+ All Categories
Home > Documents > Mathematics in Acient India

Mathematics in Acient India

Date post: 06-Apr-2018
Category:
Upload: sadanand-kumar
View: 213 times
Download: 0 times
Share this document with a friend
17
4 RESONANCE ç April 2002 SERIES ç ARTICLE In th is se rie s o f a rticles, w e in te n d to h av e a  g li m p se o f so m e o f th e la n d m a rk s in a n c i e n t In - d ia n m a th e m a ti c s w ith sp e c ia l e m p h a sis o n n u m - b e r th e o ry . T h is issu e fe a tu re s a b ri e f o v e rv ie w    o f so m e o f th e h ig h p ea k s o f m a th e m a ti c s in a n - c ie n t In d ia . In th e n e x t p a rt w e sh a ll d e sc rib e  A ry a b h a ta 's g e n e ra l so l u tio n in in te g e rs o f th e  e q u a t i o n  a x ¡ by =  c . In su b se q u e n t i n sta l m e n ts  w e sh a l l d i scu ss i n so m e d e ta i l tw o o f th e m a -  jo r co n trib u ti o n s b y In d i a n s i n n u m b e r th e o ry . T h e c l i m a x o f th e In d i a n a ch i e v e m e n ts i n a l g e - b ra a n d n u m b e r th e o ry w a s th e i r d ev e l o p m e n t o f th e i n g e n i o u s  chakravala m e th o d fo r so l v i n g , i n   i n te g e rs , th e e q u a tio n   x 2 ¡ D y 2 = 1 , e rr o n e o u sl y  k n o w n a s th e P e ll e q u a ti o n . W e sh a ll l a te r d e - sc rib e th e p a rtia l so lu ti o n o f B ra h m a g u p ta a n d   th en th e c o m p le te so lu tio n d u e to J a y a d e v a a n d   B h a sk a ra ch a ry a . V e d i c M a th em a ti cs: T h e S u l b a S u tra s  M a th em a ti cs, in its early st a ges,d ev el o p ed m a i n ly a l o n g  tw o b ro a d ov erl a p p in g trad i ti o n s: (i) th e geom etric an d (ii) th e a ri th m etical an d algeb ra ic. A m on g th e p re- G reek an ci en t ci v i l i za ti o n s, i t i s i n I n d i a th a t w e see  a stro n g em p h asis o n b oth th ese g reat strea m s of m a th - em a ti cs. O th er a n ci en t civ il i za ti on s like th e E gyp ti a n  an d th e B a b y lo n i a n h a d p rog ressed ess en ti a ll y a l o n g th e  co m p u tati o n al trad i ti o n . A S eid en b erg, a n em i n en t al - geb rai st a n d h i st o ria n o f m a th em a tics, tr a ce d th e o ri g i n  o f so p h isti ca ted m a th em atics to th e o ri g in a tors of th e  R ig V ed ic ritu als ([1, 2]). Mathematics in Ancient India 1. An Overview  Amartya Kumar Dutta Amartya Kumar Dutta is an Associate Professor of Mathematics at the Indian Statistic al Institute, Kolkata. His research interest is in commutative algebra. Keywords. Taittiriya Samhita, Sulba-sutras, Chakravala method, Meru- Prastara, Vedic altars, Yukti- bhasa, Madhava series.
Transcript
Page 1: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 1/16

4 RESONANCE ç April 2002

SERIES ç ARTICLE

I n t h is s e r ie s o f a r t ic le s , w e in t e n d t o h a v e a  

g lim p se o f s o m e o f th e la n d m a rk s in a n c ie n t In -

d ia n m a th e m a tic s w ith sp e c ia l e m p h a sis o n n u m -

b e r th e o ry . T h is issu e fe a tu re s a b rie f o v e rv ie w     

o f so m e o f th e h ig h p ea k s o f m a th e m a tic s in a n -

c ie n t In d ia . In th e n e x t p a rt w e sh a ll d e sc rib e  

A ry a b h a ta 's g e n e ra l so lu tio n in in te g e rs o f th e 

e q u a t io n   a x  ¡  by  =   c . In su b se q u e n t in sta lm e n ts w e s h a ll d is c u s s in s o m e d e t a il tw o o f t h e m a -

 jo r co n trib u tio n s b y In d ia n s in n u m b e r th e o ry .

T h e c lim a x o f th e In d ia n a ch ie v e m e n ts in a lg e -

b r a a n d n u m b e r t h e o r y w a s t h e ir d e v e lo p m e n t

o f th e in g e n io u s  chakravala  m e th o d fo r so lv in g , in   

in te g e rs , th e e q u a tio n   x 2  ¡  D y 2  = 1 , e rr o n e o u sly 

k n o w n a s th e P e ll e q u a tio n . W e sh a ll la te r d e -

sc rib e th e p a rtia l so lu tio n o f B ra h m a g u p ta a n d   

th en th e c o m p le te so lu tio n d u e to J a y a d e v a a n d   

B h a sk a ra ch a ry a .

V e d ic M a t h e m a t ic s : T h e S u lb a S u t r a s  

M ath em a tics, in its ea rly sta g es, d ev elo p ed m a in ly a lo n g tw o b road ov erla p p in g tra d itio n s: (i) th e geo m etric a n d (ii) th e a rith m etica l a n d alg eb ra ic. A m on g th e p re-G reek an cien t civ iliza tio n s, it is in In d ia th a t w e see 

a stro n g em p h asis o n b o th th ese g rea t strea m s o f m a th -em a tics. O th er a n cien t civ iliza tio n s lik e th e E gy p tian an d th e B a b y lo n ia n h a d p rog ressed essen tia lly a lon g th e co m p u tatio n a l trad ition . A S eid en b erg, a n em in en t a l-geb raist a n d h isto ria n o f m a th em a tics, traced th e o rigin of so p h istica ted m a th em atics to th e origin ators of th e R ig V ed ic ritu als ([1, 2]).

Mathematics in Ancient India

1. An Overview

 Amartya Kumar Dutta

Amartya Kumar Dutta is

an Associate Professor of 

Mathematics at the

Indian Statistical

Institute, Kolkata. His

research interest is in

commutative algebra.

Keywords.

Taittiriya Samhita, Sulba-sutras,

Chakravala method, Meru-

Prastara, Vedic altars, Yukti-

bhasa, Madhava series.

Page 2: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 2/16

 5RESONANCE ç April 2002

SERIES ç ARTICLE

T h e o ld est kn ow n m ath em atics tex ts in ex isten ce a re th e S u lba-sutras of B a u d h ay an a, A p astam b a a n d K a ty ay a n a w h ich form p art o f th e litera tu re o f th e S u tra p erio d ofth e la ter V ed ic a g e. T h e S u lb asu tra s h ad b een estim a ted 

to h av e b een com p osed arou n d 80 0 B C (som e recent re-search ers are su gg estin g ea rlier d a tes). B u t th e m a th e-m atica l k n ow led ge record ed in th ese  sutras (ap h orism s)are m u ch m ore a n cien t; fo r th e S u lb a a u th o rs em p h a sise th a t th ey w ere m erely statin g fa cts a lrea d y k n ow n to th e co m p osers of th e B rah m an as an d S a m h itas o f th e ea rly V ed ic a g e ([3 ], [1], [2 ]).

T h e S u lb asu tra s g ive a co m p ila tio n o f th e resu lts in 

m ath em a tics th a t h ad b een u sed for th e d esig n in g a n d co n stru ction s o f th e va riou s eleg an t V ed ic ¯ re-a ltars rig h tfrom th e d aw n o f civ iliza tio n . T h e altars h ad rich sym -b o lic sig n i ca n ce an d h a d to b e co n stru cted w ith ac -cu racy. T h e d esig n s of sev eral o f th ese b rick -a ltars are q u ite in vo lv ed { fo r in sta n ce, th ere are co n stru ction s d e-p ictin g a falco n in ° ig h t w ith cu rved w in gs, a ch ario t-w h eel com p lete w ith sp ok es o r a tortoise w ith ex ten d ed h ea d a n d leg s! C o n stru ction s o f th e ¯ re-a ltars are d e-

scrib ed in a n en o rm o u sly d ev elop ed fo rm in th e  Sata-patha B rah m an a  (c. 2000 B C ; vid e [3]); som e of th em     are m ention ed in th e earlier T aittiriya S am hita  (c. 300 0 B C ; v id e [3]); b u t th e sa cri cia l ¯ re-a ltars are referred 

 { w ith ou t exp licit con stru ction { in th e even earlier R ig V ed ic S a m h itas, th e o ld est strata o f th e ex tan t V ed ic lit-era tu re. T h e d escrip tio n s of th e ¯ re-a lta rs from th e T ait-tiriya S a m h ita on w ard s are ex actly th e sa m e as th ose fou n d in th e la ter S u lb a su tras.

P lan e g eo m etry stan d s o n tw o im p orta n t p illa rs h av -in g a p p lica tio n s th rou gh o u t h istory : (i) th e resu lt p op -u larly k n ow n a s th e P y th a g ora s th eo rem ' an d (ii) th e p rop erties o f sim ila r ¯ gu res. In th e S u lb asu tra s, w e see a n ex p licit statem en t of th e P y th a go ra s th eorem     an d its ap p lica tio n s in va rio u s g eo m etric co n stru ctio n ssu ch as co n stru ction of a squ a re eq u al (in a rea ) to th e 

From the  YANAATYAK

sulba.

Vakrapaksa-syenacit.

First layer of construction 

(after Baudhayana) 

E A F

O P B

D R Q

H C G

Page 3: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 3/16

6 RESONANCE ç April 2002

SERIES ç ARTICLE

su m , o r d i® eren ce, o f tw o g iv en squ ares, o r to a rec-tan gle, or to th e su m of n  squ ares. T h ese co n stru c-tio n s im p licitly in v o lv e ap p lica tion of a lg eb raic id en -titites su ch a s (a  §  b )2  =   a 2  +   b 2  §  2 a b , a 2  ¡  b 2  =  

(a  +   b )(a  ¡  b ), a b  = ((a  +   b )= 2 )2 

¡  ((a  ¡  b )= 2)2 

a n d n a 2  = ((n  + 1 )= 2 )2 a 2  ¡  ((n  ¡  1 )= 2 )2 a 2 . T h ey re° ecta b len d in g of g eo m etric an d su b tle alg eb raic th in k in g an d in sight w h ich w e associate w ith E u clid . In fact, th e S u lb a co n stru ctio n o f a sq u are eq u al in a rea to a giv en recta n gle is ex a ctly th e sam e as g iv en b y E u clid severalcen tu ries la ter ! T h ere are g eo m etric solu tio n s to w h a ta re a lg eb raic a n d n u m b er-th eo retic p rob lem s.

P y th a g oras th eo rem w a s k n ow n in o th er an cien t civ iliza -tio n s like th e B a b y lon ia n , b u t th e em p h a sis th ere w a son th e n u m erical an d n o t so m u ch on th e p rop er geo -m etric asp ect w h ile in th e S u lb asu tras o n e sees d ep th in b o th a sp ects { esp ecia lly th e geo m etric. T h is is a su b tle p o in t a n a ly sed in d etail b y S eid en b erg. F rom certa in d i-a g ram s d escrib ed in th e S u lb a su tra s, sev eral h isto ria n sa n d m a th em a ticia n s lik e B u rk , H a n kel, S ch op en h a u er,S eid en b erg an d V an d er W aerd en h av e con clu d ed th at

th e S u lb a a u th ors p ossessed p ro ofs o f geo m etrica l resu ltsin clu d in g th e P y th ag oras th eo rem { som e o f th e d etailsa re an a ly sed in th e p ion eerin g w o rk of D a tta ([2 ]). O n e o f th e p ro o fs o f th e P y th a g oras th eo rem , ea sily d ed u cib le from th e S u lb a verses, is la ter d escrib ed m o re ex p licitly b y B h askara II (11 50 A D ).

A p a rt from th e k n ow led g e, skill a n d in g en u ity in geo m -etry a n d g eo m etric alg eb ra, th e V ed ic civ iliza tio n w as

stro n g in th e co m p u tation al asp ects o f m a th em a tics a sw ell { th ey h a n d led th e a rith m etic o f fractio n s a s w ella s su rd s w ith ea se, fo u n d g o o d ratio n a l ap p rox im a tio n sto irra tio n al n u m b ers like th e squ a re roo t o f 2, an d , o fco u rse, u sed severa l sig n i ca n t resu lts o n m en su ratio n .

A n a m a zin g fea tu re o f all an cien t In d ian m a th em a tica llitera tu re, b eg in n in g w ith th e S u lb asu tras, is th at th ey 

“How great is the

science which

revealed itself in

the Sulba, and how

meagre is myintellect! I have

aspired to cross

the unconquerable

ocean in a mere

raft.’’

B Datta alluding to 

Kalidasa 

“But the Vedic Hindu,

in his great quest of

the Para-vidya,

Satyasya Satyam ,

made progress in the

Apara-Vidya ,

including the various

arts and sciences, to

a considerable

extent, and with a

completeness which

is unparallelled in

antiquity.’’

 B Datta 

Page 4: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 4/16

 7RESONANCE ç April 2002

SERIES ç ARTICLE

th ey a re c o m p osed en tirely in v erses { a n in cred ib le fea t!T h is trad itio n o f co m p o sin g terse sutras, w h ich co u ld b e ea sily m em o rised , en su red th at, in sp ite o f th e p au city a n d p erish ab ility of w ritin g m a teria ls, so m e o f th e co re 

k n ow led g e go t o rally tran sm itted to su ccessiv e gen era-tio n s.

P o st-V e d ic M a th e m a tic s 

D u rin g th e p erio d 60 0 B C -30 0 A D , th e G reek s m ad e p rofo u n d co n trib u tio n s to m a th em a tics { th ey p io n eered th e ax iom a tic a p p roa ch th a t is ch a racteristic o f m o d ern m ath em a tics, crea ted th e m a g n i cen t ed i ce of E u clid -ea n ge o m etry, fo u n d ed trigo n o m etry, m a d e im p ressive b eg in n in gs in n u m b er th eo ry, a n d b rou g h t o u t th e in -trin sic b ea u ty, eleg a n ce a n d g ra n d eu r of p u re m a th -em a tics. B a sed on th e solid fou n d ation p rov id ed b y E u clid , G reek g eo m etry soa red fu rth er in to th e h ig h erg eo m etry of co n ic sectio n s d u e to A rch im ed es a n d A p ol-lo n iu s. A rch im ed es in tro d u ced in tegratio n a n d m a d e several o th er m a jo r co n trib u tio n s in m a th em a tics a n d p h y sics. B u t a fter th is b rillia n t p h a se o f th e G reek s, cre-

a tiv e m a th em a tics v irtu ally ca m e to a h alt in th e W esttill th e m od ern revival.

O n th e o th er h a n d , th e In d ian co n trib u tio n , w h ich b e-g a n fro m th e ea rliest tim es, co n tin u ed v ig oro u sly righ tu p to th e six teen th cen tu ry A D , esp ecia lly in a rith m etic,a lgeb ra an d trig o n o m etry. In fact, fo r several cen tu riesa fter th e d eclin e of th e G reek s, it w a s o n ly in In d ia, a n d to som e ex ten t C h in a , th a t o n e co u ld ¯ n d a n a b u n d a n ce 

o f c reativ e a n d o rig in a l m a th em a tica l a ctiv ity. In d ia n m ath em a tics u sed to b e h eld in h ig h esteem b y co n tem -p o ra ry sch o lars w h o w ere ex p o sed to it. F o r in sta n ce,a m a n u scrip t fo u n d in a S p an ish m o n astery (97 6 A D )reco rd s ([4 ],[5 ]): \T he In dian s h ave a n extrem ely su btle 

an d pen etratin g in tellect, a n d w hen it com es to arith-

m etic, geom etry an d other su ch ad van ced disciplin es,

other ideas m ust m ake w ay for theirs. T he best proof of 

“nor did he [Thibaut]

formulate the

obvious conclusion,

namely, that the

Greeks were not the

inventors of plane

geometry, rather it

was the Indians.’’

A Seidenberg 

“Anyway, the

damage had been

done and the

Sulvasutras have

never taken the

position in the

history of

mathematics that

they deserve.’’

A Seidenberg 

Page 5: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 5/16

8 RESONANCE ç April 2002

SERIES ç ARTICLE

this is the nine sym bols w ith w hich they represent each 

n u m ber n o m a tter ho w large."  S im ila r trib u te w as p a id b y th e S y rian sch o la r S everu s S eb ok h t in 66 2 A D ([5],[6 ]).

T h e D e c im a l N o ta tio n a n d A rith m e tic  

In d ia gav e to th e w orld a p riceless g ift { th e d ecim a lsy stem . T h is p rofou n d a n o n y m ou s In d ia n in n ov a tio n isu n su rp assed for sh eer b rillia n ce o f ab stra ct th o u g h t a n d u tility a s a p ractica l in ven tio n . T h e d ecim al n o tatio n d eriv es its p ow er m a in ly from tw o k ey strok es o f g en iu s:th e co n cep t of p lac e-va lu e a n d th e n o tio n of zero a s a d igit. G B H a lsted ([7 ]) h ig h ligh ted th e p ow er o f th e p lace-va lu e of zero w ith a b ea u tifu l im ag ery : \T he im -

portance ofthe creation ofthe zero m ark can never be ex-

aggerated. T h is givin g to airy n othin g, n ot m erely a local

habitation an d a n am e, a pictu re, a sym bol, bu t helpfu l

pow er, is the characteristic of the H in du race w hen ce it

spran g. It is like coin in g the N irvan a in to dy n am os. N o 

sin gle m athem a tical creation has been m ore poten t for 

the gen eral on -go of in telligen ce a n d pow er." 

T h e d ecim a l sy stem h a s a d ecep tive sim p licity a s a re-su lt of w h ich ch ild ren allover th e w orld learn it even at a ten d er ag e. It h a s a n eco n om y in th e n u m b er of sy m b olsu sed a s w ell a s th e sp a ce o ccu p ied b y a w ritten n u m b er,a n a b ility to e® ortlessly ex p ress arb itrarily la rge n u m -b ers an d , a b ov e a ll, co m p u tatio n al fa cility. T h u s th e tw elve-d igit R o m an n u m b er (D C C C L X X X V III) is sim -p ly 888 in th e d ecim al system !

M ost of th e stan d ard resu lts in b asic a rith m etic a re o f In -d ian orig in . T h is in clu d es n ea t, sy stem atic a n d straig h t-fo rw a rd tech n iq u es o f th e fu n d a m en tal a rith m etic o p er-a tio n s: a d d itio n , su b tractio n , m u ltip lica tion , d iv ision ,tak in g sq u a res an d cu b es, an d ex tra ctin g squ a re a n d cu b e roo ts; th e ru les o f o p eration s w ith fractio n s a n d su rd s; va rio u s ru les on ratio a n d p rop ortion lik e th e ru le 

“A common source

for the Pythagoreanand Vedic mathe-

matics is to be

sought either in the

Vedic mathematics

or in an older

mathematics very

much like it. ... What

was this older,

common source

like? I think its

mathematics was

very much like what

we see in the

Sulvasutras.’’

 A Seidenberg 

“The cord stretched

in the diagonal of a

rectangle produces

both (areas) which

the cords forming

the longer and

shorter sides of an

oblong produce

separately.’’

(translation from the

Sulbasutras)

Page 6: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 6/16

9RESONANCE ç April 2002

SERIES ç ARTICLE

o f th ree; an d several co m m ercial a n d related p ro b lem slik e in co m e an d ex p en d itu re, p ro¯ t a n d lo ss, sim p le a n d co m p ou n d in terest, d isco u nt, p a rtn ersh ip , co m p u tatio n so f th e av erag e im p u rities of g o ld , sp eed s an d d ista n ces,

a n d th e m ix tu re a n d cistern p rob lem s sim ila r to th ose fou n d in m o d ern texts. T h e In d ia n m eth o d s o f p erform -in g lo n g m u ltip lica tio n s a n d d iv ision s w ere in tro d u ced in E u rop e a s late a s th e 1 4 th cen tu ry A D . W e h av e b eco m e so u sed to th e ru les of op eratio n s w ith fraction s th a t w e ten d to ov erlo ok th e fa ct tha t th ey co n ta in id ea s w h ich w ere u n fa m iliar to th e E g y p tia n s, w h o w ere gen erally p ro¯ cien t in a rith m etic, an d th e G reek s, w h o h a d som e o f th e m ost b rillia n t m in d s in th e h isto ry of m ath em a t-

ics. T h e ru le o f th ree, b rou gh t to E u rop e v ia th e A rab s,w as very h igh ly rega rd ed b y m erch an ts d u rin g a n d af-ter th e ren a issa n ce. It ca m e to b e k n ow n a s th e G o ld en R u le fo r its g reat p o p u la rity a n d u tility in co m m ercia lco m p u tatio n s { m u ch sp a ce u sed to b e d ev o ted to th isru le by th e early E u rop ean w riters on arith m etic.

T h e ex cellen ce a n d sk ill atta in ed b y th e In d ia n s in th e fou n d atio n s o f a rith m etic w a s p rim a rily d u e to th e a d -

va n ta g e of th e ea rly d iscov ery o f th e d ecim a l n otation { th e k ey to a ll p rin cip al id ea s in m o d ern a rith m etic. F orin stan ce, th e m o d ern m eth o d s for ex tra ctin g sq u a re a n d cu b e roo ts, d escrib ed b y A ry ab h a ta in th e 5th cen tu ry A D , clev erly u se th e id ea s of p la ce va lu e a n d zero a n d th e a lg eb raic ex p an sio n s of (a  +   b )2  an d (a  +   b )3 . T h ese m eth o d s w ere in tro d u ced in E u ro p e o n ly in th e 1 6th cen tu ry A D . A p art from th e ex a ct m eth o d s,In d ian s also in v en ted several in g en io u s m eth o d s fo r d eterm in a tio n of

a p p rox im a te squ a re roo ts o f n o n -squ a re n u m b ers, so m e o f w h ich w e sh a ll m en tion in a su b seq u en t issu e.

D u e to th e g ap s in ou r k n ow led g e a b o u t th e ea rly p h ase o f p ost-V ed ic In d ian m a th em a tics, th e p recise d etailsrega rd in g th e origin o f d ecim al n o ta tio n is n o t k n ow n .T h e co n cep t of zero ex isted b y th e tim e o f P in g ala (d a ted 2 0 0 B C ). T h e id ea o f p la ce-va lu e h a d b een im p licit in 

“The striking thing

here is that we have

a proof. One will lookin vain for such

things in Old-

Babylonia. The Old-

Babylonians, or their

predecessors, must

have had proofs of

their formulae, but

one does not find

them in Old-

Babylonia.’’

A Seidenberg 

referring to a verse

in the Apastamba

Sulbasutra on an

isoceles trapezoid)

“... the basic point is

that the dominant

aspect of Old

Babylonian

mathematics is itscomputational

character ... The

Sulvasutras know

both aspects

(geometric and

computational) and

so does the

Satapatha

Brahmana.’’

A Seidenberg 

Page 7: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 7/16

 10 RESONANCE ç April 2002

SERIES ç ARTICLE

a n cien t S an sk rit term in o log y { as a resu lt, In d ian s cou ld e® o rtlessly h a n d le large n u m b ers righ t from th e V ed ic A ge. T h ere is term in o lo g y fo r a ll m u ltip les o f ten u p to 1 0 1 8  in ea rly V ed ic literatu re, th e R a m ay a n a h a s term s

all th e w ay u p to 10 5 5 

, a n d th e J a in a -B u d d h ist tex tssh ow freq u en t u se o f large n u m b ers (u p to 10 1 4 0 !) fo rth eir m ea su rem en ts of sp a ce an d tim e. E x p ressio n s o fsu ch la rg e n u m b ers are n o t fo u n d in th e co n tem p orary w o rk s o f oth er n a tio n s. E v en th e b rillia n t G reek s h a d n o term in o log y fo r d en om in atio n s a b ov e th e m y riad (10 4 )w h ile th e R o m an term in o lo g y stop p ed w ith th e m ille (10 3 ). T h e stru ctu re o f th e S an skrit n u m eral sy stem a n d th e In d ia n lov e for larg e n u m b ers m u st h av e trig g ered 

th e crea tio n of th e d ecim a l system .

A s w e sh a ll see later, ev en th e sm a llest p o sitiv e in teg ralsolu tion o f th e eq u ation  x 2 ¡ D y 2  = 1 co u ld b e very la rg e;in fa ct, for D   = 61, it is (17 663 19 049 ; 226 153 980 ). T h e  ea rly In d ia n so lu tio n to th is fairly d eep p rob lem co u ld b e p a rtly a ttrib u ted to th e In d ian s' trad ition a l fa scin a tio n for large nu m b ers an d ab ility to p lay w ith th em .

D u e to th e ab sen ce o f go o d n o tation s, th e G reeks w ere n o t stro n g in th e co m p u tatio n al asp ects o f m a th em a tics { o n e of th e facto rs resp o n sib le fo r th e ev en tu a l d eclin e of G reek m a th em a tics. A rch im ed es (28 7-2 12 B C ) d id realise th e im p orta n ce o f g o o d n otation , an d m a d e n o -tab le p rog ress to ev olv e on e, b u t failed to a n ticip ate th e In d ia n d ecim a l system . A s th e g reat F ren ch m a th em a ti-cia n L ap lace (17 49 -18 2 7) rem arked : \ T he im portan ce o f 

this in ven tion is m ore readily appreciated w hen on e con -

siders that it w as beyond the tw o greatest m en of antiq-uity: A rchim edes and A pollonius."

T h e d ecim a l sy stem w a s tra n sm itted to E u rop e th rou gh th e A rab s. T h e S an sk rit w ord \ sunya " w as tran slated in to A rab ic as \ sifr " w h ich w as in tro d u ced in to G er-m an y in th e 1 3th centu ry as \ cifra " from w h ich w e h av e th e w ord \ cipher " . T h e w o rd \  zero " p rob ab ly com es

“The diagonal of a

rectangle produces

both (areas) which

its length and

breadth produce

separately.’’

(original verse from

the Sulbasutras

along with the

translation are

given in [2], p.104)

“The Indians have an

extremely subtle and

penetrating intellect,

and when it comes

to arithmetic,

geometry and other

such advanced

disciplines, other

ideas must make

way for theirs.’’

Page 8: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 8/16

 11RESONANCE ç April 2002

SERIES ç ARTICLE

from th e L atin ised form \ zephirum   " of th e A rab ic  sifr .L eo n ard o F ib on acci of P isa (11 80 -12 4 0), th e ¯ rst m a -

 jor E u rop ean m ath em a ticia n o f th e secon d m illen n iu m ,p lay ed a m a jo r role in th e sp read o f th e In d ia n n u m eral

system in E u rop e. T h e In d ia n n o tation an d a rith m etic ev en tu ally g o t sta n d a rd ised in E u rop e d u rin g th e 1 6 th -17 th cen tu ry.

T h e d ecim al system stim u lated a n d ac celerated trad e an d com m erce as w ell as astron om y an d m ath em atics.It is n o co in cid en ce th a t th e m a th em a tica l an d scien ti c ren a issa n ce b eg a n in E u rop e o n ly after th e In d ia n n o -tatio n w a s a d op ted . In d eed th e d ecim a l n o tation is th e 

very p illa r o f all m o d ern civ iliza tio n .

A lg e b ra 

W h ile sop h istica ted g eo m etry w as in ven ted d u rin g th e origin o f th e V ed ic ritu a ls, its ax iom atisation an d fu r-th er d evelo p m en t w as d on e b y th e G reek s. T h e h eigh trea ch ed b y th e G reeks in g eo m etry b y th e tim e o f A p ol-lon iu s (26 0-1 7 0 B C ) w a s n o t m a tch ed b y a n y su b seq u en tan cien t o r m ed ieva l civ ilisatio n . B u t p rog ress in geo m e-try p ro p er so o n rea ch ed a p o in t o f stag n a tio n . B etw een th e tim es of P ap p u s (30 0 A D ) { th e last b ig n am e in G reek g eom etry { an d m o d ern E u rop e, B rah m ag u p ta'sb rillia n t th eo rem s (62 8 A D ) on cy clic q u ad rila tera ls co n -stitu te th e solitary g em s in th e h isto ry of g eo m etry.F u rth er p rog ress n eed ed n ew tech n iq u es, in fa ct a co m -p letely n ew a p p roa ch in m ath em a tics. T h is w as p ro -v id ed b y th e em ergen ce an d d evelop m en t o f a n ew d is-

cip lin e { a lg eb ra. It is o n ly a fter th e estab lish m en t ofan a lg eb ra cu ltu re in E u rop ean m ath em atics d u rin g th e 16 th centu ry A D th at a resu rgen ce b ega n in geo m etry th rou g h its alge b raisation b y D esca rtes an d F erm a t in ea rly 1 7 th cen tu ry. In fact, th e a ssim ila tio n an d re¯ n e-m en t of alg eb ra h a d also set th e stag e for th e rem a rka b le strid es in n u m b er th eo ry a n d ca lcu lu s in E u rop e from   th e 17 th cen tu ry.

“Indeed, if oneunderstands by

algebra the

application of

arithmetical

operations to

complex magnitudes

of all sorts, whether

rational or irrational

numbers or space-

magnitudes, then the

learned Brahmins of

Hindostan are the

real inventors of

algebra.’’

H Hankel 

“I will omit all

discussion of the

science of the

Indians, a people not

the same as theSyrians; of their

subtle discoveries in

astronomy,

discoveries that are

more ingenious than

those of the Greeks

and the Babylonians;

and of their valuable

methods of

calculation which

surpass description.’’

(Severus Sebokht in

662 AD)

Page 9: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 9/16

 12 RESONANCE ç April 2002

SERIES ç ARTICLE

“The importance of

the creation of the

zero mark can never

be exaggerated.

This giving to airy

nothing, not merely alocal habitation and a

name, a picture, a

symbol, but helpful

power, is the

characteristic of the

Hindu race whence it

sprang. It is like

coining the Nirvana

into dynamos. No

single mathematical

creation has been

more potent for the

general on-go of

intelligence and

power.’’

“The intellectual

potentialities of the

Indian

nation are unlimited

and not many years

would perhaps be

needed

before India can take

a worthy place in

world Mathematics.’’

(Andre Weil in 1936)

A lgeb ra w as on ly im p licit in th e m a th em a tics o f sev -eral an cien t civ ilisatio n s till it ca m e o u t in th e o p en w ith th e in tro d u ctio n o f literal or sy m b olic a lgeb ra in In d ia . B y th e tim e of A rya b h ata (49 9 A D ) an d B ra h -

m a gu p ta (62 8 A D ), sym b o lic a lg eb ra h a d ev o lve d in In -d ia in to a d istin ct b ran ch of m a th em atics a n d b eca m e o n e of its cen tra l p illars. A fter ev olu tio n th rou gh sev -eral sta ges, alg eb ra h as n ow com e to p lay a key ro le in m o d ern m ath em atics b oth as a n in d ep en d en t area in itsow n righ t a s w ell a s a n in d isp en sa b le too l in oth er ¯ eld s.In fa ct, th e 20 th cen tu ry w itn essed a v ig o ro u s p h a se o fa lg eb raisation of m a th em a tics'. A lgeb ra p rov id es ele-

g a n ce, sim p licity, p recision , clarity an d tech n ica l p ow er

in th e h a n d s of th e m ath em atician s. It is rem a rka b le h ow ea rly th e In d ian s h a d realised th e sig n i a n ce o f al-g eb ra a n d h ow stron g ly th e lea d in g In d ian m a th em ati-cia n s lik e B rah m ag u p ta (62 8 A D ) an d B h a skara II (11 5 0 A D ) a sserted a n d esta b lish ed th e im p o rta n ce of th eirn ew ly -fo u n d ed d iscip lin e as w e sh a ll see in su b seq u en tissu es.

In d ia n s b ega n a sy stem a tic u se o f sym b ols to d en o te u n -

k n ow n q u a n tities a n d a rith m etic o p eratio n s. T h e fou ra rith m etic o p eratio n s w ere d en o ted b y \ y u " , \ k sh ", \g u "a n d \ b h a " w h ich a re th e ¯ rst letters (or a little m o d i-¯ ca tio n ) o f th e co rresp o n d in g S a n sk rit w o rd s yuta  (ad -d itio n ), ksaya  (su b tractio n ), guna   (m u ltip lica tio n ) a n d bhaga (d iv ision ); sim ila rly \ ka " w a s u sed for karani(root),w h ile th e ¯ rst letters o f th e n a m es o f d i® eren t co lo u rsw ere u sed to d en o te d i® eren t u n k n ow n va ria b les. T h isin tro d u ctio n o f sy m b olic rep resen ta tion w as a n im p o r-

tan t step in th e rap id ad va n cem en t of m ath em a tics. W h i-le a ru d im en tary u se o f sy m b ols ca n a lso b e seen in th e G reek tex ts o f D io p h a n tu s, it is in In d ia th a t a lg eb raic form a lism ach iev ed fu ll d ev elop m en t.

T h e In d ian s classi ed an d m a d e a d etailed stu d y ofeq u a tio n s (w h ich w ere ca lled  sam i-karana ), in trod u ced n eg a tive n u m b ers to g eth er w ith th e ru les fo r arith m etic 

Page 10: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 10/16

 13RESONANCE ç April 2002

SERIES ç ARTICLE

op era tio n s in v o lv in g zero an d n eg a tiv e n u m b ers, d is-co v ered resu lts o n su rd s, d escrib ed solu tio n s o f lin ea ran d q u ad ratic eq u a tio n s, g av e fo rm u la e for a rith m etic an d g eo m etric p rog ressio n as w ell as id en titites in v o lv -

in g su m m a tio n o f ¯ n ite series, an d a p p lied sev era l u sefu lresu lts o n p erm u tation an d co m b in a tio n s in clu d in g th e form u lae for n  P  r  a n d  n  C  r . T h e en la rgem en t o f th e n u m -b er system to in clu d e n eg a tiv e n u m b ers w a s a m om en -tou s step in th e d evelo p m ent o f m a th em a tics. T h an k sto th e ea rly reco gn itio n o f th e ex isten ce o f n eg a tiv e n u m -b ers, th e In d ian s co u ld g iv e a u n i ed trea tm en t o f th e va rio u s form s o f q u ad ra tic eq u ation s (w ith p ositiv e co -e± cien ts), i.e., a x 2  +   bx  =   c ; a x  2  +   c  =   bx ; bx +   c  =   a x 2 .

T h e In d ian s w ere th e ¯ rst to reco g n ise th at a q u ad ratic eq u a tio n h as tw o ro ots. S rid h arach arya (7 50 A D ) ga ve th e w ell-k n ow n m eth o d o f so lv in g a q u a d ratic eq u ation b y co m p letin g th e sq u are { an id ea w ith far-rea ch in g co n seq u en ces in m a th em a tics. T h e P a sca l's tria n g le forq u ick co m p u tation o f n  C  r  is d escrib ed b y H alay u d h a in th e 10 th centu ry A D as M eru -P rastara  7 00 y ears b efore it w a s sta ted b y P a sca l; a n d H a lay u d h a 's M eru -P rastara w as on ly a clari catio n o f a ru le in v en ted b y P in g ala 

m ore th an 12 0 0 yea rs ea rlier (a rou n d 20 0 B C )!

T h u s, a s in a rith m etic, m an y top ics in h igh -sch o o l a l-geb ra h ad b een system atically d evelop ed in In d ia. T h isk n ow led g e w en t to E u rop e th rou g h th e A rab s. T h e w o rd yava  in  A ryabhatiyabhasya  of B h a ska ra I (6th cen tu ry A D ) m ea n in g \ to m ix " or \to sep arate" h a s a± n ity w ith th a t o f al-jabr of a l-K h w a rizm i (82 5 A D ) from w h ich th e w ord algeb ra is d erived . In his w id ely acclaim ed text on 

h istory of m a th em atics, C a jori ([8 ]) co n clu d es th e ch a p -ter o n In d ia w ith th e follow in g rem a rks: \ ...it is rem ark-

able to w ha t exten t In dian m athem atics e n ters in to the 

scien ce o f ou r tim e. B o th the form an d the spirit of the 

arithm etic an d algebra of m od ern tim es are essen tially 

In dian . T hin k of ou r n otation of n um bers, brou ght to 

perfection by the H in du s, thin k of the In dian arithm eti-

“The ingenious

method of

expressing every

possible number

using a set of ten

symbols (each

symbol having a

place value and an

absolute value)

emerged in India.

The idea seems so

simple nowadays

that its significanceis no longer

appreciated. Its

simplicity lies in the

way it facilitated

calculations and

placed arithmetic

foremost among

useful inventions.

The importance of

this invention is more

readily appreciated

when one considers

that it was beyond

the two greatest men

of antiquity,

Archimedes and

Apollonius.’’

Page 11: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 11/16

 14 RESONANCE ç April 2002

SERIES ç ARTICLE

cal operation s n early as perfect as ou r o w n , thin k of their 

elegant algebraical m ethods, and then judge w hether the 

B rahm in s o n the ban ks of the G an ges a re n ot en titled to 

som e credit."

B u t an cien t In d ia n algeb ra w en t far b eyo n d th e h igh sch o o l lev el. T h e p in n a cle o f In d ia n a ch iev em en t w a s a t-tain ed in th eir solu tio n s of th e h ard a n d su b tle n u m b er-th eo retic p rob lem s o f ¯ n d in g in teger solu tio n s to eq u a -tio n s of ¯ rst an d secon d d egree. S u ch equ ation s are ca lled in d eterm in a te o r D iop h an tin e eq u a tio n s. B u t alas,th e In d ia n w o rks in th is a rea w ere to o fa r a h ea d of th e tim es to b e n oticed b y con tem p orary an d su b seq u ent

civ ilisation s! A s C a jori lam en ts, \ U n fortu n ately, som e of the m ost brillian t results in in determ in ate an alysis,

 found in the H indu w orks, reached E urope too late to ex-

ert the in ° u en ce they w ou ld ha ve exerted, had they com e 

tw o or three cen tu ries earlier." W ith ou t som e aw are-n ess o f th e In d ian co n trib u tio n s in th is ¯ eld , it is n o tp o ssib le to get a tru e p ictu re of th e d ep th a n d sk ill at-tain ed in p ost-V ed ic In d ia n m ath em atics th e ch a racterof w h ich w a s p rim a rily alg eb raic. W e sh a ll d iscu ss so m e 

of th ese n u m b er-th eo retic co n trib u tio n s from th e n ex tin stalm ent.

T rig o n o m e try a n d C a lc u lu s 

A p art from d ev elop in g th e su b ject of a lg eb ra p rop er,In d ia n s a lso b eg a n a p ro cess o f alg eb risation a n d co n se-q u en t sim p li ca tio n o f oth er areas o f m a th em a tics. F o rin stan ce, th ey d ev elop ed trig on o m etry in a system a tic 

m an n er, resem b lin g its m o d ern fo rm , a n d im p arted to it its m od ern algeb raic ch aracter. T h e algeb raisation ofth e stu d y o f in n itesim a l ch a n g es led to th e d iscov ery ofkey p rin cip les of calcu lu s b y th e tim e o f B h a ska rach a rya (11 50 A D ) so m e of w h ich w e sh all m ention in a su b -seq u en t issu e. C a lcu lu s in In d ia lea p ed to a n a m azin g h eig h t in th e a n a ly tic trig on o m etry o f th e K erala sch o o lin th e 14 th cen tu ry.

“India has given to

antiquity the earliest

scientific physicians,

and, according to Sir

William Hunter, she

has even contributed

to modern medical

science by the

discovery of various

chemicals and by

teaching you how to

reform misshapen

ears and noses.Even more it has

done in mathematics,

for algebra,

geometry, astronomy,

and the triumph of

modern science – 

mixed mathematics – 

were all invented in

India, just so much as

the ten numerals, the

very cornerstone of

all present civilization,

were discovered in

India, and, are in

reality, sanskrit

words.”

Swami Vivekananda 

Page 12: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 12/16

 15RESONANCE ç April 2002

SERIES ç ARTICLE

A lth o u g h th e G reek s fo u n d ed trigo n o m etry, th eir p ro-gress w a s h alted d u e to th e a b sen ce of ad eq u ate alge-b raic m a ch in ery an d n o ta tio n s. In d ia n s in ve n ted th e sin e a n d co sin e fu n ctio n s, d iscov ered m o st o f th e sta n -

d ard fo rm u lae a n d id en titites, in clu d in g th e b a sic fo r-m u la fo r sin (A   §  B  ), a n d co n stru cted fa irly a ccu rate sin e ta b les. B rah m a gu p ta (628 A D ) a n d G ov in d asw a m i(88 0 A D ) g av e in terp o latio n fo rm u la e fo r ca lcu la tin g th e sin es o f in term ed ia te a n g les from sin e tab les { th ese a re sp ecial ca ses o f th e N ew ton { S tirlin g a n d N ew ton { G au ssfo rm u la e fo r secon d -o rd er d i® eren ce. R em arka b le a p -p rox im a tio n s fo r ¼  a re g iven in In d ian tex ts in clu d in g 3 :14 16 of A rya b h ata (49 9 A D ), 3 :1 4 1 5 9 2 6 5 3 5 9 o f M a d -

h ava (14 th centu ry A D ) an d 35 5 = 113 of N ilakanta (1500 A D ). A n an on ym ou s w ork  K a ran apadd hati (b eliev ed to h av e b een w ritten b y P u tu m a n a S o m ay a jin in th e 1 5th cen tu ry A D ) giv es th e v alu e 3 :141 592 653 589 793 24 w h ich  is co rrect u p to sev en teen d ecim a l p lac es.

T h e G reek s h ad in vestig a ted th e relation sh ip b etw ee n a ch o rd o f a circle a n d th e a n g le it su b ten d s a t th e cen -tre { b u t th eir sy stem is q u ite cu m b erso m e in p ractice.

T h e In d ian s realised th e sign i ca n ce o f th e co n n ectio n b etw een a h a lf-ch o rd an d h alf of th e an g le su b ten d ed b y th e fu ll ch o rd . In th e ca se o f a u n it circle, th is isp recisely th e sin e fu n ction . T h e In d ia n h a lf-ch ord w a sin trod u ced in th e A rab w orld d u rin g th e 8th cen tu ry A D . E u rop e w a s in tro d u ced to th is fu n d a m en tal n o tio n th ro u g h th e w ork o f th e A rab sch o la r al-B a ttan i (85 8 -9 2 9 A D ). T h e A rab s p referred th e In d ia n h a lf-ch o rd to P tolem y 's system o f ch o rd s a n d th e alg eb ra ic a p p roa ch 

o f th e In d ian s to th e g eo m etric a p p roa ch o f th e G reek s.

T h e S a n sk rit w o rd fo r h a lf-ch o rd \ ardha-jya " , la ter a b -b rev iated as \  jya ", w as w ritten b y th e A rab s a s \  jyb " .C u riou sly, th ere is a sim ila r-sou n d in g A rab w o rd \  jaib "w h ich m ea n s \ h ea rt, b o som , fo ld , b ay o r cu rve" . W h en th e A rab w o rk s w ere b ein g tra n sla ted in to L atin , th e a p p a rently m ea n in g less w ord \  jyb " w as m istaken for th e 

“The Hindus

solved problems in

interest, discount,

partnership,

alligation,summation of

arithmetical and

geometric series,

and devised rules

for determining the

numbers of

combinations and

permutations. It

may here be

added that chess,

the profoundest of

all games, had its

origin in India.’’

F Cajori 

Page 13: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 13/16

 16 RESONANCE ç April 2002

SERIES ç ARTICLE

w ord \  jaib " an d tra n sla ted a s \ sinus" w h ich h a s severa lm ea n in g s in L atin in clu d in g \ h ea rt, b oso m , fo ld , b ay orcu rve" ! T h is w ord b eca m e \ sin e " in th e E n g lish v ersion .A rya b h a ta's \ kotijya " b ecam e  cosine .

T h e trad itio n of ex cellen ce a n d origin ality in In d ia n trig o-n o m etry reach ed a h ig h p ea k in th e o u tstan d in g resu ltsof M a d h ava ch arya (1 34 0-1 42 5 ) on th e p ow er series ex -p a n sio n s o f trigon om etric fu n ctio n s. T h ree cen tu ries b e-fo re G rego ry (16 67 ), M a d h av a h a d d escrib ed th e series

µ  = t a n   µ  ¡  (1 = 3)(tan  µ )3  + (1 = 5)(tan  µ )5 ¡ 

(1 = 7)(tan  µ )7  +  ¢¢¢

(jtan  µ 

j · 1 ):

H is p ro o f, as p resen ted in  Y uktibhasa , in v o lv es th e id ea of in tegratio n as th e lim it of a su m m ation an d corre-sp on d s to th e m o d ern m eth o d o f ex p an sio n a n d term -b y -term in tegratio n . A cru cial step is th e u se of th e resu lt

lim   n       

(1  p   + 2  p   +   ¢¢¢+ (n  ¡  1 ) p  )= n p  + 1  = 1 = ( p  + 1):

T h e exp licit statem ent th at (jta n  µ j ·  1 ) rev ea ls th e lev el of sop h istica tion in th e u n d ersta n d in g o f in n ite series in clu d in g an aw aren ess o f co n v ergen ce. M ad h av a a lso d iscov ered th e b ea u tifu l fo rm u la 

¼ = 4 = 1  ¡  1 = 3 + 1 = 5  ¡  1 = 7 +   ¢¢¢;

o b tain ed b y p u ttin g  µ  =   ¼ = 4 in th e M ad h ava {G rego ry series. T h is series w as red iscovered th ree centu ries later

b y L eib n iz (16 74 ). A s o n e o f th e ¯ rst a p p lica tio n s ofh is n ew ly in v en ted ca lcu lu s, L eib n iz w a s th rilled a t th e d iscov ery o f th is series w h ich w a s th e ¯ rst o f th e resu ltsg iv in g a co n n ectio n b etw een  ¼  a n d u n it fractio n s. M a d -h av a also d escrib ed th e series

¼ = p  

1 2 = 1  ¡  1 = 3 :3 + 1 = 5 :3 2  ¡  1 = 7 :3 3  +   ¢¢¢

“... it is remarkable to

what extent Indian

mathematics enters

into the science of

our time. Both the

form and the spirit of

the arithmetic

and algebra of

modern times are

essentially Indian.

Think of our notation

of numbers, brought

to perfection by theHindus, think of the

Indian arithmetical

operations nearly as

perfect as our own,

think of their elegant

algebraical methods,

and then judge

whether the

Brahmins

on the banks of the

Ganges are not

entitled to some

credit.’’

F Cajori 

Page 14: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 14/16

 17RESONANCE ç April 2002

SERIES ç ARTICLE

¯ rst g iven in E u rop e b y A S h arp (17 17 ). A g ain , th ree h u n d ered yea rs b efore N ew ton (16 7 6 A D ), M ad h ava h ad d escrib ed th e w ell-k n ow n p o w er series ex p a n sio n s

sin  x  =   x  ¡  x 

= 3 ! +   x 

= 5! ¡ ¢¢¢a n d co s x  = 1  ¡  x 2 = 2 ! +   x 4 = 4! ¡ ¢¢¢:

T h ese series w ere u sed to co n stru ct a ccu rate sin e a n d co -sin e ta b les for ca lcu lation s in a stro n om y. M a d h ava 's val-u es a re co rrect, in a lm o st all ca ses, to th e eig h th o r n in th d ecim al p lac e { su ch a n a ccu racy w a s n ot to b e a ch iev ed in E u rop e w ith in th ree cen tu ries. M a d h av a's resu ltssh ow th a t ca lcu lu s a n d a n aly sis h ad reach ed rem arka b le 

d ep th an d m atu rity in In d ia cen tu ries b efo re N ew ton (16 42 -17 27 ) an d L eib n iz (1 64 6-1 71 6). M ad h ava ch arya m ig h t b e rega rd ed a s th e ¯ rst m a th em a ticia n w h o w o rked in an a ly sis!

U n fo rtu n ately, th e o rig in al tex ts of sev era l o u tsta n d in g m ath em a tician s lik e S rid h a ra , P a d m a n a b h a , J ay a d eva an d M ad h av a h av e n ot b een fou n d y et { it is on ly th rou gh th e o ccasion a l referen ce to som e o f th eir resu lts in su b -

seq u en t com m en ta ries th at w e g et a glim p se of th eirw ork. M ad h ava 's con trib u tio n s are m en tio n ed in sev -era l later tex ts in clu d in g th e T an tra S am grah a  (150 0) ofth e great astron om er N ilaka nta S om ay a ji (14 45 -15 4 5)w h o gav e th e h elio cen tric m o d el b efo re C op ern icu s, th e Y uktibhasa  (15 40) of Jy esth ad eva (15 00-16 10 ) an d th e an on ym ou s K aran apadd hati. A ll th ese texts th em selvesw ere d iscov ered b y C h a rles W h ish an d p u b lish ed o n ly in 1835.

A m o n g a n cien t m a th em a ticia n s w h o se tex ts h av e b een fou n d , sp ecia lm en tio n m ay b e m a d e o f A rya b h a ta, B rah -m ag u p ta an d B h a ska ra ch a ry a. A ll o f th em w ere em in en tastron om ers a s w ell. W e sh a ll m a k e a b rief m en tion ofsom e o f th eir m a th em a tica l w o rks in su b seq u en t issu es.

“Incomparably

greater progress

than in the solution

of determinate

equations was

made by the

Hindus in the

treatment of

indeterminate

equations.

Indeterminate

analysis was a

subject to whichthe Hindu

mind showed a

happy adaptation.’’

F Cajori 

Page 15: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 15/16

 18 RESONANCE ç April 2002

SERIES ç ARTICLE

L a te r D e v e lo p m e n ts 

T h e In d ia n co n trib u tio n s in a rith m etic, a lg eb ra a n d trigo -n om etry w ere tran sm itted b y th e A rab s an d P ersia n sto E u ro p e. T h e A ra b s also p reserv ed a n d tran sm itted th e G reek h eritag e. A fter m o re th an a th o u sa n d y earso f slu m b er, E u rop e red iscov ered its rich G reek h eritag e a n d ac q u ired som e o f th e fru its o f th e p h en om en al In -d ian p ro gress. It is on th e fou n d a tion form ed b y th e b len d in g o f th e tw o g reat m a th em atica l cu ltu res { th e g eo m etric a n d a x io m a tic trad itio n o f th e G reek s an d th e a lg eb raic an d co m p u tatio n a l trad ition of th e In d ia n s { th at th e m ath em a tica l ren a issa n ce too k p la ce in E u rop e.

In d ia n s m a d e sig n i ca n t co n trib u tio n s in sev eral fron t-lin e a reas o f m a th em a tics d u rin g th e 20 th cen tu ry, esp e-cia lly d u rin g th e seco n d h alf, alth ou g h th is fact is n ot so w e ll-k n ow n am on g stu d en ts p artly b eca u se th e fron tiersof m a th em atics h av e ex p a n d ed far b eyo n d th e scop e ofth e u n iversity cu rricu la . H ow ev er, In d ia n s v irtu a lly to o k n o p art in th e rap id d ev elo p m en t o f m ath em a tics th a ttoo k p la ce d u rin g th e 17 th -19 th cen tu ry { th is p erio d 

co in cid ed w ith th e g en eral sta gn a tio n in th e n ation a llife. T h u s, w h ile h ig h -sch o o l m ath em a tics, esp ecia lly in a rith m etic an d a lg eb ra , is m ostly of In d ian o rig in , o n e rarely co m es across In d ia n n a m es in co lleg e an d u n iver-sity cou rses as m ost o f th a t m ath em atics w as created d u rin g th e p erio d ran g in g fro m la te 17 th to ea rly 2 0th cen tu ry. B u t sh ou ld w e fo rg et th e cu ltu re an d g rea t-n ess o f In d ia 's m illen n iu m s b eca u se o f th e ig n ora n ce a n d w ea k n ess of a few cen tu ries? 

“Unfortunately,

some of the most

brilliant

results in

indeterminate

analysis, found in

the Hindu works,

reached

Europe too late to

exert the influence

they would have

exerted, had they

come two or threecenturies earlier.’’

F Cajori 

Suggested Reading

[1] A Seidenberg, The Origin of Mathematics in Archive for History of Ex-

 act Sciences , 1978.

[2] A Seidenberg, The Geometry of Vedic Rituals in Agni, The Vedic Ritual 

 of the Fire Altar , Vol II, ed F Staal, Asian Humanities Press, Berkeley,

1983, reprinted Motilal Banarasidass, Delhi.

Page 16: Mathematics in Acient India

8/3/2019 Mathematics in Acient India

http://slidepdf.com/reader/full/mathematics-in-acient-india 16/16

19RESONANCE ç April 2002

SERIES ç ARTICLE

Address for Correspondence 

Amartya Kumar Dutta

Indian Statistical Institute

203, BT Road

Kolkata 700 032, India.

[3] Bibhutibhusan Datta:   Ancient Hindu Geometry: The Science of the

Sulbas, Calcutta Univ. Press, 1932, reprinted Cosmo Pub., New Delhi,

1993.

[4] Georges Ifrah, The Universal History of Numbers, John Wiley and Sons,

2000.

[5] G G Joseph, The Crest of The Peacock: Non-European Roots of Math- ematics, Penguin, 1990.

[6] S N Sen, Mathematics Chap 3 of  A Concise History of Science in India ,

ed. D M Bose, S N Sen and B V Subbarayappa, INSA, New Delhi , 1971.

[7] G B Halsted, On the foundations and techniques of Arithmetic, Chicago,

1912.

[8] F Cajori, History of Mathematics, Mac Millan, 1931.

[9] Bibhutibhusan Datta, Vedic Mathematics, Chap.3 of  The Cultural 

 Heritage of India Vol VI (Science and Technology) ed. P Ray and S N

Sen, The Ramakrishna Mission Institute of Culture, Calcutta.

[10] B Datta and A N Singh, History of Hindu Mathematics, Asia Publishing

House, Bombay, 1962.

[11] John F Price, Applied Geometry of the Sulba Sutras in Geometry at

Work, ed. C. Gorini, MAA, Washington DC, 2000.

[12] T A Sarasvati Amma, Geometry in Ancient and Medieval India, Motilal

Banarasidass, Delhi , 1999.

[13] S N Sen and A K Bag, Post-Vedic Mathematics, Chap. 4 of The

Cultural Heritage of India Vol. VI ed.PRay and S N Sen, The

Ramakrishna Mission Institute of Culture, Calcutta.

[14] S N Sen and A K Bag, The Sulbasutras, INSA, New Delhi , 1983.

[15] C N Srinivasiengar, The History of Ancient Indian Mathematics, The

World Press, Calcutta, 1967.

 “As I look back upon the history of my country,I do not find in the whole world another country which has done quite so much for the improve- ment of the human mind. Therefore I have no words of condemnation for my nation. I tell them, ‘You have done well; only try to do better.’ Great things have been done in the 

past in this land, and there is both time and room for greater things to be done yet ... Our ancestors did great things in the past, but we have to grow into a fuller life and march beyond even their great achievement.’’ 

Swami Vivekananda(Complete Works Vol III p.195)


Recommended