − Vr )(V − Vt) − U + I

dUdt =a (b(V − Vr ) − U)

moreover if V > Vpeak V := c and U := U + d .a, b, c, d ,Vpeak , k,C ,Vr ,Vt , I are parameters (there are tenparameters, but in fact there are only four independentparameters)Much like 1d quadratic integrate and fire with reset can mimic2d system near saddle-node homoclinic orbit bifurcation, the2d Simple Model with reset can mimic a 3d system nearvarious bifurcations!

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 31/53

Page 41: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

70 60 50 40 30 20 10 0 10100

50

0

50

Resting

Vr Vt

Th

resh

old

Regenerative Pe

ak

(cu

toff

)

Vre

set

After spikereset

U=

b(V −Vr )

U=

k(V

−V

r)(

V−

Vt)+

I

ureset

Figure: An annotated phase portrait of the Izhikevich Simple Model.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 32/53

Page 42: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

The Simple Neuron model can be written in the form

dVdt =αV 2 + βV + γ− U

dUdt =a(bV − U)

for some parameters. Recall the normal form of Bogdanov-Takensbifurcation:

dxdt = y

dydt = c1 + c2x + x2 + σxy

The simple model can exhibit Bogdanov-Takens bifurcation (inte-grator - resonator transition).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 33/53

Page 43: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(L) integrator

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 44: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(K) resonator

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 45: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(G) Class 1 excitable

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 46: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(H) Class 2 excitable

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 47: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(P) bistability

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 48: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(S) inh. induced sp.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 49: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(J) subthreshold osc.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 50: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(O) thresh. variability

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 51: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(A) tonic spiking

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 52: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(B) phasic spiking

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 53: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(R) accomodation

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 54: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(M) rebound spike

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 55: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(I) spike latency

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 56: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(T) inh. induced brst.

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 57: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(E) mixed mode

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 58: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(D) phasic bursting

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 59: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(C) tonic bursting

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 60: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(N) rebound burst

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 61: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(F) spike freq. adapt

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 62: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

(Q) DAP

Figure: Dynamic regimes exhibited by the simple model by Eugene M.Izhikevich, see http://www.izhikevich.org/publications/whichmod.htmfigure1.m for parameters.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 34/53

Page 63: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)

40 ms

20 mV

low-threshold spiking (LTS)

para

met

er b

parameter c

para

met

er d

thalamo-cortical (TC)

-87 mV

-63 mV

thalamo-cortical (TC)

peak 30 mV

reset c

reset ddecay with rate a

sensitivity b

v(t)

u(t)0 0.1

0.05

0.2

0.25

RS,IB,CH FS

LTS,TC

-65 -55 -50

2

4

8

IB

CH

RS

FS,LTS,RZ

TC

0.02parameter a

resonator (RZ)

RZ

v(t)

I(t)

v'= 0.04v 2+5v +140 - u + Iu'= a(bv - u)

if v = 30 mV, then v c, u u + d

Figure: A summary of possible regimes in the Izhikevich Simple Model withrespect to parameters. Reproduced fromhttp://www.izhikevich.org/publications/spikes.htm with permissions.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 35/53

Page 64: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

% Created by Eugene M. Izhikevich, February 25, 2003% Excitatory neurons Inhibitory neuronsNe=800; Ni=200;re=rand(Ne,1); ri=rand(Ni,1);a=[0.02*ones(Ne,1); 0.02+0.08*ri];b=[0.2*ones(Ne,1); 0.25-0.05*ri];c=[-65+15*re.ˆ2; -65*ones(Ni,1)];d=[8-6*re.ˆ2; 2*ones(Ni,1)];S=[0.5*rand(Ne+Ni,Ne), -rand(Ne+Ni,Ni)];v=-65*ones(Ne+Ni,1); firings=[]; % Initial values of v and spike timingsu=b.*v; % Initial values of ufor t=1:1000 % simulation of 1000 ms

I=[5*randn(Ne,1);2*randn(Ni,1)]; % thalamic inputfired=find(v>=30); % indices of spikesfirings=[firings; t+0*fired,fired];v(fired)=c(fired);u(fired)=u(fired)+d(fired);I=I+sum(S(:,fired),2);v=v+0.5*(0.04*v.ˆ2+5*v+140-u+I); % step 0.5 msv=v+0.5*(0.04*v.ˆ2+5*v+140-u+I); % for numericalu=u+a.*(b.*v-u); % stability

end;plot(firings(:,1),firings(:,2),’.’);

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 36/53

Page 65: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Integrate and fireNeuromimeResonate and fireFitzhugh-NagumoE. Izhikevich simple model

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800

900

1000

Figure: A spike train computed by the script from previous slide. Seehttp://www.izhikevich.org/publications/spikes.htm

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 37/53

Page 66: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Synapses

Every nerve impulse eventually reaches the axon, and has tobe somehow transmitted to another neuron.This is accomplished by the synapses, small spaces where twoneuronal membranes come close together.However small, synapses are far from being simple. There aretwo main types of synapses:electrical (sometimes called gapjunctions) and chemical.Chemical synapses work by releasing a chemical messengersubstance (neurotransmitter) which binds to the receptors atthe postsynaptic neuron.Electrical synapses seem to exchange the membrane excitationdirectly, via sodium/potassium gradients.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 38/53

Page 67: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Figure: A chemical synapse. Modified from http://en.wikipedia.org/wiki/File:Synapse_Illustration2_tweaked.svg

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 39/53

Page 68: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Types of synapses

Chemical synapses can be distinguished by theneurotransmitters and receptors they use for signaling. Themost common neurotransmitters are:

Glutamate (salts of glutamic acid) - bind toα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor(AMPA) and N-methyl-D-aspartic receptor (NMDA). Bothexcite the postsynaptic neuron.γ-Aminobutyric acid (GABA) - binds to GABA receptors whichcan be divided into two main types GABAA and GABAB. BothInhibit the postsynaptic neuron.

Each binding of neurotransmitter to a receptor opens an ionicchannel increases membrane conductance.The postsynaptic excitation/inhibition depends on the synapsestrength (size), available amount of neurotransmitter, and thepostsynaptic membrane polarization.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 40/53

Page 69: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Short term plasticity

The short term plasticity models the available amount ofneurotransmitter at a time.Some synapses exhibit facilitation (the amount ofneurotransmitter becomes larger as the presynaptic neuronspikes) while other exhibit depression (the amount ofneurotransmitter decreases in response to spikes, making thesynapse weaker)The simplest formulation is:

dSdt = (1 − S)/τs

and S := pS whenever an action potential is transferred. Thesynapse gets depressed for p < 0 and facilitated for p > 0.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 41/53

Page 70: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

0 100 200 300 400 500 600 700 800 900 10000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S

Figure: Simple synapse exhibiting depression (1) and facilitation (2).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 42/53

Page 71: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

0 100 200 300 400 500 600 700 800 900 10000

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S

Figure: Simple synapse exhibiting depression (1) and facilitation (2).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 42/53

Page 72: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Depression-Facilitation

The recordings from real synapses look however ratherdifferent than those modeled by the simple synapse above(though the simple model is fairly accurate for very largesimulations)Henry Markram and his collaborators introduced in 1998 amore accurate phenomenological model:

dRdt =

1 − RD

dwdt =

U − wF

where U, D, F are parameters. Whenever a spike ispropagated through the synapse R := R − Rw andw := w + U(1 − w). R is the depression variable and w is thefacilitation variable. The total synaptic strength at time t isequal S = Rw

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 43/53

Page 73: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

0 100 200 300 400 500 600 700 800 900 10000.2

0

0.2

0.4

0.6

0.8

1

1.2

RwR*w

Figure: A synapse modeled by the phenomenological model of H. Markramexhibiting depression (1) F = 50,D = 100,U = 0.5 and facilitation (2)D = 100,F = 50,U = 0.2. By adjusting the parameters the model canreproduce conductances of various synapses.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 44/53

Page 74: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

0 100 200 300 400 500 600 700 800 900 10000.2

0

0.2

0.4

0.6

0.8

1

1.2

RwR*w

Figure: A synapse modeled by the phenomenological model of H. Markramexhibiting depression (1) F = 50,D = 100,U = 0.5 and facilitation (2)D = 100,F = 50,U = 0.2. By adjusting the parameters the model canreproduce conductances of various synapses.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 44/53

Page 75: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

The value of the short term depression-facilitation influencesthe resulting receptor conductance. In the present scope weassume there are four conductances gAMPA, gNMDA, gGABAA

and gGABAB . Each time a spike is propagated the appropriateconductances are increased by ci→jSi = ci→jRiwi (beforedepressing or facilitating) where ci→j is the strength of thesynapse from neuron i to neuron j .The conductances have their own kinetics, that is theydiminish exponentially as

dgdt = −g/τ

where τAMPA = 5ms, τNMDA = 150ms, τGABAA = 6ms andτGABAB = 150ms

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 45/53

Page 76: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Once we have the synaptic conductances we have to lookwhat currents they may cause through the membrane,depending on voltage V . We generally have that:

Isyn = gAMPA(EAMPA − V )+

+ gNMDA

(V+8060)2

1 +(V+80

60)2 (ENMDA − V )+

+ gGABAA(EGABAA − V )+

+ gGABAB (EGABAB − V )

with EAMPA = 0, ENMDA = 0, EGABAA = −70, EGABAB = −90.NMDA current looks strange but the formula is a fit toempirical data.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 46/53

Page 77: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Eventually, using say the Izhikevich Simple Neuron (with reset) wehave (for single compartment model):

dVidt =0.04V 2

i + 5Vi + 140 − Ui +∑j→i

gj,AMPA(0 − Vi)+

+∑j→i

gj,NMDA

(Vi+80

60

)2

1 +(

Vi+8060

)2 (0 − Vi) +∑j→i

gj, GABAA(−70 − Vi)+

+∑j→i

gj,GABAB (−90 − Vi) +∑

j∈gap(i)ggapj→i(Vj − Vi)

dUidt =a(bVi − Ui)

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 47/53

Page 78: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Now, since we have the equation, the only thing left would beto discretize and solve it numerically.There is however one catch. Assume the neuron is at restwith V = −65, and gGABAA is large due to previous activity.Then gGABAA(−70 + 65) = −5gGABAA is a strong inhibitoryinput. Assume that input manages to hyperpolarize themembrane so that at the next time step V = −76. NowgGABAA(−70 + 76) = 6gGABAA is a strong excitatory input!The same applies to gGABAA which is even more vulnerabledue to slower kinetics.In certain conditions that ping-pong can continue, and V willoscillate each time getting bigger in absolute value. This leadsto numerical instability (V reaches spiking cutoff every timestep causing indefinite increase of U and the whole simulationcollapses).

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 48/53

Page 79: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

In order to avoid instability, one has to modify the numericalscheme (it is not sufficient to use smaller time step).Recall the Euler method is obtained as follows:

dxdt = lim

∆t→0

x(t + ∆t) − x(t)∆t = F (x(t)) ⇒ x(t+1) ≈ x(t)+∆tF (x(t))

But on the other hand we have :

dxdt = lim

∆t→0

x(t) − x(t − ∆t)∆t = F (x(t)) ⇒ x(t+1) ≈ x(t)+∆tF (x(t+1))

we get the so called closed (or backward) scheme. The closedscheme is far more stable with respect to instabilities relatedto GABA conductances.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 49/53

Page 80: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

The closed scheme is stable, but the solution is implicit,therefore it needs to be solved separately for every right handside function F .Fortunately conductances depend linearly in V , so the implicitscheme is fairly easy to implement for that part of theequation. The rest (including neural dynamics) can be solvedby the forward (explicit) scheme.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 50/53

Page 81: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

We have

Vi(t + 1) = Vi(t)+

+∆t

0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t) +

∑j→i

gj,AMPA(0 − Vi(t + 1))+

+∑j→i

gj,NMDA

(Vi(t)+80

60

)2

1 +(

Vi(t)+8060

)2 (0 − Vi(t + 1)) +∑j→i

gj, GABAA(−70 − Vi(t + 1))+

+∑j→i

gj,GABAB (−90 − Vi(t + 1)) +∑

j∈gap(i)ggapj→i(Vj − Vi(t))

Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

note that the coefficient of the NMDA conductance depends onV (t) and is therefore computed explicitly.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 51/53

Page 82: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

We have

Vi(t + 1) = Vi(t)+

+∆t

0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t) +

∑j→i

gj,AMPA(0 − Vi(t + 1))+

+∑j→i

gj,NMDA

(Vi(t)+80

60

)2

1 +(

Vi(t)+8060

)2 (0 − Vi(t + 1)) +∑j→i

gj, GABAA(−70 − Vi(t + 1))+

+∑j→i

gj,GABAB (−90 − Vi(t + 1)) +∑

j∈gap(i)ggapj→i(Vj − Vi(t))

Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

note that the coefficient of the NMDA conductance depends onV (t) and is therefore computed explicitly.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 51/53

Page 83: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

We have

Vi(t + 1) = Vi(t)+

+∆t

0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t) +

∑j→i

gj,AMPA(0 − Vi(t + 1))+

+∑j→i

gj,NMDA

(Vi(t)+80

60

)2

1 +(

Vi(t)+8060

)2 (0 − Vi(t + 1)) +∑j→i

gj, GABAA(−70 − Vi(t + 1))+

+∑j→i

gj,GABAB (−90 − Vi(t + 1)) +∑

j∈gap(i)ggapj→i(Vj − Vi(t))

Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

note that the coefficient of the NMDA conductance depends onV (t) and is therefore computed explicitly.

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 51/53

Page 84: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Types of synapsesShort term plasticityDepression-FacilitationHow to simulate?

Consequently by solving with respect to Vi(t + 1)

Vi(t + 1) =

=Vi(t) + ∆t

(0.04Vi(t)2 + 5Vi(t) + 140 − Ui(t)+

1 + ∆t(∑

j→i gj,AMPA +∑

j→i gj,NMDA

(Vi (t)+80

60

)2

1+(

Vi (t)+8060

)2+

−70∑

j→i gj, GABAA − 90∑

j→i gj,GABAB +∑

j∈gap(i) ggapj→i(Vj − Vi(t)))

∑j→i gj, GABAA +

∑j→i gj, GABAB

)

Ui(t + 1) = Ui(t) + ∆t (a(bVi(t) − Ui(t)))

The scheme is stable and ready to use for large scale simulations, seefoe example:http://www.izhikevich.org/publications/reentry.htm

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 52/53

Page 85: Mathematical Foundations of Neuroscience - Lecture 9. Simple …filip.piekniewski.info/stuff/MFN2009/lecture9.pdf · 2013-12-09 · Mathematical Foundations of Neuroscience - Lecture

IntroductionNeurons

SynapsesRecap

Computing exponential functions, sines etc. is verydemanding!Integrate and fire and resonate and fire are simple models,useful for theoretical approach, but not good for simulationsFitHugh-Nagumo model is simple (nullclines are polynomial),yet biologically plausible and particularly useful forreaction-diffusion systemsSimple Model by E. Izhikevich is an efficient 2d model with apower of 3d model due to the resetSynapses can be electrical and chemical. Chemical synapsesexhibit short term depression/facilitationSynaptic currents depend on neurotransmitter conductancesand postsynaptic membrane voltageExplicit Euler scheme can be unstable for synapticconductances(!)

Filip Piękniewski, NCU Toruń, Poland Mathematical Foundations of Neuroscience - Lecture 9 53/53


Recommended