+ All Categories
Home > Documents > Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B....

Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B....

Date post: 31-Aug-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
M2020 Candidate Landing Site Data Sheets Mawrth Vallis 1 Mawrth Vallis Location (lat,lon): 24°N, 341°E Summary of observations and interpreted history, including unknowns: The Mawrth Vallis region contains extended outcrops of phyllosilicate-rich rocks. OMEGA and CRISM have detected Fe/Mg-smectites, Al-smectites, kaolinite, hydrated silica, and sulfates in association with light-toned exposures of Noachian bedrock. The Mawrth Vallis site would enable investigation of some of the most ancient outcrops of sedimentary and clay-bearing rocks on Mars. The clay-bearing units correspond to exposures of thick (>300 m), finely layered (layer thickness <<10 m) sedimentary rocks extending across a 300*300 km wide region. The origin of the layering is unknown: interpretations include subaqueous, fluvial and volcaniclastic deposits; the orbital facies does not allow a definitive interpretation. This unit is dominated by Fe/Mg smectites with local interbeds of sulfates. OMEGA and CRISM unmixing models suggest clay mineral abundances as high as 50 wt.%. It is unclear if the Fe/Mg-smectites are related to the global population of crustal Noachian Fe/Mg-smectites. Some portions of the Fe/Mg-unit exhibit large resistant filled fractures and halo-bounded veins that are interpreted to have formed due to fluid circulation. The close proximity of the large Oyama crater, which impacted into the Fe/Mg-unit, suggests that these may be impact hydrothermal deposits; however, low-T groundwater diagenesis cannot be ruled out based on orbital data. Al-rich clays, grading from Al-smectite and silica into kaolinite and possibly allophane, dominate the top 10-30m of the section. The Al-clays are interpreted to have formed during sub-aerial weathering (pedogenic leaching). However, significant mineralogical variability as well as features interpreted as inverted channels suggest that the surface supported aqueous environments. The kaolinite is concentrated near the top of the section, and may either have been formed due to (a) localized acid leaching in a “wetland” environment, (b) regional or global acid surface leaching, (c) long term, more neutral leaching (a laterite). Possible alunite detections at the top of the section support either scenario (a) or (b). Strong spectral signatures consistent with Fe(II)-bearing phyllosilicates associated with the kaolinite may support reducing, poorly drained conditions, but the spectral signature is non-unique. Two scenarios have been proposed for the origin of the Al-unit: (1) The Al-unit postdates the underlying Fe/Mg clays and the contact is an unconformity; (2) The Al-unit is the result of intense leaching of the pre-existing Fe/Mg-clays. The contact between the units is often also characterized by a spectral signature that is consistent with Fe(II)-bearing phyllosilicates, possibly indicating alteration by Fe-rich reducing groundwater. In some locations, close proximity to jarosite and copiapite may imply a strong Fe/S redox gradient, possibly due to oxidation at sub-aerial seeps (Farrand et al, 2014). The clays are capped by a regionally-extensive dark mesa-forming unit that exhibits pyroxene spectral signatures. This unit may either be a pyroclastic deposit or a mafic sandstone. From crater counts, the cap rock is 3.7 Gy old (Early Hesperian). The Al-unit predates this episode and is interpreted as being Late Noachian whereas the thicker layered deposits were deposited before (Middle Noachian or earlier).
Transcript
Page 1: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

1

Mawrth VallisLocation(lat,lon):

24°N,341°E

Summaryofobservationsandinterpretedhistory,includingunknowns:

TheMawrth Vallis region contains extended outcrops of phyllosilicate-rich rocks. OMEGA and CRISMhavedetectedFe/Mg-smectites,Al-smectites,kaolinite,hydratedsilica,andsulfatesinassociationwithlight-tonedexposuresofNoachianbedrock.TheMawrthVallissitewouldenableinvestigationofsomeofthemostancientoutcropsofsedimentaryandclay-bearingrocksonMars.

Theclay-bearingunitscorrespondtoexposuresofthick(>300m),finelylayered(layerthickness<<10m)sedimentaryrocksextendingacrossa300*300kmwideregion.Theoriginofthe layering isunknown:interpretationsincludesubaqueous,fluvialandvolcaniclasticdeposits;theorbitalfaciesdoesnotallowadefinitive interpretation.Thisunit isdominatedbyFe/Mgsmectiteswith local interbedsofsulfates.OMEGAandCRISMunmixingmodelssuggestclaymineralabundancesashighas50wt.%.ItisuncleariftheFe/Mg-smectitesarerelatedtotheglobalpopulationofcrustalNoachianFe/Mg-smectites.

SomeportionsoftheFe/Mg-unitexhibitlargeresistantfilledfracturesandhalo-boundedveinsthatareinterpreted to have formed due to fluid circulation. The close proximity of the large Oyama crater,which impacted into the Fe/Mg-unit, suggests that these may be impact hydrothermal deposits;however,low-Tgroundwaterdiagenesiscannotberuledoutbasedonorbitaldata.

Al-richclays,gradingfromAl-smectiteandsilicaintokaoliniteandpossiblyallophane,dominatethetop10-30m of the section. The Al-clays are interpreted to have formed during sub-aerial weathering(pedogenic leaching). However, significantmineralogical variability as well as features interpreted asinverted channels suggest that the surface supported aqueous environments. The kaolinite isconcentratednear the topof the section,andmayeitherhavebeen formeddue to (a) localizedacidleaching ina “wetland”environment, (b) regionalorglobalacid surface leaching, (c) long term,moreneutralleaching(alaterite).Possiblealunitedetectionsatthetopofthesectionsupporteitherscenario(a) or (b). Strong spectral signatures consistentwith Fe(II)-bearing phyllosilicates associatedwith thekaolinitemaysupportreducing,poorlydrainedconditions,butthespectralsignatureisnon-unique.

TwoscenarioshavebeenproposedfortheoriginoftheAl-unit:(1)TheAl-unitpostdatestheunderlyingFe/Mgclaysandthecontact isanunconformity;(2)TheAl-unit istheresultof intenseleachingofthepre-existing Fe/Mg-clays. The contact between the units is often also characterized by a spectralsignature that is consistentwith Fe(II)-bearing phyllosilicates, possibly indicating alteration by Fe-richreducinggroundwater. Insomelocations,closeproximityto jarositeandcopiapitemayimplyastrongFe/Sredoxgradient,possiblyduetooxidationatsub-aerialseeps(Farrandetal,2014).

Theclaysarecappedbyaregionally-extensivedarkmesa-formingunit thatexhibitspyroxenespectralsignatures.Thisunitmayeitherbeapyroclasticdepositoramaficsandstone.Fromcratercounts,thecap rock is3.7Gyold (EarlyHesperian).TheAl-unitpredates thisepisodeand is interpretedasbeingLateNoachianwhereasthethickerlayereddepositsweredepositedbefore(MiddleNoachianorearlier).

Page 2: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

2

Summaryofkeyinvestigations

- Establishthecomposition,natureandoriginoftheclay-bearingdepositsinsidetheellipse.

- Determinethenatureoftheterminalaqueousenvironment;searchforbiosignaturesinassociationwithsulfatesandreducedironalterationphases

- DeterminewhetherornotmineraldiversitycorrespondstoNoachianclimatevariationsandconstrainnatureofNoachianclimate

- Searchfororganicsintheseclay-bearingdeposits,atpaleosurfaces,mineralsprecipitatedatseeps,andinsurfaceaqueousenvironments

- Determinetheoriginoffilledfractures;searchforbiosignaturesinprecipitatedminerals

- Determinenatureandcompositionofthedarkcaprock;ifvolcanic,sampleforagedating

CognizantIndividuals/Advocates:

DamienLoizeau,BrionyHorgan,FrançoisPoulet,NicolasMangold,JaniceBishop

LinktoWorkshop2rubricsummary

https://docs.google.com/spreadsheets/d/16Rmn2qHFQc6BKJtiyIeDLcyBxJqq8Oq4VO3etqrZ8lo/edit?invite=CNm8lqYF&pref=2&pli=1#gid=868597987

KeyPublicationslist(groupedbytopic):

Mineralogy:Bishop,J.L..etal(2008)PhyllosilicateDiversityandPastAqueousActivityRevealedatMawrthVallis,Mars.Science321,830.DOI:10.1126/science.1159699.

Bishop,J.L.etal(2013),WhattheancientphyllosilicatesatMawrthValliscantellusaboutpossiblehabitabilityonearlyMars,PlanetaryandSpaceScience,86,130–149,doi:10.1016/j.pss.2013.05.006.

Bishop,J.L.,andE.B.Rampe(2016),EvidenceforachangingMartianclimatefromthemineralogyatMawrthVallis,EarthandPlanetaryScienceLetters,448,42–48,doi:10.1016/j.epsl.2016.04.031.

Farrand,WilliamH.;Glotch,TimothyD.;Rice,JamesW.;Hurowitz,JoelA.;Swayze,GreggA.(2009)DiscoveryofjarositewithintheMawrthVallisregionofMars:ImplicationsforthegeologichistoryoftheregionIcarus,Volume204,Issue2,p.478-488.DOI:10.1016/j.icarus.2009.07.014.

Farrand,W.H.,T.D.Glotch,andB.Horgan(2014),DetectionofcopiapiteinthenorthernMawrthVallisregionofMars:Evidenceofacidsulfatealteration,Icarus,241(C),346–357,doi:10.1016/j.icarus.2014.07.003.

Loizeau,D.etal(2007).PhyllosilicatesintheMawrthVallisregionofMars.JournalofGeophysicalResearch,Volume112,IssueE8,CiteIDE08S08.DOI:10.1029/2006JE002877.

McKeown,N.etal.(2009)CharacterizationofphyllosilicatesobservedinthecentralMawrthVallisregion,Mars,

Page 3: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

3

theirpotentialformationalprocesses,andimplicationsforpastclimate.JournalofGeophysicalResearch,Volume114,Issue52,CiteIDE00D10.DOI:10.1029/2008JE003301.

Poulet,F.etal(2008).NewevidenceofsignificantabundanceofclaymineralsonMars.A&A487,L41–L44.DOI:10.1051/0004-6361:200810150.

Wray,JamesJ.etal(2010)IdentificationoftheCa-sulfatebassaniteinMawrthVallis,Mars.Icarus,Volume209,Issue2,p.416-421.DOI:10.1016/j.icarus.2010.06.001.

StratigraphyandPhysicalProperties:Howard,A.D.;Moore,J.M.(2007)TheLight-tonedSedimentsinandnearLowerMawrthVallisMaybeaDrapeDeposit.38thLPSC,p.1339.

Loizeau,D.etal.(2010)StratigraphyintheMawrthVallisregionthroughOMEGA,HRSCcolorimageryandDTM.Icarus,Volume205,Issue2,p.396-418.DOI:10.1016/j.icarus.2009.04.018.

Michalski,J.R.;andE.Z.NoeDobrea.2007.EvidenceforasedimentaryoriginofclaymineralsintheMawrthVallisregion,Mars.Geology,October2007;v.35;no.10;p.951–954;doi:10.1130/G23854A.1

Michalski,JosephR.;Fergason,RobinL.(2009)CompositionandthermalinertiaoftheMawrthVallisregionofMarsfromTESandTHEMISdata.Icarus,Volume199,Issue1,p.25-48.DOI:10.1016/j.icarus.2008.08.016.

Wray,J.J.etal(2008)Compositionalstratigraphyofclay-bearinglayereddepositsatMawrthVallis,Mars.GeophysicalResearchLetters,Volume35,Issue12,CiteIDL12202.DOI:10.1029/2008GL034385.

Astrobiology:Bishop,J.L.etal(2013),WhattheancientphyllosilicatesatMawrthValliscantellusaboutpossiblehabitabilityonearlyMars,PlanetaryandSpaceScience,86,130–149,doi:10.1016/j.pss.2013.05.006.

Horgan,B.H.,etal(2015),PossibleMicrobialEnergyPathwaysFromIronandSulfurRedoxGradientsatMawrthVallisandGaleCrater,Mars,AstrobiologyScienceConference,#7463,doi:10.1126/science.12.

HorganB.(2016)Strategiesforsearchingforbiosignaturesinancientmartiansub-aerialsurfaceenvironments,BiosignaturePreservationandDetectioninMarsAnalogEnvironments,#XXXX.

Regional/GlobalContext:Carter,J.Loizeau,D,Mangold,N.,Poulet,F.,Bibring,J.-P.,2015,WidespreadsurfaceweatheringonearlyMars:acaseforawarmerandwetterclimate,Icarus,248,373-382,doi:10.1016/j.icarus.2014.11.011

Loizeau,D.etal(2012)Characterizationofhydratedsilicate-bearingoutcropsinTyrrhenaTerra,Mars:ImplicationstothealterationhistoryofMars.SubmittedtoIcarus.

NoeDobrea,E.Z.etal.(2010)Mineralogyandstratigraphyofphyllosilicate-bearinganddarkmantlingunitsinthegreaterMawrthVallis/westArabiaTerraarea:Constraintsongeologicalorigin.JournalofGeophysicalResearch,Volume115,IssueE11,CiteID,E00D19.DOI:10.1029/2009JE003351.

Poulet,F(2005).PhyllosilicatesonMarsandimplicationsforearlymartianclimate.Nature,Volume438,Issue7068,pp.623-627.DOI:10.1038/nature04274.

Landingsitestudies:Loizeau,D.etal(2015).Historyoftheclay-richunitatMawrthVallis,Mars:High-resolutionmappingofa

candidatelandingsite,JGR-Planets,10.1002/2015JE004894.Michalski,J.(2010)TheMawrthVallisRegionofMars:APotentialLandingSitefortheMarsScienceLaboratory(MSL)Mission.Astrobiology,Volume10,Issue7,pp.687-703.DOI:10.1089/ast.2010.0491.

Page 4: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

4

RegionalContextFigure(ref:Loizeau)

Page 5: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

5

EllipseROIMaporGeologicMapFigure(ref:Loizeau,MCKeown)

Red:Fe/Mg-smectites

Blue:Al-clays

Green:ferrousalterationphases

Page 6: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

6

Regional(~3xellipse)StratigraphicColumnFigure

Page 7: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

7

InferredTimelineFigure

SummaryofTop3-5Units/ROIs

ROI AqueousorIgneous?

Environmentalsettingsforbiosignaturepreservation

Aqueousgeochemicalenvironmentsindicatedbymineralassemblages

1.Claystratigraphy

Aqueous Pedogenic,fluvial,possiblewetlands;Pedogenic/diagenetic/subaqueousclays;subsurfaceaquifersandseeps

Al-clays/alunite/ferrousclays/silica;Fe/Mg-smectites;ferrousclays/jarosite

2.Halo-boundedfractures/veins

Aqueous Impacthydrothermalsystemorsubsurfacelow-Tfluidflow

--

3.Darkcappingunit

Igneous Maypreserveunderlyingpaleosurface&surfacecommunities

Pyroxene-bearingdarkdeposits

4.Elongatedmesas

Aqueous Fluvial --

Page 8: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

8

Top3-5Units/ROIsDetailedDescriptionsUnit/ROIName:1.Claystratigraphy

Aqueous

Description:

● Predominantthick(upto300m)clay-bearingunitcomposedofFe-Mgsmectites,changestoAl-clays(Al-smectites,kaolinite),andsilicaintop10-30m.

● Ferrousphasesandoxidizedsulfatesincloseproximity.● Maintargetofinterestisthetopofthesequenceandtheterminalaqueousenvironment.

Interpretation(s):

● Originofdepositionofsedimentsisunclear:lacustrine,fine-grainedeolian,ashcanexplainthedepositionstyle.Fluvialandeoliancrossbeddingnotobserved.Localejectafromcratersareinterbeddedwithlayers,suggestinglongtermdeposition.

● Fe/Mg-smectites:Originofthealterationintoclaysincludesdiageneticalteration(authigenicclaysonanypreviouslydepositedsediments)ordetritalclaysifsubaqueousdepositionwaspredominant.

● Al-unit:Pedogenicweatheringsequenceformedunderatemperateclimate,formedeitherasadeepleachingprofileofasingledepositionalunitorasapaleosolsequence(weatheringconcurrentwithlong-termdeposition).Kaoliniteattopofsequenceeitherindicateslong-livedleachedpaleosurface(laterite)orweatheringinacidicwetlands.

● Ferrousalterationphasesproximaltolocalizedsulfates(jarositeandalunite)suggestsanFe/Sredoxgradientinsurfacewetlands(Al-unit,terminalaqueousenvironment)andinsubsurfaceaquifersandsprings(contactbetweenFe/Mg-andAl-units).

InSituInvestigations:

● EvaluatethehabitabilityofEarlyNoachiantoEarlyHesperiansurfaceandsubsurfaceenvironments

● Establishthenatureandoriginoftheregionalclayrichbasement—crustallow-Thydrothermalalteration,magmatic/impactalteration,pedogenicweathering,etc.

● InterrogatetheoriginofAlphyllosilicates—weatheringzonesindicatingclementtemperatures;zonesofacid-leaching.

Page 9: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

9

● Determinewhetherornotredoxgradientsexistedandtheirorigin—groundwaterfluctuations,chemicalreactionsbetweenunits,oxidizingatmosphere,etc.

● Determineoriginofapparentlayering,searchforpreservedpaleosurfacesandpaleoenvironments

● DeterminewhetherornotmineraldiversitycorrespondstoNoachianclimatevariationsandconstrainnatureofNoachianclimate

● Insitufaciesatmetertomm-scaletodeterminefacies,grainsizesandtexture.● Chemo-stratigraphytoconstrainthealterationorigininbothunits.● Searchfororganicsinterminalaqueousenvironment-concentratedinreducing(e.g.,ponded)surfaceenvironmentsasindicatedbyferrousphasesorinfluvialdeposits(overbanks,floodplains,etc.)

● Searchforpaleosurfaceswhereorganicscouldhaveaccumulated● Searchfororganicsandmorphologicalbiosignaturesassociatedwithsulfatesandsilica● RIMFAXtomaptheinternalstructureoflayereddeposits;searchfordiscontinuities(e.g.stronger/weakerreflections)andlateralchangesinlayering.Ifpossibledeterminedensity,internalrockabundanceofthelayerstohelpdetermineorigin.Examinestructureofcontactwithunderlyingbasementunits

● RIMFAXtosearchforinternallayering;examinecontactwithlowerunits.

ReturnedSampleAnalyses:

● Precipitatedminerals,ifpresent,wouldrecordatmosphericcompositionwithinpaleo-weatheringsequences,enablingevaluationofstableisotopesofauthigenicmineralsfortemperature,changingatm/waterchemistry

● Organicsextractedfromclaymineralscouldbeexaminedasafunctionoftimetosearchforbiosignaturesandunderstandthepaleo-influxofexogenousorganicmatter

● Samplesulfatesforstableisotopestudiesthatconstrainfluid/atmosphericchemistry● Retention/depletionofredoxsensitiveminorandtracemetalswouldconstrainatmospheric/aquiferredoxandchangeswithtime

● Mineralassemblages,detailedpetrology,andstableisotopeswouldconstraintheoriginoftheclaysbyweatheringorhydrothermalactivity

● Iflayersareigneousinoriginandretainprimarymaterials,evaluateevolutionofigneousprocessesovertime

Page 10: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

10

Unit/ROIName:2.Halo-boundedfracture-fills

Aqueous

Description:

• 10mwidefracturefillsthataremoreresistanttoerosionthantheclay-bearingrocks.• Fracturestransitiontoerodedveinsinsomelocations.• Ahalowithdistinctcolorispresentaroundthefracturesandveins.

Interpretation(s):

● ImpacthydrothermalsystemduetoOyamacraterimpactduringperiodbetweendepositionofFe/Mg-unitandAl-unit–impactmayhavecausedbothfracturingandfluidflow.

● Alternatively,precipitationinfracturesduetolow-Tsubsurfacediagenesis.

InSituInvestigations:

● Usemorphology,mineralogy,geochemistrytodetermineoriginoffracturefills● Evaluatehost-rockforsignsofimpactdisturbance● Searchfororganicandmorphologicalbiosignaturesinprecipitatedminerals● RIMFAX to seek reflections from fracture fills; if detectable, examine subsurface

geometry. Map subsurface layering on either side of the fracture fills.

ReturnedSampleAnalyses:

● Precipitatedmineralsinfractures-searchforisotopicandotherbiosignatures,evaluatefluidchemistryfromtrappedfluids

Unit/ROIName:3.Darkcaprock

Igneous(rockwaypoint)

Description:Darkcaprock,pyroxenebearing,locallythinlylayeredormassive.Neverexceed20-30minthickness.Typicallyfillstroughsandcraters.Oftenasinvertedtopography(somoreresistantthanclay-bearingdeposits)

Interpretation(s):

Page 11: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

11

● Eithereolianorigneous(pyroclastic)deposits;regionalextentregardlessoftopographyismoreconsistentwithpyroclasticorigin.

● Exhibitsstrongpyroxenespectralsignatures,nosignsofalteration● Non-alteredmaterialdepositedafterendofalterationinthisregion● Cratercountssuggest3.7-3.6Ga(EarlyHesperian)

InSituInvestigations:

● Analyzefacies/texture/mineralogytodetermineigneousvs.aeolianorigin● RIMFAXtoseek reflections from base of cap rock deposits; if detectable, examine

subsurface geometry and contact with surrounding layers. If possible, determine density of deposits, search for internal large blocks that could help determine origin.

ReturnedSampleAnalyses:

● Unalteredmaterialforgeochronology;constraincriticalEarlyHesperiantiming● Igneouspetrology

Unit/ROIName:4.Mesachains

Aqueous

Description:LinesofelongatedmesasorientedalongregionalslopeinOyamacrater

Interpretation(s):

● Invertedvalleyspreservingterminalaqueousenvironment

InSituInvestigations:

● Searchfororganicsinanypreservedoverbankdeposits,floodplains,etc.● Sedimentologytoconstrainseasonality,durationofterminalaqueousenvironment

ReturnedSampleAnalyses:

Page 12: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

12

Biosignatures(M2020ObjectiveBandObjectiveC+e2e-iSAGType1A,1Bsamples)

BiosignatureCategory

InferredLocationatSite Biosig.Formation&PreservationPotential

Organicmaterials Inassociationwithpaleosurfaces,withinclay-bearingunits,inassociationwithreducedphasesandprecipitatedminerals,withinfilledfractures

Rapidlyburiedpaleosurfacescanpreserveorganicsfromsurfacecommunities;Claymineralsareabletopreserveorganics;reducingenvironmentspreserveorganics;preipicatedmineralspreserveorganics

Chemical Clay-bearingunit,Fe-MgandAlunit,Haloboundedfracturefills

ZonationinchemistryinthetransitionfromFe-MgtoAlclaysunit.Roleofthereduced(ferrous)horizon.

Isotopic Claybearingunit,darkcapunit,fracturefills

Lightisotopesinclays

Mineralogical All MIneralizationinhalos,zonationswithspecificminerals

Micro-morphological Fe-Mgclaylayeredunit,precipitatedminerals

Anystructurepreservedinclaydepositsorprecipitatedminerals

Macro-morphological Al-richclayunit Matspreservedinpaleosurfaces

DateableUnit(s)forCrateringChronologyEstablishmentUnitName

TotalArea(km2)

TimePeriod

GeologicInterpretationanduncertainties

Whatconstraintswouldtheunitprovideoncraterchronology?

Darkcaprock

Regionalinextent

EarlyHesperian

Couldbeeoliandepositsfromreworkedigneousrockorpyroclasticdeposits;regionalextentmaybemoreconsistentwithpyroclastics

Wellconstrainedstratigraphicunitwithregionalextent.However,ifthisisprimaryvocanicisunclear.

Page 13: Mawrth Vallis Location - NASAmarsnext.jpl.nasa.gov/documents/LandingSiteWorksheet_Maw...Horgan B. (2016) Strategies for searching for biosignatures in ancient martian sub-aerial surface

M2020CandidateLandingSiteDataSheets MawrthVallis

13

KeyUncertainties/UnknownsabouttheSiteListthemostimportantuncertainties,unknownsorpotentialdrawbacksaboutthesite

● PoorlyconstrainedoriginoftheFe-Mgrichlayereddeposits

● Noobviousgeomorphicevidenceofstandingbodyofwater

● Oyamacratermayhavedisturbedthedeposits(althoughitcouldalso

haveprovidedaheatsourceforahabitableimpact-generatedhydrothermalsystem)


Recommended