+ All Categories
Home > Documents > mathematical method

mathematical method

Date post: 06-Jul-2018
Category:
Upload: nur-athirah
View: 220 times
Download: 0 times
Share this document with a friend

of 70

Transcript
  • 8/17/2019 mathematical method

    1/70

    1 Introduction

    •   In the sciences and engineering, mathematical models are developed to aid in the understandingof physical phenomena.

    •   These models often yield an equation that contains some derivatives of an unknown function.

    •   Such an equation is called a ’differential equation ’.

    •   The simplest example of model developed in calculus is the free fall of a body.

    # In this case, an object is dropped from a certain height above the ground and falls under

    the force of gravity.

    # Newton’s second law, which states that object’s mass tines its acceleration equal the total

    force acting on it, can be applied to the falling object. This leads to the equation

    md2h

    dt2  = −mg

    # This is a differential or equation containing the second derivative of the unknown height,

    h  as a function of time.

    # Fortunately, the above equation is easy to solve  h. (Divide the equation by  m)

    md2h

    dt2  =   −mg

    d2h

    dt2  =   −g

    dh

    dt   =   −gt + c1h(t) =   −gt

    2

    2  + c1t + c2

    •   Diferential equation arise a variety of subject areas, including not only the physical sciencesbut also such diverse fields as economics, medicine, psychology and operations research. For

    1

  • 8/17/2019 mathematical method

    2/70

    Examples :

    1. A classical application of differential equations is found in the study of an electric circuit.

    L  is the inductance

    R is the resistance

    E (t) is the electromotive force

    q (t) is the charge

    t  is the time

    The application of Kirchoff’s laws leads to the equation

    Ld2q 

    dt2  + R

    dq 

    dt +

     1

    cq  =  E (t)

    2. In psycology, one model of the learning of a task involves the equationdydt

    y32 (1 − y) 32 =

      2 p√ n

    Here the variable y  represents the learner’s skill level as a function of time  t. The constants

     p  and  n depend on the individual learner and the nature of the task.

    2 Terminology

    •   If an equation involves the derivative of ane variable with respect to another, then the formeris called a   dependent variable  and the latter an   independent variable . Thus in the equations :

    d2x

    dt2  + a

    dx

    dt  + bx = 0 (1)

    2

  • 8/17/2019 mathematical method

    3/70

    t is the independent variable

    x  is the dependent variable

    a, b is the coefficients

    ∂u

    ∂x − ∂u

    ∂y  = x − 2y   (2)

    x, y  is the independent variable

    u  is the dependent variable

    •   A differential equation involving ordinary derivatives with respect to a single independentvariable is called an   ordinary differential equation . (exp : eq. 1)

    •   A differential equation involving partial derivatives with respect to more than one independentvariable is called an   partial differential equation . (exp : eq. 2)

    •   The  order  of a differential equation is the order of the highest-order derivatives present in theequation.

    Examples :

    1.   d3u

    dt3  + 7 du

    dt + u =  sint

    2. 5 d2x

    dy2 + 7

    d3xdy3

    5+ 2x = 0

    3.

    d4 pdt4

    2+   d

    3 pdt3

      = 6t

    •   The   degree  of a differential equation is the degree of the highest-order derivatives present inthe equation.

    Examples :

    1.

    2.

    3.

    3

  • 8/17/2019 mathematical method

    4/70

    •   A   linear differential equation    is one in which the occurrence of the dependent variable y  hasthe format

    an(x)dny

    dxn + an−1(x)

    dn−1ydxn−1

     + · · · + a1 dydx

     +  a0(x)y  =  F (x)

    where

    1.   an(x), an−1(x), . . . , a0(x) and  F (x) depend only on the independent variable  x.

    2. the highest degree of the dependent variable  y  and its derivative is up to 1.

    3. there’s no multiplication between  y  and any of its derivatives.

    4. there’s no transcendental function of y or its derivatives.

    Examples :

    1.   d2y

    dx2 + y3 = 0

    2.   d2y

    dx2 − y3 = x3

    3.   d2ydx2

     + y dydx

     = cosx

    4.   y′

    +   1x

    y  =  x3 − 3

    5.   x′

    +   3y

    x = 2y

    6.   dydx

     = a(x)y + b(x)

    7. (1 + y2

    )d2y

    dt2   + tdy

    dt  + y  =  ey

    3 Solution and Initial Value Problems

    •   An  nth order ordinary differential equation is an equality involving the independent variablex, the dependent variable  y, and the first  n  derivatives of  y.

    4

  • 8/17/2019 mathematical method

    5/70

    Examples :

    x2d2y

    dx2x

    dy

    dx  + y

     = x3

    (2

    nd

    order)

    √ 1 −

    d3y

    dx3

    2− y = 0 (3rdorder)

    d4y

    dx4  = xy   (4thorder)

    •   Thus a general form for an nth order equation would be

    x,y,

     dy

    dx, . . . ,

     dny

    dxn

     = 0 (3)

    where,

    #   F   is a function of the independent variable x, the dependent variable y, and the derivatives

    of  y  up to order  n; that is,  x, y , . . . ,   dny

    dxn.

    # We assume that the equation holds for all  x   in an interval  I   ; [a, b] or (a, b] or [a, b) or

    (a, b).

    •   In many cases, we can isolate the highest-order term   dnydxn

    , and write as

    dny

    dxn  = f 

    x,y,

     dy

    dx, · · ·   , d

    n−1ydxn−1

      (4)

    4 Explicit Solution

    A function  φ(x) that when subtituted for  y  in equation (3) and (4) satisfies the equation for all  x

    in the interval  I   is called an  explicit solution  to the equation on  I .

    Example 1:

    Show that  φ(x) = x2 − x−1 is an explicit solution to

    d2y

    dx2 −   2

    x2y  = 0 (5)

    5

  • 8/17/2019 mathematical method

    6/70

    Solution :

    φ(x) =   x2

    − x−1

    φ′

    (x) = 2x + x−2

    φ′′

    (x) = 2 − 2x−3

    Substitute  φ′

    (x) and  φ′′

    (x) into (5),

    (2 − 2x−3) −   2x2

    (x2 − x−1)

    = 2 − 2x−3) −   2x2

    (2 − 2x−3)= 0

    So,  φ(x) = x2 − x−1 is an explicit solution to (5) on (−∞, 0) ∪ (0, ∞).

    Example 2 :

    Show that for any choice of the constants  c1  and  c2, the function  φ(x) = c1e−x + c2e2x is an

    explicit solution to

    y′′ − y′ − 2y  = 0 (6)

    Solution :

    φ(x) =   c1e−x + c2e2

    x

    φ′

    (x) =   −c1e−x + 2c2e2xφ′′

    (x) =   c1e−x + 4c2e2

    x

    Substitute  φ(x), φ′

    (x) and  φ′′

    (x) into (6),

    (c1e−x + 4c2e2

    x) − (−c1e−x + 2c2e2x) − 2(c1e−x + c2e2x)= (c1 + c1 − 2c1)e−x + (4c2 − 2c2 − 2c2)e2x= 0

    So,  φ(x) = c1

    e−x + c2

    e2x is an explicit solution to (6) on the interval (−∞

    ,∞

    ) for any choice

    of the constants  c1  and  c2.

    5 Implicit Solution

    A relation   G(x, y) = 0 is said to be an implicit solution to equation (3) on the interval   I   if it

    defines one or more explicit solutions on  I .

    6

  • 8/17/2019 mathematical method

    7/70

    Example 1:

    Show that  y2

    − x3

    + 8 = 0 is an implicit solution tody

    dx =

     3x2

    2y  (7)

    on the interval (2, ∞).Solution :

    y2 − x3 + 8 = 0y   =   ±√ x3 + 8

    Both  φ(x) and  φ′

    are defined on (2, ∞). Substitute them into (7),

    3x2

    2√ 

    x3 + 8=

      3x2

    2(√ 

    x3 + 8)

    Then,  y2 − x3 + 8 = 0 is an implicit solution to (7) on the interval (2, ∞).(You can check that  φ(x) = −√ x3 + 8 is also an implicit solution to (7))-Note : We hereafter use the term ’solution ’ to mean an explicit or implicit solution.

    5.1 Initial Value Problem

    •   By an ’initial value problem ’ for an  nth order differential equation

    x,y,

     dy

    dx, . . . ,

     dny

    dxn

     = 0

    We mean : Find a solution to the differential equation on an interval  I  that satisfies at  x0  the

    n   initial conditions.

    y(x0) =   y0dy

    dx(x0) =   y1

    ...dn−1ydxn−1

    (x0) =   yn−1

    where  x0 ∈ I  and  y0, y1, . . . , yn−1  are given constant.

    7

  • 8/17/2019 mathematical method

    8/70

    •   In the case of a first order equation, the initial conditions reduce to the single requirementy(x0) = y0

    and in the case of a second order equation , the initial conditions have the form

    y(x0) = y0,  dy

    dx(x0) = y1

    Example 1:

    Show that  φ(x) = sinx − cosx  is a solution to the initial value problem

    d2y

    dx2  + y  = 0 (8)

    where   y(0) = −1,   dydx

    (0) = 1

    Solution :

    φ(x) =   sinx − cosxφ′

    (x) =   cosx + sinx

    φ′′

    (x) =   −sinx + cosx

    Substitute  φ(x) and  φ′′

    (x) into (8),d2y

    dx2 + y

    = (−sinx + cosx) + (sinx − cosx)= 0

    So,  φ(x) is a solution to (8) on the interval (−∞, ∞) .

    When we check the initail conditions, we find

    φ(0) = y(0) = sin0 − cos0 = −1φ′

    (0) =  dy

    dx(0) = −sin0 + cos0 = 1

    which meets the requirements of (8). Therefore  φ(x) is a solution to the given initial value

    problem.

    8

  • 8/17/2019 mathematical method

    9/70

    Example 2 :

    Given the general solution for the initial value problem :y′′ − y′ − 2y = 0, y(0) = 2, y′(0) = −3

    is  y(x) = c1e−x + c2e2x. Find the value of  c1  and  c2.

    Solution :

    y(x) =   c1e−x + c2e2

    x

    y′

    (x) =   −c1e−x + 2c2e2x

    y(0) = 2 :  c1e−(0) + c2e2(0) = 2

    c1 + c2   = 2 (9)

    y′

    (0) = −3 : −c1e(0) + 2c2e2(0) =   −3−c1 + 2c2   =   −3 (10)

    (9) + (10) :   c2 =  13

    ,   c1 =  73

    So,  y(x) =   73

    e−x −   13

    e2x ⇒ particular solution

    6 Separable Equation

    dy

    dx  =   f (x, y)

    dy

    dx  =

    depends only onx  g(x)   ·   h(y)  

    depends only ony∫   1

    h(y)dy   =

    ∫   g(x)dx + c

    Example 1:

    dx

    dt  = 3xt2∫ 

      1

    3xdx   =

    ∫   t2dt

    1

    3ln|x|   =   t

    3

    3  + c

    9

  • 8/17/2019 mathematical method

    10/70

    Example 2 :

    dy

    dx   =

      yex+y

    x2 + 2dy

    dx  =

      yexey

    x2 + 2∫   1

    yeydx   =

    ∫   ex

    x2 + 2dt

    Example 3 :

    Solve the initial value problem :

    dy

    dx

     =  y − 1x + 3

    , y(

    −1) = 0

    Solution :

    This is the separable equation, so∫   1

    y − 1dy   =∫ 

      1

    x + 3dx

    ln|y − 1|   =   ln|x + 3| + c   (11)Then use the initial value,  y(−1) = 0 . Substitute  x = −1, y  = 0 into (11) we get,

    ln|0 − 1|   =   ln| − 1 + 3| + cln1 =   ln2 + c

    0 =   ln2 + c

    c   =   −ln2So, (11) becomes,

    ln|y − 1|   =   ln|x + 3| − ln2ln|y − 1|   =   ln |x + 3|

    2

    |y − 1|   =   |x + 3|2

    y − 1 =   (x + 3)2

      or   y − 1 = −(x + 3)2

    y = −(x + 5)2   

    it’s not satisfied the initial value problem, becausey(−1)= (−1+5)2   =2̸=0

    y  = −(x + 1)2   

    satisfied the initial value problem, becausey(−1)=− (−1+1)2   =0

    So, the solution (explicit solution) for the initial value problem is  y = −12

    (x + 1).

    10

  • 8/17/2019 mathematical method

    11/70

    7 Linear First Order Equation

    11

  • 8/17/2019 mathematical method

    12/70

    Example 1:

    Find the general solution to   dydx

     + y  = 2 + 2x.

    Solution :

    We can clearly see that  P (x) = 1 and  Q(x) = 2 + 2x.

    Find the integrating factor :   µ(x) = e∫  1dx = ex

    ex

    dy

    dx

    + (−exy)   =   e

    x(2 + 2x)

    d

    dx[ex · y] =   ex(2 + 2x)

    ex · y   = ∫   ex(2 + 2x)dxy   =

      ?

    ex +

      c

    ex

    y   =  ?

    ex + A, A =

      c

    ex.

    Example 2 :

    Find the general solution to   1x

    dydx

     −   2yx2

      = x cos x, x > 0.

    Solution : dy

    dx − 2y

    x  = x2cos x   ⇒   P (x) = −2

    x  and   Q(x) = x2cos x

    µ(x) = e∫  − 2

    xdx =   e−2ln|x|

    =   eln|x|−2

    =   |x|−2=   x−2

    x−2dy

    dx −

    2x−3y   =   cos xd

    dx[x−2 · y] =   cos x

    x−2 · y   =∫ 

      cos x dx

    =   sin x + c

    y   =   x2sin x + A, A =  cx2.

    12

  • 8/17/2019 mathematical method

    13/70

    Example 3 :

    Solve   dydx

     + xy  = 4x.

    Solution :

    Integrating factor :   µ(x) = e∫ 

      xdx = ex2

    2

    ex2

    2dy

    dx + e

    x2

    2 y   =   ex2

    2 (4x)

    d

    dx[e

    x2

    2 · y] = 4ex2

    2 x

    ex2

    2 · y   =∫ 

      4xex2

    2 dx

    ex22 · y   = 4ex22 + cy   = 4 + ce

    x2

    2

    y   = 4 + A, A =  cex2

    2 .

    Example 4:

    Solve   dudv

     +   1v

    u =  v3, v > 0.

    Solution :

    Integrating factor :µ(x) = e

    ∫   1v

    dx

    = eln

     |v

    | = eln v

    = v,   if    v > 0

    vdu

    dv + v

    1

    vu

     =  v(v3)

    vdu

    dv + u   =   v4

    d

    dv[u · v] =   v4

    u · v   =∫ 

      v4 dv

    u   =   v4

    5  +  c

    v.

    13

  • 8/17/2019 mathematical method

    14/70

    Example 5 :

    Solve

    tcos zdz  + sin zdt = 0

    Solution :

    sin zdt = −tcos zdz dt

    dz   = −t cos z 

    sin z dt

    dz  + t

    cos z 

    sin z   = 0

    µ(x) = e∫ 

      cot zdz = eln|sin z| = |sin z |

    |sin z | dtdz 

     + |sin z |t cos z sin z 

      = 0

    d

    dz [t · |sin z |] = 0

    t · |sin z | = 0 + ct · |sin z | =  c

    t =  c

    |sin z 

    |.

    14

  • 8/17/2019 mathematical method

    15/70

    8 Bernoulli Equation

    15

  • 8/17/2019 mathematical method

    16/70

    Example 1:

    Solve

    dy

    dx −   1

    2xy  = 5x2y5 (12)

    Solution :

    (1) Divide (12) by  y5.

    1

    y5dy

    dx −   1

    y51

    2xy   =

      1

    y55x2y5

    y−5dy

    dx − y

    −4

    2x  = 5x2 (13)

    (2) Substitute → 1.   v =  y1−n→ 2. (   1

    1−n)

      dvdx

     = y−n dydx

      into (13)

    n = 5 → v   =   y−4dv

    dx  =   −4y−5 dy

    dx1

    4

    dv

    dx  =

      dy

    dx

    14

    dvdx

     −   v2x

     = 5x2 ⇒ Linear Differential Equation↓

    change to standart form :

    dv

    dx +

     2

    xv = −20x2

    (3) Use the method for solving linear equation.

    Integrating factor :µ(x) =   e∫ 

      1x

    dx

    =   e2ln|x|

    =   eln|x|2

    =   x2

    16

  • 8/17/2019 mathematical method

    17/70

    x2dvdx + x22vx   =   x2(−20x2)

    x2dv

    dx + 2vx   =   −20x4

    d

    dx[x2 · v] =   −20x4

    x2 · v   =   −∫ 

      20x4dx

    x2 · v   =   −20x5

    5  + c

    v   =   −4x3 +   cx2

    y−4 =   −4x3 + A, A =   cx2

    Example 2 :

    Solvedy

    dx = xy2 + 2xy   (14)

    Solution :

    dy

    dx − 2xy  =  xy2 (15)

    (1) Divide (14) by  y2.

    y−2dy

    dx − 2xy−1 =   x

    (2) Substitute → 1.   v =  y1−n

    → 2. (   11−n)

      dvdx

     = y−n dydx

      into (15)

    n = 2 → v   =   y−1dv

    dx  = (−1)y−2 dy

    dx

    −dvdx

      =   y−2dy

    dx

    17

  • 8/17/2019 mathematical method

    18/70

    − dvdx

     − 2xv  =  x ⇒ Linear Differential Equation

    ↓change to standart form :

    dv

    dx + 2xv = −x

    (3) Use the method of solving linear equation.

    Integrating factor :µ(x) =   e∫  2xdx

    =   ex2

    ex2 dv

    dx + 2xvex

    2

       =   −xex2

    d

    dx[ex

    2 · v] =   −xex2

    ex2 · v   =

    ∫  −xex2 dx

    ex2 · v   =   −1

    2ex

    2

    + c

    v   =  −

    1

    2 +

      c

    ex2

    y−1 =   −12

     +  A, A =  c

    ex2

    9 Exact Equation

    dy

    dx = f (x, y)

    ⇓can be rewritten in the differential form :

    M (x, y)dx + N (x, y)dy = 0 (16)

    ⇓If the left hand side of equation (16) can be identified as a total differential :

    18

  • 8/17/2019 mathematical method

    19/70

    M (x, y)dx + N (x, y)dy   =

      ∂F 

    ∂x dx +

     ∂F 

    ∂y dy

    =   dF (x, y)

    ⇓then its solutions are given (implicitly) by

    F (x, y) = C 

    for an arbitrary constant C. So, the differential form,

    M (x, y)dx + N (x, y)dy

    is said to be   e xact  in a rectangle  R  if there is a function  F (x, y) such that

    ∂F (x, y)

    ∂x  =   M (x, y) and

    ∂F (x, y)

    ∂y  =   N (x, y)

    for all (x, y) in  R. That is the total differential of  F (x, y) satisfies

    dF (x, y) = M (x, y)dx + N (x, y)dy

    ⇓If  M (x, y)dx + N (x, y) is an exact differential form, then the equation

    dF (x, y) = M (x, y)dx + N (x, y)dy = 0

    is called an   e xact equation 

    19

  • 8/17/2019 mathematical method

    20/70

    9.1 Theorem 1 : Test For Exactness

    Suppose the first partial derivatives of  M 

    (x, y

    ) and N 

    (x, y

    ) are continuous in a rectangle R

    . ThenM (x, y)dx + N (x, y)dy  = 0

    is an exact equation in  R  if and only if the compatibility condition

    ∂M 

    ∂y  (x, y) =

     ∂N 

    ∂x (x, y)

    holds for all (x, y) in  R.

    Example 1:

    Determine the exactness of the differential equation :dy

    dx =

     3x2 − yx − 1

    Solution :

    (x − 1)dy   = (3x2 − y)dx−(3x2 − y)dx + (x − 1)dy   = 0

    (y − 3x2)

       M (x,y)

    dx + (x − 1)

       N (x,y)

    dy   = 0 (17)

    Exact or not exact ....?

    Method-1:

    1. Rearrange equation (17) and find  F (x, y)

    ydx − 3x2dx + xdy − dy   = 0(ydx + xdy) − 3x2dx − dy   = 0

    d(xy) − d(x3) − d(y) = 0d(xy − x3 − y   ) = 0

    20

  • 8/17/2019 mathematical method

    21/70

    2. Determine whether   ∂F (x,y)∂x

      = M (x, y) and   ∂F (x,y)∂y

      = N (x, y)

    ∂F (x, y)

    ∂x  = y − 3x2 = M (x, y)

    and∂F (x, y)

    ∂y  = x − 1 = N (x, y)

    So, (17) is an exact equation.

    Method-2:

    Use Theorem 1 (test for exacness), determine whether  ∂M 

    ∂y  (x, y) =  ∂N 

    ∂x (x, y)

    ∂M 

    ∂y  (x, y) = 1 =

      ∂N 

    ∂x (x, y)

    So, (17) is an exact equation.

    9.2 How to Solve an Exact Equation

    Determine whether it is an exact equation or not, if YES

    ⇓Then

    ∃   ∂F (x, y)∂x

      =   M (x, y) (18)

    and  ∂F (x, y)

    ∂y  =   N (x, y) (19)

    ⇓Integrate (18) with respect to  x  :

    F (x, y) =

    ∫   M (x, y)  ∂x + g(y) (20)

    ⇓Take the partial derivative with respect to  y  of both sides of equation (20).

    21

  • 8/17/2019 mathematical method

    22/70

    ∂F (x, y)

    ∂y   =

      ∂ 

    ∂y ∫   M (x, y)  ∂x  +   ∂ ∂y g(y   g′(y)

    ) (21)

    ⇓Compare (21) with (19) and substitute  N   for   ∂F (x,y)

    ∂y  into (21).

    ⇓You’ll get  g

    (y) =?

    Then it follows by  g(y) =?

    ⇓Substitute  g(y) into (20) gives  F (x, y)

    ⇓The solution :   F (x, y) = C .

    Example 1:

    Solve the differential equation

    (y − 3x2)dx + (x − 1)dy  = 0Solution :

    (y − 3x2)   M (x,y)

    dx + (x − 1)   N (x,y)

    dy = 0

    ∂M 

    ∂y  (x, y) = 1,

      ∂N 

    ∂x (x, y) = 1

    ⇒ So, Exact.

    ⇓Then

    ∃   ∂F (x, y)∂x

      =   M (x, y) = y − 3x2 (22)

    and  ∂F (x, y)

    ∂y  =   N (x, y) = x − 1 (23)

    22

  • 8/17/2019 mathematical method

    23/70

    Choose (22) and integrate it with respect to  x  :

    F (x, y) = ∫   y − 3x2 ∂x  + g(y)=   yx − x3 + g(y) (24)

    Take the partial derivative with respect to  y  of both sides of equation (24).

    ∂F (x, y)

    ∂y  = x  + g

    (y) (25)

    ⇓Compare (25) with (23) and substitute  N   for   ∂F (x,y)

    ∂y  into (25).

    ⇓You’ll get  g

    (y) = −1Then it follows by  g(y) = −y

    ⇓Substitute  g(y) = −y  into (24) gives  F (x, y) = yx − x3 − y

    ⇓The solution :   yx − x3 − y  =  C .

    Example 2 :

    Solve the differential equation

    (2xy − sek2x)dx + (x2 + 2y)dy = 0 (26)

    Solution : ∂M 

    ∂y  = 2x,

      ∂M 

    ∂y  = 2x   ⇒   So,(26) is an exact equation

    ∃  ∂F (x, y)

    ∂x  =   M (x, y) = 2xy

    −sek2 x   (27)

    and  ∂F (x, y)

    ∂y  =   N (x, y) = x2 + 2y   (28)

    Choose (27),

    F (x, y) =

    ∫   2xy − sek2 x ∂x  + g(y)

    =   x2y − tan x + g(y) (29)

    23

  • 8/17/2019 mathematical method

    24/70

    ∂F (x, y)

    ∂y   = x2

    + g′

    (y) (30)

    Compare (30) with (28)g′

    (y) = 2y

    g(y) =   y2

    Subsitute  g(y) = y2 into (29),

    So,F (x, y) =   x2y − tan x + y2

    x2y

    −tan x + y2 =   C.

    24

  • 8/17/2019 mathematical method

    25/70

    9.3 How to Determine whether it is an exact eq or not?

    25

  • 8/17/2019 mathematical method

    26/70

    Example 1:

    Show that  µ(x, y) = xy2 is an integrating factor for

    (2y − 6x)dx + (3x − 4x2y−1)dy = 0 (31)

    Use this integrating factor to solve the equation.

    Solution :

    (2y − 6x)   M (x,y)

    dx + (3x − 4x2y−1)   N (x,y)

    dy = 0

    ∂M 

    ∂y  = 2,

      ∂M 

    ∂y  = 3 − 8xy−1 ⇒   So,(31) is not an exact equation

    Multiply (31) by the given integrating factor,  µ(x, y) = xy2

    (xy2)(2y − 6x)dx + (xy2)(3x − 4x2y−1)dy   = 0(2xy3 − 6x2y2)dx + (3x2y2 − 4x3y)dy   = 0 (32)

    ∂ (µM )

    ∂y  = 6xy2 − 12x2y =   ∂ (µN )

    ∂x  ⇒   Exact

    So,  µ(x, y) = xy2 is an integrating factor for (31).

    Now, solve (32) using exact method.

    ∃   ∂F (x, y)∂x

      =   µM (x, y) = 2xy3 − 6x2y2 (33)

    and  ∂F (x, y)

    ∂y  =   µN (x, y) = 3x2y2 − 4x3y   (34)

    F (x, y) =

    ∫   2xy3 − 6x2y2 ∂x  + g(y)

    =   x2y3 − 2x3y2 + g(y).

    ∂F (x, y)

    ∂y

      = 3x2y2

    −4x3y + g

    (y)

    So,  g′

    (y) = 0   ⇒   g(y) = 0F (x, y) =   x2y3 − 2x3y2

    x2y3 − 2x3y2 =   C.

    26

  • 8/17/2019 mathematical method

    27/70

    Example 2 :

    Show that  µ(x, y) =   11+x2y2

      is an integrating factor for

    (1 + x2y2 + y)dx + xdy  = 0 (35)

    Use this integrating factor to solve the equation.

    Solution :

    (1 + x2y2 + y)   M (x,y)

    dx +   x  N (x,y)

    dy  = 0

    ∂M 

    ∂y

      = 2x2y + 1,  ∂M 

    ∂y

      = 1

      ⇒  So,(35) is not an exact equation

    (  1

    1 + x2y2)(1 + x2y2 + y)dx + (

      1

    1 + x2y2)xdy   = 0

    (1 +  y

    1 + x2y2)dx + (

      x

    1 + x2y2)dy   = 0 (36)

    ∂ (µM )

    ∂y  =

      1 − x2y2(1 + x2y2)2

      =  ∂ (µN )

    ∂x  ⇒   Exact

    So,  µ(x, y) =   11+x2y2

      is an integrating factor for (35).

    Now, solve (36) using exact method.

    ∃   ∂F (x, y)∂x

      =   µM (x, y) = 1 +   y1 + x2y2

      (37)

    and  ∂F (x, y)

    ∂y  =   µN (x, y) =

      x

    1 + x2y2  (38)

    F (x, y) =

    ∫   1 +

      y

    1 + x2y2  ∂x  + g(y)

    =   x +

    ∫   1

    1 + (xy)2  ∂ (xy) + g(y)

    =   x + tan−1(xy) + g(y).

    ∂F (x, y)

    ∂y  = 0 +

      x

    1 + (xy)2 + g

    (y)

    So,  g′

    (y) = 0   ⇒   g(y) = 0F (x, y) =   x + tan−1(xy)

    x + tan−1(xy) =   C.

    27

  • 8/17/2019 mathematical method

    28/70

    9.4 Theorem 2 : Special Integrating Factor

    •   If   1

    N  ∂M ∂y  −   ∂N ∂x  is continuous and depends only on  x, thenµ(x) = exp

    ∫ { ∂M ∂y

     −   ∂N ∂x

    }dx

    is an integrating factor for  M (x, y)dx + N (x, y)dy  = 0

    •   If    1M 

    ∂N ∂x

     −   ∂M ∂y

      is continous and depends only on  y, then

    µ(y) = exp

    ∫ { ∂N ∂x

     −   ∂M ∂y

    }dy

    is an integrating factor for  M (x, y)dx + N (x, y)dy  = 0

    Example 1:

    Solve

    (2x2 + y)dx + (x2y − x)dy  = 0.   (39)

    (1) Test the exactness

    ∂M ∂y

      = 1,   ∂N ∂x

      = 2xy

    −1

      ⇒  not exact

    (2) Compute   1N 

    ∂M ∂y

     −   ∂N ∂x

      1

    x2y − x

    [1 − (2xy − 1)]

    =  2 − 2xy

    x2y − x=

      2(1 − xy)

    −x(1

    −xy)

    =   −2x

    =   f (x)

    µ(x) = e∫  − 2

    xdx = e−2ln |x| = |x|−2 = x−2

    28

  • 8/17/2019 mathematical method

    29/70

    (3) Multiply (39) by 4µ(x) = x−2

    x−2(2x2 + y)dx   +   x−2(x2y

    −x)dy = 0

    (2 + yx−2)   µM 

    dx   + (y − x−1)   µN 

    dy = 0

    (4) Exact / not?∂ (µM )

    ∂y  = x−2 =

      ∂ (µN )

    ∂x  ⇒   Exact

    ...

    F (x, y) = 2x − yx−1 +  y2

    2  = C.

    Example 2 :

    Solve(2xy)dx − (x2 + y2 − 1)dy = 0.   (40)

    ∂M ∂y

      = 2x,   ∂N ∂x

      = −2x   ⇒   not exact

    1

    ∂M 

    ∂y −  ∂N 

    ∂x

    =   1x2 + y2 − 1 [2x − (−2x)]=

      4x

    x2 + y2 − 1=   f (x)

    1

    ∂N 

    ∂x −  ∂M 

    ∂y

    =   1

    2xy [−

    2x

    − −2x]

    =  4x

    x2 + y2 − 1=   −−4x

    2xy

    =   −2y

    =   g(y) ⇒   easier

    29

  • 8/17/2019 mathematical method

    30/70

    µ(x) = e∫  − 2

    ydy = e−2ln |y| = |y|−2 = y−2

    (4) Exact / not? ∂ (µM )

    ∂y  = −2xy−2 =   ∂ (µN )

    ∂x  ⇒   Exact

    ...

    F (x, y) = x2y−1 − y −  1y

      = C.

    10 Homogeneous Equations

    10.1 Homogeneous

    A function  f (x, y) is called a homogeneous with degree of  n if 

    f (λx,λy) = λnf (x, y)for all  λ.

    Example 1:

    f (x, y) = x4 − x3y

    f (λx, λy) = (λx)4 − (λx)3(λy)=   λ4x4 − λ4x3y=   λ4[x4 − x3y]=   λ4f (x, y)

    So,  f (x, y) is a homogeneous with degree of 4.

    Example 2 :

    (y−xexy )

    x

    f (λx, λy) =  (λy) − (λx)e

    (λx)(λy)

    (λx)

    =  λ(y − xeλ(x)λ(y) )

    λ(x)

    =   λ0f (x, y)

    So,  f (x, y) is a homogeneous with degree of 0.

    30

  • 8/17/2019 mathematical method

    31/70

    10.2 Theorem 3

    If  M 

    (x, y

    ) and N 

    (x, y

    ) homogenous with the same degree,a function  f (x, y) =   M (x,y)

    N (x,y)

    is homogeneous with degree of zero.

    Proof 

    If  M (x, y) and  N (x, y) homogeneous with degree  n,

    so,   M (λx, λy) = λnM (x, y)

    and,  N (λx, λy) = λnN (x, y)

    f (x, y) =  M (λx, λy)

    N (λx, λy)

      =  λnM (x, y)

    λn

    N (x, y)

      = λ0f (x, y)

    10.3 Theorem 4

    If a function f (x, y) is hommogeneous with degree of zero, so f (x, y) can be expressed as a function

    of the ratio   yx

      alone.

    Proof 

    Let  v =   yx

      ⇒   vx  =  y

    f (x, y) =   f (x,vx)   y = vx

    =   x0f (1, v)   f (x, y)homogeneous with degree of zero

    =   f (1, v)

    = a function that depends only on v.

    Example 1:M (x, y)dx + N (x, y)dy  = 0

    N (x, y)dy   =   −M (x, y)dxdy

    dx  =   −M (x, y)dx

    N (x, y)dy  M    and   N    homogeneous with the same degree

    =   f (x, y) from Theorem 3

    =   F (y

    x) from Theorem 4 (where   v =

      y

    x)

    v =  y

    x ⇒ y  =  vx

    31

  • 8/17/2019 mathematical method

    32/70

    dy

    dx v +

     dv

    dx x   =   F (v)x

    dx  =

      F (v) − vdv∫ 

      1

    F (v) − v dv =∫ 

      1

    x

    10.4 How to solve a homogeneous equation?

    M (x, y)dx + N (x, y)dy = 0 (41)

    ⇓is called a homogeneous equation if both  M (x, y) and  N (x, y) are homogeneous with the same

    degree.

    ⇓Solution : Substitution of  y = vx

     ⇒  dy = xdv  + vdx

    ⇓becomes : separable equation

    ⇓integrate

    32

  • 8/17/2019 mathematical method

    33/70

    Example 1:

    Solve

    (x − y)dx + xdy  = 0 (42)

    M (λx, λy) = (λx) − (λy)=   λ1(x − y)

    N (λx, λy) = (λx)

    =   λ1(x)

    From the definition, if   M   and   N  homogeneous with the same degree, so (42) is a homogeneous

    equation.

    v =  y

    x  ⇒   y =  vx   

    (i)

    ⇒   dydx

     = v  + xdv

    dx

    dy = vdx + xdv   (ii)

    Substitute (i) and (ii) into (42) :

    (x − (vx))dx + x(vdx + xdv) = 0(x

    −vx + vx)dx + x2dv   = 0

    xdx + x2dv   = 0

    x2dv   =   −xdx∫   dv   =

    ∫  −1

    x

    v   =   −ln|x| + c.

    Evercise : Show that (42) also can be solve by using Exact Method.

    33

  • 8/17/2019 mathematical method

    34/70

    Example 2 :

    Solve

    (xy − y2 + x2)dx − x2dy  = 0 (43)

    M (λx, λy) = (λx)(λy) + (λy)2 + (λx)2

    =   λ2(xy) + λ2y2 + λ2x2

    =   λ2(xy + y2 + x2)

    =   λ2M (x, y)   ⇒   Hom. with degree 2

    N (λx, λy) =   −(λx)2

    =   −λ2x2=   λ2(−x2)=   λ2N (x, y)   ⇒   Hom. with degree 2

    From the definition, if   M   and   N  homogeneous with the same degree, so (43) is a homogeneous

    equation.

    v =  y

    x  ⇒   y =  vx

       (i)

    ⇒   dydx

     = v  + xdv

    dx

    dy = vdx + xdv   (ii)

    Substitute (i) and (ii) into (43) :

    (x(vx) + (vx)2 + x2)dx − x2(vdx + xdv) = 0(vx2 + v2x2 + x2 − vx2)dx − x3dv   = 0

    (v2x2 + x2)dx − x3dv   = 0x2(v2 + 1)dx − x3dv   = 0

    x2(v2 + 1)dx   =   x3dv∫   1x

    dx   =∫    1

    v2 + 1dv

    c + ln |x|   =   tan−1(v)ln |x| + c   =   tan−1( y

    x)

    y

    x  =   tan (ln |x| + c)

    y   =   x tan (ln |x| + c).

    34

  • 8/17/2019 mathematical method

    35/70

  • 8/17/2019 mathematical method

    36/70

    Example 1:

    Solve

    (x − 2y + 1)dx + (4x − 3y − 6)dy = 0 (44)

    a2

    a1=

     4

    1 = 4,

      b2

    b1=

     −3−2 =

     3

    2  ⇒   Case I

    (h, k) satisfies :

    h − 2k + 1 = 04h − 3k − 6 = 0

    ⇒  h = 3, k = 2

    Substitute :   x =  X  + 3 and  y  =  Y  + 2 into (44)

    [(X  + 3) − (Y  + 2) + 1]dX  + [4(X  + 3) − 3(Y   + 2) − 6]dY    = 0(X  − 2Y )dX  + (4X  − 3Y )dY    = 0 (45)

    Substitute  Y   = vX  and  dY   = vdX  +  Xdv  into (45)

    (X  − 2vX )dX  + (4X  − 3vX )(vdX  +  Xdv) = 0(X  − 2vX  + 4vX  − 3v2X )dX  + (4X 2 − 3vX 2)dv   = 0

    (X  + 2vX  − 3v2X )dX  + (4 − 3v)X 2dv   = 0(1 + 2v − 3v2)dX  + (4 − 3v)Xdv   = 0

    (4 − 3v)Xdv   =   −(1 + 2v − 3v2)dX ∫   4 − 3v1 + 2v − 3v2dv   =   −

    ∫   1

    X dX 

    ...

    X 4|3v + 1|5 =   |v − 1|A, A =  e4cX 4|3 Y 

    X  + 1|5 =   | Y 

    X  − 1|A,   ⇒   v =   Y 

    |3Y   + X |5 =   |Y  − X |A|3(y − 2) + (x − 3)|5 =   |(y − 2) − (x − 3)|A, ⇒   X  = x − 3, Y   = y − 2

    |3y + x − 9|5 =   A|y − x + 1|.

    36

  • 8/17/2019 mathematical method

    37/70

    Example 2 :

    Solve

    (x + 2y + 3)dx + (2x − 3y − 6)dy = 0 (46)

    a2

    a1=

     2

    1 = 2,

      b2

    b1=

     4

    2 = 2   ⇒   Case II

    Let

    z  =  a1x + b1y   ⇒   z  =  x  + 2y

       (i)⇒   dz 

    dx = 1 + 2

    dy

    dx

    dz  =  dx  + 2dy

    dy = dz  − dx

    2   (ii)

    (46) becomes :

    (z  + 3)dx + (2z  − 1)( dz  − dx2

      ) = 0

    (2z  + 6)dx + (2z  − 1)(dz  − dx) = 0(2z  + 6

    −2z  + 1)dx + (2z 

     −1)dz    = 0

    7dx + (2z  − 1)dz    = 0∫   (2z  − 1)dz    =

    ∫  −7dx

    z 2 − z    =   −7x + c(x + 2y)2 − (x + 2y) + 7x   =   c,   ⇒   z  =  x  + 2yx2 + 4xy + 4y2 + 6x − 2y   =   c.

    37

  • 8/17/2019 mathematical method

    38/70

    12 Mixing Problems

    •   A problem for which the one-compartment system provides a useful representation is themixing of fluids in a tank.

    •   Let  x(t) represent the amount of a substance in a tank (compartment) at time,  t.•   To use the compartmental analysis model, we must be able to determine the rates at which

    this substance enters and leaves the tank.

    •   In mixing problems one is often given the rate at which a fluid containing the substance flowsinto the tank, along with the concentration of the substance in that fluid.

    •   Hence, multiplying the flow rate (volume/time) by the concentration (amount/volume) yieldsthe input rate (amount/time).

    •   The output rate of the substance is usually more difficult to determine.•   If we are given the exit rate of the mixture of fluids in the tank, then how do we determine

    the concentration of the substance in this mixture?

    •   One simplifying assumption that we might make is that the concentration is kept uniform inthe mixture. Then we can compute the concentration of the substance in the mixture by

    dividing the amount  x(t) by the volume of the mixture in the tank at time,  t.

    •   Multiplying this concentration by the exit rate of the mixture then gives the desired outputrate of the substance.

    •  The problem : What is the amount of a substance in a tank at time t (x(t) =?).

    •   dxdt

      = changing rate

    = input rate   ( amounttime   )kgmin−1

    - output rate   ( amounttime   )kgmin−1

    = (con. of a substance)   ( amountvolume )kgL−1

    ·  (enter rate)   ( volumetime   )Lmin−1

    − ( con. of the subs. in the mix.)   ( amount sub. in the tank(mix),x(t)volume of the mix. in the tank   )kgL−1

    ·   (exit rate)   ( volumetime   )Lmin−1

    38

  • 8/17/2019 mathematical method

    39/70

    Example 1:

    Consider a large tank holding 1000L of water into which abrine solution of salt begins to flowat a constant rate of 6Lmin−1. The solution inside the tank is kept well stirred and is flowing

    out of the tank at a rate of 6Lmin−1. If the concentration of salt in the brine entering the

    tank is 1kgL−1, determine when the concentration of salt in the tank will reach concentration12

    kgL−1.

    dxdt

     = input rate - output rate

    = (con. of salt) · (enter rate) −

      amount salt in the tankvolume of fluid in the tank

    · (exit rate)

    = (1kgL−1) · (6Lmin−1) − x(t)kg1000L · (6Lmin−1)= 6kgmin−1 −   6x

    1000kgmin−1

    So,  dx

    dt  = 6 −   6x

    1000, x(0) = 0

    =  3000 − 3x

    500

    =  3(1000 − x)

    500∫    11000 − x dx   =

    ∫   3

    500dt

    −ln|1000 − x|   =   3500

    t + c

    ln|1000 − x|   =   −   3t500

     − c1000 − x   =   e−   3t500 − c1000 − x   =   e−   3t500 e−c

    x   = 1000

    −Ae−

      3t500 , A =  e−c

    x(0) = 0 : 0 = 1000 − Ae0A = 1000

    39

  • 8/17/2019 mathematical method

    40/70

    So,x(t) = 1000(1 − e−  3t

    500 )= amount salt in the tank at time   t

    x(t)

    1000  = the con. of salt in the tank at time   t.

    To determine when the con. of salt is   12

    kgL−1, we set the right-hand side equal to   12

     and solve for

    t.

    1 − e−   3t500 = 121

    2   =   e−  3t500

    ln|12|   =   −   3t

    500

    ln1 − ln2 =   −   3t500

    t   =  500  ln2

    3  ≈ 115.5min.

    If enter rate

       (exp:6Lmin−1)̸= exit rate

       (exp:6Lmin−1)dx

    dt  = (1kgL−1) · (6Lmin−1) −

      x(t)kg

    (1000 + t)L

    · (5Lmin−1)

    The difference between the rate of flow into the tank and the rate of flow out : 6 - 5 = 1  Lmin−1

    So, the volume of fluid in the tank after  t  minutes is (1000 + t)L.

    40

  • 8/17/2019 mathematical method

    41/70

    13 Kinematics

    •   Kinematics is the science of decribing the motion of object without regard to the causes of themotion.

    •   In this section, we shall consider motion along a straight line, that is one-dimensional motion.

    13.1 Terminology

    •   Scalar - are quantities which are fully described by magnitude alone.•   Vector - are quantities decribed by magnitude and direction.•   Displacement,  X  - is a vector quantity which refers to ”how far out of place an object is”; it is

    the object’s change in position.

    •   Speed - is a scalar quantity which refers to ”how fast an object is moving.- A fast-moving object has a high speed while a slow-moving object has a low speed.

    - An object with no movement at all has a zero speed.

    - Average speed =

      distance traveled,x

    time of travel,t- Instantaneous speed =   dx

    dt

    •   Velocity - is a vector quantity which refers to ”the rate at which an object changes its position.- When evaluating the velocity of an object, one must keep track of direction.

    - Average velocity = Displacement,X 

    time,t- Instantaneous velocity,   dX 

    dt  - the velocity of a particle at any instant of time.

    41

  • 8/17/2019 mathematical method

    42/70

  • 8/17/2019 mathematical method

    43/70

    (c) Acceleration of the object within the above time

    Acceleration =  dv

    dt  =

     d2x

    dt2  = a

    a = d2x

    dt2  = 6t − 12

    t = 5 ⇒   d2x

    dt2  = a  = 6(5) − 12 = 18ms−2

    (d) Distance during time 4 ≤ t ≤ 6s

    v =  dxdt

      = 3t2 − 12t − 15= 3(t + 1)(t − 5)

    Object position

    t = 4, x(4) = −52mt = 5, x(5) = −60mt = 6, x(6) = −50m

    So, total distance = 8 + (8 + 2) = 18m.

    43

  • 8/17/2019 mathematical method

    44/70

    14 Vertical Motion Under Gravity

    Example 1:

    An object is thrown straight upwards with an initial velocity 15ms−2. Acceleration under

    gravity is 9.8ms−2. Calculate :

    (a) time taken to reach maximum height.

    Acceleration =  dv

    dt  =   −g   (Separable equation)

    ⇒ v   =   −gt + c

    Initial velocity, v0   = 15ms−1

    v(0) = 15 (t = 0, v = 15)

    ⇒ c   = 15

    So,   v   =   −gt + 15 (47)

    Maximum height   ⇒   v = 00 =   −9.8t + 15t   =

      15

    9.8 = 1.53s.

    44

  • 8/17/2019 mathematical method

    45/70

    (b) the maximum height from the original position.

    (47) can be rewritten as dxdt

      =   −gt + 15∫   dx   =

    ∫  −gt + 15dt

    x   =   −gt2

    2  + 15t + c

    t = 0, x   = 0 ⇒ c  = 0x   =

      −

    gt2

    2

      + 15t   (48)

    Time taken to reach maximum height,  t = 1.53

    So, maximum height,  x = −9.8(1.53)22

      + 15(1.53) = 11.48m.

    Alternatively

    dv

    dt  =

      dv

    dx · dx

    dt  = v

    dv

    dx

    Since  dv

    dt

      =

      −g,

    So, vdv

    dx  =   −g   ⇒   Separable∫ 

      vdv   =

    ∫  −gdx

    v2

    2  =   −gx + c

    x = 0, v = 15   ⇒   152

      =   −9.8(0) + cc   = 112.5m

    v2

    2  =   −gx + 112.5 (49)

    At the maximum height,v = 0

    0 =   −9.8x + 112.5x   = 11.48m

    45

  • 8/17/2019 mathematical method

    46/70

    (c) time taken to return to its original position.

    From (48);   x   =  gt2

    2   + 15t

    x   =   t

    −gt

    2  + 15

    x = 0 ⇒   t = 0s   and   t   = 3.06s.

    So, time taken to return to its original position,  t = 3.06s.

    (d) velocity when it return to its original position.

    From (47);   v   =   −gt + 15t = 3.06 ⇒   v   =   −9.8(3.06) + 15

    v   =   −14.99 ≈ −15ms−1

    Obbject moves with velocity 15ms−1 downwards.

    15 Newtonian Mechanics

    •   Mechanics is the study of the motion of objects and the effect of forces acting on those objects.

    •   Deals with the motion of ordinari objects, that is, object that are large compared to an atomand slow moving compared with the speed of light.

    •   A model for Newtonian mechanics can be based on  Newton’s laws of motion  :1. Let  F 1,  F 2  are external force.

    If  F 1 + F 2 = 0, then it moves with a constant velocity.

    46

  • 8/17/2019 mathematical method

    47/70

    2. When a body is subject to one or more external forces, let  F i, i = 1, 2, 3

    then,   dpdt

      = F 1 + F 2 + F 3

    3. When one body interacts with a second body,

    15.1 Procedure for Newtonian Models

    (a) Determine all relevant forces actin on the object being studied.

    (It is helpful to draw a simple diagram of the object that depects theses forces)

    (b) Choose an appropriate axis or coordinate system in which to represent the motion of the

    object and the forces acting on it. Keep in mind that this coordinate system must be an

    inertial reference frame.

    (c) Apply Newton’s second lawdp

    dt  = F (t,x,v), p(t) = mv(t) (50)

    or  dp

    dt  =

      d(mv)

    dt  = m

    dv

    dt  = ma  =  F (t,x,v) (51)

    whichever is appropriate, to determine the equations of motion for the object.

    47

  • 8/17/2019 mathematical method

    48/70

    Example 1:

    An object of mass 1 kg is released and falls under the influence of gravity. The force due to air

    resistance is   7(x+1)   with  x  being its distance from the origin. Find the velocity of the object

    when it falls to  x = 6.4m. [Use  g = 10ms−2]

    Solution :

    mdv

    dt  =   mg −   7

    x + 1dv

    dt  =   g −   7

    x + 1  (if   m = 1)

    dv

    dx · dx

    dt  =   g −   7

    x + 1dv

    dx · v   =   g −   7

    x + 1∫   vdv   =

    ∫  g −   7

    x + 1

    dx

    v2

    2  =   gx − 7ln|x + 1| + c

    x = 0, v = 0

    0 = 0 − 7ln1 + cc   = 0

    ⇒  v2

    2  =   gx − 7ln|x + 1|

    if   x   = 6.4m,

    so,  v2

    2  = 10(6.4) − 7ln|7.4|

    v   = 9.99 ≈ 10ms−1

    48

  • 8/17/2019 mathematical method

    49/70

    Example 2 :

    An object of mass mkg  is given a downward velocity of v0  and is then allowed to fall under theinfluence of gravity. Assume that the influence of gravity is constant and the force due to air

    resistance is proportional to the velocity of the object. Determine the equation of the motion

    of the object.

    Solution :

    mdv

    dt  = mg − kv

    ∫    mmg − kv dv   = ∫   dt

    −mk

     ln|mg − kv| =  t + c

    ln|mg − kv|   =   −ktm

     + ck

    m

    |mg − kv|   =   e−ktm+ ckm|mg − kv|   =   e−ktm A, A =  ck

    m

    t = 0, v =  v0

    So, mg − kv0   =   A⇒   mg − kv   =   e−ktm (mg − kv0)

    −kv   =   e−ktm (mg − kv0) − mg

    v   =  mg

    k  −  e

    −ktm

    k  (mg − kv0)

    v(t) =   mg + e−ktm

    v0 −  mg

    k

      (52)

    49

  • 8/17/2019 mathematical method

    50/70

    v(t) =

      dx

    dt   =   mg + e−kt

    m v0 −  mgk ∫   dx   =

    ∫  mgk

      t + e−ktm

    v0 −  mg

    k

    dt

    x   =mg

    k

    t +

      e−ktm

    (− km

    )

    v0 −  mg

    k

     + c

    x   =mg

    k

    t −  me

    −ktm

    k

    v0 −  mg

    k

     + c

    t = 0, x = 0

    So,   0 = 0 −  me0

    k

    v0 −  mg

    k

     + c

    c   =  m

    k

    v0 −  mg

    k

    Then,   x   =mg

    k

    t −  me

    −ktm

    k

    v0 −  mg

    k

     +

     m

    k

    v0 −  mg

    k

    x(t) = mgk t + m

    k (1 − me−

    ktm

    k

      )v0 − mg

    k   (53)

    16 Linear Second Order Equations

    •   A linear second order equation is an equation that can be written in the form

    a2(x)d2y

    dx2 + a1(x)

    dy

    dx + a0(x)y =  b(x) (54)

    where  a0(x), a1(x), 12(x) and  b(x) are continuous functions of  x  on an interval  I .

    When  a0(x), a1(x), 12(x) and  b(x) are constant we say that the equation has constant coeffi

    cients, otherwise it has variable coefficients.

    50

  • 8/17/2019 mathematical method

    51/70

    •   The standard form for linear second order equation,

    d2

    ydx2

     + p(x) dydx

     + q (x)y = g(x) (55)

    where  a0(x) ̸= 0 on  I , p(x) =   a1(x)a2(x) , q (x) =  a0(x)

    a2(x)  and  g(x) =   b(x)

    a2(x)

    •   g(x) = 0 ⇒   homogeneousg(x) ̸= 0 ⇒   non-homogeneous

    16.1 Differential Operator

    •   Given any function y  with a continuous second derivatives on the interval  I , theny′′

    + p(x)y′

    (x) + q (x)y(x)

    generates a new function that we will denote by  L[y]. This is,L[y] = y

    ′′

    + py′

    + qy

    •   The image of a function y  under the operator  L  is the function  L[y].•   If we want to evaluate this image function at some point x, we write  L[y](x).

    Example 1:

    Let  p(x) = x  and  q (x) = x − 1Then  L[y](x) = y

    ′′

    (x) + xy′

    (x) + (x − 1)y(x)

    If   y1(x) =   x3, we get

    L[y1](x) = 6x + x(3x2) + (x − 1)x3

    =   x4 + 2x3 + 6x

    So, L maps the function  x3 to the function  x4 + 2x3 + 6x.

    In particular, at  x = 2,

    Then  L[y](x) = 24

    + 2(23

    ) + 6(2) = 44

    •   The differential operator L  has two very important properties :1.L[y1 + y2] = L[y1] + L[y2]

    2.L[cy] = cL[y]

    •   An operator that satisfies both of the properties for any constant  c  and any functions  y1  and

    51

  • 8/17/2019 mathematical method

    52/70

    y2  in its domain is called a  linear operator , otherwise it is called a  non-linear operator .

    Example 2 :

    Show that the operator  T  defined by

    T [y](x) = y′′

    (x) + sin(y(x))

    where  y  is any function whose second derivatives is continuous for all real  x, is nonlinear.

    Solution :

    Let  y1  =  x,

    T [cy1](x) = 0 + sin(cx)

    =   sin(cx)

    cT [y1](x) =   c[(0) + sin(x)]

    =   csin(x)

    But, in general,  sin(cx) ̸= csin(x) for exp :   c = 2 and x =   π2

    sinπ = 0,   2sin(

    π2

    ) = 2

    So, second property is violated. Then  T   is a nonlinear operator.

    16.2 Linear Combinations of Solutions

    Theorem 4

    Let  y1  and  y2  be solutions to the homogeneous equation

    y′′

    + py′

    + qy  = 0 (56)

    Then any linear combination  c1y1 + c2y2  of  y1  and  y2  where  c1  and  c2  are constants, is also a

    solution to (56).

    Proof :

    If we let  L[y] = y′′

    + py′

    + qy , then  L[y1] = 0 and  L[y2] = 0, since  y1  and  y2  are solution to (56).

    Using linearity of  L  as expressed in properties 1 and 2, we have

    52

  • 8/17/2019 mathematical method

    53/70

    L[c1y1 + c2y2] =   L[c1y1] + L[c2y2]=   c1L[y1] + c2L[y2]

    = 0 + 0

    = 0

    Then  c1y1 + c2y2   is a solution to (56).

    Example 1:

    Given that y1(x) = e2xcos 3x and  y2(x) = e2xsin 3x are solutions to the homogeneous equation

    y′′ −4y′ + 13y  = 0. Find a solution to this equation that satisfies the initial conditions  y(0) = 5

    and  y′

    (0) = −2.Solution :

    As a consequence of theorem 4, any linear combination

    y(x) = c1e2xcos 3x + c2e

    2xsin 3x   (57)

    with  c1  and  c2  arbitrary constants, will be a solution to  y′′

    −4y

    + 13y = 0.

    y′

    (x) = c1[2e2xcos 3x − 3e2xsin  3x] +   c2[2e2xsin 3x + 3e2xsin 3x] (58)

    Substitute (57) and (58) into initial conditions yields  c1 = 5,   2c1 + 3c2  = −2   ⇒   c2 = −4So, the solution that satisfies the initial conditions :   y(x) = 5e2xcos 3x − 4e2xsin 3x.

    16.3 Linear Dependence of Functions

    Definition

    Two functions  y1  and  y2  are said to be  linearly dependent  on an interval  I  if there exist constants

    c1  and  c2, not both zero, such thatc1y1(x) + c2y2(x) = 0

    for all x  in  I . If two functions are not linearly dependent, they are said to be  linearly independent.

    53

  • 8/17/2019 mathematical method

    54/70

    Example 1:

    Determine whether the following pairs of functions y1 and y2 are linearly dependent on (

    −5, 5):

    (a)  y1  =  e3x, y2(x) = x + 1

    (b)  y1(x) = sin  2x, y2(x) = cos xsin x

    (c)  y1(x) = x, y2(x) = |x|Solution :

    (a) A glance at the functions  y1(x) = e3x and y2(x) = x +1 indicates that neither is a constant

    multiple of the other. Indeed, if a constant  c  exists such thate3x = c(x + 1) for all   x   in (−5, 5)

    then we arrive at a contradiction by setting  x = 0 and x = 1 ;

    e0 = c(0 + 1) ⇒   c = 1e3 = c(1 + 1) ⇒   c =   e3

    2 ̸= 1

    So,  e3x and  x + 1 are linearly independent.

    (b) Because  y1(x) = sin  2x = 2sin x cos x. So,  y1(x) = 2y2(x). Hence  y1  and  y2  are linearly

    dependent on (−5, 5).

    (c)  y1(x) = x  and  y2(x) = |x|  are identical on the subinterval (0, 5). [In particular, they arelinearly dependent on (0, 5)]. However, neither function is a fixed constant multiple of the

    other on the whole interval (−5, 5). [On (0, 5),  y1(x) = 1 · y2(x) but on (−5, 0),y1(x) = (−1) · y2(x)]. Thus  y1  and  y2  are linearly independent on (−5, 5).

    16.4 Representation of Solution (Homogeneous Case)

    Theorem 5

    Let  y1  and  y2  denote two solutions on (a, b) of y′′

    + p(x)y′

    + q (x)y = 0 (59)

    where  p  and  q  are continuous on (a, b). Suppose at some point  x0   in (a, b) these solutions satisfy

    y1(x0)y2′

    (x0) − y1′(x0)y2(x0) ̸= 0 (60)

    Then every solution of (59) on (a, b) can be expressed in the form

    54

  • 8/17/2019 mathematical method

    55/70

    y(x) = c1y1(x) + c2y2(x)

    where  c1  and  c2  are constants.

    Because the expression on the left-hand side of (60) plays an important role in the theory, we

    adopt the following terminology.

    16.5 Wronskian

    Definition : For any two differentiable funstions  y1  and  y2, the function

    W [y1, y2](x) =   y1(x)y2′ − y1′(x)y2(x)

    =

    y1(x)   y2(x)y1′(x)   y2′(x) (61)

    is called the Wronskian of  y1  and  y2.

    16.6 Fundamental Solution Set

    A pair of solutions {

    y1

    , y2}

     of  y′′

    + py′

    + qy  = 0 on (a, b) is called a fundamental solution set if 

    W [y1, y2](x0) ̸= 0 for all  x0   in (a, b).

    Example 1:

    y1  =  ex, y2  =  e

    −x

    W [y1, y2](x) =   y1(x)y2′ − y1′(x)y2(x)

    = ex e−x

    ex

    −e−x

    =   ex(−e−x) − ex(e−x)=   −2 ̸= 0

    (62)

    55

  • 8/17/2019 mathematical method

    56/70

    17 Procedure for Solving Homogeneous Equation

    To determine all solution to  y′′

    + py′

    + qy  = 0,

    (a) Find two solutions  y1, y2  that constitue a fundamental solution set

    (b) Form the linear combinationy(x) = c1y1(x) + c2y2(x)

    where  c1  and  c2  are arbitrary constants to obtain a general solution.

    Example 1:

    Given that  y1(x) = cos  3x  and  y2(x) = sin  3x  are solutions to

    y′′

    + 9y = 0 (63)

    on (−∞, ∞), find a general solution to (63).Solution :

    First, we verify that {cos 3x, sin 3x}  is a fundamental solution set.

    W [y1, y2](x) =

    cos  3x sin 3x

    −3sin  3x   3cos 3x

    = (cos 3x)(3cos 3x) − (−3sin  3x)(sin 3x)= 3cos2 3x + 3sin2 3x

    = 3[cos2 3x + sin  3x]

    = 3(1)

    = 3 ̸= 0

    Thus, {cos 3x,sin 3x}   forms a fundamental solution set, and a general solution to (63) isy(x) = c1cos 3x + c2sin  3x

    .

    56

  • 8/17/2019 mathematical method

    57/70

    Theorem 6

    If  y

    1, y

    2  are solutions to y

    ′′

    + p

    (x

    )y′

    + q 

    (x

    )y

     = 0⇓So,  y1, y2  are linearly dependent if and only if  W [y1, y2] = 0

    ⇓and it means,  y1, y2  are linearly independent if and only if  W [y1, y2] ̸= 0

    17.1 Fundamental sets, Linear Independence and The Wronskian

    If   y1, y2   are solutions to   y′′

    + p(x)y′

    + q (x)y   = 0 on (a, b), then the following statements areequivalent :

    (i)  y1, y2   is a fundamental solution set on (a, b).

    (ii)  y1  and  y2  are linearly independent on (a, b).

    (iii) The Wronskian  W [y1, y2](x) is never zero on (a, b).

    Example 1:

    Show that  y1(x) = x−1 and  y2(x) = x3 are solutions to

    x2y′′ − xy′ − 3y = 0 (64)

    on the interval (0, ∞) and give a general solution.Solution :

    Substitute  yi(x), yi′

    (x) and  yi′′

    (x)   i = 1, 2 and into (64) ;

    x2(2x−3) − x(−x−2) − 3(x−1)

    = 2x−1

    + x−1

    − 3x−1

    = 0

    x2(6x) − x(3x2) − 3(x3)= 6x3 − 3x3 − 3x3= 0

    57

  • 8/17/2019 mathematical method

    58/70

    The solution function   x−1 and   x3 are linearly independent on (0, ∞) [neither is a constantmultiple of the other on (0,

    ∞)].

    W [y1, y2](x) =

    x−1 x3

    −x−2 3x2

    = 3x1 + x1

    = 4x ̸= 0

    So, a general solution is :   y(x) = c1x−1 + c2x3.

    18 Homogeneous Equation With Constant Coeficient

    58

  • 8/17/2019 mathematical method

    59/70

    •   ay′′ + by′ + cy  = 0, a(̸= 0), b , c

       constantsif  y1  and  y2  are linearly independent, the general solution is :   y = c1y1 + c2y2Let say  y = erx

    ar2erx + brerx + cerx = 0

    erx[ar2 + br + c] = 0

    Since  erx̸= 0, then  ar2 + br + c = 0.So,  y = erx is a solution to  ay

    ′′

    + by′

    + cy  = 0 if and only if  r  satisfies   ar2 + br + c = 0

       auxiliary equation.

    18.1 Distinct Roots

    r1 = −b + √ b2 − 4ac

    2a  , r1 =

     −b − √ b2 − 4ac2a

    b2 − 4ac > 0   ⇒   r1, r2  are the distinct real root.So,   er1x er2x are the independent solution to  ay

    ′′

    + by′

    + cy  = 0.

    It can be shown that  W [er1x, er2x)

     ̸= 0]

    Then the general solution :   y = c1er1x + c2er2x where  c1  and  c2  are an arbitrary constants.

    18.2 Repeated Roots

    r1 = −b + √ b2 − 4ac

    2a  , r1 =

     −b − √ b2 − 4ac2a

    if    b2 − 4ac = 0   ⇒   r1  =  r2 = −   b2a

    then   y1   =   e−   b

    2ax

    How do you get a second solution which is linearly independent to the first solution?

    Let   y   =   v(x)y1

    ⇒   y′ =   v′(x)y1 + v(x)y1′

    ⇒   y′′ =   v′′(x)y1 + v ′(x)y1′ + v ′(x)y1′ + v(x)y1′′

    =   v′′

    (x)y1 + 2v′

    (x)y1′

    + v(x)y1′′

    59

  • 8/17/2019 mathematical method

    60/70

    Substitute  y, y′

    and  y′′

    intoay

    ′′

    + by′

    + cy  = 0 (65)

    ay

    ′′

    + by

    + cy   = 0a(v

    ′′

    (x)y1 + 2v′

    (x)y1′

    + v(x)y1′′

    ) + b(v′

    (x)y1 + v(x)y1′

    ) + cv(x)y1   = 0

    av′′

    (x)y1 + 2av′

    (x)y1′

    + av(x)y1′′

    + bv′

    (x)y1 + bv(x)y1′

    + cv(x)y1   = 0

    (ay1)   (iii)

    v′′

    (x) + (2ay1′

    + by1)   (ii)

    v′

    (x) + (ay1′′

    + by1′

    + cy1)   (i)

    v(x) = 0

    (i)  ay1′′

    + by1′

    + cy1  = 0 from (65)

    (ii) 2ay′

    + by1   = 0

    y1 = e−   b2ax ⇒   y1′ =   −   b

    2ae−

      b2a

    x

    Then : 2a

    −   b

    2ae−

      b2a

    x

    + b

    e−

      b2a

    x

    = 0

    So, 2ay1′

    + by1   = 0

    (iii)   ay1v′′

    (x) = 0

    a ̸= 0 and   y1 = e−   b2ax̸= 0So,   v

    ′′

    (x) = 0

    v′

    (x) =   c1

    v(x) =   c1x + c2   (66)Substitute (66) into  y  =  v(x)y1, we get :

    y   = (c1x + c2)y1

    =   c1xy1 + c2y1

    =   c1xe−   b2ax + c2e−

      b2a

    x.

    60

  • 8/17/2019 mathematical method

    61/70

    18.3 Complex Roots

    r1 = −b + √ b2 − 4ac

    2a  , r1 =

     −b − √ b2 − 4ac2a

    if    b2 − 4ac

  • 8/17/2019 mathematical method

    62/70

    (c) 4y′′

    + 4y′

    + y  = 0

    (d) (c) with initial condition;  y(2) = 1, y′

    (2)

    (e) 16z ′′ − 56z ′ + 49z  = 0

    (f)  y′′

    + 2y + 4y = 0

    Solution :

    (a) 6y′′ − 11y′ + 3y   = 06r2 − 11r + 3 = 0

    (3r − 1)(2r − 3) = 0r1 =

     1

    3, r

    2 =

     3

    2   ⇒   2 distinct real rootSo,  e

    13

    x and  e32

    x are linearly independent solution.

    Hence, the general solution :   y(x) = c1e13 x + c2e

    32 x.

    (b) 2y′′ − 3y′ = 0

    2r2 − 3r   = 0r(2r − 3) = 0

    r1 = 0, r2 = 32

      ⇒   2 distinct real root

    So,  e13

    x and  e32

    x are linearly independent solution.

    Hence, the general solution : y(x) =   c1e0x + c2e

    32

    x

    =   c1 + c2e32

    x.

    Example 2 :

    In the study of a vibrating spring with damping, we are led to an initial value problem of the

    form

    mx′′

    (t) + bx′

    (t) + kx(t) = 0;   x(0) = x0, x′

    (0) = v0   (67)

    where  m  is the mass of the spring system,  b is the damping constant,  k  is the spring constant,

    x0  is the initial displacement.   v0  is the initial velocity, and  x(t) is the displacement from

    62

  • 8/17/2019 mathematical method

    63/70

    equilibrium of the spring system at time  t. Determine the equation of motion for this spring

    system when   m = 36kg, b = 12kgsec−1, k = 37kgsec−2, x0  = 70cm,   and   v0  = 10cmsec−1.

    Also find  x(10),  the displacement after 10 sec.

    Solution :

    The equation of motion is given by  x(t), the solution of the initial value problem (67) for the

    specified values of  m, b, k,x0  and  v0. That is we seek the solution to

    36x′′

    + 12x′

    + 37x = 0;   x(0) = 70, x′

    (0) = 10 (68)

    The auxiliary equation for (68) is : 36r2 + 12r + 37 = 0

    which has roots

    r1  = −12 ± √ 144 − 4(36)(37)

    72  =

     −12 ± √ 1 − 3772

      = −16 ± i

    Hence with  α = −16 , β  = 1, the displacement  x(t) can be expressed in the form

    x(t) =   c1e− t6 cos t + c2e−

    t6 sin t

    ⇒   x′(t) =−c1

    6  + c2

    e−

    t6 cos t +

    −c1 −  c2

    6

    e−

    t6 sin t

    x(0) = 70 : c1 = 70

    x′

    (0) = 10 : −c16

      + c2 = 10

    ⇒   c1  = 70, c2 =   653So,   x(t) = 70e−

    t6 cos t +

     65

    3 e−

    t6 sin t

    and

    So,   x(10) = 70e−53 cos 10 +

     65

    3 e−

    53 sin 10 ≈ −13.32cm

    63

  • 8/17/2019 mathematical method

    64/70

    19 Higher Order Differential Equation

    The method of solving homogeneous linear second order differrential equation and constant co-efficient can be used to solve any order of differential equation. In general, linear homogeneous

    differential equation of  n order have  n   independent solutions.

    Example 1:

    Find a general solution to  y′′′

    + y′′ − y′ − 3y  = 0.

    Solution :

    Auxiliary equation :   r3 + 3r2

    −r

    −3 = 0

    It can be factorize as : (r − 1)(r + 1)(r − 3) = 0So,  r1 = 1, r2 = −1, and  r3 = 3Then, the general solution :   y(x) = c1e

    x + c2e−x + c3e

    Example 2 :

    Find a general solution to  y(4) − y(3) − 3y′′ + 5y′ − 2y = 0.Solution :

    Auxiliary equation :  r4

    −r3

    − 3r2

    + 5r

    − 2 = 0So,  r1 = 1, r2 = 1, r3  = 1, and  r4  = −2.Then, the general solution :   y(x) = c1e

    x + c2xex + c3x

    2ex + c4e−2x

    Example 3 :

    Find a general solution to  y′′

    + 2y′

    + 4y = 0.

    Solution :

    Auxiliary equation :   r2 + 2r + 4 = 0

    So,  r =  −2±√ 4−162   = −1 ± i√ 3α = −1, β  = √ 3Then, the general solution :   y(x) = c1e

    −xcos √ 

    3x + c2e−xsin

     √ 3x

    64

  • 8/17/2019 mathematical method

    65/70

    20 Superposition and Non-Homogeneous Equations

    The differential operator  L  defined by

    L[y](x) = y′′

    + p(x)y′

    + q (x)y   (69)

    can be viewed as a ”black box” with input the function   y(x) and output the function on the

    right-hand side of (69).

    Suppose the input functions   y1(x) and   y2(x) yield, respectively, the output functions   g1(x) and

    g2(x): that isL[y1] = g1(x), L[y2] = g2(x)

    Then, since  L  is alinear operator, an input consisting of the linear combination  c1y1(x) + c2y2(x)

    produces the output  c1g1(x) + c2g2(x) in the same combination.

    20.1 Superposition Principle

    Let  y1  be a solution of the differential equationL[y1] = g1(x)

    and let  y2  be a solution of 

    L[y2] = g2(x)where  L  is a linear differential operator. Then for any constants  c1  and c2, the function c1y1 + c2y2

    is a solution to the differential equationL[y] = c1g1(x) + c2g2(x)

    Example 1:

    Given that  y1(x) = −x3 −   29  is a solution toy′′

    + 2y′ − 3y  =  x

    and  y2(x) = e2x5   is a solution to

    y′′

    + 2y′ − 3y = e2x

    Find a solution to y′′

    + 2y′ − 3y = 4x − 5e2x

    Solution :

    Let  L[y] = y′′

    + 2y′ − 3y. We are given that

    L[y1] = g1(x) = x   and   L[y2] = g2(x) = e2x

    Since we can express 4x − 5e2x = 4g1(x) − 5g2(x),

    65

  • 8/17/2019 mathematical method

    66/70

    then, by the superposition priciple,

    c1y1 + c2y2

    = 4

    −x

    3 −  2

    9

    − 5

    e2x

    5

    =   −4x

    3 − 8

    9 − e2x

    is a solution to :   L[y](x) = c1g1(x) + c2g2(x) = 4g1(x) − 5g2(x)

    20.2 Theorem 7

    Let  y p(x) be a particular solution to the non-homogeneous equation

    y′′

    + p(x)y′

    + q (x)y  =  g(x) (70)

    on the interval (a, b) and let  y1(x), y2(x) be linearly independent solutions on (a, b) of the corre-

    sponding homogeneous equationy′′

    + p(x)y′

    + q (x)y = 0

    Then every solution of (70) on the interval (a, b) can be expressed in the form

    y(x) = y p(x) + c1y1(x) + c2y2(x)

      ⇒  General solution of (70)

    20.3 Procedure For Solving Non-Homogeneous Equations

    To solve  y′′

    + py′

    + qy  = g :

    (a) Determine a general solution  c1y1 + c2y2  of the corresponding homogeneous equation.

    (b) Find a particular solution,  y p, of the given non-homogeneous equation.

    (c) Form the sum of the particular solution and a general to the homogeneous equation; that is,y  =  y p + c1y1 + c2y2

    to obtain a general solution to the given equation.

    Example 1:

    Given that  y p  =  x2 is a particular solution to

    y′′ − y = 2 − x2 (71)

    Find a general solution of (71).

    66

  • 8/17/2019 mathematical method

    67/70

    Solution :

    Let  y′′

    −y = 0

      ⇐  Homogeneous equation

    Auxiliary equation :   r2 − 1 = 0Then,  r = ±1   ⇒  A general solution to the homogeneous equation is  c1ex + c2e−x.Combining this particular solution  y p  = x

    2 of the no-homogeneous equation (71), we find that

    a general solution isy(x) = x2 + c1e

    x + c2e−x

    21 Method of Undetermined Coefficients

    Method of Undetermined Coefficients is a simple procedure for finding a particular solution to a

    non-homogeneous term g(x) is of a special type.

    Example 1:

    Find a particular solution toL[y](x) = y

    ′′

    + 3y′

    + 2y = 3x + 1

    Solution :

    We want to find a function  y p(x) such that  L[y p](x) is a linear function of  x, namely, 3x + 1.

    Now what kind of functions  y p  ”end up” as linear functions after applications of the operator

    L  Certainly if  L[y p](x) linear, so is  L[y p](x). So, let’s try the formy p(x) = Ax + B

    and attempt to match up  L[y p](x) with 3x + 1. SinceL[y p](x) = 0 + 3A + 2(Ax + B) = 2Ax + (3A + 2B)

    we need to solve the equation2Ax + (3A + 2B) = 3x + 1

    Two polynomials are equal when their corresponding coefficients are equal, so we set

    2A   = 3

    3A + 2B   = 1

    Solving this system gives  A =   32

      and  B  = −74

    . Thus the function

    67

  • 8/17/2019 mathematical method

    68/70

  • 8/17/2019 mathematical method

    69/70

    Example 3 :

    Find a particular solution to

    L[y](x) = y′′ − y′ − y  =  sin x

    Solution :

    We seek a function  y p  that satisfies  L[y p](x) = sin x. Our initial action might be to guess

    y p(x) = Asin x, in which case we gety p(x) = −2Asin x − Acos x

    However, since the right-hand side of () involves only sin x, this choice of solution would force

    A (and hence  y p   itselft) to be zero. This will not work, since  y p(x) = 0 is obviously not a

    solution.

    So, to compensate for the  cos x  term, let’s tryy p(x) = Acos x + Bsin x

    which we can verify givesL[y p](x) = (−2A − B)cos x + (A − 2B)sin x

    So, −2A − B   = 0A − 2B   = 1

    ⇒   A =   15   and  B  = −25 .Hence,

    y p(x) = 1

    5cos x − 2

    5sin x

    is a particular solution.

    More generally, for an equation of the form

    L[y](x) = a cos αx + b sin βx

    ,

    the method of undetermined coefficients suggest that we guess

    y p(x) = A cos αx + B sin βx

    and solve  y p(x) =  15

    cos x −   25

    sin x  for the unknowns  A and  B.

    69

  • 8/17/2019 mathematical method

    70/70

    Example 4:

    Find a particular solution to

    L[y](x) = y′′

    + 4y′

    = 3cos 2x

    Solution :

    We first guess   y p(x) = Acos 2x + Bsin 2x

    L[y p](x) = (4A − 4A)   =0

    cos  2x + (4B − 4B)   =0

    sin 2x = 3cos  2x

    ,

    It means that  y p(x) = Acos 2x + Bsin  2x   is not a particular solution for  y′′

    + 4y′

    = 3cos 2x

    since the left hand side is equal to zero. Let’s find the solution to the corresponding homoge

    neous equation,  y′′ + 4y′ = 0

    Auxiliary equation :   r4 + 4 = 0

    r   =   ±2i

    Then a general solution to the homogneous equation isc1e

    0cos 2x + c2e0sin  2x =  c1cos 2x + c2sin  2x

    Now we assumey p(x) = Axcos 2x + Bxsin  2x

    Then L[y p](x) = −4Asin 2x + 4B cos 2x = 3cos 2x,

    where  A = 0 and  B  =   34

    . So, we find that a particular solution is

    y p(x) = 3

    4xsin  2x

    .

    In the preceding example, the trial choice for  y p  did not work because it was a solution to

    the corresponding homogeneous equation. However, when we replaced  y p  by the new function

    y p  = xy p, we were able to find a particular solution to the non-homogeneous equation. Thisprocedure for ”repairing” the method of undetermined coefficients is generalized as follows.

    In any term in the trial expression for  y p   is a solution to the corresponding homogeneous

    equation, then yp by xyp. If the latter is also a solution, try x2yp, then x

    3yp, etc., ultimately


Recommended