+ All Categories
Home > Documents > MATRICES & DETERMINANTS

MATRICES & DETERMINANTS

Date post: 03-Jan-2016
Category:
Upload: sigourney-wiley
View: 81 times
Download: 0 times
Share this document with a friend
Description:
MATRICES & DETERMINANTS. Monika V Sikand Light and Life Laboratory Department of Physics and Engineering physics Stevens Institute of Technology Hoboken, New Jersey, 07030. OUTLINE. Matrix Operations Multiplying Matrices Determinants and Cramer’s Rule Identity and Inverse Matrices - PowerPoint PPT Presentation
42
MATRICES & DETERMINANTS Monika V Sikand Light and Life Laboratory Department of Physics and Engineering physics Stevens Institute of Technology Hoboken, New Jersey, 07030.
Transcript
Page 1: MATRICES & DETERMINANTS

MATRICES & DETERMINANTS

Monika V Sikand

Light and Life Laboratory

Department of Physics and Engineering physics

Stevens Institute of Technology

Hoboken, New Jersey, 07030.

Page 2: MATRICES & DETERMINANTS

OUTLINE

Matrix Operations Multiplying Matrices Determinants and Cramer’s Rule Identity and Inverse Matrices Solving systems using Inverse matrices

Page 3: MATRICES & DETERMINANTS

MATRIX

A rectangular arrangement of numbers in rows and columns

For example:

6 2 −1

−2 0 5

⎣ ⎢

⎦ ⎥2 rows

3 columns

Page 4: MATRICES & DETERMINANTS

TYPES OF MATRICES

NAME DESCRIPTION EXAMPLE

Row matrix A matrix with only 1 row

Column matrix A matrix with only I column

Square matrix A matrix with same number of rows and columns

Zero matrix A matrix with all zero entries

3 2 1− 4[ ]

2

3

⎣ ⎢

⎦ ⎥

2 4

−1 7

⎣ ⎢

⎦ ⎥

0 0

0 0

⎣ ⎢

⎦ ⎥

Page 5: MATRICES & DETERMINANTS

MATRIX OPERATIONS

Page 6: MATRICES & DETERMINANTS

COMPARING MATRICES

For Example:

5 0

−4

4

3

4

⎣ ⎢ ⎢

⎦ ⎥ ⎥=

5 0

−1 0.75

⎣ ⎢

⎦ ⎥

−2 6

0 −3

⎣ ⎢

⎦ ⎥≠

−2 6

3 −2

⎣ ⎢

⎦ ⎥

EQUAL MATRICES: Matrices having equal corresponding entries.

Page 7: MATRICES & DETERMINANTS

ADDING MATRICES

Matrices of same dimension can be added

For Example:

3

−4

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥+

1

0

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

3+1

−4 + 0

2 + 2

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

4

−4

5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 8: MATRICES & DETERMINANTS

SUBTRACTING MATRICES

Matrices of same dimension can be subtracted

For example:

8 3

4 0

⎣ ⎢

⎦ ⎥−

2 −7

6 −1

⎣ ⎢

⎦ ⎥=

8 − 2 3−(−7)

4 − 6 0 −(−1)

⎣ ⎢

⎦ ⎥=

6 10

−2 1

⎣ ⎢

⎦ ⎥

Page 9: MATRICES & DETERMINANTS

MULTIPLYING A MATRIX BY A SCALAR

For example:

−2

1 −2

0 3

−4 5

⎢ ⎢ ⎢

⎥ ⎥ ⎥+

−4 5

6 −8

−2 6

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

(−2)1 (−2) − 2

(−2)0 (−2)3

(−2) − 4 (−2)5

⎢ ⎢ ⎢

⎥ ⎥ ⎥+

−4 5

6 −8

−2 6

⎢ ⎢ ⎢

⎥ ⎥ ⎥

=

−2 4

0 −6

8 −10

⎢ ⎢ ⎢

⎥ ⎥ ⎥+

−4 5

6 −8

−2 6

⎢ ⎢ ⎢

⎥ ⎥ ⎥

=

−6 9

6 −14

6 −4

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 10: MATRICES & DETERMINANTS

SOLVING A MATRIX EQUATION

For example:

Solve :

23x −1

8 5

⎣ ⎢

⎦ ⎥+

4 1

−2 −y

⎣ ⎢

⎦ ⎥

⎝ ⎜

⎠ ⎟=

26 0

12 8

⎣ ⎢

⎦ ⎥

23x+ 4 −1+1

8 − 2 5 − y

⎣ ⎢

⎦ ⎥=

26 0

12 8

⎣ ⎢

⎦ ⎥

6x+ 8 0

12 10 − 2y

⎣ ⎢

⎦ ⎥=

26 0

12 8

⎣ ⎢

⎦ ⎥

Equate :

6x+ 8 = 26

x = 3

10 − 2y = 8

y =1

Page 11: MATRICES & DETERMINANTS

MULTIPLYING MATRICES

Page 12: MATRICES & DETERMINANTS

PRODUCT OF TWO MATRICES

A =3 2

−1 0

⎣ ⎢

⎦ ⎥

B =1 −4

2 1

⎣ ⎢

⎦ ⎥

For example:

FIND (a.) AB and (b.) BA

Page 13: MATRICES & DETERMINANTS

SOLUTION

AB =3 2

−1 0

⎣ ⎢

⎦ ⎥1 4

2 1

⎣ ⎢

⎦ ⎥

AB =7 −10

−1 4

⎣ ⎢

⎦ ⎥

BA =1 −4

2 1

⎣ ⎢

⎦ ⎥3 2

−1 0

⎣ ⎢

⎦ ⎥

BA =7 2

5 4

⎣ ⎢

⎦ ⎥

Page 14: MATRICES & DETERMINANTS

SIMPLIFY

A =2 1

−1 3

⎣ ⎢

⎦ ⎥,B =

−2 0

4 2

⎣ ⎢

⎦ ⎥,C =

1 1

3 2

⎣ ⎢

⎦ ⎥

Simplify: a.) A(B+C)b.) AB+AC

Page 15: MATRICES & DETERMINANTS

SOLUTION

=2 1

−1 3

⎣ ⎢

⎦ ⎥

2 1

−1 3

⎣ ⎢

⎦ ⎥+

1 1

3 2

⎣ ⎢

⎦ ⎥

⎝ ⎜

⎠ ⎟

=2 1

−1 3

⎣ ⎢

⎦ ⎥−1 1

7 4

⎣ ⎢

⎦ ⎥

=5 6

22 11

⎣ ⎢

⎦ ⎥

A(B+C):

Page 16: MATRICES & DETERMINANTS

SOLUTION

AB+AC:

=2 1

−1 3

⎣ ⎢

⎦ ⎥−2 0

4 2

⎣ ⎢

⎦ ⎥+

2 1

−1 3

⎣ ⎢

⎦ ⎥1 1

3 2

⎣ ⎢

⎦ ⎥

=0 2

14 6

⎣ ⎢

⎦ ⎥+

5 4

8 5

⎣ ⎢

⎦ ⎥

=5 6

22 11

⎣ ⎢

⎦ ⎥

Page 17: MATRICES & DETERMINANTS

DETERMINANTS & CRAMER”S RULE

Page 18: MATRICES & DETERMINANTS

DETERMINANT OF 22 MATRIX

deta b

c d

⎣ ⎢

⎦ ⎥= ad −bc

The determinant of a 22 matrix is the difference of the entries on the diagonal.

Page 19: MATRICES & DETERMINANTS

EVALUATE

Find the determinant of the matrix:

1 3

2 5

⎣ ⎢

⎦ ⎥

Solution:

1 3

2 5=1(5) − 2(3) = 5 − 6 = −1

Page 20: MATRICES & DETERMINANTS

DETERMINANT OF 33 MATRIX

The determinant of a 33 matrix is the difference in the sum of the products in red from the sum of the products in black.

det

a b c

d e f

g h i

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

a b c

d e f

g h i

a b

d e

g h

Determinant = [a(ei)+b(fg)+c(dh)]-[g(ec)+h(fa)+i(db)]

Page 21: MATRICES & DETERMINANTS

EVALUATE

2 −1 3

−2 0 1

1 2 4

⎢ ⎢ ⎢

⎥ ⎥ ⎥

2 −1 3

−2 0 1

1 2 4

2 −1

−2 0

1 2

=[0 +(−1)+ (−12)]− (0 + 4 + 8)

= −13−12

= −25

Solution:

Page 22: MATRICES & DETERMINANTS

USING MATRICES IN REAL LIFE

The Bermuda Triangle is a large trianglular region in the Atlantic ocean. Many ships and airplanes have been lost in this region. The triangle is formed by imaginary lines connecting Bermuda, Puerto Rico, and Miami, Florida. Use a determinant to estimate the area of the Bermuda Triangle.

EW

N

S

Miami (0,0)

Bermuda (938,454)

Puerto Rico (900,-518)

...

Page 23: MATRICES & DETERMINANTS

SOLUTION

The approximate coordinates of the Bermuda Triangle’s three vertices are: (938,454), (900,-518), and (0,0). So the area of the region is as follows:

Area = ±1

2

938 454 1

900 −518 1

0 0 1

Area = ±1

2[(−458,884 + 0 + 0) − (0 + 0 + 408,600)]

Area = 447,242

Hence, area of the Bermuda Triangle is about 447,000 square miles.

Page 24: MATRICES & DETERMINANTS

USING MATRICES IN REAL LIFE

The Golden Triangle is a large triangular region in the India.The Taj Mahal is one of the many wonders that lie within the boundaries of this triangle. The triangle is formed by the imaginary lines that connect the cities of New Delhi, Jaipur, and Agra. Use a determinant to estimate the area of the Golden Triangle. The coordinates given are measured in miles.

EW

N

S

Jaipur (0,0)

New Delhi (100,120)

Agra (140,20)

. ..

Page 25: MATRICES & DETERMINANTS

SOLUTION

The approximate coordinates of the Golden Triangle’s three vertices are: (100,120), (140,20), and (0,0). So the area of the region is as follows:

Area = ±1

2

100 120 1

140 20 1

0 0 1

Area = ±1

2[(2000 + 0 + 0) − (0 + 0 +16800)]

Area = 7400

Hence, area of the Golden Triangle is about 7400 square miles.

Page 26: MATRICES & DETERMINANTS

USING MATRICES IN REAL LIFE

Black neck stilts are birds that live throughout Florida and surrounding areas but breed mostly in the triangular region shown on the map. Use a determinant to estimate the area of this region. The coordinates given are measured in miles.

EW

N

S

(0,0)

(35,220)

(112,56)

. .

.

Page 27: MATRICES & DETERMINANTS

SOLUTION

The approximate coordinates of the Golden Triangle’s three vertices are: (35,220), (112,56), and (0,0). So the area of the region is as follows:

Area = ±1

2

35 220 1

112 56 1

0 0 1

Area = ±1

2[(1960 + 0 + 0) − (0 + 0 + 24640)]

Area =11340

Hence, area of the region is about 11340 square miles.

Page 28: MATRICES & DETERMINANTS

CRAMER”S RULE FOR A 22 SYSTEM

Let A be the co-efficient matrix of the linear system: ax+by= e & cx+dy= f.

IF det A ≠0, then the system has exactly one solution. The solution is:

x =

e b

f d

detA

y =

a e

c f

detA

The numerators for x and y are the determinant of the matrices formed by using the column of constants as replacements for the coefficients of x and y, respectively.

Page 29: MATRICES & DETERMINANTS

EXAMPLE

Use cramer’s rule to solve this system:

8x+5y = 2 2x-4y = -10

Page 30: MATRICES & DETERMINANTS

SOLUTION

Solution: Evaluate the determinant of the coefficient matrix

8 5

2 −4= −32 −10 = −42

Apply cramer’s rule since the determinant is not zero.

x =

2 5

−10 −4

−42=

−8 −(−50)

−42=

42

−42= −1

y =

8 2

2 −10

−42=

−80 − 4

−42=

−84

−42= 2 The solution is (-1,2)

Page 31: MATRICES & DETERMINANTS

CRAMER”S RULE FOR A 33 SYSTEM

Let A be the co-efficient matrix of the linear system: ax+by+cz= j, dx+ey+fz= k, and gx+hy+iz=l.

IF det A ≠0, then the system has exactly one solution. The solution is:

x =

j b c

k e f

l h i

detA, y =

a j c

d k f

g l i

detA, z =

a b j

d e k

g h l

detA

Page 32: MATRICES & DETERMINANTS

EXAMPLE

The atomic weights of three compounds are shown. Use a linear system and Cramer’s rule to find the atomic weights of carbon(C ), hydrogen(H), and oxygen(O).

Compound Formula Atomic weight

Methane CH4 16

Glycerol C3H8O3 92

Water H2O 18

Page 33: MATRICES & DETERMINANTS

SOLUTION

1 4 0

3 8 3

0 2 1

= (8 + 0 + 0) − (0 + 6 +12) = −10

Write a linear system using the formula for each compound

C + 4H = 163C+ 8H + 3O = 92 2H + O =18

Evaluate the determinant of the coefficient matrix.

Page 34: MATRICES & DETERMINANTS

SOLUTION

Apply cramer’s rule since determinant is not zero.

C =

16 4 0

92 8 3

18 2 1

−10=

−120

−10=12

H =

1 16 0

3 92 3

0 18 1

−10=

−10

−10=1

O =

1 4 16

3 8 92

0 2 18

−10=

−160

−10=16

Atomic weight of carbon = 12

Atomic weight of hydrogen =1

Atomic weight of oxygen =16

Page 35: MATRICES & DETERMINANTS

IDENTITY AND INVERSE MATRICES

Page 36: MATRICES & DETERMINANTS

IDENTITY MATIX

22 IDENTITY MATRIX 33 IDENTITY MATRIX

I =1 0

0 1

⎣ ⎢

⎦ ⎥

I =

1 0 0

0 1 0

0 0 1

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 37: MATRICES & DETERMINANTS

INVERSE MATRIX

The inverse of the matrix

A =a b

c d

⎣ ⎢

⎦ ⎥

is

A−1 =1

A

d −b

−c a

⎣ ⎢

⎦ ⎥

A−1 =1

ad − cb

d −b

−c a

⎣ ⎢

⎦ ⎥

provided

ad − cb ≠ 0

Page 38: MATRICES & DETERMINANTS

EXAMPLE

Find the inverse of

A =3 1

4 2

⎣ ⎢

⎦ ⎥

Solution:

A−1 =1

6 − 4

2 −1

−4 3

⎣ ⎢

⎦ ⎥=

1

2

2 −1

−4 3

⎣ ⎢

⎦ ⎥=

1−1

2

−23

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

Page 39: MATRICES & DETERMINANTS

CHECK THE SOLUTION

Show

AA−1 = I = A−1A

3 1

4 2

⎣ ⎢

⎦ ⎥1 −

1

2

−23

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥=

1 0

0 1

⎣ ⎢

⎦ ⎥,

and

1 −1

2

−23

2

⎢ ⎢ ⎢

⎥ ⎥ ⎥

3 1

4 2

⎣ ⎢

⎦ ⎥=

1 0

0 1

⎣ ⎢

⎦ ⎥

Page 40: MATRICES & DETERMINANTS

SOLVING SYSTEMS USING INVERSE MATRICES

Page 41: MATRICES & DETERMINANTS

SOLVING A LINEAR SYSTEM

-3x + 4y = 5 2x - y = -10

Writing the original matrix equation.

−3 4

2 −1

⎣ ⎢

⎦ ⎥x

y

⎣ ⎢

⎦ ⎥=

5

−10

⎣ ⎢

⎦ ⎥

A X B AX = BA-1AX = A-1B IX = A-1B X = A-1B

Page 42: MATRICES & DETERMINANTS

USING INVERSE MATRIX TO SOLVE THE LINEAR SYSTEM

-3x + 4y = 5 2x - y = -10

A−1 =1

3− 8

−1 −4

−2 −3

⎣ ⎢

⎦ ⎥=

1

5

4

52

5

3

5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

X = A−1B =

1

5

4

52

5

3

5

⎢ ⎢ ⎢

⎥ ⎥ ⎥

5

−10

⎣ ⎢

⎦ ⎥=

−7

−4

⎣ ⎢

⎦ ⎥=x

y

⎣ ⎢

⎦ ⎥

Hence the solution of the system is (-7,-4)


Recommended