+ All Categories
Home > Documents > Mathematical Statistics I · 2021. 1. 20. · Mathematical Statistics II January 20 2020 4 eion z o...

Mathematical Statistics I · 2021. 1. 20. · Mathematical Statistics II January 20 2020 4 eion z o...

Date post: 25-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
24
Mathematical Statistics I STA2212H S LEC 9101 Week 2 January 20 2021
Transcript
  • Mathematical Statistics ISTA2212H S LEC9101

    Week 2

    January 20 2021

  • The Computer Age Statistical Inference book makes the distinction between the two levelsof statistics, the algorithmic level and the inferential level, which is somewhat an arti!-cial distinction but a pretty good one. It says that the !rst level is doing something andthe second level is understanding what you did in the !rst level. The algorithmic level al-ways gets more action, in particular in these days of these big prediction algorithms likedeep learning. You’d think that’s the only thing going on. It isn’t the only thing going on.The deeper understanding of the kind of thing that Fisher and these people – Neyman,Hotelling – did for early 20th-century statistics, putting it on a solid intellectual groundso you can understand what’s at stake, is terribly important.

    Mathematical Statistics II January 20 2020

    y

  • Recap

    • likelihood notation notes on likelihood• score function, maximum likelihood estimate, observed and expectedFisher information

    • asymptotic normality of maximum likelihood estimators √n(θ̂ − θ)I1/21 (θ̂) d→ N(0, 1)• estimating the asymptotic variance j(θ̂), In(θ̂)• the delta method τ = g(θ)• pro!le likelihood see notes p.6• su"cient statistics• Newton-Raphson method for computing θ̂• irregular models U(0, θ)• Quasi-Newton• EM Algorithm Friday

    Mathematical Statistics II January 20 2020 2

    e o UH six 01 Ie 101 0 jidIIO Ilo

    econs

    closeted

    lstadw2proof

  • Today Start Recording

    1. Quasi-Newton2. Hypothesis testing AoS 10.13. Signi!cance testing SM 7.3.1; AoS 10.24. Tests based on likelihood AoS 10.6

    • January 25 3.00 – 4.00 Aleeza Gerstein Data Science and Applied Research Series• “Turning qualitative observation to quantitative measurement through statisticalcomputing” Link

    Mathematical Statistics II January 20 2020 3

  • Quasi-Newton Kolter et al.

    Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

    • Goal: maxθ ℓ(θ; x)• Solve:• Iterate:• Rewrite:• Quasi-Newton:••

    optim(par, fn, gr = NULL, ...,

    method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

    lower = -Inf, upper = Inf, control = list(), hessian = FALSE)

    Mathematical Statistics II January 20 2020 4

    e ion z o mle Zollo z 8127It ft t.EEYog ot EeicotyJ'l Et

    tap Pxppxiq.ggft ft e'totIl I He replace joyby

    by an approx000400k

    wedoesn't use 2nddoor

  • Quasi-Newton Kolter et al.

    Notes on optimization: Tibshirani, Pena, Kolter CO 10-725 CMU

    • Goal: maxθ ℓ(θ; x)• Solve: ℓ′(θ; x) = 0• Iterate: θ̂(t+1) = θ̂(t) + {j(θ̂(t))}−1ℓ′(θ̂(t))• Rewrite: j(θ̂(t))(θ̂(t+1) − θ̂(t)) = ℓ′(θ̂(t)) B∆θ = −∇ℓ(θ)• Quasi-Newton:

    • approximate j(θ̂(t)) with something easy to invert• use information from j(θ̂(t)) to compute j(θ̂(t+1))

    • optimization notes add a step size to the iteration θ̂(t+1) = θ̂(t) + #t{j(θ̂(t))}−1ℓ′(θ̂(t))

    optim(par, fn, gr = NULL, ...,

    method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

    lower = -Inf, upper = Inf, control = list(), hessian = FALSE)

    Mathematical Statistics II January 20 2020 5

    I 01st

  • Formal theory of testing AoS 10.1

    • Null and alternative hypothesis

    • Rejection region

    • Test statistic and critical value

    • Type I and Type II error

    • Power and Size

    Mathematical Statistics II January 20 2020 6

    X.nr.si n

    XnNfCEjRE 7 OE E Rkt sample space

    could be infinite

    ng FCIsmooth

    Hi m Ei 1 Eiksmooth

    Ho O EOto Ai OE Ot Pcomebacknull alterative eater

    if z E R rejectHoKEl R don'trejectHoretain null

  • Formal theory of testing AoS 10.1

    • Null and alternative hypothesis

    • Rejection region

    • Test statistic and critical value

    • Type I and Type II error

    • Power and Size

    Mathematical Statistics II January 20 2020 7

    T K R E TE EE AREE.tl nl3EII eodiLaFET

    D Bp X ER O cHoo EPs ER siteBan X 4 R i cOH Tha x R tpor

    Tx Prot HER pr type terrori pictypez error

  • P rake

  • Example: logistic regression

    Mathematical Statistics II January 20 2020 8

    I pvaluefNColl rejectHo don'tl

    se It typeZeror7 O HoP50 us

    Hips 0if p 05 commonthen

    statistically

    f5OQY.iozgocpa.ooiepa.oicpe.osaps 1ap1sifnfrcatPc 05 if Kel 1.96 2 Ftse

  • ... Example: logistic regression

    Boston.glmnull pchisq(489.54, 13, lower.tail = F)

    [1] 2.435111e-96

    Mathematical Statistics II January 20 2020 9

    t0 60 B Iff k

    crimZN Crim

    cresid.der.zo

    diff i XILRT need to prove Coming

  • ... Example: logistic regression

    Boston.glmpart pchisq(4.2891, 4, lower.tail = F)

    [1] 0.368292Mathematical Statistics II January 20 2020 10

    o e

    Ho fl Q0 Ho Ka to

    E I r p

  • Formal theory of testing AoS 10.1

    • Null and alternative hypothesis: H0 : θ ∈ Θ0; H1 : θ ∈ Θ1, Θ0 ∪Θ1 = Θ

    • Rejection region: R ⊂ X ; if x ∈ R “reject” H0

    • Test statistic and critical value: R = {x ∈ X : t(x) > c} c to be chosen

    • Type I and Type II error: Pr{t(X) > c | θ ∈ Θ0}, Pr{t(X) ≤ c | θ ∈ Θ1}

    • Power and Size: β(θ) = Prθ(X ∈ R) α = supθ∈Θ0 β(θ)

    • Optimal tests: among all level-α tests, !nd that with the highest power under H1level-α means size ≤ α

    Mathematical Statistics II January 20 2020 11

    parametric

    Oa t.tnfXER3

    Etfo

    f functroinreo size

    of te Ney man P on 33

  • Example: Two-sample t-test EH §1.2

    Mathematical Statistics II January 20 2020 12

    X INN peZ

    ki N µ T

    gpt valuestcx

    ALL thengeneticactrwb for ye plzpatient i ongue TEY Pn Et x

    gp2 dHo µ _plzHi µ Ma EE Ft

  • ... Example 1 AoS Ex.10.8

    leukemia_big

  • tao density00

    01012

    Left3.03

    p values0.05 P value

    sided

    statistically sign002

    Cat level 05

    X X iid Nl µ2 I known

    lettuce R I a s plemean

    P c L under Ho jucoTmf mostpowerful A µ o

    PCE Pnpso

    Es yin Thf I npn sE

    o

    Ho lo it KITE 196

    yuN median Xi Xn Praful g L

  • Example: Likelihood inference

    X1, . . . , Xn i.i.d. f (x; θ); θ̂(Xn) is maximum likelihood estimate. From last week:

    (θ̂ − θ)/!se .∼ N(0, 1)

    To test H0 : θ = θ0 vs. H1 : θ ∕= θ0 we could use

    W = W(Xn) = (θ̂ − θ0)/ "se,

    The critical region will be {x : |W(x)| > zα/2}, i.e. “reject” H0 when |W| ≥ zα/2This test has approximate size α:

    Pr(|W| > zα/2).= α.

    Power? See Figure 10.1 and Theorem 10.6

    Mathematical Statistics II January 20 2020 14

    I 01st Wald

    e0 ar F ior VIII

    Eat Yto

    Iwl jb E

  • ... likelihood inference

    16 17 18 19 20 21 22 23

    −4−3

    −2−1

    0log−likelihood function

    θθ

    log−likelihood

    θθθθθθ

    θθ −− θθ

    Mathematical Statistics II January 20 2020 15

    l.CO E 8 215fix o ex o

    d 0

    H aySo

    i

    I 21.55

    ftp.EEE a E

  • Example: comparing two binomials AoS Ex.107

    X ∼ Bin(n1,p1), Y ∼ Bin(n2,p2), δ = p1 − p2, H0 : δ = 0

    Mathematical Statistics II January 20 2020 16

    X ind't of Y

    rule pint Fitz Ema Fi Fac lumenFelis

    dararaffitts exactthPict Pr Normalhz approxx

    Wald test at level a rejectHo 8 0

    if 1811 Eero 1.96

  • Examples: 10.8 and 10.9 AoS

    equality of means; equality of medians; Wald test

    Mathematical Statistics II January 20 2020 17

    power Png q 9t NapproxPng E s 1.96

    she 8 I to binom

    Pnf or I 965k or

    4 p 96 Eunappa

    10.9 X Xn iid fC YYun iid f f

    Ho mede medz HqmedntmedzMr Mr A

  • find a f T thinknow at least T sonethadenity

    Reject Ho iff Po TER Ifsize

    need T to be Asensitive to no 05Hr Pna.lt TcfRJsm

  • p-values AoS §10.2; SM §7.3.1

    The formal theory of testing imagines a decision to “reject H0” or not, according as X ∈ Ror X /∈ R, for some de!ned region R (e.g. Z > 1.96 )

    This is useful for deriving the form of optimal tests, but not useful in practice.

    Doesn’t distinguish between Z = 1.97 and Z = 19.7, for example.

    P-values give more precise information about the null hypothesis

    AoS de!nition: p-value = inf{α : T(Xn) ∈ Rα} Def 10.11

    SM de!nition pobs = PrH0{T(Xn) ≥ tobs}

    Mathematical Statistics II January 20 2020 18

    Tht level 05 pz.tt

    p o

    p o48

    I observed value if Ho true

    ugh getty malt one or moreextreme the data

    mix 7 in ol pnww.ifs.pt75 oEaE

    know 0 1 tobsatXDI2ha

  • Example: exponential SM Ex.7.22

    X1, . . . Xn i.i.d. f (x;λ) = λe−λx

    H0 : λ = λ0

    Mathematical Statistics II January 20 2020 19

    tix aned 2mi

    tix IX i Pcn d

    Th tan tobs

  • ... Example: logistic regression

    Boston.glmnull pchisq(489.54, 13, lower.tail = F)

    [1] 2.435111e-96

    Mathematical Statistics II January 20 2020 20


Recommended